
Predicting the Risk and Trajectory of Intensive

Care Patients Using Survival Models

by

Caleb W. Hug

B.S., Whitworth College (2004)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2006

c© Massachusetts Institute of Technology 2006. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 30, 2006

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peter Szolovits

Professor

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arthur C. Smith
Chairman, Department Committee on Graduate Students



2



Predicting the Risk and Trajectory of Intensive Care

Patients Using Survival Models

by

Caleb W. Hug

Submitted to the Department of Electrical Engineering and Computer Science
on August 30, 2006, in partial fulfillment of the

requirements for the degree of
Masters of Science in Computer Science and Engineering

Abstract

Using artificial intelligence to assist physicians in patient care has received sustained
interest over the past several decades. Recently, with automated systems at most
bedsides, the amount of patient information collected continues to increase, providing
specific impetus for intelligent systems that can interpret this information. In fact,
the large set of sensors and test results, often measured repeatedly over long periods
of time, make it challenging for caregivers to quickly utilize all of the data for optimal
patient treatment.

This research focuses on predicting the survival of ICU patients throughout their
stay. Unlike traditional static mortality models, this survival prediction is explored as
an indicator of patient state and trajectory. Using survival analysis techniques and
machine learning, models are constructed that predict individual patient survival
probabilities at fixed intervals in the future. These models seek to help physicians
interpret the large amount of data available in order to provide optimal patient care.

We find that the survival predictions from our models are comparable to survival
predictions using the SAPS score, but are available throughout the patient’s ICU
course instead of only at 24 hours after admission. Additionally, we demonstrate
effective prediction of patient mortality over fixed windows in the future.

Thesis Supervisor: Peter Szolovits
Title: Professor
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Chapter 1

Introduction

1.1 Motivation

Using artificial intelligence to assist physicians in patient care has received sustained

interest over the past several decades. This chapter provides motivation for intelligent

systems that predict patient outcome. First, it gives some general arguments for

intelligent monitoring and then it discusses the case for mortality prediction. The

chapter concludes with an outline for this thesis.

1.1.1 Intelligent Patient Monitoring

Recently, with automated systems at most bedsides, the amount of patient informa-

tion collected continues to increase, providing specific impetus for intelligent systems

that can interpret this information. In fact, the large set of sensors and test results,

often measured repeatedly over long periods of time, make it challenging for care-

givers to quickly utilize all of the data for optimal patient treatment. This problem

is exacerbated by ineffective alarms, unreliable measurements, and lack of standards

between alarm manufacturers. In a study by Tsien [62], as many as 86 percent of

alarms were false positives and an additional 6 percent were clinically irrelevant.

Other researchers have come to similar conclusions (i.e. [9], [8], and [40]).

More recent work in this area has shown improvement in these alarms. Zhang [65]
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indicates that newer alarms provide technical alerts, which are triggered by situations

involving signal quality problems and equipment malfunctions. She found that by

excluding these alerts, the false positive rates dropped to around 5 percent. One of

the specific features that manufactures have used to verify that a signal is not being

generated by a disconnected wire is a simple continuity test. Despite this progress,

many problems remain.

These problems have a high cost. As Rothschild’s study shows, serious medical

errors are quite common in the intensive care unit (ICU) [48]. The ICU is especially

susceptible to these errors due to the time sensitivity and the general complexity of

the environment.

This project aims to reduce the complexity of this environment. The approach we

take is to fuse the data from multiple sensors into an overall assessment of immediate

risks for the patient and a prediction of the patient’s trajectory. The high-level indi-

cation of a patient’s risks from such an indicator could assist caregivers in interpreting

the many individual alarms and possibly even remove some of them. Furthermore,

the trajectory prediction could assist physicians in making preemptive care decisions.

In summary, the integration of these sensors could allow caregivers to focus their

needed attention to critical areas and help reduce costly errors in the ICU.

1.1.2 Mortality Prediction

Early warning for patient mortality would obviously be useful for physicians. This

could potentially help physicians focus their attention on patients that have the most

acute need of intervention. From an administration’s point of view, reliable models

would also help direct resources that are often dedicated to patients with effectively

no chance of survival.

Misunderstandings of a patient’s trajectory occur regularly in practice. For ex-

ample, many patients are discharged from the ICU too soon. As Goldhill and Anne

state,

Many patients die after discharge from ICU and this mortality may be

16



decreased by minimizing inappropriate early discharge to the ward, by the

provision of high-dependency and step-down units, and by continuing ad-

vice and follow-up by the ICU team after the patient has been discharged

[23].

In their study using a large group of patients from British ICUs, they found that 27

percent of the observed mortalities occurred after discharge from the ICU.

Existing models for predicting patient mortality have had limited success. Physi-

cians continue to be much better at predicting final patient outcome than the various

scoring metrics available [47]. One difficulty these scores encounter, as Goodhill and

Anne also point out, is the contribution of limited resources to patient mortality

[23]. In their study, postoperative patients, with low predicted mortality, were espe-

cially susceptible to premature discharge. They attribute much of this to a “widely

perceived shortage” of ICU beds in the United Kingdom, and reference work that sug-

gests that the average risk of death in the ICU is substantially higher in the United

Kingdom than it is in the United States. Current mortality models are largely based

on the typical pattern of care for similar patients. Premature discharge along with

other care decisions (both good and bad) are unaccounted for by these mortality

prediction models. This can make calibration difficult—simply looking at a patient’s

first 24 hours and his or her final outcome fails to include many important confunders.

Problems like these stem from models having a weak understanding of the under-

lying patient risk and trajectory. Ultimately, a simplistic score calculated by adding

together the influences from different predictive variables falls short of a physician’s

more complex representation of the patient. This indicates the need for more power-

ful models that offer insight into specific patients rather than providing a statistical

summary of “similar” patients. Even if the predictions from these metrics were com-

parable to estimates from physicians, their impersonal nature still might be a problem;

in order for them to be useful in practice, their accuracy needs to be decisively better.

This research focuses on predicting the survival of ICU patients throughout their

stay. Unlike traditional mortality models, this survival prediction is explored as an

indicator of patient state and trajectory. Using survival analysis techniques and

17



machine learning, models are constructed that predict individual patient survival

probabilities at fixed intervals in the future. These models seek to help physicians

interpret the large amounts of data available in order to provide optimal patient care.

1.2 Thesis Organization

This thesis is organized into the following chapters. First, Chapter 2 provides neces-

sary background for the techniques used to construct survival models and to evaluate

them. The Chapter starts with an introduction to survival analysis methods, then

it discusses the SAPS mortality metric, and finally it describes various classification

methods.

In Chapter 3, the details of the dataset preparation are explored. This includes

the assumptions made while constructing the dataset and an overview of the final

datasets used for modeling in this project.

Chapter 4 presents the feature selection methods used and the specific models

created. These models are evaluated using a held-out test set and ROC curves. This

chapter concludes with a discussion of these models and compares them with the

SAPS I mortality metric.

Chapter 5 explores some work related to this project. Specifically, it provides

an overview of the additional mortality scores available, as well as alternative sur-

vival analysis techniques. The chapter ends with a discussion of related intelligent

monitoring work.

Finally, Chapter 6 summarizes the contributions of this work and offers direction

for future research.
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Chapter 2

Background

In this chapter we provide the background necessary to understand the rest of this

thesis. With this intent we start by discussing the statistical techniques known as

survival analysis. This includes a brief overview of the Kaplan-Meier estimator, the

proportional hazards model and the accelerated lifetime model. Next, we discuss a

common mortality metric known as the Simplified Acute Physiology Score (SAPS).

We conclude the chapter by providing a high-level description of two classification

algorithms used in this thesis.

2.1 Survival Analysis

Survival analysis refers to the analysis of time-to-event data from a known origin.

These distributions are typically positively skewed, having a greater mean than

median—in other words, they have a longer tail to the right of the median than

to the left. Survival analysis was originally developed to predict patient survival, but

the same techniques can be applied to any event that occurs within a certain time.

In the following description of survival analysis, we use the term “length of survival”

in this more general sense. A special characteristic of survival data is that they often

contain censored instances.
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2.1.1 Censored Data

Censored data provide the central motivation for survival analysis techniques. While

there are multiple types of censoring, right-censored data is the most common. Other

types of censoring include left-censoring and interval censoring. Each of these types

of censoring is described below.

For a set of data that exhibits right-censoring, the final outcome for some subset

of the instances is unknown. This commonly occurs, for example, in situations where

a cancer treatment is observed for a fixed number of years, but at the end of the study

some of the patients are still alive. Figure 2-1 illustrates right censoring. In the figure,

each line represents a different case being observed. The solid circle indicates the start

time, the open rectangle represents the death time and the open circle represents the

time that the instance was right-censored.

Time

start time

death time

censored time

Figure 2-1: Illustration of Right-Censored Data

Data can also be left-censored. This less-frequent form of censoring occurs when

the observed survival time is less than the actual survival time. This may occur, for

example, if the exact date of birth is unavailable for a patient. By reversing the time

axis this form of censoring can be treated similarly to the right-censored case.

Additionally, survival data can be interval-censored. This type of censoring ap-

plies to circumstances where the failure occurs within a fixed interval. For example,

suppose that a patient was monitored for a particular event for two days, but the

20



patient was discharged before the event occurs. If the patient is readmitted five days

later and the event occurred sometime during the interim, then the length of survival

is between two and seven days.

2.1.2 Definitions

It is helpful to start with the following standard survival analysis definitions. First,

following the notation used by [56], let

Zi = min(Yi, ti)

where Y1, Y2, ..., Yn are the lengths of survival for each of the n observations and

t1, t2, ..., tn are the right-censored times. Additionally, we define the censoring indica-

tor, δi, as

δi =











1 if Yi ≤ ti (event observed),

0 if Yi > ti (censored).

Using this formalism, the ordered-pair (Zi, δi) is observed for each instance in the

data.

Survival Function

Obtaining an unbiased survival function is of primary concern in survival analysis.

If a random variable T has the underlying probability density function f(t), then

the cumulative distribution function F (t) can be obtained by simply integrating f(t)

from 0 to t. If this function represents the probability that the failure occurs between

0 and t, the desired survival function, S(t), provides the probability that the failure

occurs at or after t. Consequently,

S(t) = P (Y ≥ t)

= 1 − F (t)

= 1 −

∫ t

0

f(u) du.

(2.1)
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Hazard Function

Next, we define the hazard function of a patient. The hazard at time t for a patient

is the patient’s risk over a small time segment given that the patient survived until

time t. Dividing this conditional probability by the small time segment gives a rate.

Taking the limit of this rate results in the hazard function h(t). Formally,

h(t) = lim
∆t→0

{

P (t ≤ Y < t + ∆t|Y ≥ t)

∆t

}

. (2.2)

The hazard function and the survival function are closely related. In fact, per-

forming some simple manipulation, Equation 2.2 can be written as

h(t) =
f(t)

S(t)
. (2.3)

Consequently

h(t) = −
d

dt
{log(S(t))}, (2.4)

and

S(t) = e−H(t), (2.5)

where

H(t) =

∫ t

0

h(u) du. (2.6)

The cumulative hazard function, H(t), can also be defined in terms of the survival

function as follows

H(t) = − log S(t). (2.7)

2.1.3 Kaplan-Meier Estimator

There are various parametric and non-parametric methods available for estimating

the survival and hazard functions from the observed and censored survival times. The

Kaplan-Meier estimate for the survival function is the simplest and most used of all

of these methods.

The Kaplan-Meier estimator [28], also referred to as the product-limit estima-
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tor, provides a simple method for estimating the survival function from a set of

right-censored data. While this estimator was used prior to 1958, Kaplan and Meier

derived it using the maximum-likelihood method such that the function represents

the distribution which maximizes the likelihood of the observed data.

In order to construct this estimator, the individual survival times Zi are first

sorted into order of increasing magnitude. Notationally, this is indicated by paren-

thesized subscripts. The following derivation, adapted from [56], starts by splitting

the observed ordered-pairs into the following disjoint intervals

Ij = (Z(j−1), Z(j)], j = 1, 2, 3, ..., n, such that Z0 = 0.

Next, we define the risk set. If the uncensored survival times contain no ties and are

ordered as

y(1) < y(2) < y(3) < ... < y(k),

we can define the risk set R at time u as

R(u) = {set of patients at risk prior to time u}. (2.8)

In other words, the set of patients “at risk” is the set of patients still alive (and

uncensored) prior to u.

Now, let p̂j be the estimate that the patient survives through Ij given that they

were alive at the beginning of Ij. Formally,

p̂j = 1 −
number dying in Ij

number with the potential to die in Ij
,

for j = 1, 2, 3, ..., n. To simplify, let Nj represent the denominator in this equation.
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We can now estimate the survival function as follows:

Ŝ(u) =
∏

j:Z(j)≤u

p̂j

=
∏

j:Z(j)≤u,δ(j)=1

(1 −
1

Nj
)

=
∏

j:Z(j)≤u

(1 −
1

Nj

)δ(j)

=
∏

j:Z(j)≤u

(1 −
1

n − j + 1
)δ(j) .

The resulting estimator is given by Equation 2.9:

Ŝ(u) =
∏

j:Z(j)≤u

(
n − j

n − j + 1
)δ(j) . (2.9)

The above derivation relies on the assumption that there are no ties in the observed

length of survival times. In other words, no two patients can have the same time

recorded for the occurrence of the event of interest. In reality, with discrete times

measured, this assumption might be broken. Fortunately, to account for these cases,

Equation 2.9 can easily be generalized (see [56]).

The Kaplan-Meier estimate, Ŝ(u), has several noticeable properties. First, it is a

piecewise constant function, meaning that the only changes occur at “jump points”.

These jump points are located at uncensored observations. Additionally, when the ob-

servations are not subject to censoring, the estimate becomes the expected empirical

survival function, Sn(u) = number of observations >u
n

.

2.1.4 Survival Models with Covariates

In addition to the Kaplan-Meier estimator, there are several alternative models that

have been examined extensively for modeling survival data. Many of these models

offer greater sophistication by using explanatory variables to customize the model

for an individual instance. Parametric models are a common alternative to the
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non-parametric Kaplan-Meier estimator. These models typically use the method

of maximum likelihood to fit a parametric distribution to the data. Some of the

common distributions used are the Weibull, the exponential, the log-normal, and the

log-logistic. Other models use a non-parametric model for the data that is similar

to—and sometimes based on—the Kaplan-Meier estimator.

The two primary methods for dealing with covariates—that is, explanatory vari-

ables or features which are expected to influence the survival curve of interest—are the

accelerated lifetimes model and proportional hazards model. Each of these methods

allow the important features, such as age, to be incorporated into the model.

Accelerated Lifetimes

The accelerated-lifetime model is quite simple: the idea is that the covariates directly

effect the length of survival, extending it or shrinking it accordingly. For example,

the length of survival after the influence of the covariates can be written as

Yx = Y0a(x), (2.10)

where Y0 is the baseline length of survival, x is the vector of covariate observations,

and the function a() provides the accelerating factor and meets the requirement that

a(0) = 1.

Now, the accelerated-lifetime model appears when we calculate the probability

that this new Yx exceeds y

Sx(y) = P (Y0a(x) > y)

= P (Y0 >
y

a(x)
)

= S0(
y

a(x)
),

(2.11)

where S0 is the baseline survival function that represents the survival function for

the case where a(x) = 1. The function a(x) is usually set to be eβT x, where β is the

coefficient vector with the weights for the individual covariates. This results in the
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log-linear function,

Yx = Y0e
βT x.

If the contribution from the covariates, βTx, is positive, then the length of survival is

increased relative to the baseline. Likewise, if the contribution is negative, then the

length of survival is decreased relative to the baseline.

One of the nice consequences of this choice, on top of the fact that it satisfies

the requirement that a(0) = 1, is that it allows for easy calculation of the hazard

function. By simply taking the derivative of 2.11 we obtain hx(y) = h0[
y

a(x)
] 1
a(x)

.

Now by choosing a parametric form for baseline survival function, S0, the model

can be trained. In practice, the Weibull distribution is typically used for this. The

Weibull probability distribution is defined as

f(y; α, β) =
α

β

(

y

β

)α−1

e−(y/β)α

,

which leads to the following survival function for this distribution:

S(y; α, β) = e
−( y

β
)α

, for y > 0. (2.12)

In order to account for covariates, the β parameter is typically replaced by some

function w(x). It is easy to show that accounting for covariates in this manner, using

something such as

β = a(x) = eβT x,

does not violate the accelerated lifetimes assumption [56].

Other common distributions used with the accelerated lifetimes model include the

exponential, the log-normal, or the log-logistic distributions.

Cox Proportional Hazards

Another more common way to handle covariates is to use the Cox proportional hazards

model. In order to describe this model, we start with the more general proportional

hazards model. The proportional hazards model is similar to the accelerated-lifetime
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model, except that the baseline hazard is scaled instead of the length of survival,

hx(y) = h0(y)p(x), (2.13)

where p is a positive function of x. Similar to the survival case, h0 is the baseline haz-

ard occurring when p(x) = 1. Solving for p clearly illustrates the proportion created

between the two hazards. As was the case for the a() function in the accelerated-

lifetimes model, the convenient p(x) = eβT x is typically chosen for p. By integrating

equation 2.13, the we can arrive at the adjusted Sx(y):

Sx(y) = [S0(y)]p(x). (2.14)

This shows that the survival function resulting from the proportional hazards model

is the baseline hazard raised to the power p(x).

If we assume Y ∼ Weibull(α, β), then the proportional hazards model has the

same parametric survival function as Equation 2.12. As in the accelerated lifetimes

case, the covariates are typically accounted for by specifying some function of x for the

scale parameter β. Doing this does not violate the proportional hazards assumption.

In fact, the Weibull distribution has the unique property that for length of survival

data sampled from it the proportional hazards model and the accelerated lifetime

model coincide. If a different distribution is used, then a number of diagnostic tests

are available to help select the more appropriate model to use.

In 1972 Cox showed that the weights for the explanatory variables, β, could be

estimated independently from the baseline hazard function, h0(u) [17]. This finding

allows the estimation of the baseline hazard to be deferred until after the coefficient

vector is estimated. The method is generally referred to as Cox Proportional

Hazards. It is considered a semi-parametric technique because the baseline hazard

is estimated using a non-parametric method (typically the Kaplan-Meier estimator)

but the β-parameters are still used to customize the model to specific covariate values.

Cox arrived at the following expression to represent the likelihood of the β-
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parameters, which is typically referred to as the Cox partial likelihood:

L(β) =
k
∏

j=1

eβT x(j)

∑

l∈Rj
eβT xl

, (2.15)

This partial likelihood is different from a traditional likelihood because the length

of survival times are not used directly. Instead, it relies on the censored instances

passively influencing the likelihood by falling out of the risk set in the denominator.

Each of the terms in the product represents the probability that the individual with

observations x(j) at time y(j) dies given the risk set at the same time. Finding the

maximum of this partial likelihood using typically maximum likelihood estimation

methods yields the best β values for the model.

As with the Kaplan-Meier model, additional adjustments to Equation 2.15 are nec-

essary to account for cases where multiple patients have the same length of survival.

If the number of these ties is small, Breslow [4] suggests, as a good approximation,

treating them as if they occur sequentially. This is the method for handling ties that

is typically used in practice.

2.2 ICU Mortality Scoring Systems

A number of ICU Mortality scores have been introduced during the past 25 years.

The models created in this project utilize the SAPS metric for comparison. The

discussion of additional scoring metrics is deferred until Chapter 5.

2.2.1 SAPS

The Simplified Acute Physiology Score (SAPS) was introduced as a simpler and less

time-consuming alternative to the Acute Physiology and Chronic Health Evaluation

(APACHE) scoring system [33]. SAPS uses 14 easily measured variables and is able

to yield very similar results to the more complicated APACHE scores. On the original

679 patients that the score was tested on, researchers demonstrated that the mortality

rate consistently increased from a low SAPS of 4, with zero deaths, to a high SAPS
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greater than 20 with about 81 percent of the patients dying.

The SAPS metric is calibrated for use during the first 24 hours after ICU admis-

sion. For variables with multiple measurements during this period, the worst value is

selected. One of the limitations of SAPS, as with the original APACHE score, is that

they are used for separating patients into groups with similar probabilities of death,

limiting its utility for predicting individual patient survival. The authors caution

against use on specific patients. The predicted mortality obtained from these mea-

sures are useful for epidemiological purposes. The custom mortality risk prediction

is for a specific patient population.

SAPS II [21] and Extended SAPS II [34] were developed using a much larger,

international sample of patients. These scores directly provide a probability of hos-

pital mortality. Using the SAPS II mortality prediction model, the creators found

the area under the Receiver Operating Characteristics (ROC) curve to be about 0.86

on a held-out validation set. In most studies these scores have been found to per-

form slightly better than SAPS I. For example, one study on a large set of patients

found the ROC area to be about 0.78 for SAPS I and 0.85 for SAPS II [7]. SAPS

II, however, is less convenient for the current purposes because it requires specifying

the chronic diseases that the patient has and the reason for the patient’s admission.

Other than this difference the two scores are quite similar.

2.3 Classification Models

There are numerous options available for classification algorithms. Logistic regression

has been used on classification problems for many years and has some convenient

characteristics. More recently, support vector machines (SVMs) have emerged as a

very general classification framework capable of creating robust non-linear classifiers.

2.3.1 Logistic Regression

Logistic regression is a powerful regression technique for use with a binary response

variable. It is similar in many respects to ordinary least squares regression, but uses a
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linear combination of the explanatory variables, x, to model the log-odds (or “logit”)

transformation of the response variable y:

log
P (y = 1|x)

P (y = 0|x)
= βTx,

where x0 is defined as 1 and β includes the intercept as β0. Now, we can solve this

equation for P (y = 1|x). The resulting logistic regression model is shown in Equation

2.16:

P (y = 1|x) =
1

1 + e−βT x
. (2.16)

The parameters for a Logistic regression model, β, are typically fit using maximum

likelihood estimation. The primary benefit of this model is that the logit function

has a sigmoid shape. This causes large values for continuous variables to be scaled

into a bounded region between 0 and 1 and makes the model robust to large values

of continuous variables.

2.3.2 Support Vector Machines

Support vector machines (SVMs) are routinely used for non-linear classification prob-

lems. Fundamentally, they rely on finding the maximum margin hyperplane—that

is, the linear boundary between the two classes which maximizes the margins be-

tween the boundary and the two classes. By utilizing the “kernel trick”, the feature

space can be transformed so that these linear methods can be applied to non-linear

classification problems.

A number of kernels are available for classification with an SVM. The radial basis

function (RBF) kernel is quite common. This kernel requires two parameters: the

cost, providing the penalty for miss-classified training instances, and the gamma

parameter. These parameters need to be set, requiring some form of model selection.

A simple way to find these parameters is to perform a grid search and use cross-

validation. This is the technique employed for the SVMs used in this project.

After strong parameters have been found, the trained SVM model is generally
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quite robust due to the relative stability of the maximum margin separator [10].

Using a simple generalization, SVMs can also be extended for use with non-linear

regression [38].
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Chapter 3

Dataset Preparation

This chapter discusses the data used by this project. It starts by describing the data

sources, specifically the MIMIC II project. Next, it describes the preprocessing used

to clean the data and the various assumptions made for fusing the data into one

synchronized dataset. Finally, it concludes with a summary of the final datasets.

3.1 Data Sources

Modern ICUs collect a wealth of patient information. The primary source of data

for this project was the MIMIC II data. These data were collected as part of the

Biomedical Research Partnership (BRP) between academia, industry, and clinical

medicine [49]. As part of the BRP project, waveform data at 2 Hz and 1-minute

trend data were collected from the monitors at several ICU beds. The MIMIC data

also includes the deidentified nurse-recorded events and the administered medications

for these patients. The final discharge states (alive or dead), the nursing notes, and

the discharge summaries are available for a number of the patients. Each of these

pieces of the MIMIC II data are described in this section.
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3.1.1 High Resolution Data

The high-resolution waveform data, output by the bedside monitors, is valuable for

exploring specific patient disorders. However, this project did not directly utilize

this source for features. Instead, we relied on the one-minute averages of the high-

resolution waveform data. The bedside monitors include this 1/60 Hz trend data as

part of their output from the bedside monitors. The trend values for each signal are

calculated by the monitor using a proprietary algorithm that averages the waveform

values.

The set of trend signals available varies between patients. As a result, many

patients do not have specific signals available. There are, however, a few signals that

are widely monitored. These include the heart rate and the oxygen saturation (SpO2).

Invasive blood pressure readings are available for a large subset of the patients. Non-

invasive blood pressure readings are also widely available, but only at infrequent

intervals.

Another constraint with using the high resolution data is the number of patients

available. While the general set of patients includes more than 17000 patients, at the

time of this research only 2412 patients included high resolution data.

3.1.2 ISM Data

The primary source of data used for this project came from the Philips Medical

Systems’ CareVue Information Support Mart (ISM) database. This database is used

to archive events during a patient’s stay in the ICU. Most of the ISM data is event

based. Most events are recorded on a rather low temporal resolution because the times

attributed to them depend on when the nurse updates the patient’s chart. Other

events are recorded automatically, but are still generally subject to the frequency of

the nursing rounds. For example, when an intravenous medication is administered

it is automatically recorded but the machine recording the administration of these

events has its own time that is not necessarily synchronized with the ISM time. The

data entered during the nursing rounds usually consists of the standard vitals (such
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as blood pressure) which are generally recorded at least once per hour. For patients

requiring more attention, the frequency of these updates increases.

The three tables of primary interest in the ISM database are the ChartEvents

table, the MedEvents table, and the IOEvents table. The ChartEvents table contains

a wide array of measurements and lab results related to the patient’s condition. Many

of the measurements, such as blood pressure and heart rate are quite frequent (i.e.

once per hour), whereas many others, such as lab results, occur less frequently (i.e.

once per day). The MedEvents table contains dosages, changes in dosages, start

times, and end times for intravenous drugs. Finally, the IOEvents table provides the

recorded fluid input and output events for the patient’s stay. Using these numbers,

the fluid I/O balance totals for the patient can be calculated for a given period of

time.

3.1.3 Additional Data

In addition to the data outlined above, other data were needed for this research. Most

importantly, the patient’s status on discharge was needed for training and validating

the survival models. This data indicates if the patient was alive or dead when he or

she left the ICU. Because these data were not included in the ISM, it was necessary

to retrieve them from the hospital. In addition to the outcome data, the ICD9 codes,

nursing notes and discharge summaries were available for specific patients. These were

useful for reconstructing a more complete view of a patient’s progression through the

ICU.

3.2 Data Preprocessing

Before merging the data from different sources into one large dataset, the data were

preprocessed. This required several assumptions. This section provides an overview

of these assumptions and briefly outlines the preprocessing steps used.
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3.2.1 Trend Data Preprocessing

Several steps were taken in order to preprocess the trend data. For the specific details

of this preprocessing, the reader is referred to Appendix A. A more general overview

is provided below.

As in [61], derived features were calculated for many of the features. The slope

was found by fitting a line to the points using standard least squares regression. Table

3.1 lists the features and the derived features from the trend data. In this table, the

Window column provides the length of window used to calculate the slope (or mean)

of the feature. The relation between the window and a given instance is graphically

illustrated in Figure 3-1.

Current Instance

8 m window

4 m window

Time [m]

4 m hold

Figure 3-1: Derived Feature Window and Hold Window

Since the set of signals collected varies between patients (i.e. some patients don’t

have invasive blood pressure readings), it was necessary to require features to be

present in order to include a given patient. The one feature listed in Table 3.1 that

was not available for most patients was the central venous pressure (CVP). This is

expected because the CVP reading requires a central venous catheter that is not

necessary for most patients.

To start with, we applied a 3-minute median filter to each of the trend signals to

remove noise. However, the trend data still had problems with noise and artifacts after

applying this filter. Invalid values for blood pressure measurements were particularly

troubling: many of the mean arterial pressure values did not lie between the systolic

and the diastolic pressures for the same time instance. This is clearly impossible.

Consequently, a number of rules were necessary to ensure the validity of blood pressure
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Feature Window [m] History [m]
Heart Rate (HR) Mean 3 0, 15, 30, 45
HR Slope 15 0, 15, 30, 45
HR Slope 45 0, 45
HR Slope 120 0, 45
HR Standard Deviation 20 0, 15
Systolic Blood Pressure (ABPSys) Mean 3 0, 15, 30, 45
ABPSys Slope 15 0, 15
ABPSys Slope 45 0, 45
ABPSys Slope 120 0, 45
Diastolic Blood Pressure (ABPDias) Mean 3 0, 15, 30, 45
ABPDias Slope 15 0, 15
ABPDias Slope 45 0, 45
ABPDias Slope 120 0, 45
Mean Arterial Pressure (ABPMean) Mean 3 0, 15, 30, 45
ABPMean Slope 15 0, 15
ABPMean Slope 45 0, 45
ABPMean Slope 120 0, 45
Respiratory Rate (RESP) Mean 3 0, 15, 30, 45
RESP Slope 15 0, 15
RESP Slope 45 0, 45
RESP Slope 120 0, 45
Oxygen Saturation (SpO2) Mean 3 0, 15, 30, 45
SpO2 Slope 15 0, 15
SpO2 Slope 45 0, 45
SpO2 Slope 120 0, 45
Central Venous Pressure (CVP) Meana 3 0, 15, 30, 45
CVP Slope 15 0, 15
CVP Slope 45 0, 45
CVP Slope 120 0, 45

Table 3.1: Vitals Measurements (Trend Data)

aRequiring the CVP signal shrinks the set of patients that include outcome information from
2037 down to 747. Because of this large reduction, the trend data were considered with and without
this feature.
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Systolic Blood Pressure > Mean Arterial Pressure
Systolic Blood Pressure > Diastolic Blood Pressure
Systolic Blood Pressure < 300 mm Hg
Mean Arterial Pressure > Diastolic Blood Pressure
Mean Arterial Pressure < 260 mm Hg
Diastolic Blood Pressure < 220 mm Hg

Table 3.2: Validation Rules

values. These rules are outlined in Table 3.2. If a rule does not pass for a given

instance (row), then the features present in the rule are set to NA (missing).

3.2.2 ISM Data Preprocessing

The ISM data, in general, have less noise than the trend data. This is due to the direct

human involvement in recording the measurements and filtering out clearly erroneous

values. As with the trend data, however, there were cases where the diastolic blood

pressure was recorded as greater than the systolic blood pressure. Consequently, it

was necessary to apply the same validation rules that were used on the trend data.

The same procedure was used for calculating the slope for the ISM data as was

used for the trend data. An additional challenge present in the ISM data, however,

was sparsity. In order to get the windows between distinct entries to overlap, certain

features were held for a fixed period of time. In other words, we assume that the last

known measurement continues to be valid throughout a bounded window of time.

Figure 3-1 illustrates a 4-minute hold on a particular instance. For “raw” features,

this period is given under the Window column in Tables 3.3 and 3.4. For derived

features, the Window column provides the length of the window used for calculating

the feature.

In order to capture some of the dynamics of the data preceding a given instance,

the previous values of various features at given times in the past were also included

in each instance. The number of minutes for these shifts are included in the History

column of each table. Multiple entries indicate unique features, with a shift of zero

indicating the current value.

Tables 3.3, 3.4 and 3.5 show all of the features obtained from the ISM database.
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Feature Window [m] History [m]
Systolic Blood Pressure (SBP) 5 hold 0
SBP Slope 60 0
SBP Slope 240 0
Diastolic Blood Pressure (DBP) 5 hold 0
DBP Slope 60 0
DBP Slope 240 0
Mean Arterial Pressure (MAP) 5 hold 0
MAP Slope 60 0
MAP Slope 240 0
Heart Rate (CV HR) 5 0
CV HR Slope 60 0
CV HR Slope 240 0
Oxygen Saturation (SpO2) 5 0
SpO2 Slope 60 0
SpO2 Slope 240 0
Respiratory Rate (RESP) 5 0
RESP Slope 60 0
RESP Slope 240 0
Central Venous Pressure (CVP) 5 0
CVP Slope 60 0
CVP Slope 240 0

Table 3.3: ISM Vital Measurements

Feature Window [m] History [m]
Age const 0
Weight const 0
Sex const 0
Censor Indicator 1 0
Service Type 720 0, 120
Survival Time 1 0
Input Total 720 0, 60, 120
Output Total 720 0, 60, 120
Arterial Oxygen Saturation (SaO2) 720 0, 120
Arterial pH (Art pH) 720 0, 120
Arterial Base Excess (Art BE) 720 0, 120
Carbon Dioxide (Art CO2) 720 0, 120
Partial Pressure Carbon Dioxide (Art PaCO2) 720 0, 120
Partial Pressure Oxygen (Art PaO2) 720 0, 120

Table 3.4: Additional ISM Features
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Medication History [m]
Aggrastat 0, 60
Amicar 0, 60
Aminophylline 0, 60
Amiodarone 0, 60
Amrinone 0, 60
Argatroban 0, 60
Ativan 0, 60
Atracurium 0, 60
Cisatracurium 0, 60
Dilaudid 0, 60
Diltiazem 0, 60
Dobutamine 0, 60
Dopamine 0, 60
Doxacurium 0, 60
Epinephrine 0, 60
Epinephrine-k 0, 60
Esmolol 0, 60
Fentanyl 0, 60
Fentanyl (Conc) 0, 60
Heparin 0, 60
Insulin 0, 60
Integrelin 0, 60
Labetolol 0, 60
Lasix 0, 60

Medication History [m]
Lepirudin 0, 60
Levophed 0, 60
Levophed-k 0, 60
Lidocaine 0, 60
Midazolam 0, 60
Milrinone 0, 60
Morphine Sulfate 0, 60
Natrecor 0, 60
Neosynephrine 0, 60
Neosynephrine-k 0, 60
Nicardipine 0, 60
Nitroglycerine 0, 60
Nitroglycerine-k 0, 60
Nitroprusside 0, 60
Pancuronium 0, 60
Pentobarbitol 0, 60
Precedex 0, 60
Procainamide 0, 60
Propofol 0, 60
Reopro 0, 60
Sandostatin 0, 60
TPA 0, 60
Vasopressin 0, 60
Vecuronium 0, 60

Table 3.5: ISM Medications

Three of the variables in Table 3.4 are discrete. The set of possible values for these

variables are listed in Table 3.6. Because the Service Type feature is unordered and

is not binary, it was converted into seven binary indicator variables for the dataset.

The intravenous medications are listed in Table 3.5. While this list is quite long,

many of the medications are eventually ignored because of their sparsity (or complete

absence).

3.2.3 Outcome Data

For survival analysis, it is necessary to have the final discharge status for the set of

patients used. Patient outcome information for the MIMIC II data, however, was

limited. When the dataset for this project was constructed, only 2058 patient records
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Feature Values Description

Censor Indicator
0 Uncensored
1 Censored

Sex
0 Female
1 Male

Service

svOther Other Care Unit
svCSICU Cardiac Surgery ICU
svNSICU Neurological Surgery ICU
svMICU Medical ICU
svMSICU Medical Surgery Surgery ICU
svCCU Cardiac Care Unit
svCSRU Cardiac Surgery Recover Unit

Table 3.6: Discrete Variables

included outcome data. This set of patients is a subset of the set of patients with

trend data available.

A method was found to extract a small additional set of patient outcomes. The

CareVue system includes a table entitled “CensusEvents”. This table provides out-

come information for a small subset of the MIMIC II patients. With this additional

set of patients included, most of the patients still do not have final discharge infor-

mation. The CensusEvents table provides the discharge status for a total of 1310

patients. For 252 of these patients, the discharge status was already known. Com-

bining these two sources for outcomes resulted in a set of 3116 patients with outcome

information. The number of patients with trend data, however, remained at 2058.

The ability to gain over 1000 patient outcomes prompted the consideration of two

different datasets. The first dataset, Dataset 1, is composed of the vitals from the

trend data along with the ISM medications. This dataset includes a total of 747

patients. If CVP is not required, then this number increases to 2037. The second

dataset, Dataset 2, uses only ISM vitals, allowing it to utilize the larger set of 3116

patients. Table 3.7 lists the components of these two datasets.
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Dataset 1 Dataset 2
199 features 132 features
747 (2037) patients 3116 patients

Trend Vitals ISM Vitals
ISM Meds ISM Meds
Additional ISM Features Additional ISM Features

Table 3.7: Datasets

3.3 Final Dataset

The final datasets were constructed by merging the features in 3.7 into one time-

series dataset for both Dataset 1 and Dataset 2. Feature selection was done on the

uncensored patients using backward selection with linear regression (described in the

next chapter). Feature selection on Dataset 1 (with the trend data features) returned

nearly the same set of features that were selected from the ISM vitals (Dataset 2).

This was also the case if the trend data did not require CVP measurements. In the

end, the difference in the amount of correlation between the features selected from

each set and the patient’s survival time was negligible. This was rather surprising

as it indicated that the higher resolution information included in the trend signals

did not significantly contribute to predicting a patient’s length of survival. Since

Dataset 2, utilizing only the ISM data, has a larger set of patients available than

Dataset 1, it was selected for use as the final dataset. The descriptions that follow

refer exclusively to Dataset 2 (and subsets of this data).

3.3.1 Missing Values

Before performing feature selection, it was necessary to deal with the numerous miss-

ing data points (NA’s). If all of the instances that contain a NA value were simply

omitted, the size of the dataset would be severely reduced. It was therefore helpful

to target problematic features. The procedure used was guided by the observation

that the number of censored instances greatly outnumbered the number of uncensored

instances. The following steps were taken, in the following order, to remove all of the

NA’s from the dataset:
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1. The dataset was split into censored patients and uncensored patients

2. Using the uncensored patients, the following features were removed

(a) Features that are never present

(b) Features missing more than 40 percent of their values

(c) Features with zero variance (constant)

3. The remaining features, not fitting the above criteria for removal, were selected

from the censored cases and the two partitions were recombined into a new set

4. All instances (rows) in this new set that contained any missing values were

removed

This procedure eliminated 53 features from the original data. The remaining 85

“clean” features are listed in Table 3.8. The original data contained 372,282 instances,

273,153 of which were censored. Removing instances that were missing values for any

of the clean features reduced these numbers to 115,128 and 77,340, respectively. This

indicates that the cleaned data, with only 85 features, was still quite sparse. In fact,

the cleaning procedure eliminated about one half of the patients.

There are several reasons for this sparsity. First, although the measurements

considered in the original dataset should be widely available, reality does not always

reflect this. Often some of these features are unavailable for a moderate segment

of a patient’s stay—or in some cases they are missing altogether. Another cause of

this sparsity is merging data of different temporal resolutions together. Although

point values were held for fixed windows of time in order to alleviate this issue, many

measurements still did not align. This was responsible for a large portion of the

instances with missing values. By extending these windows, some of the less frequently

measured features could be held for a longer period of time. This would help increase

the total number of instances, but over time the validity of these measurements

decreases. The two-hour window used for most of the features in Table 3.4 is rather

conservative, erring on the side of ensuring that measurements are still valid. Many of
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these problems occur early in the patient’s stay because valid lab results have not yet

been obtained. Because of this, many patients that have a short overall stay in the

ICU do not include any valid instances and are completely removed from the dataset.

The future work section of Chapter 6 discusses some more elaborate data imputation

schemes that might help further reduce these issues.

Two suffixes are used for features in Table 3.8. First, if a feature is followed by an

“ h”, then the number n that directly follows the “ h” indicates that the measurement

represents the value n-minutes prior to the current time. For example, the feature

“Labetolol h60”, gives the administered value of Labetolol 60 minutes prior to the

time of the instance. Similarly, features followed by “ Slope 60” indicate derived

features. For example, “SBP Slope 240” is the slope of the systolic blood pressure

derived from a 240-minute window.

3.3.2 Dataset Partitions

In order to train and validate patient models, it is necessary to have data for train-

ing and data for testing. Initially, it was assumed that individual instances within

a patient could be treated independently from other instances within the same pa-

tient. We later found that this assumption was too strong. To prevent classification

algorithms from detecting intra-patient similarly, it is necessary to partition the data

into disjoint sets of patients rather than disjoint sets of instances.

Consequently, as a final step, the cleaned dataset was randomly partitioned into

two sets of patients. The first set, referred to as the training set was composed of

70 percent of the patients. The second set, referred to as the test set, contained the

remaining 30 percent of the patients and was set aside for testing purposes.

3.3.3 Data Summary

Table 3.9 provides a brief summary of the final dataset (referred to as cleaned). It

is clear from this table that by removing problematic (highly sparse) features, the

number of valid instances was kept relatively high. The two partitions of the cleaned
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survTime index Morphine_Sulfate

Morphine_Sulfate_h60 Lasix Diltiazem

Diltiazem_h60 Dobutamine Dobutamine_h60

Nitroglycerine Nitroglycerine_h60 Sandostatin

Sandostatin_h60 Nitroprusside Nitroprusside_h60

Lidocaine Lidocaine_h60 Labetolol

Labetolol_h60 Milrinone Milrinone_h60

Epinephrine Epinephrine_h60 Neosynephrine

Neosynephrine_h60 Heparin Heparin_h60

Fentanyl Fentanyl_h60 Amiodarone

Amiodarone_h60 Ativan Ativan_h60

Levophed Levophed_h60 SBP

SBP_Slope_240 SBP_Slope_60 DBP

DBP_Slope_240 DBP_Slope_60 MAP

MAP_Slope_240 MAP_Slope_60 CV_HR

CV_HR_Slope_240 CV_HR_Slope_60 SpO2

SpO2_Slope_240 SpO2_Slope_60 RESP

RESP_Slope_240 RESP_Slope_60 CVP_Slope_240

Sex Age Input_Sum_720

Input_Sum_720_h60 Input_Sum_720_h120 Output_Sum_720

Output_Sum_720_h60 Output_Sum_720_h120 Weight

Weight_h120 Art_pH Art_pH_h120

Art_BE Art_BE_h120 Art_CO2

Art_CO2_h120 Art_PaCO2 Art_PaCO2_h120

Art_PaO2 Art_PaO2_h120 svCSICU

svCSICU_h120 svNSICU svNSICU_h120

svMICU svMICU_h120 svMSICU

svMSICU_h120 svCCU svCCU_h120

svCSRU svCSRU_h120 Censored

Table 3.8: Clean Features
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Dataset Features Instances Censored Patients
raw 138 372,282 273,153 1,842
raw (NA’s omitted) 138 51,732 35,031 708
cleaned 85 115,128 77,340 880
train 85 81,374 56,712 615
test 85 33,754 20,628 265

Table 3.9: All Patients: Final Datasets

Dataset Features Instances Censored Patients
raw 138 90,005 61,856 487
raw (NA’s omitted) 138 6,575 4,165 143
cleaned 72 45,056 29,665 338
train 72 31,830 21,237 235
test 72 13,225 8,428 103

Table 3.10: MICU Patients: Final Datasets

dataset are listed in this table as train and test. The train dataset is used for the

feature selection and modeling described in the next chapter. The test dataset is

used for model evaluation.

Subsets of this final dataset were also examined. Specifically, the following sets of

patients were selected: patients in the MICU, patients who were in the MICU with

an ICD9 code indicating hypovolemia, and all patients with an ICD9 code indicating

hypovolemia. For each of these groups, the same procedure was followed as outlined

for the aggregate set of patients. Table 3.10 gives a summary of the resulting datasets

for the MICU patients.
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Chapter 4

Patient Models

Using the dataset described in the previous chapter, we now explore various outcome

models. To start with, we consider models built using all patients in the training set.

Later we focus on more specific models trained on subsets of those patients.

4.1 Aggregate Dataset Models

The aggregate dataset includes all of the patients that remained after preprocessing.

Table 3.9 shows that there are a total of 880 patients in this dataset before being split

into a training set used for training models and a testing set used only for evaluation

purposes. We start our analysis by attempting to predict which of the patients in this

dataset are censored. Next we explore the feature space through feature selection.

Using a reduced set of features, we fit the two most common survival regression

models. After fitting these models, we provide some brief diagnostics to test their

validity.

4.1.1 Predicting Censoring

One assumption that virtually all survival analysis techniques make is that the pro-

cess that generates the censored times is independent of the covariates being explored.

Initially, this requirement might seem too strong for the setting being explored here,
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where leaving the ICU alive would presumably depend on the patient’s vitals and

other physiological measurements. In one case, if a patient’s monitored signals con-

tinue to improve, then the patient is likely to be discharged (censored). Another

case might be that the patient’s state has been steadily declining and as a result the

patient is discharged to hospice care.

However, attempts to predict patient censoring were largely unsuccessful. Using

an SVM classifier, the best predictor found did little better than a random guess. This

classifier was trained using the training set. The ROC curve for this predictor on the

test set is shown in Figure 4-1. An ROC curve plots the true positive rate (sensitivity)

versus the false positive rate (1-specificity) for different prediction thresholds. An

ideal classifier has a total area of 1, while a diagonal line is equivalent to a random

guess. The area under the curve (AUC) is a typical metric used to evaluate the

strength of a classifier from the ROC curve. The AUC for this predictor is 0.628,

indicating significant room for improvement.
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Figure 4-1: SVM Censored Prediction

The LibSVM library [11] along with an interface to R written by Dimitriadou
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[18] were used to train this model. The ROC curves were generated using the ROCR

package [53].

Looking at the failure times for censored versus uncensored instances supports

the conclusion that the censoring is uninformative. As Figure 4-2 and Figure 4-3

show, the distribution of failure times for the uncensored cases is quite similar to

the distribution of censored times. These failure time distributions also appear to

be exponential in nature. If the failure times are transformed using a log scale, it

appears that a lognormal distribution would be appropriate for modeling them.

Figures 4-2 and 4-3 are both based on the total survival time for each patient. We

also examined the failure distributions if time dependence is not considered, using

the time until failure for each instance in a particular patient’s stay. This resulted in

the distributions shown in Figures 4-4 and 4-5.

These distributions are more difficult than the time-dependent ones. The primary

complication is missing data. If all instances were available for each patient then the

failure time distribution would be monotonically decreasing. But in reality, many of

the patients that survived for a long time have significant gaps, making the distri-

bution less informative. While the transformed distributions are still relatively log-

normal in nature, they clearly have more noise. This suggests that a time-dependent

model would likely perform better than one that ignores the relationship between the

failure times of instances within a particular patient.
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Figure 4-2: Survival Histograms for Uncensored Patients
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Figure 4-3: Survival Histograms for Censored Patients
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Figure 4-4: Survival Histograms for Uncensored Patients (all instances)
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Figure 4-5: Survival Histograms for Censored Patients (all instances)
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4.1.2 Feature Selection

Using the cleaned dataset described in the previous chapter, we start by finding the

subset of the features that are most related to the patient’s length of survival. To

do this the uncensored training instances were fitted using forward and backward

variable selection with linear regression.

Forward selection is a simple approach that seeks to add one variable at a time to

the set of explanatory variables. At each step, the most significant excluded variable

(using its p-value) is added to the model. Table 4.1 shows the top 15 features found

using this selection process on the uncensored portion of the dataset. This table also

lists the cumulative R2 value, indicating the amount of correlation obtained as the

feature set increases. The LEAPS package was used with R to perform the forward

selection [63].

Backward selection is similar to forward selection, except that it starts with all of

the variables included in the model. The least significant variables are sequentially

dropped, and the model is refitted. For this particular dataset, the forward and

backward selection methods resulted in the same set of features. Table 4.2 shows

the top 15 features found using backward selection. It also lists the corresponding

cumulative R2 values.

Finally, forward and backward selection were also performed when the model

response was the logarithm of the survival time instead of the actual survival time.

As expected, this resulted in a slightly better correlation because the penalty for

very long survival times was decreased. The features resulting from the two selection

methods are shown in Tables 4.3 and 4.4.
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Feature R2 (Cumulative)
svCSRU 0.0651
svCSICU h120 0.1066
Input Sum 720 h120 0.1328
DBP 0.1461
Fentanyl 0.1574
RESP 0.1685
Dobutamine 0.1780
Output Sum 720 h60 0.1876
Art PaO2 0.1932
Neosynephrine h60 0.1980
SBP 0.2024
svNSICU 0.2057
Heparin 0.2096
index 0.2134
Amiodarone h60 0.2169

Table 4.1: Top Fifteen Features using Forward Selection

Feature R2 (Cumulative)
svCSRU 0.0651
svCSICU 0.1065
Input Sum 720 h120 0.1327
Fentanyl h60 0.1457
Output Sum 720 0.1588
Dobutamine h60 0.1690
DBP 0.1777
Art PaO2 0.1856
Neosynephrine h60 0.1913
svNSICU 0.1962
Heparin 0.2012
SBP 0.2062
RESP 0.2092
index 0.2129
Amiodarone h60 0.2164

Table 4.2: Top Fifteen Features using Backward Selection
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Feature R2 (Cumulative)
Input Sum 720 0.04716
svCSICU 0.08506
svCSRU 0.12395
Output Sum 720 0.14864
DBP 0.16470
SpO2 0.17608
RESP 0.18323
Amiodarone h60 0.19104
svCCU 0.19621
Art BE 0.20176
Milrinone h60 0.20735
Weight 0.21207
Neosynephrine h60 0.21677
Morphine Sulfate h60 0.22094
Fentanyl 0.22450

Table 4.3: Top Fifteen Features using Forward Selection and Log Transform

Feature R2 (Cumulative)
Input Sum 720 h120 0.04618
svCSICU 0.08482
svCSRU 0.12374
Output Sum 720 0.14709
DBP 0.16339
SpO2 0.17637
RESP 0.18418
Fentanyl 0.19018
Art BE 0.19664
Sex 0.20091
Weight 0.20714
Milrinone h60 0.21241
svCCU 0.21753
Morphine Sulfate h60 0.22195
Neosynephrine h60 0.22619

Table 4.4: Top Fifteen Features using Backward Selection and Log Transform
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From these tables it is evident that the particular care unit that the patient is in

is one of the best predictors of the patient’s survival time. Figure 4-6 illustrates the

different Kaplan-Meier survival curves for patients who are in the Cardiac Surgery

Recovery Unit (CSRU) versus those who are not. This curve was fitted using the time-

dependent version of the survival times (effectively making them interval censored) in

order to prevent single patients from obscuring the curves. Each of these estimated

curves include the associated confidence bars.
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Figure 4-6: Kaplan-Meier Estimates for CSRU and non-CSRU Patients

4.1.3 Survival Regression

Table 4.5 lists the features found by modeling the survival time combined with those

found by modeling the log-survival time. The Age and Sex (with values 1 correspond-

ing to “male” and 0 corresponding to “female”) features were also added to this set.

Given these features found using forward and backward selection, we can proceed to

fit the various survival models that were described in Chapter 2 to the data.
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Input Sum 720 svCSICU
svCSRU Output Sum 720
DBP SpO2
RESP Amiodarone h60
svCCU Art BE
Milrinone h60 Weight
Neosynephrine h60 Morphine Sulfate h60
Fentanyl svCSICU h120
Input Sum 720 h120 Dobutamine
Output Sum 720 h60 Art PaO2
SBP svNSICU
Heparin index

Table 4.5: Merged Feature Set

Cox Proportional Hazards Model

Since the Cox Proportional Hazards (CPH) model is likely the most widely used

survival regression model, it was explored first. For this model, the Design package

[27] written for R by Harrell was used.

Typically it is desirable to perform feature selection using the survival model under

consideration. Using linear regression and goodness of fit to select the important

features could possibly miss features that would be useful for a given survival model.

The large number of features under consideration, however, made feature selection

directly from the survival model infeasible by preventing the process that fits the

CPH model from converging. By first taking a liberal set of features that have the

most correlation with length of survival and training the survival model on this set,

feature selection can be repeated on the survival model with little risk of missing

important features. This is the approach we took. Even with this reduced set of

features, manual adjustment was necessary to find survival models that successfully

converged. The process used is described below.

1. The features in Table 4.5 were given to the CPH model as covariates

2. The Milrinone h60 feature caused the covariate matrix to be singular so it was

removed
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3. The index (minutes since admission) feature prevented the model from converg-

ing so it was removed

The successfully fitted model had the following characteristics:

Cox Proportional Hazards Model

Obs Events Model L.R. d.f. P Score Score P

81374 133 256.24 20 0 638.98 0

R2

0.182

coef se(coef) z p

Input_Sum_720 0.000132 3.89e-05 3.39276 6.92e-04

Output_Sum_720 -0.000174 1.10e-04 -1.58379 1.13e-01

svCSICU -0.334986 3.48e-01 -0.96271 3.36e-01

svCSRU -1.537861 3.58e-01 -4.29391 1.76e-05

DBP 0.002568 8.69e-03 0.29554 7.68e-01

SpO2 -0.039776 4.70e-03 -8.46278 0.00e+00

RESP 0.006327 1.34e-02 0.47125 6.37e-01

Amiodarone_h60 0.012505 6.67e-01 0.01876 9.85e-01

svCCU -0.073452 2.47e-01 -0.29716 7.66e-01

Art_BE -0.093450 1.66e-02 -5.63053 1.80e-08

Weight -0.000562 3.38e-03 -0.16652 8.68e-01

Neosynephrine_h60 -0.000239 2.53e-02 -0.00946 9.92e-01

Morphine_Sulfate_h60 0.069753 2.93e-02 2.38237 1.72e-02

Fentanyl 0.003492 9.83e-04 3.55129 3.83e-04

Age 0.017686 7.00e-03 2.52698 1.15e-02

Sex 0.571557 1.95e-01 2.93800 3.30e-03

Art_PaO2 0.004281 1.86e-03 2.29750 2.16e-02

Heparin -0.000614 3.02e-04 -2.03411 4.19e-02

SBP -0.016532 4.35e-03 -3.79632 1.47e-04

svNSICU -0.308775 2.57e-01 -1.20087 2.30e-01

The final column labeled “p” shows the significance of the various features used

in the model. Several of the features do not significantly improve the model. Namely,

720min Output Sum, CSICU, Diastolic blood pressure, Respiratory rate, Amiodarone,

CCU, Weight, Neosynephrine, and NSICU appear to be of little use to the model.

Performing backward selection on the model removed all of these features along with

Heparin and Arterial PaO2.
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Finally, before accepting the CPH model, interactions that seemed meaningful

were added to see if they would improve the performance. Specific interactions that

we tried included Heart rate and Systolic blood pressure, Heart rate and SpO2, Sys-

tolic blood pressure and Diastolic blood pressure, Respiratory Rate and Heart Rate

and 720min input sum and 720min Output Sum. The Input Sum-Output Sum inter-

action prevented the model from converging. The others allowed the model fitting to

converge, but did not significantly improve the model performance.

The final resulting model is shown in Equation 4.1. Values for the baseline survival

function, S0, are listed in Table 4.6.

Prob{T ≥ t} = S0(t)
eβT

x

, (4.1)

where

βTx =

4.741622 + 9.601624×10−5Input Sum 720 h120 + 0.01762138 Age

− 1.495267 svCSRU − 0.04092318 SpO2 − 0.1053184 Art BE

+ 0.002741086 Fentanyl + 0.4232253 Sex − 0.01523348 SBP

+ 0.05494363 Morphine Sulfate h60.

t S0(t)
0 1.000

30 0.781
60 0.705
90 0.608

120 0.608
150 0.608
180 0.608

Table 4.6: Baseline Survival Values

The limited amount of correlation present in this model gives it a rather large level

of uncertainty. Figure 4-7 compares the CPH estimates for patients in the CSRU to

those who are not. In order to contrast the CSRU patients with the non-CSRU

patients, this model uses the median values for all of the other covariates. We can see
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that the CPH model’s predictions are quite similar to the Kaplan-Meier estimates for

this same comparison (Figure 4-6).
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Figure 4-7: Cox Proportional Hazards Estimates for CSRU and non-CSRU Patients
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Accelerated Lifetime Model

For comparison purposes, a parametric Accelerated Lifetimes Model (ALM) was also

fitted to the data. Both the Weibull distribution and the lognormal distributions were

evaluated. Using R, the Design package [27] provides a routine for fitting parametric

ALMs. This routine is based on the Survival package [44] originally developed by Th-

erneau, and adds automatic backward selection and analysis of variance. This routine

had problems similar to those encountered using the CPH routine for attempting to

handle a large number of features.

For the Weibull distribution, the successfully fitted model had the following char-

acteristics:

Obs Events Model L.R. d.f. P R2

81374 24662 13881.52 9 0 0.16

Value Std. Error z p

(Intercept) 9.10e+00 1.04e-01 87.13 0.00e+00

Input_Sum_720_h120 -9.08e-05 3.05e-06 -29.74 2.37e-194

Age -1.84e-02 5.74e-04 -32.09 5.28e-226

svCSRU 1.13e+00 1.92e-02 58.77 0.00e+00

SpO2 2.62e-02 9.44e-04 27.70 6.38e-169

Art_BE 5.90e-02 1.83e-03 32.22 9.15e-228

Fentanyl -3.32e-03 8.24e-05 -40.30 0.00e+00

Sex -7.75e-01 1.81e-02 -42.90 0.00e+00

SBP 1.55e-02 3.52e-04 43.98 0.00e+00

Morphine_Sulfate_h60 2.02e-01 2.19e-02 9.21 3.25e-20

Log(scale) 2.13e-01 5.00e-03 42.60 0.00e+00

Scale= 1.24

A model was fit using the lognormal distribution as well. Based on the R2 value,

this performs marginally worse than the model fitted using the Weibull distribution.

The model using the lognormal distribution has an R2 of about 0.15 versus an R2 of

about 0.16 for the Weibull model.

One of the benefits of the parametric model is the ability to plot the corresponding
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hazard function. For example, as in the CPH model, we can examine the effect of one

of the covariates on the curves using the median values for the other covariates. Figure

4-9 shows a set of curves from the Weibull ALM for different ages. For comparison,

Figure 4-8 shows the same set of curves from the lognormal ALM. As expected, the

hazard curve is higher and the survival curve is lower as the age increases. Unlike

the Weibull model, the lognormal model is not restricted to being monotonically

decreasing. This can be seen in the lognormal model’s non-zero maximum for the

hazard function.

It is important to note that the accelerated lifetime models do not account for

time dependencies, effectively considering each instance as an independent patient.

Using this construction, individual patients who stay in the ICU for a particularly

long time can bias the results.

61



Days

H
az

ar
d 

F
un

ct
io

n

0 30 60 90 120 150 180 210 240

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

20

45

70

95

Days

S
ur

vi
va

l P
ro

ba
bi

lit
y

0 30 60 90 120 150 180 210 240

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

20

45
70

95

Figure 4-8: Lognormal ALM: Survival and Hazard curves for Age
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Figure 4-9: Weibull ALM: Survival and Hazard curves for Age

63



4.1.4 CPH Model Diagnostics

A number of diagnostics exist for testing if a fitted Cox proportional hazards model

is appropriate for the data. We consider three tests. First, in order to verify the

assumption of proportional hazards, we plot the scaled Schoenfeld residuals. Next, we

use standardized delta-betas, also known as dfbetas, for determining overly influential

observations. Finally, we examine the possibility of nonlinearity between the log

hazard and the covariates by plotting the martingale residuals against individual

covariates.

Scaled Schoenfeld Residuals

Defining residuals in ordinary linear regression is quite straightforward. For survival

models, however, a more complicated definition of a residual is necessary. Several

different residuals have been suggested for CPH models and each provides insight

into different characteristics of the model.

To determine the overall fit of the proportional hazards model, we calculated

the scaled Schoenfeld residuals for each feature. Equation 4.2 shows the Schoenfeld

residual [51], for feature j at observation i:

rji = δi

(

x
(j)
i −

∑

m∈R(yi)
x

(j)
m eβT xm

∑

m∈R(yi)
eβT xm

)

. (4.2)

As before, β is the vector of coefficients for each feature, R(y) is the risk set at time

y, and δi is the censoring indicator for instance i. The parenthesized superscript, x(j),

selects only the jth feature from the vector of covariates.

As a result of the censoring indicator in this equation, censored observations always

have a residual of zero. The other residuals are simply the difference between a

covariate’s value at a particular observation and the weighted average of that covariate

from the set of individuals at risk (see [59]). We can test the significance of the

residuals for each covariate and also perform a global test for the residuals as a whole

using the cox.zph routine [27]:
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rho chisq p

Input_Sum_720_h120 0.01047 1.69e-02 0.8967

Age 0.06202 5.69e-01 0.4507

svCSRU -0.03055 1.24e-01 0.7249

SpO2 -0.13103 2.23e+00 0.1357

Art_BE 0.12305 2.96e+00 0.0855

Fentanyl 0.11904 1.93e+00 0.1644

Sex 0.10751 1.52e+00 0.2182

SBP 0.16080 3.11e+00 0.0778

Morphine_Sulfate_h60 -0.00239 6.71e-04 0.9793

GLOBAL NA 1.17e+01 0.2323

From this output, it appears that the residuals are insignificant for all of the

covariates, with the possible exception of SBP and Art BE. Graphically examining

these residuals is recommended for verifying the overall fit of a proportional hazards

model to the data. Figure 4-10, on page 69, shows the residuals for each covariate. In

this figure the solid line is a local regression line, and the dotted lines represent the

±2-standard-error thresholds. None of the fitted lines for the covariates appear to

have a slope that consistently deviates from zero. This indicates that the proportional

hazards assumption is likely to be reasonable.

Standardized Delta-Betas

To examine the influence of individual observations we calculate dfbetas for each

observation. The dfbeta for an observation is quite simple in concept. First, we let β̂

be the estimate of the β vector in the model. Now, denote the estimated coefficients

obtained without the ith observation as β̂(i). The dfbeta for the ith observation is

dfbetai = β̂−β̂(i). In practice this can be expensive to compute for large datasets, and

an efficient approximation is used. Additionally, it is useful to normalize these values

using their standard error values. Using these normalized approximations, Figure 4-11

on page 70 shows the dfbetas for each observation. The majority of the observations

appear to have a reasonably small influence on the estimates for the coefficients.
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There are, however, a few overly influential observations. The most blatant of these

occurs at 69689. Examining this observation closer reveals why it is so large. This

observation is the last observation for a patient that stayed in the ICU for more than

76 days before being discharged alive. The anomaly comes from the fact that the

last of the six observations available for the patient occurred only two days into the

patient’s stay. This resulted in the particularly influential observation representing a

huge time interval of about 74 days. With the exception of this observation, all but

one of the dfbetas are below 0.4 standard errors of the coefficients, making them quite

reasonable.

Martingale Residuals

From probability theory, a continuous-time martingale is a stochastic process with

the following property:

E(Xt|Xr, r ≤ s) = Xs,

for all s ≤ t. The martingale residual is constructed as follows. First, define the

counting process Nj(t) as 1 when patient j has died at or before time t and 0 if the

patient is still alive. Also, let Rj(t) indicate whether or not patient j is at risk at

time t. The following process is a martingale if the proportional hazards model is

correctly specified [29]:

Mj(t) = Nj(t) −

∫ t

0

Rj(u)eβT xj(u)dH0(u),

where xj(t) is the vector of time-dependent covariates and H0(u) is the baseline

cumulative hazard at time u.

Martingale residuals result when the estimates for β and H0() are used instead of

the actual values [60]. The residual, M̂j(t), can then be defined as

M̂j(t) = Nj(t) −

∫ t

0

Rj(u)eβ̂
T
xj(u)dĤ0(u).

In effect, the martingale residual at time t is the difference between the observed
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number of deaths over the interval [0, t] minus the expected number of deaths given

by the specific model. Because the actual number of deaths for patient j can not be

greater than 1, the residuals are always less than or equal to 1. On the other hand,

when the expected number of deaths over the segment is large, the residual can be

less than -1.

The functional form of each of the covariates can be explored by partitioning the

set of covariates. In partitioning, we let the covariate under investigation be x1 and

we let x∗ be the set of remaining covariates. The CPH model can then be written as

h(y|x∗, x1) = H0(y)ef(x1)e(β∗T x∗).

Therneau et al show that a smoothed plot of M̂j versus the different values of the

covariate x1 will generally provide the correct form for f(). If the smoothed plot is

linear, then x1 does not need to be transformed.

Figure 4-12 shows the martingale residuals for each of the six covariates that are

not dichotomous. For this figure, there is a dashed horizontal line that was fit to

the data using linear least squares and a smoothed solid line that was fit using local

regression. The Loess method (also known as locally weighted polynomial regression),

natively available in the R language [45], was used for the local regression1. The

default values for each of the parameters to Loess were used. The linear appearance

of these plots indicates that the covariates do not need to be transformed. In fact,

looking at the plots, the two lines can not be distinguished from each other.

We can also add the components contributed by each covariate (βixi) to the mar-

tingale residuals. If we plot these versus the different covariate values (xi), we can

again see that the plots are quite linear by observing that the line fit using linear least

squares (dashed) is virtually identical to the smoothed line fit using local regression

(solid line). These plots are shown in Figure 4-13.

There appears to be two “groups” of residuals in most of the martingale residual

1Loess [14] is a common local regression method that works by fitting low-order polynomials to
localized subsets of the data using weighted least squares. Weighted least squares gives more weight
to points near the point being estimated than points further away.
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plots. The group of residuals at or near 1 are cases where the patient died but the

model predicted no deaths (or a small, fractional number of deaths). While this group

appears to be rather common, the majority of the residuals are clearly zero.
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Figure 4-10: Scaled Schoenfeld Residuals vs time in days
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Figure 4-11: Index plots of dfbeta
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Figure 4-12: Martingale Residuals
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Figure 4-13: Component plus Martingale Residuals
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4.1.5 Accelerated Lifetime Model Diagnostics

The accelerated lifetime model did not perform as well as the CPH model. The

primary reason for this is likely the CPH’s ability to utilize time-dependent covari-

ates. This better performance, combined with the diagnostics indicating that the

assumption of proportional hazards appears valid for these data, led us to use the

CPH model. All further discussion in this thesis focuses on the CPH model, unless

explicitly stated otherwise.

4.1.6 Model Evaluation

In order to evaluate the effectiveness of this model at predicting mortality, individ-

ual patients were examined. First, for two randomly selected patient instances—one

from a censored patient and one from an uncensored patient—survival curves were

estimated. Figure 4-14 shows the comparison of the two patients. It is clear that the

censored patient in this case has a much better outlook, which is expected. Consid-

ering the uncensored patient only survived 1.6 days after this instance, the survival

curve does not drop as quickly as expected; according to the curve, the patient has a

93 ± 3% chance of survival at 1.6 days in the future.

Next, the amount of self consistency within a patient was examined. To do this,

the 10-day survival estimates for consecutive instances in the same patients were

analyzed. The same patients shown in Figure 4-14 were used, and their estimates

were plotted against the instance indexes. The estimates for the censored patient are

shown in Figure 4-15 and the estimates for the uncensored patient are shown in Figure

4-16. To help visualize the trend in the points, the figures include a least-squares fitted

line and a smoothed curve that was fitted using local regression.

It is interesting to note that the censored patient has a positive trend in the

survival prediction, indicating that the patient is becoming more stable with time.

The survival prediction for the patient that died, however, has a decreasing trend.

It also appears that the variance in the estimates might be slightly smaller for the

censored case than the uncensored case, although it is difficult to tell from these two
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Figure 4-14: CPH Survival Curves for Censored Patient and Dead Patient with error
bands

figures.

After looking at some specific differences between these two patients, general

differences between censored patients and uncensored patients were explored. To do

this, the cumulative mean values for the 10-day survival estimate were calculated for

each instance within a particular patient. The cumulative variance was also calculated

for each instance in a given patient. The observations noted for the two specific cases

generalize to the complete set of patients. Table 4.7 summarizes these important

differences. Additional plots of randomly selected patients are available in Appendix

B for visualizing some of these trends.

We can also look at the histograms for differences in the distribution of these

estimates between the censored patients and the uncensored patients. Figure 4-17
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Feature Mean Censored Mean Uncensored
CPH 10-day Estimate 0.90 0.81
Cumulative CPH 10-day Est 0.88 0.80
Cumulative CPH 10-day Est Var 0.0057 0.0096

Table 4.7: 10-day Prediction Trends

shows histograms for the 10-day survival estimates, the cumulative 10-day survival

estimates, and the cumulative variance of the 10-day survival estimates. In this

figure, the first row shows these histograms for all patients, the second row shows

these histograms for only censored patients and the final row shows these histograms

for only uncensored patients. It is clear from the histograms that are there are slight

differences between the survival estimates for censored patients and survival estimates

for uncensored patients.
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Figure 4-15: CPH 10-day Survival Estimates for Censored Patient
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Figure 4-16: CPH 10-day Survival Estimates for Uncensored Patient

76



10−Day Survival Estimates
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Figure 4-17: Histograms Comparing Censored and Uncensored patients
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4.2 Patient Subsets

The small correlations shown in Tables 4.1 through 4.4, combined with the large

differences between specialized ICUs, indicate that it might be useful to examine

smaller, more specific, subsets of the data. In this section, we examine models trained

and evaluated using specific subsets of the data.

4.2.1 MICU Patients

The set of MICU patients was obtained by selecting all instances where the MICU

indicator variable (svMICU ) was set to 1. After preprocessing, a total of 338 patients

matched this criterion. Of these patients, 117 died while in the ICU. Table 3.10 shows

how these patients were separated between the training set and the test set.

Feature Selection

Again, both forward selection and backward selection resulted in effectively the same

features (with the difference being Nitroprusside h60 vs Nitroprusside). Table 4.8

shows the top 15 features for linear regression on the uncensored data.

Following the same methodology used for the more general set of patients, a CPH

model was trained for this set of patients. Using this model, survival predictions

were obtained for the training data, and these predictions were then incorporated

as features into a new training dataset. Table 4.9 lists these additional features

and compares their mean values between the censored group of patients and the

uncensored group of patients. In general, the differences between these values are

very similar to the differences found for the general set of patients in Table 4.7.

4.2.2 MICU Hypovolemic Patients

For the most specific dataset, the MICU patient set used previously was further

reduced to include only hypovolemic patients. These patients were selected based

on their ICD9 codes indicating that they were hypovolemic at some point in their

ICU stay. Given the number of total patients, the set of patients meeting these two
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Feature R2 (Cumulative)
Weight 0.07901
Age 0.11670
CV HR 0.16552
svNSICU 0.19240
Amiodarone h60 0.21656
Sex 0.23264
Input Sum 720 0.24718
svCCU 0.25984
Heparin h60 0.27223
Nitroprusside h60 0.28398
SBP 0.29334
Levophed 0.30128
Fentanyl 0.30653
Art PaO2 0.31190
Lidocaine 0.31386

Table 4.8: MICU: Top Fifteen Features using Forward Selection

Feature Mean Censored Mean Uncensored
CPH 10-day Estimate 0.81 0.72
Cumulative CPH 10-day Est 0.77 0.71
Cumulative CPH 10-day Est Var 0.0097 0.0120

Table 4.9: MICU: 10-day Prediction Trends

79



criteria was quite small—25 patients in all. Of these 25 patients, 16 were used for the

training set, and 9 were used for testing. Each of these sets included three patients

that died, while the remaining patients lived. With only six cases of patient mortality,

this dataset was deemed to be too small for useful analysis.

4.2.3 Hypovolemic Patients

The final dataset examined was the set of patients that were marked as being hypo-

volemic sometime during their stay without the MICU requirement. After prepro-

cessing the data, 60 unique hypovolemic patients were available. Only 10 of these,

however, died before they were discharged from the ICU. While over twice as large

as the set of MICU hypovolemic patients, it was deemed to be too small for useful

analysis.

4.3 Outcome Prediction

One possible way to evaluate patient survival models is to look at the final state of

the patients in the ICU. This view of patient survival is clearly violated by numerous

patients, such as those that are still severely ill when they leave the ICU for hospice

care. These types of cases are expected to make prediction of the patient’s final state

upon departure from the ICU difficult. Despite these inherent difficulties, predicting

which patients die while in the ICU is still useful.

4.3.1 General Patients

First, in order to evaluate the model’s ability to predict which patients leave the ICU

alive, we predict which patients were censored. Figure 4-18 shows the ROC curve for

the model’s prediction. Comparing this figure to Figure 4-1, it clearly does better

than the plain SVM at predicting censoring. This is due to the estimates from the

CPH model being appended to the original training set.

Next, several models were trained to predict death within a fixed time window.
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Figure 4-18: ROC Curve for Logistic Regression Censor Prediction

As expected, the shorter this window is, the more effective the model is at predicting

patient mortality. Figures 4-19 through 4-22 show the predictive power of these

models using their respective time windows. Each of these ROC curves includes the

total area under the curve.

As the curves indicate, the survival predictions from these models appear to be

reasonable. At 48 hours, for example, a false positive rate of only 0.2 (or a specificity

of 0.8) has a corresponding true positive rate (sensitivity) of over 0.5. If the length

of prediction is decreased to 24 hours, the false positive rate falls to about 0.1—less

than half of the previous value—for the same true positive rate of 0.5.

None of these curves (with the possible exception of the 12 hour prediction model)

represent particularly strong predictions. For the 12 hour model, despite its reason-

ably strong performance with an AUC of 0.877, the usefulness of such a short predic-

tion is likely to be minimal in practice; physicians typically know if a patient is going

to die within 12 hours.
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Figure 4-19: ROC Curve for Logistic Regression: 96h Survival Prediction

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC = 0.769

Figure 4-20: ROC Curve for Logistic Regression: 48h Survival Prediction
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Figure 4-21: ROC Curve for Logistic Regression: 24h Survival Prediction

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC = 0.877

Figure 4-22: ROC Curve for Logistic Regression: 12h Survival Prediction
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4.3.2 MICU Patients

Censoring was also predicted using a model created with only a subset of MICU

patients. As done with the aggregate set of patients, a test set was held out to

evaluate the performance of this model. The ROC curve in Figure 4-23 shows that

the logistic regression model for predicting censored patients in the MICU performed

slightly worse than the model that was found for the general set of patients (Figure

4-18).
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Figure 4-23: MICU: ROC Curve for Logistic Regression Censor Prediction

Finally, using logistic regression models as previously done for the general set of

patients, a number of models were created for predicting patient death within fixed

windows. The respective ROC curves, generated using the test data, are shown in

Figures 4-24 through 4-27. Looking at the area under these curves, it appears that

the models for this smaller dataset consistently perform worse than the models that

use the more general dataset.
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Figure 4-24: MICU: ROC Curve for Logistic Regression: 96h Survival Prediction
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Figure 4-25: MICU: ROC Curve for Logistic Regression: 48h Survival Prediction
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Figure 4-26: MICU: ROC Curve for Logistic Regression: 24h Survival Prediction
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Figure 4-27: MICU: ROC Curve for Logistic Regression: 12h Survival Prediction
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4.4 Comparison with SAPS

As a comparison to the above models, we calculated SAPS scores for all of the patients

with outcome information available. In calculating these scores, the methodology

presented in [33] was followed. Figure 4-28 shows the mortality rate for each individual

score, along with the number of patients receiving each score. Although it is important

to consider the small number of patients used to calculate the mortality rate for higher

SAPS values, it is clear from this figure that there is a strong correlation between an

increasing SAPS value and a patient’s risk of death.
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Figure 4-28: Mortality Rate vs SAPS value

As in the previous models, an ROC curve can be created using different cut-off

thresholds for SAPS values. This allows us to compare the relationship between

sensitivity and 1 - Specificity. Figure 4-29 shows this ROC curve along with the
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area under it. An area under the curve of 0.731 indicates that the SAPS value does

slightly better at predicting mortality than the 96-hour model that had an AUC of

0.720 found for the aggregate set of patients (Figure 4-19). Additionally, it should

be slightly easier to predict 96-hour mortality than the final mortality as the SAPS

score does. If the 96-hour model is adjusted to look at the final ICU discharge state

(resulting in predicting censoring, as in Figure 4-18), then the AUC falls to 0.707.

One of the complaints with SAPS is the fact that if the patient dies within the first

24 hours, which is not uncommon, by using the worst score over the period the metric

sometimes diagnosis death instead of predicting death.
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Figure 4-29: ROC Curve for SAPS

The SAPS value for a patient is calculated only over the patient’s first 24 hours in

the hospital. This constraint can also be placed on the outcome prediction models.
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In fact, by adding this constraint, the model’s performance appears to improve. As a

result of this constraint, the number of unique patients in the test set decreases from

265 patients to 111 patients. Of the 33754 test instances only 2249 of them occur in

the first 24 hours. With this reduced test set, the ROC curve (Figure 4-30) has an

AUC of 0.768. This value could likely be improved further by allowing the model to

utilize the first 24 hours (i.e. using the worst values like the SAPS metric) of each

patient’s stay instead of only looking at isolated instances.

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC = 0.768

Figure 4-30: ROC Curve for 96h Outcome Prediction (first 24hrs)

It is noteworthy that the model appears to significantly improve when only the

first 24 hours of the patient’s stay are examined. Under this light, the outcome

prediction models suggested in this paper appear to perform marginally better than

the SAPS value for predicting patient mortality.
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Chapter 5

Related Work

This chapter describes other research that has been done that relates to the goal of

this thesis. First, an overview of the many mortality prediction scores is provided.

Next, additional survival analysis techniques are discussed. Lastly, a brief discussion

of related intelligent monitoring approaches and decision support systems is provided.

5.1 Mortality Prediction Scores

A variety of mortality scores have been developed over the past 25 years. In addition

to SAPS, common mortality metrics include the Acute Physiology and Chronic Health

Evaluation (APACHE) score [32] and the Mortality Probability Model (MPM) [35].

Like SAPS, each of these scoring systems has undergone multiple revisions [30] [31]

[36]. The SAPS II, the APACHE III and the MPM II metrics are routinely used.

Each of these can be calculated from published information, but the translation of

the APACHE III score into the corresponding probability of hospital mortality is

proprietary.

The Apache III and SAPS II models rely on the worst value recorded over the

first 24 hours of the patient’s stay. Bosman showed that because of this methodology,

significantly different outcome predictions are obtained by using an intensive care

information system versus manual recordings [2]. Additionally, the APACHE score

shares the problem that SAPS encounters when the patient dies during the first 24
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hours after their admission—that is, the metric reflects patient mortality rather than

predicting patient mortality.

The new revisions of each of the three models (APACHE III, SAPS II, and MPM

II) improve upon their earlier versions [7]. Most of this improvement is due to the

inclusion of chronic illnesses. Between SAPS II and APACHE III, Moreno found

that the SAPS II model slightly outperformed the APACHE III model [42]. But

in another case, specific to outcome from acute renal failure, the APACHE II score

outperformed the SAPS II and MPM-24 II models [19]. Other studies support the

notion that the performance of each model is quite sensitive to the population of

patients being evaluated and the population used for calibration.

The MPM accounts for the limitation of being calibrated for the first 24 hours of

the patient’s stay by introducing multiple models. These models are specialized for

different periods in the patient’s stay. This includes a model for use at admission,

24 hours after admission, and 48 hours after admission and a model that combines

all three of these. For the purposes of the current project, the MPM models were

inappropriate, because they utilize several factors in the patient’s record that are not

easily accessed. Examples of the more difficult features, which would probably require

careful parsing of free-text notes to find in the datasets available in our study, include

“CPR prior to ICU admission” or “Cancer part of present problem”. The complete

list of features utilized by the MPM-Admission model are listed in Table 5.1.

Feature type
Coma (Glasgow 3-5) Boolean
Emergency admission Boolean
CPR prior to ICU admission Boolean
Cancer part of present problem Boolean
Chronic renal failure Boolean
Probable infection Boolean
Previous ICU admission within 6 months Boolean
Surgical service at ICU admission Boolean
Age Continuous
Heart rate at ICU admission Continuous
Systolic Blood Pressure Continuous

Table 5.1: Mortality Prediction Models — Admission
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Other researchers have looked at the SAPS and APACHE metrics in regards to

specific illness. The SAPS metric has been shown to be effective across different

intensive care units. In a prospective study, Schuster found that the metric was

equally applicable to coronary care unit patients [52]. As another example, Chen and

others recently explored the use of the APACHE score to predict prognosis for acute

renal failure (ARF) patients. They found that the score, calculated during the 24

hours immediately prior to the onset of ARF (instead of the normal 24 hours after

patient admission) was a statistically significant predictor of patient survival [12].

The survival prediction models mentioned above all rely on relatively simple lo-

gistic regression. The limitations of this type of model have led some researchers

to explore the use of more computationally intensive models that have shown con-

siderable classification power, such as neural networks. Motivated by findings that

indicate that binary logistic regression for high-risk patients is relatively inaccurate

and inconsistent, Goss shows improvement in patient outcome prediction using a neu-

ral network, but concludes that all current prediction systems suffer from high error

rates[24]. More recently, researchers have used differentiable approximation to the

concordance index (a common survival model quality metric) directly as the objec-

tive function for training various classification algorithms [64]. Using this metric with

a neural network model, they demonstrate improvement in separating low-risk and

high-risk groups of patients.

Other researchers have focused their research on simple models derived from more

specific indicators of patient mortality. One recent study by Smith et al has shown

that arterial base excess and lactate concentrations by themselves each have strong

prognostic power at the time of patient admission [55]. Using base excess and lactate

individually, they obtained an area under the ROC curve of 0.73 and 0.78 for each,

respectively. Furthermore, they showed that at 24 hours into the patient’s stay, the

predictive ability of base excess is slightly decreased while the predictive power of

lactate marginally increases. They also point out that while the lactate value is

predictive of mortality, this increase in risk is dependent on the cause of the rise in

lactate.
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Physicians still generally outperform these static mortality models. A recent re-

view of by Sinuff et al compared the predictions from these models to the predictions

of physicians using a large set of published literature [54]. This research found that

the physicians outperformed the scoring metrics during the first 24 hours after ICU

admission. They reported an area under the ROC curve of 0.85± 0.03 for physicians

versus an area of 0.63 ± 0.06 for the scoring metrics. A study by Rocker et al found

that mortality estimates lower than 10 percent by physicians “strongly influence pat-

terns of life support provision and limitation and vary in impact according to the

severity of organ dysfunction and the presence or absence of preferences to limit life

support” [47]. This observation could explain some of the difficulty of predicting fixed

survival windows encountered in this project.

5.2 Survival Analysis

In addition to the most common survival analysis techniques described in Chapter 2,

several additional survival models have been developed. One of the more interesting

of these is the Buckley-James regression method. There has also been considerable

work recently focused on informative censoring.

5.2.1 Survival Regression

Buckley-James regression is one of several techniques for survival regression [5]. It is

based on the linear relationship between the expectation of the survival time and the

covariates,

E[δiYi + (1 − δi)E(Yi|Yi > ti)] = β0 + β1
Tx. (5.1)

It is clear from this model that if all of the data are uncensored, then the relationship

is simply an ordinary least squares model for survival time.

Equation 5.1 shows that the censored data points can be replaced by their expected

values. This can be done without biasing the regression equation. The Buckley-

James estimator uses this idea by replacing the variable yi with the Kaplan and
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Meier estimator. The solution is then obtained by solving the ordinary least squares

equations iteratively. In the end, this technique effectively replaces the censored data

points with their expected values and then proceeds to minimize the sum of squares.

It repeats this process until the procedure converges, or gets trapped in a loop.

Miller and Halpern concluded that the Buckley-James estimator performed better

than the two other most common linear regression schemes for survival data (Miller’s

estimator and Koul, Susarla & Van’s estimator)[41]. By using the standard Stand-

ford heart transplant dataset, they found that the Cox and Buckley-James regression

methods both performed comparably. This indicates that in cases where the assump-

tion of proportional hazards is clearly inappropriate, Buckley-James might be a strong

alternative. However, additional research has indicated that the Buckley-James re-

gression technique is weak under heavy censoring (i.e. greater than 60 percent) [26].

Cox’s proportional hazards model is preferable when heavy censoring is present and

the R2 correlation is below about 0.55 [57]. Considering these criteria, the Cox pro-

portional hazards model is a reasonable choice for this project.

5.2.2 Informative Censoring

Finally, additional survival analysis research has been directed to the case where there

are multiple risks that could cause the event of interest. For example, a patient might

die from a myocardial infraction that is unrelated to a specific illness being treated

in the ICU. Conventional survival analysis looking, at survival from the illness under

consideration, would have to consider this case censored. This would be incorrect as

the patient is no longer at risk of the event of interest.

A competing risks framework can include this as a separate “competing risk”

[16][20]. In fact, a patient being discharged alive from the ICU can also be considered

as a competing risk [46]. This method addresses the assumption that the censoring is

non-informative. Using competing risks has an intuitive appeal for use in the ICU, as

patient withdrawal from the ICU is generally a result of deterioration or improvement.

A free R-project package, cmprsk, is available for creating these models [25].

There are many other techniques related to competing risks. Many of these at-
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tempt to infer the portion of patients deemed “cured” and model the dependency of

the censoring on the covariates. Some recent work illustrating these techniques can

be found in [37] and [13].

5.3 Intelligent Monitoring and Decision Support

Since the beginning of the field, researchers have been trying to apply artificial intelli-

gence to assist medical practitioners. Numerous systems have been developed. Many

have shown promise, but few have been utilized. The successful ones tend to be

very focused in nature and fit easily within the existing health care work flow. Pople

argues that much of the difficulty comes from the inherently ill-structured nature of

medicine [58].

Medical decision support has followed recent interest in utilizing temporal data in

intelligent systems. This allows systems to utilize the temporal information that is

often included in definitions of various medical conditions. For example, [39] describes

utilizing constraints specific to cardiology to enhance reasoning in the Heart Disease

Program (HDP). Augusto’s recent review article, Temporal reasoning for decision

support in medicine [1], provides a nice overview of this area, and highlights work

that he feels needs more attention. Specifically, he points out that the area of medical

prognosis has received less attention than diagnosis and therapy planning.

5.3.1 Signal Artifact Detection and False Alarm Reduction

The proliferation of false alarms in the ICU continues to be a concern as the number of

monitoring devices increases. In [62], Tsien identifies some of the more problematic

alarms and explores some of the causes of these alarms. The specific nature and

generally poor performance of these alarms has led many researchers to focus on

trying to reduce them. While more specific than the work in this project, many of

the same tools apply and similar problems arise.

Several researchers have worked to address problems with signal quality. One

approach, suggested in [66], validates arterial blood pressure alarms by examining
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the signal quality and utilizing the relationship between the arterial blood pressure

and the electrocardiogram.

Other approaches have built more complicated models for validating the signals.

One type of model that shows particular potential in biomedical signal processing is

the Hidden Markov Model (HMM) [15]. HMMs continue to be foundational to much

of the recent progress in speech recognition applications, and much effort continues

to be dedicated by the the speech recognition community to enhance these methods.

Novak et al [43] compared an HMM and another common speech recognition method,

Dynamic Time Warping (DTW), for classification in arrhythmia analysis, intracranial

pressure monitoring, and electroencephalogram monitoring. They found that these

models could potentially be used to expedite the analysis of these signals.

5.3.2 Patient State Identification

An important alarm ideally reflects instability or risk of instability in a patient. Most

of the patient state-models medical practitioners consider are subordinate to specific

disorders such as hemorrhagic shock. Looking more generally at patient state (stable

vs unstable), however, has received less focus.

Hidden Markov models have been used to try to gain insight into the underlying

hidden state of a patient. Using various sets of variables, Brause attempted to fit

an HMM to a set of sepsis patients [3]. While he obtained reasonable prediction

values using this model, the identification of underlying sepsis states was inconclusive.

With a similar objective, other researchers have also aimed at characterizing patient

state from time series data using a window-based decision-tree model that includes

temporal trend information [6]. The results from this work have been limited.
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Chapter 6

Conclusion

In this thesis, we have suggested a methodology for using survival models to gain

insight into patient state and trajectory. To conclude this thesis, we first provide a

summary of the thesis. We then highlight areas for future research.

6.1 Summary of Contributions

To begin with, in chapter 2 we discussed some of the relevant background for this

thesis. This included an overview of survival analysis where we provided necessary

definitions. This chapter also included a brief discussion of the SAPS mortality met-

ric. The final piece of background information described in Chapter 2 was various

classification algorithms used in this thesis.

In chapter 3, we described the data used for this research. The chapter begins

with a description of the MIMIC II project and the various data sources included

within that project. Next, we stepped through the preprocessing techniques utilized

to prepare the final dataset. We also explained how annoyances such as missing values

were handled. The chapter concluded with a summary of the final datasets.

Chapter 4 discussed the models we created. This chapter described modeling the

entire set of patients available as well as modeling a smaller subset of the patients that

are in the MICU. For each of these datasets, the method used for feature selection was

described and the resulting models were discussed. While identification of underlying
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patient state was inconclusive from these models, interesting trends were observed.

Next, utilizing these trends, several models were developed for predicting patient

mortality. The chapter concluded by comparing the discriminatory power of these

models to mortality prediction from the SAPS metric.

In chapter 5 we discussed some of the related work that other researchers have

done. We started by providing a general overview of the various mortality prediction

scores. Next, alternative survival analysis methods were discussed. The chapter con-

cluded with a brief discussion of intelligent monitoring systems and decision support.

6.2 Future Work

There are several open questions raised by this work that warrant further investiga-

tion. First, a closer analysis of the survival predictions over the course of a patient’s

stay would be interesting. Secondly, additional features could be added in an effort to

improve the predictiveness of the models. It would also be interesting to explore sur-

vival analysis methods that can account for informative censoring. Finally, it would

be worthwhile to consider these results with a larger dataset. In this section we briefly

discuss each of these ideas in order.

From the results shown in chapter 4, it was clear that there was quite a bit of

variance in the survival predictions over the course of a patient’s stay. At the time of

this writing, many of the discharge summaries for these patients were unavailable as

they were being deidentified. With these discharge summaries and the corresponding

nursing notes, it would be interesting to attempt to identify if the significant highs

and lows in these plots reflect meaningful information about the patient’s state at

corresponding times.

Additional features would likely allow for improved model performance. One of

the major criteria for selecting features in the models in this thesis was frequent

availability. Many of the most predictive features, however, such as lactate and other

lab results were not used because they are only measured once per day. Extracting

additional medications (non-intravenous) from the nursing notes might also prove
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useful to the outcome models. Another possibility for additional features would be

to use wavelet features that capture trend dynamics as suggested by Saeed in [50].

Exploring more sophisticated survival models might also be interesting. A starting

point would be to further explore models based on competing risks. Initial attempts

to create competing risks models were unsuccessful due to extreme computational

costs. These models can also be enhanced by using a mixture model that accounts

for informative censoring.

Finally, using additional data would allow more specific models to be designed.

The set of patients used in this thesis was a relatively small subset of the patients

available in the MIMIC II database. For the purposes of this work, the data were

specifically limited by a small set of a patient outcomes. Additional patient outcomes

are expected to be available from the hospital shortly.

Additional data could also be obtained by using various imputation methods.

Imputation is commonly used in statistics to replace missing data points with valid

values. In preparing the datasets used in this thesis, instances that were missing

a value for any of the selected features were omitted. This reduced the number

of patients by more than half. Using imputation, many of these patients could be

kept by filling in the NA data points with estimated values. Several techniques

are available for estimating missing values. Some of the more common methods

include mean substitution, simple regression, regression with an error term, and the

expectation maximization (EM) algorithm. The size and sparsity of the data used in

this project make applying these techniques challenging, but tackling this challenge

could potentially result in more data being available for modeling and evaluation.
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Appendix A

Trend Data Preprocessing

Assumptions

A.1 Matching Case files to Patients

The trend data for each patient are contained in a separate case file. The case files

are encoded using the Physionet wfdb format [22]. The starting times for the trend

files were extracted using the wfdbdesc utility and the signals were extracted to free

text using the rdsamp utility.

The first challenge in using the 1-minute trend data is to align the case file con-

taining the monitor output with the correct patient. Each monitor assigns a case

identifier (CaseID) to its output. An algorithm has been developed to match the

CaseID to the patient identifier (PID) by looking for values in the trend files and

the CareVue ChartEvents table that correspond. The main difficulty in this process

arises in the common case where one PID has multiple corresponding CaseIDs. These

individual cases, which sometimes overlap, need to be merged together.

The following strategy was used for merging multiple cases that match a given

patient. First, the starting time and the duration were extracted for each case. Using

the first segment—or in the case of a tie, the longest—the segments were merged

together such that values from newer cases replaced older values. If the cases do

not overlap, then missing values were inserted for the missing segment. Using this
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technique, one file containing all the appropriate trend values is made for each patient.

This file has instances available at 1-minute intervals for the patient’s entire ICU stay.

Additionally, there are some cases where multiple files exist for one CaseID. In

this case, the longest file was used.

A.2 Filtering, Missing Values, and Derived Fea-

tures

For preprocessing the 1-minute trend data, two methods were used. First, a median

filter was applied to each feature. A simple method for handling missing values was

also used.

For the median filter, a 3-minute window was used. This was applied to each of

the features to reduce the noise. In many cases the signals still had problems. For

example, it was necessary to apply the data validation rules described in section 3.2.1

in Chapter 3 to verify that the systolic blood pressure was greater than the mean

blood pressure and that the mean blood pressure was greater than the diastolic blood

pressure.

For instances with missing values, the last valid value within a 30-minute window

was used for each feature. If no valid values were present in the preceding 30 minutes,

then the value was left as missing. In other words, data values were held for 30 minutes

after the signal dropped. This allowed small blocks of missing features to be filled

in with the value that was last known to be good. In some cases, where the signal

dropped for longer periods of time, this simply resulted in 30 repetitions of the last

valid value before the signal contains missing values.

A number of derived features were calculated for signals. These included the mean,

the slope, the standard deviation, the minimum, the maximum, and the sum. For each

of these calculations, a window indicating the number of consecutive instances to use,

was provided. Of the derived features, the slope and a short mean seemed to provide

the most insight into patient outcome. While not discussed in this thesis, several of
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the other features were explored but ultimately ignored in order to keep the size of

the feature set at a reasonable size.

For calculating these features, the windows at the beginning and end of a patient’s

ICU stay were shortened as necessary. For the slope calculation, we used the coeffi-

cient of the least squares regression line over the given window. Missing values were

ignored in all of the derived feature calculations.
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Appendix B

Additional Patient Time-varying

Survival Estimates

B.1 Censored Patients

This section provides additional graphs showing the 10-day survival estimate as a

function of time for 20 randomly selected censored patients. Each of these patients

was selected from the test set. The plots include two fitted lines. One of these lines

is fit using least squares regression and the other is a smooth line fit using local

regression (the loess.smooth routine [45]). For the smoothing, a span value of 0.25

was used along with the default polynomial degree of 1.
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B.2 Uncensored Patients

This section provides additional graphs showing the 10-day survival estimate as a

function of time for 20 randomly selected uncensored patients. Each of these patients

was selected from the test set. The plots include two fitted lines. One of these lines

is fit using least squares regression and the other is a smooth line fit using local

regression (the loess.smooth routine [45]). For the smoothing, a span value of 0.25

was used along with the default polynomial degree of 1.
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