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This paper describes a series of experiments in which expert diagnostic systems were con-
structed to analyze human pathologic gait. The difference between successive systems is the
recogaition of the need for both causal reasoning about the process of gait and experiential,
associational knowledge that can control causal reasoning. The performance of the first
system (DR. GAIT-1), which relies exclusively on associational knowledge, is quite limited.
The szcond system (DR. GAIT-2), because it is based on a qualitative causal model of gait,
overcame many of the difficulties faced by the first system, but its ability to diagnose cases is
limited by the complexity of causal reasoning. The third system (QUAWDS), which we are
currently developing, is an experiment in integrating causal reasoning with associational
knowledge so that robust conclusions can be produced efficiently.

INTRODUCTION

Diagnosis is the task of explaining a set of observations in terms of malfunc-
tions and their causes. This paper describes a series of experiments in which
expert d:agnostic systems were constructed to analyze human pathologic gait.
The experiments consist of three different systems, all utilizing the knowledge
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provided by one of the authors (Simon). The difference between successive
systems is the recognition of the need for both causal reasoning about the pro-
cess of gait and experiential, associational knowledge that can control the causal
reasoning.

The first system (DR. GAIT-1), developed by three of the authors (Hirsch,
Simon, and Szolovits) at MIT and Harvard, relies exclusively on associational
knowledge. DR. GAIT-1’s success in diagnosing cases is quite limited. The sec-
ond system (DR. GAIT-2), developed by the same three people, is primarily
based on a qualitative causal model of gait. DR. GAIT-2 overcame many of the
difficulties faced by the first system, but its ability to diagnose cases is limited
by complexity of causal reasoning. The third system (QUAWDS, for QUalitative
Analysis of Walking Disorders), currently being developed by three of the au-
thors (Bylander, Weintraub, and Simon) at The Ohio State University, is an
experiment in integrating causal reasoning with associational knowledge so that
robust conclusions can be produced efficiently.

First, we briefly describe the domain of gait analysis. Next, we discuss each
system in turn, with special attention given to the role of causal reasoning within
each system. Because of space limitations, our descriptions are necessarily brief
and simplified. Also, our attention is mainly focused on the diagnostic functions
of these systems although they also provide recommendations for therapy. For
further information on DR. GAIT-1 and DR. GAIT-2, see Hirsch (1987). For
further information on QUAWDS, see Bylander et al. (1988).

THE DOMAIN OF HUMAN PATHOLOGIC GAIT

Normal gait is efficient, adaptable, pain-free, and requires no ancillary de-
vices. In a normal person, the neurological system controls the muscles through
coordinated commands to rotate limbs at several joints, providing body propul-
sion and stability for walking (Inman et al., 1981; Perry, 1985). A gait cycle
consists of the time between a heel strike and the next heel strike of the same
foot. The most significant events of the gait cycle are right heel strike (RHS),
left toe off (LTO), left heel strike (LHS), and right toe off (RTO), which delimit
the major phases of gait: weight acceptance (WA), single limb stance (SLS),
weight release (WR), and swing. Figure 1 illustrates these events and the phases
for the right leg.

The domain of DR. GAIT-1 and DR. GAIT-2 is restricted to pathologic gait
resulting from the neurological disease of cerebral palsy. This disease affects the
brain and manifests itself by interfering with the control of voluntary and invol-
untary motions. The effect of cerebral palsy on the gait cycle is improper coor-
dination of muscle activity. It is these effects, and not cerebral palsy itself, that
are the focus in pathologic gait analysis (the fact that the patient has CP is known
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FIGURE 1. Important events and phases in the gait cycle. (Modified from Inman et al., 1981, p. 26;
used with permission of the publisher.)

before geit analysis is performed). These effects include muscle tightness, spas-
ticity, and weakness, all of which affect the patient’s gait motions.

Hence, the goal of diagnosis in this domain is to identify the improper
muscle activity and joint limitations that cause the deviations observed in a
patient’s gait. The input is the information gathered by a gait analysis laboratory.
There are three types of data: clinical, historical, and motion. Clinical data
result frcm physical examination of the patient and determine both the range of
motion of the different joints and a qualitative measure of the strength of differ-
ent muscle groups. Historical data include information about any past medical
procedurss or diagnoses. Motion data specify the time/distance parameters of
walking (velocity, stride length, stance and swing times, etc.) and the angular
position of the patient’s joints (hips, knees, and ankles) during the different gait
phases, with the latter recorded in all three planes. Motion data also include
electromyograph (EMG) data on selected muscle groups, indicating when ner-
vous stimulation occurs during the gait cycle. Figure 2 shows what some of this
information look like. Typically, these data are gathered before a gait analysis is
performed.

This domain is complex for a number of reasons. Patients with neurological
disorders such as cerebral palsy have a wide variation of muscle and joint faults,
and typically each patient has multiple faults. Reasoning about multiple faults is
difficult because gait involves a number of highly interacting components and
processes. The domain is further complicated because the system attempts to
compensate for faults. Furthermore, many gait parameters cannot be directly
measurec with current technology. For example, EMG data are at best a qualita-
tive measure of muscle forces (Simon, 1982).
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Historical Data (both hamstrings lengthened 2/88. Mother reported post-operative
improvement of gait, but the hamstrings are tightening again.)
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FIGURE 2. Some of the data used in gait analysis.

PREVIOUS GAIT ANALYSIS PROGRAMS

Most of the medical research on pathological gait is either statistical in
nature (Wong et al., 1983) or concentrates on the functionality of a particular
joint or muscle group (Simon et al., 1978). There has not been a good attempt to
formalize a method for gait analysis. Most of the bioengineering research on
formalizing gait is based on quantitative models (Hemami, 1985). These models
nelp one to understand gait, but they do not help analyze the data. However,
there have been two notable attempts to create gait analysis programs using
artificial intelligence methods.

In the mid-1970s, Tracy and others at Stanford University developed an
sxpert system to help diagnose gait disorders (Tracy et al., 1979). This program
relies on associational knowledge encoded as MYCIN-like production rules
(Shortliffe, 1976). Using the MYCIN framework, it was difficult to direct the
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reasoniny in an organized manner, that is, across phases or joints. Below, we
shall see that DR. GAIT-1 and its successors carefully control the sequence of
reasoning. In addition, Tracy’s program considers only muscle tightnesses and
weaknesses, ignoring other possible causes such as muscle spasticities and joint
contractures. Finally, it does not relate the faults to the original deviations.

In the early 1980s at Vanderbilt University, Dzierzanowski (1984) and others
built an expert system called GAITSPERT. GAITSPERT attempts to categorize pa-
tients according to different patterns of motion. It first attempts to identify gen-
eral patterns of motion, and then, based on which general patterns match, more
specific patterns are examined. GAITSPERT controls its reasoning better than
Tracy’s program but is limited to the domain of stroke-related disorders. By
performing gait analysis for cerebral palsy patients, DR. GAIT-1 and DR. GAIT-2
not only add more breadth to the coverage of gait analysis problems but also
deal with more complex problems. As we shall see, DR. GAIT-2 explicitly rea-
sons about multiple, interacting faults. Our third system, QUAWDS moves away
from the limitation to a particular neurological or orthopedic disorder.

DR. GAIT-1

DR. GAIT-1 is the first of the expert systems in pathologic gait analysis that
we have developed. This system relies exclusively on associational knowledge;
no explicit causal reasoning is performed. DR. GAIT-1 operates strictly by asso-
ciating patterns of observations with causes.

Functional Organization of DR. GAIT-1

DR. GAIT-1 analyzes the motion of one leg in one plane, specifically the
angular positions of the hip, knee, and ankle in the sagittal plane, which is the
view from the side. The primary inputs are scaled motion data and interpreted
EMG data. The motion data are grouped by the four phases of gait with single
limb stance and swing split into two parts and is scaled by 5° increments and
decrements from normal. The scale ranges from markedly decreased (25° <
normal) to markedly increased (25° > normal). Figure 3 illustrates scaling of
motion. The scaling was performed by hand for DR. GAIT-1 but was automated
when DR. GAIT-2 was implemented.

The EMG data are interpreted to determine if a given muscle was on or off
in a particular phase. Figure 4 shows an example EMG interpretation. This
interpretation is performed by a domain expert. Automation of EMG interpreta-
tion is being investigated.

Based on these data, DR. GAIT-1 does diagnosis by performing three sub-
tasks:
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FIGURE 3. Example scaling of motion.

1. Match patterns. For each joint, match the pattern of motion across the
phases to a set of precompiled patterns of motion.
2. Match faults. Using the motion patterns plus information about EMG,
determine the general faults of the patient.
3. Specialize faults. The descriptions of the faults are specialized to corre-
sponc to the observed motions and EMG activity of the patient.

Each of these tasks is performed by a set of rules that directly maps inputs to
outputs. These rules were implemented using the GENIE knowledge engineering

Left Hamstring EMG
Signal

Phase EMG
WA on
first half SLS on
second half SLS off
WR off
first half swing on
second half swing on

EMG Interpretations

FIGURE 4. Example interpretation of EMG.
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FIGURE 5. Functions performed by DRr. Garr-1.

tool, which combines frames and rule bases (Sandell, 1984). Figure 5 illustrates
these furnctions.

Figure 6 illustrates a rule for each of DR. GAIT-1’s diagnosis subtasks. They
are stated in English for the convenience of the reader. The first rule looks for a
particular pattern of ankle motion, namely whether the ankle has increased dor-
siflexion (the foot directed toward the shank more than normal) during SLS.
Based on this pattern, the second rule will conclude that the gastroc/soleus
muscle (the calf muscle) is weak. Note that the rule does not require an exact
match o the pattern, since other conditions of the rule consider specific mo-
tions. The third rule specializes this diagnosis if increased dorsiflexion occurs
only during the first half of single limb stance. If this chain of rules fires, DR.
GAIT-1 will reach the following conclusion:

Abnormal dorsiflexion during the first half of single limb stance is noted.
Gastroc/soleus activity is unable to counteract body weight dorsiflexion torque.

Analysis of DR. GAIT-1

DR. GAIT-1 was informally tested on 20 cases. The testing included comparing
the system’s performance with that of a domain expert over the tasks of identify-

if  th= ankle position during WA is within normal range, and
th= ankle position during the first half of SLS is at least mildly increased, and
thes ankle position during the second half of SLS is at least mildly increased, and
th= ankle position during WR is within normal range, and
thz ankle position during the first half of swing is within normal range, and
ths ankle position during the second half of swing is within normal range;

then conclude pattern of abnormal dorsiflexion during SLS.

if  there is a pattern of abnormal dorsiflexion during SLS, or
th2 ankle position during the first half of SLS is at least mildly increased, or
th2 ankle position during the second half of SLS is at least mildly increased;
then coaclude weak gastroc/soleus muscle causing abnormal dorsiflexion during SLS.

if  there is a weak gastroc/soleus muscle causing abnormal dorsiflexion during SLS, and
the ankle position during the first half of SLS is at least mildly increased, and
the ankle position during the second half of SLS is not at least mildly increased;
then specialize diagnosis to first half of SLS.

FIGURE 6. Example rules of DR. GAIT-1.
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ing motion deviations and then identifying the deviations’ causes. On simple
cases—60% of the test cases—DR. GAIT-1 identified 80% of the major devia-
tions and identified the causes correctly.

However, DR. GAIT-1 has difficulties with harder cases, for several reasons.
First, DR. GAIT-1 uses only empirical pattern matching in its problem solving.
Only patients whose symptoms match exactly the situations described by the
rules can have their gait adequately analyzed by the program. Adding new rules
to cover each new specific situation is not an adequate solution because there is a
combinatorial number of multiple fault possibilities.

A second problem is that nothing checks the consistency of the program’s
conclusions with the patient data. If a rule concludes hamstring overactivity, this
is given as an answer regardless of whether additional data would discredit this
hypothesis.

A related problem is that the explanations offered by the rule base are poor.
The only types of explanations the system can give are run-time trace explana-
tions. These explanations detail the sequence of diagnostic reasoning of the case
and dentify how certain observations or problem states match the knowledge
base. However, the system is unable to justify its conclusions in terms of what
motions are caused by which faults.

Finally, another problem is lack of intermediary concepts within the sys-
tem. The system is always matching a set of observations directly to a fault.
DR. GAIT-1’s rules do not express concepts common to a large number of
situations.

To overcome these problems, an underlying domain model is needed that
can Jdetermine interactions in the domain and formulate reasonable explana-
tions. The key to doing this is to use some understanding about how gait is
caused, namely that the joints’ motions are caused by a combination of torques
produced by muscles, body weight, and momentum.

DR. GAIT-2

If a gait analysis system could reason about the combined effects of
muscles, joints, weight, and momentum on joint rotation, it would be able
to propose and evaluate faults based on a causal understanding of the do-
main. The opportunity then exists to focus on particular abnormal motions
and consider only fault hypotheses that are causally relevant. The opportunity
also exists to determine the explanatory coverage of a fault hypothesis, that is,
whether it accounts for the observed gait. Observations that are not accounted
for can become the focus for further reasoning. Because of its capability
for causal reasoning, DR. GAIT-2 is a better, more robust system than DR.
GAIT-1.
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Functional Organization of DR. GAIT-2

Just like DR. GAIT-1, DR. GAIT-2 analyzes only the hip, knee, and ankle
motions of one leg in the sagittal plane (side view). Again as with DR. GAIT-1,
the primary inputs are history, physical exam, scaled motion data, and inter-
preted EMG data. To do diagnosis, DR. GAIT-2 does the following series of
subtasks:

1. Identify deviations. A motion deviation must be 10° or more from nor-
mal to be important enough to explain. As in DR. GAIT-1, these are grouped by
joint (hip, knee, and ankle) and phase, with SLS and swing again split into two
parts.

2. Diagnose classes of causes. DR. GAIT-2 determines the classes of causes
that exist before considering specific faults. There are three classes of causes:

(a) Limited range of motion. This is associated with very restricted
ranges of motion throughout the gait cycle by any of the joints, such that the
motion can be attributed to co-contractures of opposing muscles. To conclude
this class, the patient data must indicate that the opposing muscles are continu-
ously active.

(b) Contracture. This is associated with restricted motion of a joint
throughout the gait cycle caused by tight contracted muscles or tight joint cap-
sules. To conclude this class, the contracture must be specified in the clinical
patient data.

(¢) Dynamic. If an abnormal motion is not explained by either of the
above two classes, its cause is considered to be dynamic, that is, caused by the
particular dynamics of muscle actions, body weight, and momentum during that
phase of the gait.

3. Diagnose dynamic causes. DR. GAIT-2 uses its causal model of gait to
generate and select hypotheses. An assumption-based truth maintenance system
(de Kleer, 1986) is used to ensure that no hypotheses conflict with each other.

These functions were implemented using the GENIE tool. Figure 7 illustrates
these functions. The operation of the causal model is described in the following
two sections.

Causal Reasoning in DR. GAIT-2

DR. GAIT-2’s causal reasoning about torques is the heart of the system. As
mentioned above, the rotational motion at a joint is the result of the combination
of torques acting on the joint. The knee’s motion, for example, is determined by
all the torques acting on the knee. For the knee, DR. GAIT-2 reasons about the
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FIGURE 7. Functions performed by DR. GAIT-2.

torques caused by the hamstrings (muscles on the back of the thigh), quadriceps
(musicles on the front of the thigh), gastroc/soleus (the calf muscles), body
weight, and body momentum. If the knee’s position is abnormal, DR. GAIT-2
infers that at least one of the torques is abnormal.* For example, if the knee
showss increased flexion, one possibility is an increased hamstring torque.

'The total torque acting on the knee, then, must satisfy this equation:

knee-torque = hamstring-torque + quadricep-torque + gastroc/soleus-
torque + bodyweight-torque + momentum-torque 1)

However, now five torques must be considered to assign the blame for abnormal
knee position. Unfortunately, the equation cannot be straightforwardly solved
because numeric measurements of the various torques are not available. Conse-
quertly, qualitative reasoning is called for, but the equation as it stands is
underconstrained—an increase in any one or any combination of the torques
could account for increased knee flexion. To resolve these problems, DR. GAIT-
2 uses case data, general knowledge about gait, and heuristics about which
abnormalities are more likely.

In most problems involving search and combination, it helps to organize the
search space. Each torque on the knee can be classified as a flexion torque or an
extension torque based on whether the torque normally causes flexion or exten-
sion, respectively. For the knee, the quadricep-torque is a flexion torque and the
hamstring-torque and gastroc/soleus-torque are extension torques. The classifi-
caticn for bodyweight-torque and momentum-torque depends on the phase of the
gait. We also classify a torque as internal if it is produced locally or external
otherwise. All muscle torques are internal, while the bodyweight and momen-
tum torques are external. Using these categories, the torques can be organized as
a tree as shown in Fig. 8.

'The tree in Figure 8 organizes Equation (1) as the following set of equa-
tions.:

knee-torque = flexion-torque — extension-torque )

**In an accurate physical model, abnormal torque results in abnormal angular acceleration, which usually,
but nct always, results in abnormal angular position. One of the goals of the QUAWDS system is to reason about
the in‘ermediate concept of angular acceleration.

‘The “‘bodyweight-torque’” in the figure includes the effects of both body weight and momentum.
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flexion-torque extension-torque
. . int - ion- - ion-
internal-flexion-torque ernal-extension external-extension
torque torque
-
hamstring-torque gastroc/soleus-torque quadracep-torque extension-BW-torque

FIGURE 8. Torque tree for knee in second half of swing.
flexion-torque = internal-flexion-torque €))

extension-torque = internal-extension-torque + external-extension-torque
@

internal-flexion-torque = hamstring-torque + gastroc/soleus-torque (5)
internal-extension-torque = quadricep-torque ©6)
external-extension-torque = extension-BW-torque @)

Now that DR. GAIT-2 has all of these equations, how can they be used? The
scaled gzit motions indicate whether a joint’s position is increased, decreased, or
normal. Similarly, the torques are described as increased, decreased, or normal.
DR. GAIT-2 solves the equations using these qualitative values by employing de
Kleer’s incremental qualitative (IQ) algebra (de Kleer, 1979). The rules for IQ
addition are shown in Table 1. In the table, * stands for increased, O stands for
normal, } stands for decreased, and ? stands for unknown.

In the two unknown cases in Table 1, more information is needed to disam-
biguate the answer. To do this, we introduce the relations < diff, >diff, and
=diff. The statement A <diff B says that “4 has a smaller deviation from
normal than B’ Thus, if A is increased, B is decreased, and A <diff B, than
A + B is decreased; that is, B’s decrease from normal is greater than A’s

TABLE 1. IQ Addition Table
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increase from normal. Using these relations, we have constructed a modified IQ
addition table, which is shown in Table 2.

S.nce no numeric measurements for the torques are available, it is uncertain
whetter a torque is increased or decreased and whether the relationship between
two torques is < diff, =diff, or >diff. However, hypotheses about the amount
of and relationships between torques can be made. In the context of a single
torque tree, DR. GAIT-2’s strategy is to hypothesize everything that is physically
reaso1able and then use heuristic knowledge about cerebral palsy to choose the
best set of hypotheses. This hypothesis set corresponds to the diagnosis for that
joint and phase. Since there are other torque trees for other joints and phases,
DR. GAIT-2 must in addition ensure that all of the hypotheses that are chosen are
consistent with each other. To maintain consistency, a support system based on
de Kleer’s (1986) assumption-based truth maintenance system (ATMS) is used.
That s, each set of hypotheses produced by processing a torque tree corresponds
to a set of assumptions. Thus, by maintaining consistency between assumptions,
the ATMS also maintains consistency of the overall diagnosis.

Exarnple of Causal Reasoning in DR. GAIT-2

Flow does DR. GAIT-2 apply a torque tree to patient data? The following
example demonstrates how this is done.

Suppose that during the second half of swing the patient’s knee has increased
flexion, and the following data describe muscle activity:

Muscle Usual activity Actual activity
Gastroc/soleus Off On
Hamstrings On On
Quadriceps Off Off

“Usual activity” indicates normal muscle activity, while ‘‘Actual activity’’ is the
EMC: interpretation for the patient. Figure 8 is the relevant torque tree in this
situation and Eqgs. (2)-(7) are the relevant torque equations.

First, DR. GAIT-2 uses domain knowledge to determine the possible values
of th lowest level torques (muscle torques and body weight torque), which are
as follows:

hamstring-torque € { (increased, {hamstring not weak}),
(decreased, {hamstring weak}) }

gastroc/soleus-torque € { (increased, { }> }
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TABLE 2. Modified IQ Addition Table

B
+] 1 (0] 7T
! ! 1 | case2

A0 l 0 T

T |casel | T T
T if A>diff B T if A <dif B
casel == ¢ 0 if A =diff B case2 =4¢ 0 if A =dif B
| if A<dif B | if A >dif B

quadricep-torque € { (normal, { }) }
extension-BW-torque € { (decreased, { }) }

Each torque value has the form (V,{A4,, A,,. . .} ) where V is increased, nor-
mal, or dzcreased and each 4, is a hypothesis about a torque or torques; each A4,
is treated as an assumption by the ATMS. At this level, the hamstring-torque
could conceivably be increased or decreased because the hamstrings could either
be overly weak or strong. The gastroc/soleus-torque is inferred to be increased
because the gastroc/soleus is on when it is normal to be off. The quadricep-
torque is inferred to be normal because the quadriceps is off as it is normally
should be. The extension-BW-torque is inferred to be decreased based on the
conclusions of heuristic rules which use other patient data not described here.

These torque values are then propagated up to the joint’s torque. At the next
level of the torque tree in Fig. 8, the following values are produced:

internal-flexion-torque € { (increased, {hamstring not weak}) ,
{increased, {gastroc/soleus-torque > diff hamstring-torque,
hamstring weak}) ,
{normal, {gastroc/soleus-torque =diff hamstring-torque,
hamstring weak}) }
{decreased, {gastroc/soleus-torque <diff hamstring-torque,
hamstring weak}) }
internal-extension-torque € { (normal, {}) }
external-extension-torque € { (decreased, { }> }

Note that if the hamstrings are hypothesized to be weak, it is possible that the
increase in gastroc/soleus-torque could exceed, equal, or fall short of the de-
crease in hamstring-torque. These possibilities are generated using the modified
IQ addition table in Table 2.
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At the next to last level, flexion-torque has exactly the same possibilities as
internal-flexion-torque. Extension-torque is decreased because external-
exterssion-torque is decreased.

Finally, DR. GAIT-2 generates the possible values for knee-torque:

knee-torque € { (increased, {hamstring not weak}),

(increased, {gastroc/soleus-torque > diff hamstring-torque,
hamstring weak}),

(increased, {gastroc/soleus-torque = diff hamstring-torque,
hamstring weak} ),

(increased, {flexion-torque <diff extension-torque,
gastroc/soleus-torque < diff hamstring-torque,
hamstring weak} ),

(normal, {flexion-torque =diff extension-torque,
gastroc/soleus-torque < diff hamstring-torque,
hamstring weak} ),

{decreased, {flexion-torque > diff extension-torque,
gastroc/soleus-torque < diff hamstring-torque,
hamstring weak}) },

Note that because Eq. (2) has a minus sign instead of a plus sign, the decrease
in extension-torque corresponds to an increase to knee-torque. Thus, all the
possible values of flexion-torque that are increased or normal are possible
ways for knee-torque to be increased. If flexion-torque is decreased, again
Table 2 must be used to generate possible values of knee-torque based on the
possible relationships between flexion-torque and extension-torque.

[mposing the known constraint that the knee-torque is increased causes the
systzm to remove inconsistent values. This leaves four possible sets of hypoth-
eses that account for increased knee flexion in the second half of swing. To
select one of the sets, each set is scored by using domain heuristics that score
each hypothesis on the basis of how likely it is to occur in cerebral palsy
patiznts. For example, for CP patients it is unlikely that a muscle is weak
(unless surgery has been performed on the muscle), so hypotheses about mus-
cle ‘weakness will receive a high score (higher means less likely). On the other
hand, it is very likely that a muscle is overactive, so these hypotheses will
receive low scores. The score for a set of hypotheses is the sum of the scores
of its elements. The lowest scoring set (the most likely one) is selected to be
the best possible explanation of the torque’s value. Based on these factors, the
top scoring set of hypotheses in the example is {hamstring not weak}, and DR.
GAIT-2 provides the following diagnosis and explanation of the abnormal mo-
tion:

Problem name: right-knee-sagittaL—second--half—swing-f lexion
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Protilem summary:

The right knee has increased flexion during second-half-swing.
Assuming the following:
1) (patient data right hamstring muscle-strength) equals nonweak.

The PRIMARY CAUSE(s) of this problem is(are):

increased hamstring-torque. which is due to normal-firing

of a functionally-spastic hamstring.

increased gastroc-soleus-torque. which is due to abnormal-firing
of a functionally-spastic gastroc/soleus.

The AUXILIARY CAUSE(s) of this problem is(are):

decreased extension-BW-torque

9

The phrase ““increased hamstring-torque . . . due to normal-firing . . .’ indi-
cates that it is normal for the hamstrings to be firing but that the hamstrings are
producing more torque than normal. The hamstring is said to be spastic because
overactive muscles imply spasticity in cerebral palsy patients. Note that DR.
GAIT-2 remembers that the gastroc/soleus was on when it normally should have
been off and also that the torque caused by body weight and momentum is
different from normal.

It is possible that ‘‘hamstring weak’’ will be selected to diagnose some other
abnormal motion of the patient. In this situation, the ATMS will discover the
contradiction, which results in DR. GAIT-2 constructing two alternative diagno-
ses. For each abnormal motion in which ‘“hamstring not weak’ was selected,
DR. GAIT-2 constructs a new diagnosis by selecting the best sets of hypotheses
that do riot make this assumption. Constructing the other diagnosis is similar,
except that DR. GAIT-2 selects sets of hypotheses that do not include ‘‘hamstring
weak.” The two alternative diagnoses are compared via their scores and the best
one is selected.*

Analysis of DR. GAIT-2

We t=sted DR. GAIT-2 on 22 cases covering a range of cerebral palsy pa-
tients. The overall set of cases was more difficult than the set of cases used to
test DR. GAIT-1. The program’s performance at identifying abnormal motions
and explaining their causes was compared with the written reports generated by
the domain expert.

In th= 22 cases, 170 abnormal motions were mentioned in the reports. DR.

*It is possible that only one of the alternatives can be constructed; for instance, ‘‘hamstring not weak™
might be necessary to account for some abnormal motion. It is also possible that no alternative can be
constructed or that the alternatives contain contradictions among other assumptions. In these cases, DrR. GAIT-2
is unable to continue.



268 [352] D. E. Hirsch et al.

GAIT-2 identified 89% (151) of these abnormal motions. Most of the omissions
are range-of-motion problems, apparently because the triggering conditions for
this class of abnormal motions are too restrictive. DR. GAIT-2 also identified 46
abnormal motions not mentioned in the reports. Most of these additional prob-
lems are minor or were perceived to be insignificant.

At identifying the causes of finding, the system found the correct causes
95% of the time (it was correct for 187 of the 196 abnormal motions it found).
Most of the mistakes occurred because DR. GAIT-2 doesn’t know to what degree
particular muscles can influence the various joints. The other errors resulted
from incorrect modeling of body weight at the knee during WA.

I appears, then, that DR. GAIT-2 is very successful at identifying abnormal
motions and diagnosing their causes. With some refinements to the knowledge
base, it is possible that its performance on these tasks could be even better. The
improved performance over DR. GAIT-1 can be directly attributed to the causal
model of the domain. DR. GAIT-2 is able to overcome many of the holes in DR.
GAIT-1’s knowledge by deriving the relationships between observations and
faults rather than relying solely on precompiled associations.

Mevertheless, DR. GAIT-2 still has several limitations. The representation of
time in DR. GAIT-2 is very elementary. The gait cycle is divided into a fixed
number of phases and each phase is treated as a single point of time. This
temporal representation makes it hard to specify intervals of interest by the
actions and events of a particular patient’s gait.

The causal model does not consider several factors that determine the rela-
tive amount of torque that a muscle can produce. For example, the torque ofa
muscle is affected by the joint’s position. Also, the model does not recognize the
relative strengths of opposing muscles acting on a joint.

If DR. GAIT-2 determines that there is a joint contracture, the causal model
is nct applied to that joint. The contracture should be represented as a special
kind of torque that occurs only when the joint’s position is at the limit of its
rangz of motion.

JFurthermore, DR. GAIT-2 is limited in its domain: analyzing the motions of
one leg in the sagittal plane in a single visit by a patient with cerebral palsy.
Humian gait involves coordination between both legs, and although sagittal plane
motion is the most important, movements in other planes affect one’s gait. Pa-
tients are often analyzed more than once, such as before and after treatment; it
would be useful to determine how the patient’s gait has (or has not) improved.
Alsc, other types of disorders affect gait, including stroke, head injuries, arthri-
tis, muscular dystrophy, and fractures with subsequent complications.

Finally, DR. GAIT-2’s reasoning is inefficient in some respects. When it
considers a deviation, it always generates all possible sets of fault hypotheses
that could account for the deviation. DR. GAIT-2 does not check if fault hypothe-
ses that have already been selected could account for the deviation. Also, it does
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not try to generate more likely hypotheses first, but considers everything that is
remotely plausible.

QUAWDS

We are developing another knowledge-based system, called QUAWDS, to
resolve many of the limitations of DR. GAIT-2. In particular, QUAWDS is in-
tended to perform gait analysis for both legs, all three planes, and several neuro-
logical and orthopedic disorders that affect gait. It would be difficult to extend
DR. GAI-2 to achieve this goal. While causal reasoning is a necessity for diag-
nosis of pathologic gait, causal reasoning without any guidance from associa-
tional knowledge is computationally complex (Bylander et al., 1989). Some of
these elements already exist in DR. GAIT-2. In particular, DR. GAIT-2 uses asso-
ciational knowledge to select among the hypotheses the torque trees generate.
Howevet, this knowledge is not organized with the purpose of controlling causal
reasoning.

Functional Organization of Quawbps

The organization of QUAWDS will resemble DR. GAIT-2 in several ways.
QuAWDS also has to identify deviations and diagnose faults that account for the
deviations. However, it is organized so that associational knowledge provides
information to control causal reasoning. QUAWDS will perform the following
subtasks in doing diagnosis:

1. Identify deviations. Like DR. GAIT-2, a motion deviation must be 10° or
more from normal to be important enough to explain. Unlike DR. GAIT-1 or DR.
GAIT-2, “he duration of a deviation is not limited to a small number of phases.
QuawDS will be able to describe a deviation as occurring over several phases or
a fraction of a phase.

2. Generate causes of deviations. Like DR. GAIT-2, QUAWDS will, for a
specific deviation, use its qualitative causal model to generate fault hypotheses
that can account for the deviation.

3. Score faults. Each fault will be associated with a collection of heuristic
rules that can score the faults. As noted above, DR. GAIT-2 also did this, but
QuawbDs will also know about classes of faults corresponding to the legs, joints,
and muscles. Another new feature is that these rules will explicitly incorporate
conditions about what disorder (e.g., cerebral palsy or stroke) is the original
cause of the faults. This will give the reasoning additional focus. For example, if
the patient has left hemiplegia (injury to the right side of the brain), faults of the
left leg should be considered before those of the right leg.

4. Determine explanatory coverage. Assuming a particular fault or set of
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FIGURE 9. Functions performed by Quawps.

faults, QUAWDS’ causal model will determine the deviations that can and cannot
be accounted for.

5. Assemble a diagnosis. The above subtasks will not be run in a simple
sequence but will be controlled by an abductive assembler (Josephson et al.,
1987). The assembler iteratively performs the following steps: select the most
significant deviation not yet accounted for, find out what faults can account for
it, select the fault with the best score, determine what deviations can be ac-
counted for by the faults that have been selected, and repeat until as much is
acconnted for as possible. The assembler’s procedure is similar to how DR.
GAI1-2 operates but focuses attention on the most important finding not yet
accounted for.

We v/ill be using generic tasks, a set of tools for modularizing knowledge-based
systems, to implement these functions (Chandrasekaran, 1986). Figure 9 illus-
trates the organization of these functions. We briefly discuss some of the im-
prov:ments to the causal model that we are developing.

Improvements in the Causal Model

QuUAWDS’ qualitative causal model will start with the same torque equations
as DR. GAIT-2, except that the equations will have additional elements.* Two
elements not included in DR. GAIT-2’s equations include range-of-motion con-
straiats and interactions between joints. Whenever a joint reaches a limit on its
range of motion, it generates an opposing torque. A joint with limited range of
motion, that is, a joint contracture, is a special case of this effect. Also, motions
at one joint will affect nearby joints. For example, ankle plantar flexion during
stance will contribute to knee extension.

**Also, there will be equations for rotational motions not represented by Dr. GAIT-2.
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QuawDS will use the causal model differently by directly relating the equa-
tions to angular acceleration, as opposed to angular position. Given a deviation
(a position different from normal), QUAWDS will trace this to abnormal angular
acceleration previous to the deviation. Fault hypotheses will be generated based
on the abnormal acceleration rather than the abnormal position.

In addition, QUAWDS will use the causal model to evaluate its working diag-
nosis as hypotheses are added to it. The torque equations can be used to check
whether a set of faults is consistent with the patient’s motion. If it is not,
QuawDS will determine what motions are not accounted for, which can then be
used to scarch for additional fault hypotheses. Thus, QUAWDS will never gener-
ate hypotheses based on motions that have already been accounted for.

Of course, because QUAWDS is still in development, we should caution the
reader that the above improvements are promises yet to be fulfilled. Neverthe-
less, by building on the success of DR. GAIT-2, we believe that QUAWDS will
represent the next step for gait analysis programs.

CONCLUSION

We have presented our work on three diagnostic expert systems in the do-
main of gait analysis: DR. GAIT-1, DR. GAIT-2, and QUAWDS. The success and
the limitations of the first two systems have led to the development of their
SUCCESSOrS. 1

DR. GAIT-1 relies solely on associational knowledge and so is able to suc-
ceed only on situations that it was able to match exactly. DR. GAIT-1 shows that
diagnosis of pathologic gait is a complex task that requires causal reasoning.

With its qualitative causal model, DR. GAIT-2 succeeds in a limited subdo-
main of gait analysis. It shows that causal models can be effectively used to
produce high-quality diagnoses in complex domains. By representing and rea-
soning about torques, DR. GAIT-2 is able to construct diagnoses that are causally
relevant to the patient’s abnormal motions. An ATMS ensures that the diagnosis
contained no contradictions. However, much of DR. GAIT-2’s success is also
because associational knowledge is able to make choices among causally equiva-
lent alternatives.

QuAwWDS, the system we are currently developing, will apply to a larger
subdomain of gait analysis. QUAWDS more clearly identifies the role of associa-
tional knowledge in causal reasoning and will make several improvements to
DR. GAIT-2’s causal model.

No doubt QUAWDS will have major limitations as a gait analysis program.
Nevertheless, we are confident that we will continue to make incremental pro-
gress in ceveloping gait analysis programs and, more generally, in understand-
ing how to use causal reasoning to perform diagnosis in complex domains.
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