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Abstract 

The threat of biological warfare and the emergence of new infectious agents spreading at a global scale have highlighted the need for 
major enhancements to the public health infrastructure. Early detection of epidemics of infectious diseases requires both real-time data 
and real-time interpretation of data. Despite moderate advancements in data acquisition, the state of the practice for real-time analysis of 
data remains inadequate. We present a nonlinear mathematical framework for modeling the transient dynamics of influenza, applied to 
historical data sets of patients with influenza-like illness. We estimate the vital time-varying epidemiological parameters of infections 
from historical data, representing rzorr?icrl epidemiological trends. We then introduce simulated outbreaks of different shapes and 
magnitudes into the historical data, and estimate the parameters representing the infection rates of anonlalous deviations from normal 
trends. Finally, a dynamic threshold-based detection algorithm is devised to assess the timeliness and sensitivity of detecting the 
irregularities in the data, under a fixed low false-positive rate. We find that the detection algorithm can identify such designated 
abnormalities in the data with high sensitivity with specificity held at 97%, but more importantly, early during an outbreak. The 
proposed methodology can be applied to a broad range of influenza-like infectious diseases, whether naturally occurring or a result of 
bioterrorisni, and thus can be an integral component of a real-time surveillance system. 
,(: 2006 Elsevier Ltd. All rights reserved. 

Kc,~~~,orcl.c.: SI model: Transients; Early detection: Infectious disease: Outbreaks; Biosurveillance 

1. Introduction 

The global health, threatened by emerging infectious 
diseases, pandemic influenza, and biological warfare, is 
becoming increasingly dependent on the rapid acquisition, 
processing, integration and interpretation of massive 
amounts of data. In response to these pressing needs, new 
information infrastructures are needed to  support active, 
real time surveillance. Critical for real time surveillance are 
two components: data collection and data analysis. Indeed 

- 

Ahhrericrtions: CH ED, Children's Hospital Emergency Department; 
ED. Emergency Department 
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( M .  Mohtashemi). 

today, there are several real time outbreak monitoring 
systems in place in major metropolitan cities (Mandl et al., 
2004; Tsui et al., 2003; Lewis et al., 2002; Lober et al., 2002; 
Reis et al., 2003). Despite such progressive efforts, the state 
of the practice for detecting temporal abnormalities in 
surveillance data is not adequate. 

For  highly infectious agents, such as SARS o r  smallpox, 
a few infected individuals can propagate the infection a t  a 
rate that might initially elude the attention of public health 
authorities, thereby gaining time for the infected pool to 
grow silently but rapidly to  the point after which public 
health measures will prove ineffective. Therefore. the 
challenge for any model of outbreak detection lies in the 
early recognition of such exponentially growing processes, 
b ~ I i ~ i i  tlid ~ ~ p ~ l x i ~ t i a l  u d l U ~ - c  uf tli- p i - u ~ c ~  is lid1 Lu 

recognize. 

0022-51936-see front matter .() 2006 Elsevier Ltd. All rights reserved. 
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With respect to an infectious agent, a population consists 120 

of those who are susceptible, infected or immune to the 
disease. Depending on the clinical and epidemiological 2 
properties of the disease there may be other categories. 5 
Here. we model the short-term dynamic interaction 

80 between different subpopulations with respect to an .- 

infectious disease using a nonlinear system of difference 
equations. Such a system will comprise meaningful 60 

demographic and epidemiological parameters. representing 
transient properties of the underlying dynamics. which can 5 40 
be estimated from historic epidemiological data. The 
resulting body of information will be the basis for defining 2 
rrornlcrlig, in epidemiological trends and therefore can be 20 

used to detect anomalous deviations from historically 
observed events early on. We make the key assumptions 0 
that such disease processes are highly infectious, highly 1996 1997 1998 1999 2000 
contagious, and manifested with non-specific flu-like Time (Days) 
symptoms in patients early in the development. Fip. I .  Daily number of visits with respiratory infections to the CH E D  

The methodology presented here represents a fusion during 6 I 1996 5 31 2000. 
among the developing methods of syndromic surveillance 
(Mandl et al.. 9004; Tsui et al.. 2003; Lewis et al., 2002: 
Lober et al.. 2002; Reis et al., 2003; Greenko et al., 2003; where S,, and I,, represent the respective number of 
Goldenberg et al., 2002). the notion of transients in health susceptible and infected individuals at time n; is the 
and disease (Mohtashemi and Levins, 2001; Mohtashemi. infection transmission rate; and (5 is the average rate of 
2001) and well-established concepts and approaches in recovery from infection so that 116 is the mean dura- 
mathematical epidemiology (Bailey. 1967; Edelstein- tion of infectivity in days. Because we are interested in 
Keshet. 1988; Anderson and May, 1992). modeling transients in the population transmission dy- 

namics of flu-like illnesses, implicit in our assumption 
2. Methods is that there is not enough time for the temporary re- 

moval of the recovered population to be of significance to 
The data set used for this study consists of the daily the dynamics. Delays introduced by temporary recovery 

number of patients presenting to the emergency department and return to the susceptible class, although common in 
(ED) of a large urban, academic pediatric or children hospital flu-like infections, are typically much longer than the 
(CH) with respiratory syndromes during the period 611; infectivity period. Furthermore, there is no explicit 
1992 5i31j2003. Fig. 1 illustrates the historical time series representation for the latent population and the latency 
during the 5-year period 6/ 111996- 5/3 1/2000. ED chief period in our model. 
complaints were used to select encounters for infectious 
rcspiratory illncfs that are highly reflective of papulation 2.2. SJ.srcrnt tr.rrn.ufi,rmntioil 
patterns of influenza (Bougeois et al., in press; Brownstein 
et al., 2005). Chief complaint codes were chosen during the Understanding population susceptibility is key to the 
triage process, from a pre-defined on-line list of 18 1 choices. control and prevention of epidemics of infectious disease. 
A previously validated subset of the constrained chief However, population susceptibility is difficult to account 
complaint set was chosen a priori for inclusion in the for. That is, the proportion or number of people 
respiratory syndromic grouping (Beitel et al., 2004). Institu- susceptible at a point in time cannot be observed or 
tional review board approval was obtained. It is important to measured systematically. On the other hand, the propor- 
note that the syndromic respiratory definition closely tion or number of people infected at a point in time is an 
corresponds with influenza activity as shown in Brownstein observable variable. Transforming an epidemiologically 
et al. (200% which further strengthens our key assumptions sensible system of two variables S,, and I,,, into an equation 
about the historical data representing flu-like illnesses. with one variable I,,, for which there are data, eliminates 

the unobservable variable while preserving the underlying 
2.1. Model dynamics (Mohtashemi, 2001). If we apply the elimination 

process to the above system of equations, then we end up 
Consider the following first-order nonlinear system of with a second-order equation in the variable representing 

difference equations: the infected population: 



The data on the number infected can then be used to 
estimate the unknown system parameters. Clearly, the 
number of children who visited the Children's Hospital 
Emergency Department (CH ED) on day 11 does not 
constitute the total number of infected children on day i t ,  

who live in proximity of, and s c ~ k  care at the CH ED. 
However, if we assume an average of d days of infectivity 
per patient, i.e. 116 = d,  then the overall number infected 
on day n can be approximately represented by the sum of 
the number of visits to the ED during the past d days. 
including day n. That is, for i = d . .  . 3 6 5  we have 

I ,  = c,. 

, = ; - [ I +  I 

Here ci represents the number of patients presenting to 
the ED with respiratory infections on day j, and as 
observed in the CH ED data set. For i = l . . . d - l the 
summation spans the last d-i days of the previous year and 
the first i days of the current year. In other words, we use a 
d-day sliding window to approximate the number of 
infected children for the last day in the window. For 
example, if the average infectivity period 116 = d = 7, then 
the number of infected children on day 7 can be 
approximated by the sum of the number of children who 
presented to the CH ED with influenza during the past 7 
days including day 7. These numbers, approximately, 
reflect the population of infected children who live in the 
catchments area of CH and come to the ED when ill. Such 
a method of approximation, using a moving window of ED 
visitors, seeks to compensate for variation in health-seeking 
behavior of a population due to various socio-demographic 
factors including holidays and day of the week. It is 
important to note that the number of infected children, 
estimated according to the ED data and using Eq. ( 3 ) ,  
is representative of all infected individuals who seek 
treatment at the ED. Implicit in this statement is the 
assumption that the underlying disease process causes 
fairly serious symptoms, and thus generates active health- 
seeking behavior. 

If in Eq. (2), we take I n + z  to represent the number 
infected today then the term (1 -6)In represents the infected 
number from two days ago who remained infected yester- 
day, and In + -( 1 -6)I,, represents the number who 
presented with respiratory infection at the ED yesterday. 
The term PI,,+ l ( I n +  ,-(I -6)I,,) then represents the number 
who cannot contribute to new infections for today since 
they are already infected. The number infected today, I , ,+2,  
is therefore a nonlinear function of the total numbers 
infected during the past 2 days, the ratio in the right-hand- 
side of Eq. (2), offset by an adjustment term. 

2.3. Estimating the infection rate 

Epidemiologically vital parameters of infectious diseases 
are seldom constant. It is only over short time periods that 
the constancy assumption may be valid. Furthermore, 

despite the temporal variation within each year, it is quite 
likely that the epidemiological properties of shorter time 
periods remain relatively stable across different years. 
Defining a suitable time window during which system 
properties remain relatively stable depends on many factors 
including observed periodicities in the data and dcmo- 
graphic and epidemiologic properties of the disease under 
study. Examples include seasonal, bimonthly. monthly, 
biweekly, and weekly time windows. 

To arrive at average estimates for /I representative of 
change in the historical data, the daily number of visits for 
every year in the data set was converted to the daily 
number infected according to Eq. (3), and fed into Eq. (2) 
in a sliding manner resulting in 365  such equations for 
every year in the historical data. We assumed that the mean 
duration of infectivity is 7 days, i.e. 116 = 7. a clinically 
sensible assumption for influenza (Steinhoff, 2001; Wearing 
et al., 2005). Next. we chose a time window of length I for 
which a system of 1-3 such equations was formed, and f l  
was estimated using least-squares regression. We then 
iteratively calculated P for each time-window throughout 
each year by sliding the time window to arrive at 365 
different values of P corresponding to 365 sliding time 
windows, one for each day of the year. In this paper, 
the results for 1 = 7 are reported. This is a sensible 
choice for the window since it compensates for the day of 
the week variation in the data set. Fig. 2 illustrates the 
daily mean infection rates estimated using the training set 
(see Section 2.4). 

Because /? follows the dynamics of change in the infected 
population within each day's short past history, it can be 
used to detect deviation from normal more sensitively than 
the actual daily values if the average behavior of f i  under 
normal circumstances can be modeled. But more impor- 
tantly, because /? reacts to unexpected change almost 

Time (Days) 

Fig. 2. Meall daily infection rates estimated from historical training data 
during the 7-year period. 611 : 1992-5/31/1999. 
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instantly, this property can be used to detect abnormalities outbreak is considered to be detected late if it is detected 
in the data quite early on during an outbreak. This is an during the last 2 days of the outbreak. 
important property of the proposed methodology because The concave up exponential function that we used for 
the ability to detect early is a principal factor differentiat- simulating outbreaks is of the form r o ~ n d ( 4 . l e ~ . ~ ~ ~ ~ ) ,  
ing the effectiveness of outbreak detection systems. k = 1 . . .7.  This function generates the numbers 6, 9, 13. 

19, 28, 41, and 61 that are, respectively added to a 7-day 
long window of daily visits that are designated as outbreak 
days. The generated numbers are smaller than 20 during 

The first 7 years in the historical data were used as 
the first 4 days, slightly higher on the 5th day, and the sum 
of simulated numbers during the first 5 days is 75. training years and the remaining 4 years as test years. The 

training years were used to estimate average values of f i  Although in real epidemics of highly contagious infectious 
disease the cumulative numbers infected during the first corresponding to 365 days in a year. We then introduced 
week may far exceed such slow growth, our goal is to be 

simulated outbreaks into every year in the test set, 
able to detect early, when in fact the actual numbers are estimated the corresponding values of f l  under outbreak 
easily hidden in the baseline. condition for each test year. The mean and standard 

Although a concave up exponential function produces deviation of f l  for each day of the year across 7 years in the 
the most realistic shapes for outbreaks of contagious training set were used to detect deviation from normal. 
infectious disease, we also implemented two other func- 

2.5. Simulrrted outbreaks 

For every test year in the historical data set we 
introduced 7-day long, 30-day apart, simulated outbreaks 
into the actual ED daily visit rates. Each outbreak was 
defined by a controlled feature set enabling testing of the 
system over a range of outbreak types. Every month in the 
data set contained a 7-day outbreak. Such semi-synthetic 
data sets consisted of 48 outbreaks throughout the 4 years 
in the test set. We also generated outbreaks randomly 
throughout the test data set and compared the results with 
those of deterministically simulated outbreaks. In this 
paper, we report the results from the deterministic 
simulations because first, the results from the two experi- 
mental simulations were comparable, and second, our 
results can be compared to those from a previous study by 
Reis et al. (2003), where they generated outbreaks every 15 
days throughout the historical data. The inclusion of one 
outbrr,!!/. in every mnnth in the teqt set WRS to assess 
performance of the methodology against different values of 
background incidence of respiratory reports, including 
seasonal, and to avoid the biasing effects of estimating f l  
during an outbreak on estimates of f l  during non-outbreak 
days since the time windows can potentially overlap. 

Because we were interested in testing the detection 
capability of the model under outbreaks that start slowly 
and follow an exponential growth, for the base outbreak 
simulations we chose a concave up exponential function 
that would not only generate relatively small numbers 
during the first 4 days (<20) but the sum of the numbers 
infected during the first 5 days would not exceed 75. (For a 
mathematical treatment of the choice of epidemic trajec- 
tories we refer the reader to Appendix A.) These numbers 
were chosen relative to the daily mean and standard 
deviation across the training and test years so that the 
results across different models of outbreak as well as from 
a previous study by Reis et al. (2003) can be compared, and 
to have a metric for early detection. In this paper, an 

tions simulating two different shapes of outbreak in order 
to allow for a comprehensive comparative study. A 
concave down exponential function of the form 
ro~nd(23 ( l - e -~ .~~) ) ,  k = 1 . . .7,  was used to generate the 
numbers 8, 13, 16, 18, 20, 21, and 22 respectively during a 
7-day long outbreak window, where the numbers during 
the first 4 days are less than 20 and the sum of the numbers 
over the first 5 days is 75. Although the total number 
infected during the 7-day period is different under each 
model, we only consider the differential detection power 
between the models during the first 5 days because the 
numbers during the last 2 days under the exponential 
models are too high to be missed even without any analysis. 
The concave down exponential model of outbreak is well 
suited for early detection because the rate of change in the 
earlier part of the dynamics is faster than that of the later, 
and thus it can be used as the best case scenario to test the 
early detection capability of our framework. Finally, we 
added a constant of size 15 to all 7 days of each simulated 
outbreak to represent a uniform model of outbreak. 

2.6. Detection threslzold 

For each day n in the training years, the mean infection 
rate p,,, and standard deviation a,, were estimated. In 
conjunction with a numerical threshold. these values were 
used to determine the strength of change in the newly 
estimated parameter P,,, for each year in the test set infused 
with simulated outbreaks. On day n the detection 
algorithm raises an alarm and counts that day as an 
outbreak day if (p,>,p, +2o,) & (/3,>r), where 
T =  2 x  is a numerical lower bound and 
n = 1 . . .365. The detection threshold was set so that the 
detection system would generate an average of 3.3% false 
positiv~: per ye:i- in thc training set devoid of simulated 
outbreaks. This is an empirical adjustment to make the 
specificity the same across all experiments, so that their 
sensitivity results can be compared fairly. Furthermore, 
this is likely to be a reasonable assumption and manageable 



Table I 
Overall sensitivity. with 95% confidence interval (95% CI). of the 
detection system under different models of outbreak reported as the 
number of detected outbreaks over the total number of outbreaks. k = 
1 . . . 7  

Type of outbreak Overall 950,b 
sensitivity CI 

Concave up: ro111i(t(4.1 exp(0.3Xjk)) 0.875 (42148) 0.866. 0.884 
Concave down: rolmtt(23(1 -exp(-0.4k))) 0.688 (33'48) 0.66, 0.72 
Uniform: 15 0.625 (30:48) 0.58, 0.67 

0.8 . 
!\ 

., . 

Outbreak Days 

performance rate for surveillance systems, and it has been 
adopted in the literature (Reis et al., 2003). Fig. 3 illustrates 
the dynamics of the mean infection rate p,, the time- o I i I I 1 I 

1 2 3 4 5 6 7 
varying detection threshold j, + 20,, and the estimated Day of Outbreak 
infection rate in the test set Dl,, during a randomly 
generated 7-day long outbreak in the test set. ~~t~ that Fig. 4. Timeliness of detection based on cumulative sensitivity under 

the outbreak cannot be detected on either the 1st or the 2nd different models of outbreak. 

day since pi <p i  + 2ai for i = 1,2. The outbreak is finally 
detected on the third day where we have (p3 > b 3  + 2a3) Fig. 4 demonstrates the cumulative daily sensitivity of 
and (/I3 > T). the detection system under different models of outbreaks, 

where daily sensitivity is defined as the number of detected 
3. Results outbreaks on each day that is designated as an outbreak 

day, divided by the total number of outbreaks. Specificity 
3.1. Srnsitieitj) cnzd spec~jicitj~ w a ~ ,  fixpd at 97% for all experiments so th:+t the sensitivity 

results can be compared (see Section 2.6). 
We used a sliding 7-day detection window for estimating Finally, the overall sensitivity of the model can also be 

the parameter /l for each day of the year in the test set measured under different values for number of false 
infused with simulated outbreaks of different shape and positives. This is an important performance measure 
size. We assumed the mean duration of infectivity is 7 days because it provides insight into the tradeoff between 
(see system of Eqs. (I)), a clinically reasonable assumption sensitivity and specificity. Fig. 5 is generated under the SI 
for flu-like respiratory infections. For every day the model applied to the test data infused with exponentially 
corresponding fl was derived and compared to the concave up outbreaks. The mean false alarm rate varies 
detection threshold for that day. There were a total of 48 from 0 to 0.06 (about 22 false alarms per year). 
outbreaks generated throughout the 4 years in the test set. 
Table 1 reports the overall sensitivity under different 3.2. Timeliness oj'detection 
models of outbreak, where overall sensitivity is defined as 
the number of detected outbreaks divided by the total Together Fig. 4 and Table 1 identify an interesting 
number of simulated outbreaks. Of the 48 (100%) property of the detection system. As long as there is a 
simulntrd outbreaks we drtcctcd 42 (87.5%) undcr the ch:ln?c in the dynamics of the obsprved data, the detection 
concave up model of outbreak, 33 (69%) outbreaks under algorithm continues to detect that change. This is perhaps 
the concave down model, and 30 (62.5%) under the more evident from the distribution of sensitivity under the 
uniform model of outbreak. The 95% confidence intervals least realistic model of outbreaks of infectious disease, the 
were estimated using standard Gaussian assumptions. uniform. Under the uniform model of outbreak, although 
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0 0.01 0.02 0.03 0.04 0.05 0.06 
Mean False Alarm Rate 

Fig. 5 'rritdcoff between sensitivity (detect~on prohahilit!) ;ind mecin hlsc 
iilarln r~itc under the euponentinlly concave up model of outbreak. 

the overall sensitivity is lower than the exponential models. 
its daily sensitivity is higher on the first 3 days. This is a 
sensible result and supports the premise that 1) reacts 
instantly to unexpected change. and that it helps to detect 
anomalies by tracking the change within a short time 
window. On the first day. there are 15 more visitors causing 
p to adjust immediately. Thus, about 18Y0 of all simulated 
outbreaks (over 30Y0 of all detected outbreaks) are spotted 
on the 1st day. On the other hand, because / j  follows the 
change in the dynamics of data it will report no change 
after the 4th day since the same number is being added 
from day 1 on. A similar property is observed under the 
concave down exponential model of outbreak. Because the 
rate of change is faster during the earlier days than that of 
later days of the dynamics of the simulated function, the 
detection system spots about 63% of all simulated 
outbreaks (about 95% of all detected outbreaks) by day 
5. after which the system identifies very little changc. 

Under both exponential models of outbreak over 63% of 
all simulated outbreaks are detected during the first 4 days 
of outbreak. Prior to the 4th day of outbreak. the system 
detects more outbreaks under the exponential concave 
down model of outbreak compared to the concave up 
model of outbreak. This is because the change in the 
dynamics of the concave down model during the first few 
days of the outbreak is faster than those under the concave 
up model of outbreak, and therefore the exponential nature 
of the outbreak is recognized earlier. After the 3rd day of 
the outbreak, at which point the daily sensitivities of the 
two models coincide, the system detects more outbreaks 
under the most realistic model of outbreak, the concave up 
exponential. This is because after a relatively slow growth 
during the first 2 days of outbreak the detection system 
reacts immediately when the early signs of the exponential 
nature of the outbreak are recognized. It is important to 
note that under the concave up exponential model of 
outbreak. despite the lower than mean simulated number 

of visits during the first 7 days, nearly 30% of all simulated 
and detected outbreaks are spotted by the 3rd day. 

Although the cumulative sensitivity of the system under 
the concave up exponential model is relatively lower than 
the other two models of outbreak during the first 3 days. 
the system catches over 85% of all detected outbreaks 
(about 75O,0 of all simulated outbreaks) during the first 5 
days so that not only does it eventually detect most of the 
simulated outbreaks (88%), but it detects the majority of 
them before day 6 .  

3.3. .blockel pcr.forr?iur~cc~ und time of'jqear 

Measures of model performance vary depending on the 
time of year and are not uniformly distributed throughout 
each year in the data. We therefore classified the measure 
of daily sensitivity into three categories: early. represented 
as the sum of daily sensitivities during the first 3 days of 
outbreak. ir~tc~rnzt~tlitrte, represented as the sum of daily 
sensitivities during the 4th and 5th days of outbreak, and 
lute. represented as the sum of daily sensitivities during the 
last 2 days of outbreak. We divided each year into four 
seasons and for every season in each year in the test set the 
category of sensitivity was determined under the basic 
exponential concave up model of outbreak. Fig. 6 
embodies the seasonal sensitivities under the three different 
sensitivity categories, averaged over 4 years in the test set. 

The winter season, December through February, has the 
lowest measure of early sensitivity and highest measure of 
late sensitivity. This is because when the respiratory related 
number of visits are well on the rise or relatively high. 
historically during November through early January. and 
very high. historically in mid-late January and February. 
adding the same numbers to the background of positively 
steep slopes and already high numbers makes them less 

" 
June-Aug Sept-Nov Dec-Feb M a r - M q  

Fig. 6. Seasonal sensit~vity: timeliness of detection during four seasons 
averaged over 3 years in the test set. Outbreaks were generated according 
to the exponentially concave up model. 



visible to the detection algorithm than otherwise. During 
the summer season, June-August, when respiratory-related 
visits to the ED are historically the lowest, adding even 
relatively small numbers to the daily numbers make them 
more visible to the detection algorithm, thereby attaining 
the highest measure of early sensitivity. Hence. a real time 
surveillance system must consider such biases in the effect 
of seasonality on the power of detection in the data 
analysis and development of detection algorithms. 

3.4. Model pertormcntce and recotlery period 

Thus far, we have examined the sensitivity of our 
detection algorithm under the assumption that 116 = 7, 
which is clinically a sensible assumption for flu-like 
respiratory infections (Steinhoff, 2001; Wearing et al., 
2005). Here, we examine the effect of varying values of 
recovery period on the overall sensitivity of the detection 
system. Fig. 7 illustrates the sensitivity profile of the 
detection system as the recovery period is increased. If we 
rearrange Eq. (2) we get 

As the recovery period takes on larger values, S becomes 
smaller causing In+? in Eq. (4) to be overestimated and 
thus more discernable to the detection algorithm, which 
leads to higher detection sensitivity. On the other hand, as 
the recovery period decreases, 6 takes on larger values 
causing I,,+ to be underestimated and less visible to the 
detection algorithm, leading to lower detection sensitivity. 

3.5. Seasonally adjusted detection thresholds 

The results of Figs. 4 and 6 can be improved upon by 
generating multiple detection thresholds depending on the 
time of year under analysis. The biasing effect of 

" 
1 2  3  4  5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

Recovery Period 

Fig. 7. Tradeoff between sensitivity (detection probability) and recovery 
period under the exponentially concave up model of outbreak. 

seasonality on lowering the detection power of the 
algorithm during the late fall and early winter months 
can be reduced if the detection algorithm is trained under 
multiple detection thresholds. We extended the algorithm 
for generating detection thresholds from the previous 
section so that on day n the detection algorithm raises a 
flag and counts that day as an outbreak day if 

... ( B n  2 B n  + 2 0 n  + TI ) if n E (November,. February], 
(/I,, 2 Bn + 2an)&( f ln  > T 2 )  otherwise, 

where T I  = 0.5 x and T2 = 2 x lop4 are numerical 
bounds and n = 1 .. .365. 

Fig. 8 illustrates the results of application of the 
seasonally adjusted detection algorithm under the three 
models of outbreak. Clearly, if an outbreak occurs during 
the switch from the first period to the second, this approach 
may introduce glitches in the system. However. any 
detection algorithm, if adopted in a real time surveillance 
system, would have to be adjusted to accommodate 
practical matters that may not have been foreseen when 
developing the methodology. For instance. the problem 
with discrete periods can be addressed by running the 
algorithm under both thresholds during all or parts of the 
respective last and first months of the two periods. 
Alternatively, there might be a continuous approximation 
to these models that will do the smoothing automatically. 

Although the qualitative properties of the results of 
Fig. 8 are quite similar to those of Fig. 4 with a single 
detection threshold, both the overall and daily sensitivities 
of the system have improved considerably. Under the 
concave up exponential model of outbreak, despite the 
lower than mean simulated number of visits during the first 
2 days, nearly 40% of all simulated outbreaks are spotted 
by the 3rd day. In contrast to Fig. 4, under the concave up 

Day of Outbreak 

Fig. 8. Timeliness of detection based on cumulative sensitivity under 
different models of outbreak. The detection algorithm is modified with 
additional detection threshold to compensate for the biasing effect of 
seasonality on the detection power when the numbers are on the rise and 
high during mid fall and winter. 
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1.1:. 9 Seasonal sensitivity: ti~nelinesa ol' detection during J se:~son.; 
averased over li)ur yciirs in thc teat set. Sensitivity was mfi~si~rcd using 
seasonally adjusted thresholds. Outhrcoks were generated according to the 
cxpo~~entiallq concave up   nod el. 

model of outbreak the sensitivity on day 1 matches that of 
the concave down. Note that under the concave up model 
of outbreak about 30'Xo of all detected outbreaks are 
detected on day 2 alone. Although the cumulative 
sensitivity of the system under the concave up exponential 
model of outbreak is lower than the uniform model of 
outbreak during the first 2 days, the system catches over 
80"/0 of all simulated outbreaks during the first 5 days so 
that not only does it eventually detect most of the 
simulated outbreaks (9h0/0), but it detects the majority of 
them before day 6. Fig. 9 embodies the seasonal 
sensitivities under the three different sensitivity categories 
defined previously. averaged over 4 years in the test set. 

In this paper. we explored the idea that there is structure 
in the short term properties of the underlying dynamics in 
the CH ED data that can be captured using nonlinear 
models of infectious disease for timely detection. Here. we 
further explore this idea by comparing the sensitivity and 
timeliness of the SI model with those of a simple model. 
both applied to the CH ED test data infused with 
exponentially concave up outbreaks. 

The model chosen for comparison is a variation of the 
"historical limits" (HL)  method adopted and discussed in 
Stroup et al. (1989). Centers for Disease Control and 
Prevention (1989). Centers for Disease Control and 
Prevention (1991), and Hutwagner et al. (2003). In the 
HL method. the total number of reported cases in the 
current 4-week period is compared aeainst the mean plus 
twice the standard deviation of 15 four-week intervals. 
spanning the 13 four-week intervals from the preceding 5 
years. the current and the immediately preceding 4-wcck 
intervals. 

" 
1 2 3 4 5 6 7 

Day of Outbreak 

Fif. 10. Comparison of sensitivity and timeliness of the SI detection 
model a ~ t h  live variant5 of the H L  method. 

Fig. 10 illustrates the cumulative sensitivity and time- 
liness of five variations of the HL method and the SI 
model. The five variations are based on comparison of the 
daily counts with the mean plus a scalar times the standard 
deviation of a fixed interval. spanning the interval 
immediately preceding the current day and the same period 
from the preceding 5 years. The simulation results in Fig. 
10 are those of the I-day, I-week, 2-week, 3-week and 4- 
week interval. The scalar in each case was selected to 
achieve 1.6% false-positive rate under exponentially 
concave up simulated outbreaks in the test set. The range 
of the scalar in the simulations in Fig. 10 is 2 3.8. 

It is interesting to note that except for the I-day method, 
all other variations of the HL method detect over 95% of 
the simulated outbreaks. However, none of the five 
variations of the HL method is suited for early detection. 
The best performances are those of the 2-week model 
where nearly 40% of the simulated outbreaks are detected 
during the first 4 days. and the 3-week model where nearly 
67% of outbreaks are detected during the first 5 days. In 
contract. the performance of the SI model during the first 5 
days indicates that it is more suited for early detection. 
Moreover. the HL model under the 4-week interval 
exhibits poor performance compared to the 2- and 3-week 
intervals. In fact. as the period of analysis is further 
increased past the 3-week interval, the cumulative sensitiv- 
ity decreases (results not shown). This is perhaps support- 
ing evidence for the conjecture that there is relative 
structure and stability in the short term dynamics of the 
respiratory data that should be exploited carefully for early 
detection. and that otherwise cannot be identified in longer 
term dynamics. 

Overall, methods such as the HL variations examined 
here are reasonable models for detection when the numbers 
surpass a historical threshold. However. they are not 
designed for early detection when the numbers of excess 
cases are relatively low. 



4. Discussion 

We presented a nonlinear framework for modeling 
short-term transmission dynamics of influenza and early 
detection of anomalous events, applied to real historical 
data. We showed that when simulated outbreaks are 
introduced into the data. the detection algorithm, based 
on meaningful epidemiological parameters of population 
dynamics of infectious disease transmission and time- 
varying detection thresholds, is capable of detecting the 
irregularities in the data with high sensitivity. specificity 
and in a timely manner. 

In the study data set, most patients come from a well- 
defined geographic region (the catchments area of a 
hospital) and are classified syndromically-based on data 
before confirmed diagnoses are made. Thus, inherent in the 
data are two properties: spatial specificity and infection 
non-specificity. While daily visits to the CH ED constitute 
60% of all pediatric ED visits in the city, some patients 
seek care at other institutions. Thus the number of children 
infected on any day, obtained according to Eq. (3) and 
solely based on the CH ED statistics, is only a fraction of 
the total number of infected children for that day. This 
number is then representative of a subpopulation of 
infected children who have lived in the vicinity of CH 
and have made visits to its ED when ill. Such spatial 
specificity, however, is imperative for detecting abnormal 
events rapidly and decisively because unusual events often 
occur in a spatially localized manner, and are seldom 
distributed uniformly throughout space (Kleinman et al., 
2004; Kulldorff et al., 2005). 

At the same time, while the CH data comprise many 
different respiratory diseases with multi-factorial etiology 
and perhaps different clinical properties, the data encom- 
pass the same set of contagious infectious diseases that 
have been naturally recurring every year during the past 1 1  
years in the data set. These infections share the property 
that their early clinical manifestationq are similar to fhnqe 
of influenza. Furthermore, certain clinical and epidemio- 
logical properties of these infections appear to be similar 
(e.g. infectivity period). Thus, such non-specificity in 
disease etiology in the historical data, although appearing 
as limiting, can be effectively used towards detection of 
new disease processes of which there are no records in the 
historical data, but which cause similar clinical flu-like 
symptoms early on in patients. 

A critical topic worthy of note is that of susceptibility. If 
the population susceptible to a disease could be systematically 
identified then public health policies would be more 
concentrated on prevention, where the health of the public 
is improved, instead of control, where the health of the public 
is maintained at a substantial cost. Despite its vitality to the 
problem of infertiells dise;\rp< the dvnarnics of arweytil-rilitv i s  

poorly understood. Reformulating an epidemiologically 
sensible system of two variables, i.e. susceptible and infected, 
into one observable variable for which we have data. i.e. 
infected, proves to be doubly beneficial. 

On the one hand, it enables us to bypass the existing 
uncertainties embedded in the unobservable variable while 
maintaining the underlying dynamics, thereby estimating 
the unknown parameters that govern the system dynamics. 
By exploiting this property we were able to devise a 
detection system capable of detecting relatively small 
irregularities in the historic data infused with simulated 
outbreaks early on during the outbreak. 

On the other hand, once the unknown parameters are 
estimated, together with the observable variable (infected), 
the hidden variable (susceptible) can be estimated. In 
the absence of birth and population influx in the system of 
Eqs. (I), the susceptible population, back processed and 
estimated, may be underrepresented. It is indeed plausible 
to identify the susceptible population more precisely by 
making the model more realistic. Such realism can be 
achieved by incorporating other epidemiologic and demo- 
graphic parameters including age. disease-specific incuba- 
tion and latency periods, the rate of loss of immunity, birth 
and death rates. and variables such as the latent popula- 
tion. The potential impacts of the outcome of such reverse 
processing of the data, with the goal of identifying the 
susceptible population, include redirecting public health 
policies towards preventive measures, thereby reducing 
morbidity and mortality due to outbreaks of infectious 
disease and reducing their substantial cost to society. 

Some of the limitations of the proposed method need to 
be addressed. One such limitation is that our susceptible- 
infected model is not suited for analysis of non-contagious 
disease processes, such as anthrax, since it is designed to 
capture the transmission dynamics embedded in the 
interaction between the infected and susceptible popula- 
tions. Although, it is quite conceivable that effective real 
time surveillance may have to rely on a combination of 
different detection algorithms that perform differently 
under various outbreak conditions and data sets, the 
relative power of different surveillance techniques cannot 
be systematically addre~qed until a methodical ev~lrration 
scheme is adopted and applied to various detection 
methods and data sets (Kulldorff et al., 2004; Dunyak 
et al., 2005). 

Another potential limitation in our technique is in the 
dependence of the detection algorithm on estimating the 
infected population of the CH ED catchments area based 
on the observed number of daily ED patients. We 
approximated the daily number of people infected in the 
area by Eq. (3) using a time window as long as the average 
infectivity period, which is an epidemiologically reasonable 
assumption. Clearly. such approximations were further 
validated by the application of Eqs. (2) and (3) to the CH 
ED data set as demonstrated by our results. However, the 
goodness of such approximations can potentially impact 
the arrlrracv of enrlv detertion res~rlts 

The framework presented here is robust with high 
detection sensitivity and specificity which can thus be used 
to define the basis for naturally occurring epidemiological 
events pertaining to flu-like illnesses and to detect deviation 



from historically observed trends. The model can be 
potentially applied to a broad range of contagious 
infectious diseases manifested with non-specific flu-like 
symptoms, naturally occurring such as West Nile and 
SARS, or maliciously instigated such as smallpox. 
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Appendix A 

A. I .  Epidemic trajectories 

i= The choice of epidemic trajectory for outbreak simula- 
, - tions is a critical issue in the development of detection 
r- 

L E!!5 algorithms. Consider the system of difference equations ( 1 ) 
L -  
b- . introduced in Section 2. Without loss of generality, 
-- 
- suppose that SIJ and I,, represent the respective proportion - - = of the population who are susceptible and infected. At the - 
I - early stages of an outbreak, a very small fraction of the - 

population has been infected so that for a small time period - - - - n from the start of the outbreak we have S,, r So, where So - - represents the proportion of the susceptible population at 
7 - the start of the outbreak. Then we have - = - = I ,+,  25 ( 1  + flso - 6)I, , .  - - ( 5 )  

Thus the increase in the infected population at time t = 
m - ? t + m  is 

I,,,, (I + flso - S)"I,,. 

MI- -::n r---:ritr Frl. ( 6 )  aq 

This is because at the start of an outbreak So= I ,  and 
thus IflSo-Sl < 1. Finally, application of the result e-' = 
lim,,-,,(I + xln)" to approximation (7) suggests an ex- 
ponential model of the epidemic trajectory. 
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