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Abstract

The modern intensive care unit (ICU) has become a complex, expensive, data-intensive
environment. Caregivers maintain an overall assessment of their patients based on
important observations and trends. If an advanced monitoring system could also
reliably provide a systemic interpretation of a patient’s observations it could help
caregivers interpret these data more rapidly and perhaps more accurately.

In this thesis I use retrospective analysis of mixed medical/surgical intensive care
patients to develop predictive models. Logistic regression is applied to 7048 develop-
ment patients with several hundred candidate variables. These candidate variables
range from simple vitals to long term trends and baseline deviations. Final models
are selected by backward elimination on top cross-validated variables and validated
on 3018 additional patients.

The real-time acuity score (RAS) that I develop demonstrates strong discrimi-
nation ability for patient mortality, with an ROC area (AUC) of 0.880. The final
model includes a number of variables known to be associated with mortality, but
also computationally intensive variables absent in other severity scores. In addition
to RAS, I also develop secondary outcome models that perform well at predicting
pressor weaning (AUC=0.825), intraaortic balloon pump removal (AUC=0.816), the
onset of septic shock (AUC=0.843), and acute kidney injury (AUC=0.742).

Real-time mortality prediction is a feasible way to provide continuous risk assess-
ment for ICU patients. RAS offers similar discrimination ability when compared to
models computed once per day, based on aggregate data over that day. Moreover,
RAS mortality predictions are better at discrimination than a customized SAPS II
score (Day 3 AUC=0.878 vs AUC=0.849, p < 0.05). The secondary outcome mod-
els also provide interesting insights into patient responses to care and patient risk
profiles. While models trained for specifically recognizing secondary outcomes consis-
tently outperform the RAS model at their specific tasks, RAS provides useful baseline
risk estimates throughout these events and in some cases offers a notable level of pre-
dictive utility.

Thesis Supervisor: Peter Szolovits
Title: Professor
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Chapter 1

Introduction

The modern intensive care unit (ICU) has become a complex, expensive, data-intensive
environment. In this environment — where physician decisions often make the dif-
ference between life and death — tools that help caregivers interpret patterns in
the data and quickly make the correct decision are essential. My objective in this
research is to develop models that, given a set of observations, provide a systemic
“understanding” of a patient’s medical well-being and assist physicians in making
more informed decisions. I use a data-driven approach to model the complex patient
system by considering variables that range from therapeutic interventions to simple
vitals to complex trends. Specifically, I develop several mortality models and compare
them against a real-time mortality model. I then compare and contrast the ability of
mortality models to predict acute patient events with models that were specialized to
predict specific events. If real-time risk models can be successfully developed, physi-
cians could have an immediate alert of jeopardized patient state — providing valuable
time to intervene — or an indicator of a particular treatment regime’s benefit to an
individual patient.

1.1 Overview

While doctors routinely do an outstanding job of matching complex patterns observed
in patient data to an applicable set of diagnoses and treatments, they are not perfect.
Patients admitted to ICUs — a particularly vulnerable category of patients — require
close monitoring due to an increased probability of life threatening events. The close
attention of caregivers, necessary to provide high quality care, clearly exposes patients
to the human errors known to be common in health care [40]. In fact, Rothschild
et al. found that ICU patients suffer a large number iatrogenic injuries, especially
failure to carry out intended treatment correctly [71]. A system that understands
the patient’s progression could potentially catch dangerous episodes and ultimately
increase caregiver vigilance.

A national shortage of nurses and high turnover rates likely exacerbate human
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errors. These shortages are particularly evident in the ICU. One survey conducted
in 2000 found that the nurse vacancy rate in critical care, at 14.6%, was higher than
other locations [30]. In order to fill vacancies, temporary staff are commonly used
in many hospitals. Furthermore, projections indicate that the current shortage of
intensivists will shortly be a crisis [41]. In the ICU, the potential for information
technology and medical informatics to supply decision support, enhance efficiency,
and generally improve quality by utilizing relevant data is well understood (e.g.,
see [36]). In fact, companies such as VISICU (recently acquired by Philips Medical
Systems) have emerged that seek to leverage the intensivist shortage by allowing a
single intensivist to monitor up to 100 patients through a remote environment. A
system that can effectively interpret a patient’s data could help reduce the burden
placed on caregivers and, as a result, help alleviate the intensivist shortage.

Despite the theoretical promise of comprehensive patient monitors, reality might
present a more dire picture. One recent review by Ospina-Tascón et al. [64] questions
the utility of recent monitoring progress by pointing to the systemic lack of ran-
domized controlled trials and argues that, of the few conducted, most show negative
results. Besides the clear ethical problems with conducting randomized controlled
trials on obviously helpful monitors (e.g., electrocardiogram monitoring for patients
with acute myocardial infarction), Ospina-Tasconón’s review raises many questions
regarding the utility of investing in monitoring development. An alternative inter-
pretation that might be inferred from such criticisms of contemporary monitoring
systems is that the systems are inadequate for the actual caregiver needs. Are ad-
vanced monitoring devices really helpful, or do they simply overwhelm the nurses and
physicians with useless information that do not ultimately benefit patients?

Current monitors do indeed come at a cost. Concerned about sensitivity, monitors
often sacrifice specificity. The trade-off between sensitivity and specificity can be seen
by the documented prevalence of false alarms [58, 89, 90, 57]. An ancillary burden
from devices with low specificity and high sensitivity is excessive background sound
— Ryherd et al. found that the noise level in one neurological intensive care unit
was significantly higher than recommended by the World Health Organization guide-
lines [74]. Caregivers surveyed as part of Ryherd’s study overwhelmingly indicated
that the noise adversely affected them and their patients. The prevalence of audible
false alarms indicate that the wealth of observations taken in the ICU are poorly
understood at the monitoring level. The problem of better interpreting observations
in order to increase specificity has attracted considerable attention, and recent work,
such as that by Zong et al., has demonstrated methods for dramatically reducing false
alarm rates [95]. Modern monitors are able to corroborate related signals in order to
limit spurious alarms. Current approaches, however, generally focus on better alarms
on individual signals rather than to fuse information together to reflect the underly-
ing patient condition and produce warnings such as suspected hypovolemia or septic
shock.

Informatics can surely help. Looking at recent advances in informatics — such as
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the ability to quickly search the Internet and find highly relevant information — it is
only a matter of time before relevant medical knowledge will be highly accessible from
the bedside. The insurmountable electronic medical record obstacle has even shown
signs of abating with several large industry players making substantial investments
in the personal health record (PHR) arena and releasing promising solutions such as
the Microsoft HealthVault, Google Health, or Dossia’s Indivo system [60, 20, 10, 22].
Current U.S. government trends also indicate large investments in standards-based
electronic health information systems. As standards emerge for electronic health
records, detailed patient history will be available. If this additional patient informa-
tion can be synthesized, better and more customized care could result. In general,
the emerging innovations in the field of informatics point to an environment where
a wealth of useful data will be available at the ICU bedside for use in systems that
automatically assist caregivers.

One approach to understanding a patient is to focus on the patient’s risk of death.
A real-time risk model — or real-time acuity model — could track important changes
in a patient’s risk profile. More volatile patient states presumably have patterns that
are associated with a greater risk of mortality. A real-time acuity score could also
provide more frequent outcome prognoses than the current daily severity of illness
scores. Clinically, the value of a real-time acuity score remains uncertain. How should
a patient’s care change if the score changes from a 50% chance of survival to a 60%
chance of survival? Such changes are unlikely to be useful in determining the patient’s
care. However, if the model could detect (1) acute deterioration in the patient’s state
or (2) insidious changes in state over the course of a day, then it could potentially
help interpret abundant ICU data more rapidly and perhaps more accurately.

In this thesis, I investigate a real-time general acuity model for intensive care
patients. The acuity model that I explore is based on a patient’s risk of near-term
mortality. I first contrast my real-time acuity model with daily acuity models and
existing severity of illness scores, and then I examine the performance of my general
acuity model in the context of secondary outcomes. For comparison, a variety of
models that predict secondary outcomes directly are developed and discussed. Unlike
existing daily scores, which generally emphasize simplicity, my models utilize a variety
of computationally intensive inputs as well as caregiver interventions. Furthermore, in
contrast to a daily point score, a real-time acuity score can offer a detailed summary
of a patient’s risk profile over time.

1.2 Outline of Thesis

This thesis is organized into the following chapters:

• Chapter 2 provides an overview of existing severity of illness scores with a
particular focus on the role that time plays in severity of illness scores.
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• Chapter 3 describes the data and the preparation of the data that I use to create
and validate the predictive models that I consider in this report.

• Chapter 4 discusses the general methodological framework that I follow to create
and validate the predictive models.

• Chapter 5 develops and describes three types of mortality models: (1) daily
mortality models, (2) a stationary daily mortality model, and (3) a real-time
mortality model.

• Chapter 6 examines models trained and validated on specific secondary out-
comes and compares their performance with the performance of the real-time
mortality model developed in Chapter 5.

• Finally, Chapter 7 concludes my thesis with a summary of the contributions
that it makes to the field of medical informatics and a discussion regarding
future work.



Chapter 2

Background

2.1 Severity of Illness Scores

One area where researchers have utilized large amounts of ICU data is the develop-
ment of severity of illness scores. Over the past 20 years, there has been a growing
interest in severity of illness scores and several mature options have emerged, including
the Acute Physiology and Chronic Health Evaluation (APACHE) [39], the Simplified
Acute Physiology Score (SAPS) [45], the Mortality Prediction Model (MPM) [52],
and several more recent generations of each of these scores [37, 38, 44, 51, 46]. The
APACHE score was constructed using an expert clinical panel to select variables
and denote levels of severity for each. The SAPS metric was designed similarly
to APACHE, but its designers sought to match the APACHE performance using a
simpler (and less time consuming to calculate) model. The APACHE and SAPS
metrics both provide a point score at 24 hours after admission that indicates the
illness severity for the patient. The MPM model took a different approach, using a
more objective, forward stepwise selection methodology to select important variables.
Unlike APACHE and SAPS, the MPM provides the patient’s mortality probability
directly and was constructed for multiple time points: at admission and 24 hours af-
ter admission. More recent MPM models have been constructed for 48 hours and 72
hours after admission [50]. Prominent severity of illness scores have been validated on
large multi-center databases — or, in the case of SAPS and MPM, large international
databases. Recent work by Ohno-Machado et al. in [63] provides a thorough review
of severity of illness scores.

The original intent of severity scores was to compare groups of patients and to
stratify patient populations between hospitals. Despite warnings from many of the
original researchers and several studies (e.g., [76]), many caregivers have come to
expect the availability of a severity score to assist them in treating individual patients.
The fact is that despite their inadequacy for individual care, severity of illness scores
are not going away [27]. Many researchers have validated the use of severity of
illness scores in settings that deviate from their original design. Alternative settings
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have included populations such as coronary care patients or subarachnoid hemorrhage
patients or days subsequent to the initial 24 hours after admission [80, 26, 79, 72].
The performance under these alternate settings has been generally moderate.

The underlying models behind existing severity metrics remain quite simplistic.
Many of their original constraints are arguably unnecessary given the nearly ubiqui-
tous availability of computing power today. The traditional advantage of SAPS, i.e.,
its simplicity, makes little difference in an environment where data are automatically
collected and processed by a computer. In fact, using digital data, it is now feasible
to include complicated derived features, such as long term trends or deviation from
a patient’s baseline, as possible inputs. Features that capture trends, patient-specific
abnormalities, or important patterns in various observations should provide addi-
tional insight into the patient’s underlying stability. On the other hand, caregivers
appreciate simple models because of their comprehensibility and they are hesitant
to use decision support systems that they do not understand. Another advantage of
simplicity is the ability to calculate scores from widely available observations allowing
scores to be easily implemented across different hospitals and diverse patient popula-
tions. In order to surmount the obstacles presented by a more abstruse system that
requires advanced infrastructure for implementation, a real-time acuity score needs
to offer clear benefits to the caregiver’s daily tasks by providing sensitive but specific
assessment calibrated for individual patients.

2.1.1 Organ Dysfunction Scores

While the intent of the general severity indexes has been to provide mortality risk
assessment, complementary work has been done to develop organ dysfunction scores
to assess patient morbidity. One such score, the sepsis-related organ failure assessment
(SOFA) score, seeks to “describe a sequence of complications in the critically ill” [92,
91]. The SOFA score is limited to 6 organs by looking at respiration, coagulation, liver,
cardiovascular, central nervous system, and renal measurements. For each organ,
the score provides an assessment of derangement between 0 (normal) and 4 (highly
deranged). One noteworthy feature of the SOFA score is that it uses the mean
arterial pressure (MAP) along with vasopressor administration for the cardiovascular
assessment. In contrast to the mortality risk provided by most severity of illness
scores, the SOFA score aims to evaluate morbidity. Since its introduction, several
studies have successfully applied the SOFA score to non-sepsis patients (e.g., trauma
patients [1]) and the meaning of the SOFA acronym quickly morphed into Sequential
Organ Failure Assessment.

Other organ dysfunction scores include the multiple organ dysfunction score (MODS),
the logistic organ dysfunction score (LODS) and the multiple organ failure score
[56, 43, 21]. Differentiating itself from the intervention-dependent SOFA score, the
MODS score relies on what its authors refer to as the “pressure adjusted heart rate”
(PAR), calculated by multiplying the heart rate by the ratio of central venous pres-
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sure to mean arterial pressure [56]. The LODS score was designed for use only during
the first ICU day and combines the level of dysfunction of all organs into a sin-
gle score. The association of organ dysfunction with mortality has prompted many
papers to explore the use of organ dysfunction scores at predicting mortality with
results that are, in general, only slightly worse than the general severity of illness
scores [62, 18, 6, 48, 7, 96, 67, 86]. While the organ dysfunction scores are func-
tionally similar to my objective in this research, the critical distinction is that I will
approach the problem from the opposite direction; that is, I will look at a mortality
model’s ability to understand patient state whereas organ dysfunction scores were
designed to reflect organ derangement and are often validated by their correlation
with final patient outcome.

2.1.2 Machine versus Human

How do severity scores compare to humans? Relative performance between “objec-
tive” scores and humans is a difficult question that several studies have examined.
When physicians have a low prediction of ICU survival (< 10%), Rocker et al. found
that the low prediction, often acted on by limiting life support, by itself predicts mor-
tality better than the severity of illness metrics or organ dysfunction scores, thereby
making the doctor’s belief a self-fulfilling prophecy [68]. The advantage that physi-
cians have at predicting mortality is supported by a variety of studies that show
physicians generally outperform severity scores [83, 78, 76]. Comparisons between
physicians and scoring systems all share the problem alluded to above: a physician’s
prognosis for an individual patient clearly influences the physician’s actions. The
coupling between a physician’s prognosis and his or her actions is an unavoidable
challenge inherent in the retrospective analysis of any intensive care episode. If the
doctor is considered the gold standard, it is impossible to demonstrate improvement
over his or her actions. Perhaps this observation, combined with prior experience,
better calibration for individual patients, and consideration of factors not included
in scoring systems is why physicians generally perform marginally better at predict-
ing mortality. Some researchers, however, have argued from a resource utilization
viewpoint that given what they consider to be reasonable performance from severity
scores, automatic scores should be adopted as objective measures to prevent futile
care in the costly ICU environment. It seems prudent that severity scores improve
drastically — especially in terms of individual patient calibration — before such ac-
tion is considered.

2.1.3 Modeling Survival

Most ICU outcome prediction models rely on logistic regression. For example, a
variety of equations are available for SAPS and APACHE severity scores to convert
the point score into a mortality probability. Logistic regression has the advantage of
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being straightforward and relatively easily to comprehend. Bayesian networks have
also been used to better understand the structure of complex data. Such analysis has
revealed interesting details about many complex systems. I have previously explored
the application of survival models to an earlier release of the MIMIC II data. The
advantage that survival techniques have, however, is limited by the absence of quality
follow-up data (in general I only know which patients die in the hospital). Given the
limited follow-up information, my analysis indicated that survival models perform
nearly the same as logistic regression models at predicting outcome, but the fitting
routines for survival models are less stable.

2.1.4 The Role of Time

A number of researchers have explored using daily severity of illness metrics. In
1993, Le Gall et al. suggested that despite likely being too time-consuming for most
ICUs, daily scores would be the most “efficient way to evaluate the progression of
risk of death” [44]. Rué et al. found that the mortality prediction on the current-day
was the most informative — in fact, the mortality probability at admission and on
previous days did not improve performance from the current day’s score [72]. The
importance of the current-day mortality prediction that Rué et al. observed corrob-
orates Lemeshow et al.’s finding that the most important features change between
the admission MPM model and the 24, 48 and 72 hour MPM models. The logistic
regression equation also changes between 24-hour intervals to reflect an increasing
probability of mortality [50]. From their observations, Lemeshow et al. make the gen-
eral observation that a patient in the ICU with a “steady” clinical profile is actually
getting worse.

Several others have examined the sequential assessment of daily severity scores. In
1989, Chang notably found that, using a set of criteria along with daily APACHE II
scores, individual patient mortality could be predicted well with no false positives [9].
Lefering et al. argued against Chang’s results and, while they found that Chang’s
metric could help identify high risk patients, their results caution against the use
of such metrics for individual patients [47]. In Lefering et al.’s evaluation, in order
to keep the false positive numbers low, the sensitivity of the estimates was severely
limited. Lefering’s results confirmed several previous findings such as those by Rogers
et al. which caution against using daily severity scores for predicting individual out-
come [69].

Ignoring the implications for individual patient prediction, others have confirmed
the usefulness of daily severity scores. Wagner et al. showed strong results look-
ing at daily risk predictions based on the APACHE III score and several additional
variables such as the primary reason for ICU admission and treatment before ICU
admission [94]. Wagner et al.’s study relied on over 17,440 patients from 40 U.S.
hospitals. In another study by Timsit et al., daily SAPS II and the LOD score were
combined to yield strong discrimination performance (ROC area of 0.826) and good
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calibration (Hosmer-Lemeshow C statistic of 7.14, p=0.5) [84].

The severity of illness studies pointed to above have several notable points of sim-
ilarity. First, they heavily rely on existing models that have been widely adopted
such as the SAPS and APACHE scores. While the wealth of studies validating exist-
ing severity scores is reassuring, the fundamental design of current severity scores is
arguably obsolete. Second, besides concerns about using severity scores over periods
that they were not intended for, the infrequency of existing severity scores (once per
day) limits their utility for identifying acute changes in patient state.

2.2 Real-time Acuity

Following the progression from evaluation on only the first day to daily evaluation,
the next step for severity scores might be pseudo real-time evaluation. Little work
has been done directly to explore systemic real-time risk monitoring of ICU patients,
apart from the quintessential bedside monitor that performs signal processing on
an array of vital signs. Some reasons for the dearth of research in real-time risk
assessment likely include the following obstacles (1) the difficulty in evaluating state
tracking using heterogeneous inputs of varying temporal resolution, (2) the rich data
necessary for such evaluation, (3) lack of quality data in a structured digital format.
The emergence of rich, high-volume data repositories promises to rapidly mitigate
the last two of these obstacles, and will hopefully provide leverage for progress on the
first.

Recently, several researchers have augmented existing severity of illness metrics
using readily available physiological measurements. Silva et al. defined a variety of
“adverse events” based on blood pressure, oxygen saturation, heart rate, and urine
output values deviating from a “normal range” for a fixed period of time. Using their
real-time intermediate outcomes, Silva et al. showed enhanced mortality prediction
performance [82]. Rivera-Fernández et al. defined similar physiologic alterations and
also demonstrated strong performance [67]. In both cases, by using patterns of events
prior to the current time the researchers were able to improve upon the performance
of SAPS II. In a similar vein, Toma et al. have taken advantage of daily SOFA scores
to find temporal organ failure patterns, termed “Episodes”, that assist in predicting
mortality [85, 86]. The studies by Toma et al., however, did not have access to the
full daily records of the patients. Despite SAPS II calculations from the first day,
they were unable to analyze patterns in many of the more predictive features relied
upon by SAPS II.

Other researchers have explored models for predicting specific forms of deterio-
ration such as work by Shavdia on predicting the onset of septic shock [81] or work
by Eshelman et al. in providing predictive alerts for hemodynamic instability [17].
Several others have focused on predictions from high resolution trend data (e.g., 1
sample per minute) such as recent work by Cao et al. to predict hemodynamic insta-
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bility from multi-parameter trends [8] or work by Ennett et al. to predict respiratory
instability [16].

My goal in this thesis is to extend some of the work reviewed in this chapter. By
utilizing a wealth of rich temporal data available from the MIMIC II database, I ex-
plore the development of real-time acuity models. I also explore the ability of models
to predict specific clinically significant events. Through these endeavors, my work
aims to contribute toward the development of advanced computer-assisted decision
support in the ICU.



Chapter 3

Methods: Dataset Preparation

For the modeling and analysis presented in this thesis, I relied on data extracted from
the MIMIC II database. While the MIMIC II database provides a rich collection of
intensive care data, it can be difficult to understand these data and, like most real data
sources that rely on human involvement, it contains a number of subtle quality issues.
In preparing the data for use in this research, a variety of choices were necessary. For
example, I corrected the arterial blood pressures with noninvasive measurements when
the arterial line was obviously dampened. Such corrections helped make modeling
with this data more reasonable. Other decisions, such as how I chose to integrate
fluid inputs over time or how long I held values before I label them as missing, were
also important. Understanding these decisions is important for any efforts that might
try to reproduce the work discussed in this thesis.

This chapter provides a brief background of MIMIC II, a detailed summary of the
MIMIC II data that I used and how I prepared it, and a number of important issues
that I encountered while preparing the dataset. My hope is that this discussion will
both enhance the reader’s understanding of the data that my research is built on and
assist future users of this data.

3.1 MIMIC II

The Multi-parameter Intelligent Monitoring for Intensive Care (MIMIC) [75] database
was created to facilitate the development and evaluation of ICU decision-support
systems. With data collection occurring over several years, the MIMIC II database
now contains over 30,000 patients from a variety of care units at a Boston teaching
hospital. New patients are constantly being added to this database; at the time
that the data was extracted for this work a total of 26,647 patients were available.
While one unique characteristic of this database is the high resolution waveforms for
many of the patients, I do not currently use this information in my work. Instead, I

29
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rely exclusively on nurse-verified values1 along with the intravenous medications, lab
values, and ICD-9 codes.

MIMIC II also includes detailed free-text progress notes and discharge summaries
for most patients. This text is frequently helpful when trying to better understand the
context surrounding a particular patient’s visit, the care regime the patient received,
and irregularities in the numerical data.

Apart from the waveform data, MIMIC II is stored in a large relational database.
In the following sections I will refer to tables (i.e., relations) and table attributes
using a fixed width font.

3.2 Extracting the Variables

My first step was to translate the data from the relational database to a form directly
suitable for modeling. The variables were collated in order to temporally synchronize
them into a time-dependent matrix for each patient. Each column of this matrix
represents a particular variable and each row (which I will refer to as an “instance”)
corresponds to a unique timestamp in a particular patient’s stay. Many variables
were charted hourly in the ChartEvents table. During sensitive episodes, however,
this frequency often increases. For each unique time stamp (rounded to the nearest
minute), an additional instance was created for the patient. Thus if a new observation
(e.g., heart rate) was made at time t, then a unique instance is guaranteed to exist
for time t in the matrix.

An important aspect in preparing the data was the method for handling variables
with different temporal resolutions. For each variable I used a time-limited sample-
and-hold approach. An upper time limit was specified for each variable to limit the
maximum hold time. This maximum hold time was determined by independently ex-
amining the distributions of the observational frequencies for each variable. Figure 3-1
shows several examples of the observation-interval distributions that were used for this
task. Hold limits were selected that covered all common measurement frequencies.
For example, a chemistry variable such as BUN (most commonly measured once per
day) was held for up to 28 hours. Similarly, variables that were more frequently up-
dated, such as systolic blood pressure, were only held for 4 hours. When a variable
observation was absent for a period greater than the hold window time, I labeled it
as missing. Trusting that the caregivers made measurements more frequently when
they were needed undoubtedly introduces additional noise into my dataset; but this
negative is arguably negligible when weighted against the considerable reduction in
data sparseness obtained when values were allowed to persist for a reasonable amount
of time.

1The nurse-verified values are generally charted every hour, but this frequency varies greatly
between variables and is patient-dependent.
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Figure 3-1: Observation frequency histograms
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3.2.1 General ChartEvent Variables

The majority of the candidate variables for my models are located in the ChartEvents
table. Many of the ChartEvent variables contain a numerical value, typically resulting
from measurements taken from the patient. The numeric ChartEvent variables that
I include in my dataset — such as the variable names, ItemIDs, hold limits and valid
ranges — are provided in Table 3.1. The final column of this table is explained later
in Section 3.3.

The valid ranges provided in Table 3.1 were found empirically by examining the
individual distributions. Using the distributions, threshold points that discarded high
and low outliers were selected. In some cases it was also necessary to consider the
physiologic bounds of a particular variable. For example, obvious errors occasionally
yielded a pH value of 0.076 instead of 7.6 or a temperature value of 37 “degrees
Fahrenheit” instead of 98.6 degrees Fahrenheit.2

Table 3.1: Continuous and Ordinal ChartEvent Variables

Variable Name I
t
e
m
I
D

H
ol
d
Li
m
it

(h
rs
)

U
ni
ts

M
in

V
al

M
ax

V
al

Sl
op

e
W

in
s
(h
rs
)

Misc.

Glasgow Coma Scale (GCS) 198 28 points 3 15 28
Weight 581 28 kg 20 300 28

AdmitWt 762 Const kg 20 300 -
Cardiovascular

SBP (NBPSys) 455 4 mmHg 30 250 4, 28
DBP (NBPDias) 455 4 mmHg 8 150 4, 28

MAP (NBPMean) 456 4 mmHg 20 250 4, 28
A-line SBP (SBP) 51 4 mmHg 30 300 4, 28

A-line DBP (DBP) 51 4 mmHg 8 150 4, 28
A-line MAP (MAP) 52 4 mmHg 20 170 4, 28

Heart Rate (HR) 211 4 BPM 20 300 4, 28
Resp Rate (RESP) 211 4 BPM 20 300 4, 28

SpO2 646 4 % 70 101 4, 28
CVP 113 4 mmHg -5 50 4, 28

PAPMean 491 4 mmHg 0.1 120 4, 28
PAPsd 492 4 mmHg 0.1 120 4, 28

Cardiac Index (CrdIndx) 116 10 L/min/m
2 0.1 10 4, 28

SVR 626 10 dyn·s/cm5 0.1 3200 4, 28
COtd 90 10 L/min 0.1 20 4, 28

COfick 89 10 L/min 0.1 20 4, 28
PCWP 504 10 mmHg 0.1 45 4, 28

PVR 512 10 dyn·s/cm5 0.1 1000 4, 28

Chemistries

Sodium (Na) 837, 1536 28 mEq/L 115 160 28
Potassium (K) 829, 1535 28 mEq/L 1 10 28
Chloride (Cl) 788, 1523 28 mEq/L 75 135 28

CO2 787 28 mEq/L 0.1 55 28
Glucose 811 28 mg/dL 0.1 500 28

BUN 781, 1162 28 mg/dL 0.1 180 28
Creatinine 791, 1525 28 mg/dL 0.1 40 28

2Some of these obvious errors appear to have been corrected in the most recent release of MIMIC II
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Table 3.1 – continued from previous page

Variable Name I
t
e
m
I
D
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ol
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(h
rs
)
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in
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al

M
ax
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al
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op

e
W
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(h
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)

Magnesium (Mg) 821, 1532 28 mg/dL 0.01 5 28
AST 770 28 IU/L 10 1000 28
ALT 769 28 IU/L 10 1000 28

Calcium (Ca) 786, 1522 28 mg/dL 4 14 28
Ionized Ca (IonCa) 816 28 mmol/L 0 2.5 28

Total Bilirubin (TBili) 1538, 848 28 mg/dL 0.001 60 28
Direct Bilirubin (DBili) 803, 1527 28 mg/dL 0 50 28

Total Protein (TProtein) 849, 1539 28 g/dL 0.01 15 28
Albumin 772, 1521 28 g/dL 0.01 7 28
Lactate 818, 1531 28 mg/dL 0.2 40 28

Troponin 851 28 ng/mL 0.01 100 28

Hematology

Hematocrit (HCT) 813 28 % 15 60 28
Hemoglobin (Hgb) 814 28 % 4 20 28

Platelets 828 28 109/L 0.1 1200 28
INR 815, 1530 28 - 0.01 12 28

Prothrombin time (PT) 824, 1286 28 s 0.01 36 28
PTT 825, 1533 28 s 10 151 28

WBC Count (WBC) 861, 1127,
1542

28 103/µL 0.01 70 28

RBC Count (RBC) 833 28 106/µL 1 7 28
Temp 678, 679 28 Deg F 80 110 28

Arterial Blood Gases

Art Base Excess (Art BE) 776 28 mmol/L -40 30 28
Art CO2 777 28 mEq/L 1 60 28

Art PaCO2 778 28 mmHg 5 100 28
Art PaO2 779 28 mmHg 0.1 500 28

Art pH 780, 1126 28 - 6.5 8.5 28

Ventilation

FiO2Set 190 28 torr 0.1 1 28
PEEPSet 506 28 cmH20 0 50 28

Resp Rate Tot (RespTot) 615 28 BPM 0.1 50 28
Resp Rate Set (RespSet) 619 28 BPM 0.1 40 28

Resp Rate Spon (RespSpon) 614 28 BPM 0.001 40 28
Peak Insp Pres (PIP) 535 28 cmH2O 5 60 28

PlateauPres 543 28 cmH2O 5 60 28
Tidal Vol Obs (TidVolObs) 682 28 mL/B 100 1100 28

Tidal Vol Set (TidVolSet) 683 28 mL/B 50 1001 28
Tidal Vol Spon (TidVolSpon) 684 28 mL/B 0.1 1200 28

SaO2 834 28 % 80 101 28

3.2.2 Categorical Variables

A number of the MIMIC II ChartEvents variables are categorical in nature. These
variables were handled separately as two types: ordinal and binary. If a variable
contained a natural progression in its categories and this ordering was deemed poten-
tially useful, the variable was labeled with integer values starting at 1 (least severe)
and progressing to n (most severe). The remaining categorical variables, without a
natural order, were coded using binary indicator variables. A binary indicator vari-
able was marked 1 (True) if the corresponding categorical variable’s value belongs to
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a specified subset of the possible values; otherwise, it retained its default value of 0
(False).

The categorical variables that I included, along with the coding schemes for the
variables derived from them, are shown in Table 3.2. As in Table 3.1, Table 3.2 also
includes the maximum number of hours that the variable will be held in the absence
of an updated value (the “Hold Limit” column).

Table 3.2: Categorical ChartEvent variables. Type ‘Ord” indicates ordinal variable and
type “Bin” indicates binary variable. Value T indicates ”True”. If no matching category
found, default value is 0 (Ord) or False (Bin).

Label (ItemID) Variable Ty
pe

H
ol
d
(h
rs
)

(Value) Category

Heart Rhythm (212)

hrmHB Ord 3 (1) 1st Deg AV Block; (2) 2nd AVB Mobitz 2; (3) 2nd
AVB/Mobitz I; (4) Wenckebach; (5) Comp Heart Block

hrmPaced Bin 3 (T) Paced; (T) A Paced; (T) AV Paced; (T) V Paced; (T)
Zoll Paced

hrmSA Ord 3 (1) Parox Atr Tachy; (2) Sinus Arrhythmia; (3) Supravent
Tachy; (4) Wand.Atrial Pace; (5) MultiFocalAtrTrach; (6)
Atrial Fib; (7) Atrial Flutter

hrmVA Ord 3 (1) Junctional; (2) Idioventricular; (3) Vent. Tachy; (4)
Ventricular Fib; (5) Asystole

Ectopy Type (161)

PVC Bin 3 (T) PVC’s; (T) V Quadrigeminy; (T) Vent. Trigeminy;
(T) Vent. Bigeminy

PAC Bin 3 (T) PAC’s; (T) A Quadrigeminy; (T) Atrial Trigeminy;
(T) Atrial Bigeminy

PNC Bin 3 (T) PNC’s; (T) N Quadrigeminy; (T) Nodal Trigeminy;
(T) Nodal Bigeminy

Ectopy Frequency (159)

EctFreq Bin 3 (T) Rare; (T) Occasional; (T) Frequent; (T) Runs Vtach
Code Status (128)

DNI Bin 3 (T) Do Not Intubate
NoCPR Bin 3 (T) CPR Not Indicate

DNR Bin 3 (T) Do Not Resuscita
ComfortMeas Bin 3 (T) Comfort Measures

OtherCode Bin 3 (T) Other/Remarks
FullCode Bin 3 (T) Full Code

Risk for Falls (1484)

FallRisk Bin 3 (T) Yes
Orientation (479)

orientation Ord 5 (1) Oriented x 3; (2) Oriented x 2; (3) Oriented x 1; (4)
Disoriented

orientUnableAs Bin 5 (T) Unable to Assess

Continued on next page
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Table 3.2 – continued from previous page

Label (ItemID) Variable Ty
pe

H
ol
d
(h
rs
)

(Value) Category

Riker SAS (1337)

RikerSAS Ord 5 (1) Unarousable; (2) Very Sedated; (3) Sedated; (4)
Calm/Cooperative; (5) Agitated; (6) Very Agitated; (7)
Danger Agitation

Ventilator Type (722)

Vent Bin 5 (T) 7200A; (T) Drager; (T) Other/Remarks; (T) Servo
900c

Ventilator Mode (720)

VentMode Ord 5 (1) Assist Control; (2) CMV; (3) CPAP; (4) CPAP+PS;
(5) Pressure Control; (6) Pressure Support; (7) SIMV; (8)
SIMV+PS; (9) TCPCV; (10) Other/Remarks

Pacemaker (516)

pacemkr Bin 28 (T) Epicardial Wires; (T) Permanent; (T) Transcuta-
neous; (T) Transvenous

Trach Size (690)

trach Bin 10 (T) #4; (T) #5; (T) #6; (T) #7; (T) #8; (T) #9; (T)
#10; (T) Other/remarks

Skin Color (643)

paleSkin Bin 10 (T) Pale; (T) Ashen; (T) Dusky; (T) Cyanotic
flushSkin Bin 10 (T) Flushed; (T) Mottled

jaundiceSkin Bin 10 (T) Jaundiced
Skin Integrity (644)

impairedSkin Bin 10 (T) Absent; (T) Impaired; (T) Other/Remarks
IABP Setting (225)

iabp Bin 28 (T) 1:1; (T) 1:2; (T) 1:3; (T) 1:4
iabpVal Ord 0 (1) 1:4; (2) 1:3; (3) 1:2; (4) 1:1

Service Type (1125)

svOther Bin 28 (T) Other
svCSICU Bin 28 (T) CSICU
svNSICU Bin 28 (T) NSICU
svMICU Bin 28 (T) MICU

svMSICU Bin 28 (T) MSICU
svCCU Bin 28 (T) CCU

svCSRU Bin 28 (T) CSRU

3.2.3 Medications

Intravenous medications administered during a given patient’s stay are recorded in
the MIMIC II MedEvents table. Unlike the observational variables found in the
ChartEvents table, the MedEvents table records active intervention by the care-
givers. These medications are often quite important in interpreting the observational
variables. Table 3.3 lists the medications that are commonly given during a patient’s
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ICU stay. Each of these medications were included in my dataset.

Table 3.3: MedEvent variables (Intravenous Medications)

Medication ItemID Units

Aggrastat 110 mcg/kg/min
Amicar 111 gm/hr
Aminophylline 3 mg/hr,

mg/kg/hr
Amiodarone 112 mg/min
Amrinone 40 mcg/kg/min
Argatroban 173 mcg/kg/min
Ativan 141 mg/hr
Atracurium 113 mg/kg/hr
Bivalirudin 174 mg/kg/hr
Cisatracurium 114 mcg/kg/min,

mg/kg/hr
Dilaudid 163 mg/hr
Diltiazem 115 mg/hr
Dobutamine 42 mcg/kg/min
Dopamine 43 mcg/kg/min
Doxacurium 116 mg/kg/hr
Epinephrine 44 mcg/min
Epinephrine-k 119 mcg/kg/min
Esmolol 117 mcg/kg/min
Fentanyl (Conc) 149 mcg/hr
Fentanyl 118 mcg/hr
Heparin 25 U/hr
Insulin 45 U/hr
Integrelin 142 mcg/kg/min
Ketamine 151 mcg/kg/hr,

mcg/kg/min
Labetolol 122 mg/min
Lasix 123 mg/hr

Medication ItemID Units

Lepirudin 177 mg/kg/hr
Levophed 47 mcg/min
Levophed-k 120 mcg/kg/min
Lidocaine 48 mg/min
Midazolam 124 mg/hr
Milrinone 125 mcg/kg/min
Morphine Sulfate 126 mg/hr,

mg/kg/hr
Narcan 148 mcg/kg/min
Natrecor 172 mcg/kg/min
Neosynephrine 127 mcg/min
Neosynephrine-k 128 mcg/kg/min
Nicardipine 178 mcg/kg/min
Nitroglycerine 49 mcg/min
Nitroglycerine-k 121 mcg/kg/min
Nitroprusside 50 mcg/kg/min
Pancuronium 129 mg/kg/hr
Pentobarbitol 130 mg/kg/hr
Precedex 167 mcg/kg/hr
Procainamide 52 mg/min
Propofol 131 mcg/kg/min
Reopro 134 mcg/kg/min,

mcg/min
Sandostatin 133 mcg/hr
TPA 135 mg/min
Vasopressin 51 U/hr,

U/min
Vecuronium 138 mg/kg/hr

One implementational difficulty in adding these variables to our dataset was un-
derstanding their duration. In general, medications are administered at a certain dose
per unit time, and this dose is repeated every hour (even if the dose does not change).
Often, when a medication is discontinued, a zero dose is recorded for the last value. In
other instances the Stopped column is marked with “Stopped” or “D/C’d”. In more
difficult cases, there is no indication that the medication ended and I considered the
last recorded value to be the end. However, there are exceptions to these rules. One
case arises when the medication ItemID changes but the same medication is being
administered with different units. For example, Neosynephrine (ItemID 127) given in
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mcg/min might be changed to Neosynephrine-k (ItemID 128) given in mcg/kg/min.
Each medication was added to the dataset in three ways. Some medications are

only administered in per-kilogram units while other medications are measured in
absolute dose. A number of medications, however, are entered using either method.
Consequently, I used the weight of a patient to add the absolute dose variable for each
medication and the dose per-kilogram variable for each medication. Finally, I also
mapped each medication to a more generic category and added a binary indicator
variable to indicate if that type of medication was present (e.g., if Neosynephrine is
being given, then the Sympathomimetic agent variable is flagged).

3.2.4 Input/Output Variables

Patient Input/Output (IO) observations are recorded in the MIMIC II IOEvents

table. A related table, TotalBalEvents, provides patient IO balances and 24-hour
summaries. Using observations from these tables, two types of variables were created.

First, IO variables were added using the the IOEvents table. These variables are
listed in Table 3.4. For the generic “Output” variables, all outputs recorded from
the patient over the given window were summed (these are ItemIDs with a Category

value of null in the D IOItems table). Similarly, for the “Input” variables, all recorded
inputs over the given window were summed. To preserve the ability to later sum the
total IO for a given time range (e.g., hourly urine output), each variable was included
with and without a hold window. The variables that do not have a hold window have
suffixes of “B”.

Table 3.4: IOEvents variables

Variable Name Hold (hrs) Units Window Length (min)

AllInput 4 ml all previous
Input 60 4 ml 60
InputB 60 0 ml 60
InputB 0 ml -
AllOutput 4 ml all previous
Output 60 4 ml 60
OutputB 60 0 ml 60
OutputB 0 ml -
UrineOut 4 ml -
UrineOutB 0 ml -
InputRBCs 4 ml -
InputRBCsB 4 ml -
InputOtherBlood 4 ml -
InputOtherBloodB 0 ml -

The general “Input” and “Output” variables contain all the recorded IV inputs
and the all of the recorded outputs, respectively. It is often helpful to separate the
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input and output into subcategories. To accomplish this, three variables that only
looked at special types of IO were created. These variables were named UrineOut,
InputRBCs, and InputOtherBlood, and are included in Table 3.4. To understand
the measurements that contribute to the specific IO variables, Table 3.5 lists the
constituent ItemIDs for these variables.

Table 3.5: ItemIDs used for summary IO variables

Variable Name Item Labels Units ItemID

UrineOut
Urine Out Foley ml 55
Urine Out Void ml 69
Urine Out Suprapubic ml 715
OR Out OR Urine ml 61
Urine Out Rt Nephrostomy ml 57
Urine Out Lt Nephrostomy ml 57
Urine Out Incontinent ml 85
Urine Out LleoConduit ml 473
Urine Out Other ml 405
Urine Out Straight Cath ml 428
Urine Out Ureteral Stent #1 ml 428

InputRBCs
packed RBC’s ml 144
OR Packed RBC’s ml 172
Packed RBC’s 375.0ml ml 398

InputOtherBlood
Platelets ml 179
OR Platelets ml 224
Platelets 440.0ml ml 3955
Fresh Frozen Plasma ml 163
Cryoprecipitate ml 319
Whole blood ml 221
Other Blood Products ml 221

A second type of IO variable that I included in my dataset represents longer-term
IO summaries. These variables were extracted from the TotalBalEvents table. The
TotalBalEvents table contains IO balances and 24-hour summations for various IO
items in the IOEvents table. Daily summations were calculated at 23:00 for each
day of a patient’s stay. The variables, along with their hold windows are listed in
Table 3.6.
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Table 3.6: TotalBalEvents variables

Variable Name Units ItemID Hold Window (hrs)

TotIn24 ml 1 28
TotOut24 ml 2 28
TotIV24 ml 18 28
UrOut24 ml 26 28
Bal24 ml 27 28
LOSBal ml 28 28

3.2.5 Demographic Variables

In addition to the variables discussed above, there were a number of additional vari-
ables that were helpful to include in my dataset. Many of these variables loosely
fell under the demographic category, and included indicators such as chronic illnesses
from ICD-9 codes or the physical location of the patient (e.g., Medical ICU). These
demographic variables are described in Table 3.7.

Table 3.7: Demographic Variables

Variable Name Description and Source

Sex D Patients Sex

Age First ICU admission year - year of birth (CensusEvents InTime -
D Patients DOB)

hospTime Minutes in hospital prior to ICU admission; found by using the differ-
ence between the first ICU admission (CensusEvents InTime) and
the last hospital admission (Admissions Adm Dt) that is before the
first ICU admission

AIDS Present if ICD9 Code matches regular expression “ˆ042”
HemMalig Hematologic Malignancy; present if ICD9 Code matches regular ex-

pression “ˆ20[0-8]”
MetCarcinoma Metastatic Carcinoma; present if ICD9 Code matches regular expres-

sions “ˆ1[4-5][0-9]”, “ˆ1[6-7][0-5]”, “ˆ179”, or “ˆ1[8-9][0-9]”
SICU Physically located in the T-SICU (CUID = 74, or 53)
MSICU Physically located in the MSICU (CUID = 72)
MICU Physically located in the MICU (CUID = 70, 69, or 126)
CCU Physically located in the CCU (CUID = 1 or 3)
CSRU Physically located in the CSRU (CUID = 54, 124, or 125)
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3.3 Derived Variables

In addition to the variables that were directly extracted from the data, a number of
additional variables were calculated. There were numerous motivations for including
these variables. First, meta-information, such as the presence or absence of measure-
ments is often quite informative. Second, it is often helpful to interpret a variable’s
value relative to another variable’s value. Another motivating factor is the loss of
information when a single variable (e.g., Heart Rate) is observed in isolation with-
out examining prior history; often the temporal behavior of a variable shares equal
importance with the variable’s value.

3.3.1 Meta Variables and Calculated Variables

First, to capture the presence or absence of particular measurements, I created a num-
ber of indicator variables. These variables were labeled 1 (True) if the corresponding
variable was available and labeled 0 (False) if the variable was missing. The names of
these indicator variables end with a capital “M”. The variable “CVPM”, for example,
indicates if CVP measurements are available.

Many potentially interesting variables can be calculated from the variables dis-
cussed thus far. Some simple examples include the BUN-to-Creatinine ratio or the
pulse pressure. More complex calculations include the cumulative time that the pa-
tient has spent on vasopressors, the number of vasopressors that patient is on, or
the hourly urine output rate. These variables, and many others, are described in
Table 3.8.

3.3.2 Variables from Literature

A number of papers have suggested features that may help predict patient mortality.
For example, Rivera-Fernández et al. suggest several types of events and demonstrate
that the number of times that each of these events occur can help enhance mortality
prediction models [67]. Silva et al. suggested a variety of similar events that they used
with artificial neural networks to predict mortality [82]. For my dataset, I added a
number of calculated variables that were inspired by Rivera’s and Silva’s work. These
new variables are listed in Table 3.9.

3.3.3 Slopes, Ranges, and Baseline Deviations

Finally, I calculated variables that attempt to capture the temporal behavior of var-
ious variables. For example, I added variables that indicate the relative change over
time for the continuous ChartEvent variables found in Table 3.1. I did this by using
the raw sampled values (with no holding) to calculate the per-minute slope of the
best-fit line for various fixed-length windows prior to the particular instance. For
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Table 3.8: Derived Variables
Variable Name(s) Description

VasopressorsM The patient is on at least one vasopressor (Vasopressin, Neosynephrine, Levophed,
Dopamine, or Epinephrine)

PressorsM The patient is on at least one pressor (Vasopressin, Neosynephrine, Levophed,
Dopamine, or Epinephrine, Dobutamine, Milrinone, or Amrinone)

SedativesM The patient is on at least one sedative (Propofol, Pentobarbitol, Ativan, Midazo-
lam, Ketamine, Dilaudid, Fentanyl, Morphine Sulfate)

CVPM A CVP measurement is available
COtdM A COtd measurement is available
PCWPM A PCWP measurement is available
CrdIndxM A Cardiac Index value is available
PAPmeanM A PAPmean measurement is available
HCTM A HCT measurement is available
LactateM A lactate measurement is available
MechVent The patient is mechanically ventilated
SBPm, DBPm, and MAPm Merged blood pressure values. When the invasive blood pressure is not available,

the noninvasive pressure is used. To correct for arterial-line dampening, a noninva-
sive value is used instead of an invasive value if the invasive systolic value is more
than 15% less than the noninvasive systolic value or the invasive diastolic value is
more than 15% greater than the noninvasive diastolic value.

VasopressorSum.std Each vasopressor dose is standardized (by dividing the dose by the mean dose) and
then summed together

PressorSum.std Each pressor dose is standardized (by dividing the dose by the mean dose) and
then summed together

Pulse Pressure (PulsePres) SBPm - DBPm
Est. Cardiac Output (ECO) 0.5 * (HR * (SBPm - DBPm))/MAPm
ECOSlope The slope of the best-fit line over the preceding six-hours
Shock Index (ShockIdx) HR/SBPm
UrineByHr Hourly urine output
BUN:Creatinine (BUNtoCr) BUN/Creatinine
PaO2:FiO2 (PaO2toFiO2) Ordinal value indicating PaO2:FiO2 ratio: (0) patient is not ventilated or venti-

lated and ratio is greater than 300; (1) patient is ventilated and ratio is between
300 and 200; (2) patient is ventilated and ratio is between 200 and 100; and (3)
patient is ventilated and ratio is less than 100

DopSm, DopMd, DopLg Small (less than 2 mcg/kg/min), Medium (between 2 and 10 mcg/kg/min), and
Large (greater than 10 mcg/kg/min) doses of dopamine

VentLen The number of contiguous minutes prior to the current time that patient has been
on a mechanical ventilator

VentLenC The cumulative number of minutes prior to the current time that the patient has
been on a mechanical ventilator

PressorTime The number contiguous minutes prior to the current time that the patient has
received vasopressor medications

CumPressorTime The cumulative number of minutes prior to the current time that the patient has
received vasopressor medications

SBPm.pr The ratio of the average SBP while on vasopressor medications to the average SBP
while not on vasopressor medications (up to current time)

MAPm.pr The ratio of the average MAP while on vasopressor medications to the average
MAP while not on vasopressor medications (up to current time)

PressD01 Vasopressor medications were first initiated during the first 24 hours in the ICU
PressD12 Vasopressor medications were first initiated during the second day in the ICU
PressD24 Vasopressor medications were first initiated during the third or forth day in the

ICU
PressD4 Vasopressor medications were first initiated after the forth day in the ICU
BPcor The correlation between the MAP and the pressorSum.std up to the current time
PressorCnt The total number of vasopressors that the patient is on up to the current time
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Table 3.9: Variables from Literature

Variable Name Description Normal Range win (m)

SBPm.oor30c Minutes continuously out of range 90-180 mmHg 30
SBPm.oor30t Total minutes out of range 90-180 mmHg 30
SBPm.oor120c Minutes continuously out of range 90-180 mmHg 120
SBPm.oor120t Total minutes out of range 90-180 mmHg 120
SpO2.oor30c Minutes continuously out of range ≥ 90% 30
SpO2.oor30t Total minutes out of range ≥ 90% 30
SpO2.oor120c Minutes continuously out of range ≥ 90% 120
SpO2.oor120t Total minutes out of range ≥ 90% 120
HR.oor30c Minutes continuously out of range 60-120 bpm 30
HR.oor30t Total minutes out of range 60-120 bpm 30
HR.oor120c Minutes continuously out of range 60-120 bpm
HR.oor120t Total minutes out of range 60-120 bpm 120
UrineByHr.oor60c Minutes continuously out of range ≥ 30 60
UrineByHr.oor120c Minutes continuously out of range ≥ 30 120
SBPThreshCnt Number of SBP threshold events 90-180 mmHg -
SBPThreshCntN Number of hourly SBP threshold

eventsa
90-180 mmHg -

SBPThreshCntF Fraction of instances with SBP thresh-
old event

90-180 mmHg -

SpO2LowCnt Number of low SpO2 values ≥ 90% -
SpO2LowCntN Number of low hourly SpO2 valuesa ≥ 90% -
SpO2LowCntF Fraction of instances with low SpO2 ≥ 90% -
HRThreshCnt Number of HR threshold events 60-120 bpm -
HRThreshCntN Number of hourly HR threshold

eventsa

60-120 bpm -

HRThreshCntF Fraction of instances with HR events 60-120 bpm -
UrLowCnt Number of low hourly urine events ≥ 0.5 ml/kg/hr -

aWhen multiple observations are available in less than one hour, the worst observation is used



3.4. PRELIMINARY DATASET 43

each of these window lengths (e.g., 28 hr), a new variable was added. The slope
windows that were used for particular variables are indicated in the last column in
Table 3.1.

Two other ways that I explored for capturing the history of a variable included
calculating the range of a patient’s previous values and calculating the deviation of a
value from the patient’s evolving baseline. The range variables indicate the difference
between maximum and minimum values seen previously in the patient’s stay. The
deviation from baseline variable is a little more elaborate. For each instance over
a patient’s stay, this variable represents the current value minus the mean value of
previous instances in the patient’s stay. Range and baseline deviation variables were
added for the following subset of previously defined variables:

Table 3.10: Variables with Range and Baseline Deviation Calculations

SBPm DBPm MAPm
HR Weight HCT
Hgb INR Art pH
BUN LOSBal Lactate
GCS PT Input 60

Creatinine

3.4 Preliminary Dataset

Using the variables described above, I put together my preliminary dataset. In doing
this, I excluded patients who did not contain commonly observed variables. This
process eliminated a number of patients whose data were incomplete or poorly repre-
sented (e.g., patients who died or were discharged only after a few hours in the unit).
I required the following criteria to be met:

• At least one BUN observation (19275 patients)

• At least one GCS observation (18735 patients)

• At least one Hematocrit observation (18850 patients)

• At least one HR observation (26029 patients)

• At least one IV medication recorded in MedEvents (14833 patients)

• Receive adult care (are not neonates) (19878 patients)

By requiring all these criteria to be met, the total number of patients was reduced
from 26647 to 13923.
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3.4.1 Descriptive Statistics

In order to better understand the preliminary dataset, I calculated a number of de-
scriptive statistics. For brevity, I limit my graphical analysis to a subset of the 438
variables described in this chapter (for a complete list of the variables in the final
dataset, see Appendix B). Figure 3-2 provides histograms describing demographic
information in the preliminary dataset. In addition, it is potentially helpful in un-
derstanding the patient population to visualize the distributions for a few variables
in this preliminary dataset. Figures 3-3 and 3-4 provide histograms with descriptive
statistics for the variables that are required for SAPS II.

3.4.2 Multiple Hospital Visits

While most of the MIMIC II ICU patients only have one hospital admission, many
patients have multiple hospital visits. For the purposes of this research, I limited my
analysis to a given patient’s first recorded ICU admission. This generally corresponds
to the first hospital admission information available.3 Due to the snapshot nature of
the data, there is no guarantee that the first recorded ICU visit is actually the patient’s
first ICU visit (e.g., they may have visited a year prior to the start of the data
collection). This approach does, however, omit ICU readmissions where prior ICU
information is known. Table 3.11 provides the number of hospital and ICU admissions
I have for the patients in the CensusEvents table, the preliminary dataset discussed
here, and the final dataset presented in the following section. Figure 3-5 shows that
most patients have only one recorded admission and that about one quarter of the
patients are responsible for all readmissions4 (and the number of these readmissions
has a long tail with a max of 335). An alternative strategy might be to use the first
ICU stay from the last known hospital admission for a patient, but this limits the
follow-up information for a number of patients. There remains a strong case, however,
for using the first ICU admission of a hospital stay as a number of studies have shown
that ICU readmissions are correlated with increased mortality and hospital length of
stay [70, 59].

3.4.3 Mortality

Another necessary decision for my dataset was how to define mortality. Many of the
severity of illness metrics (e.g., SAPS II) provide a prediction of hospital mortality,
but as noted above, the MIMIC II data often includes multiple hospital visits for

3Generally only hospital admissions that include at least one ICU admission are captured by
MIMIC II.

4Since the CensusEvents table has a separate entries for every time a patient enters/leaves the
ICU, it was necessary to define an ICU stay as an ICU period that ignores gaps of up to a maximum
of 24 hours (e.g., periods where the patient is in the operating room).

5This max occurs for SUBJECT ID 13033 over a time of five years
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Figure 3-2: Histograms for demographic information
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Figure 3-3: SAPS II Variables
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BUN (mg/dL)

F
re

qu
en

cy

0 50 100 150

0
50

00
0

15
00

00

n
missing
mean
median
std dev

2448468
186042
30.8
23
24.3

Histogram of White Blood Cell Counts

WBC (1000/mm^3)

F
re

qu
en

cy

0 10 20 30 40 50

0
50

00
0

15
00

00

n
missing
mean
median
std dev

2448468
224258
12.9
11.7
6.5

Histogram of Potassium

Potassium (mEq/L)

F
re

qu
en

cy

2 3 4 5 6 7 8

0
50

00
0

15
00

00

n
missing
mean
median
std dev

2448468
105388
4.07
4
0.534

Histogram of Sodium

Sodium (mEq/L)

F
re

qu
en

cy

120 130 140 150 160

0
50

00
0

15
00

00

n
missing
mean
median
std dev

2448468
139134
139
139
4.76

Histogram of Bicarbonate (CO2)

Bicarbonate (mEq/L)

F
re

qu
en

cy

10 20 30 40 50

0
50

00
0

15
00

00

n
missing
mean
median
std dev

2448468
204650
24.6
24
4.72

Histogram of Bilirubin

Bilirubin (mg/dL)

F
re

qu
en

cy

0 5 10 15 20 25 30

0
20

00
0

60
00

0

n
missing
mean
median
std dev

2448468
1842053
4.01
1.1
7.46

Figure 3-4: SAPS II Variables (cont)
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Table 3.11: Hospital and ICU Admissions

Dataset Patients Hosp Admts (avg/pt) ICU Admts (avg/pt)

CensusEvents 25,642 29,602 (1.15) 33,492 (1.31)
Preliminary 13,923 17,499 (1.26) 19,594 (1.41)
Final 10,066 12,693 (1.26) 14,104 (1.41)
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Dataset Patients Readmitted (%)

CensusEvents 25,642 4,477 (17.5%)
Preliminary 13,923 3,462 (24.9%)
Final 10,066 2,474 (24.6%)

Figure 3-5: ICU Readmissions
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a given patient. Some patients, for example, are recorded as having died over one
year after their first ICU discharge. To limit such cases, one might define death as
“died within the ICU or within 30 days of discharge”. This limit marks a patient as
alive if he or she is still in the hospital 30 days after ICU discharge. If the patient
is not in the hospital at this point, the hospital discharge status of the patient is
used to indicate mortality: if the patient was discharged alive (censored) they are
marked as survived; otherwise they are marked as expired. Figure 3-6 illustrates
the change in mortality rate as patients stay in the ICU for longer periods of time.
This figure includes both hospital mortality (i.e., the patient died at any point during
any recorded visit) and the within-30-days-of-ICU-discharge mortality. As the figure
shows, the two mortality rates track each other closely for the first several days.
However, it is clear that patients who stay in the ICU longer are more apt to remain
in the hospital for a significant period of time before dying. For the remainder of this
work, references to “mortality” indicate death in the ICU or within the following 30
days.
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Figure 3-6: Patient counts versus the number of days spent in the ICU (left) and
mortality rate versus the number of days spent in the ICU (right). For each patient,
only the first ICU stay of the first recorded hospital visit is considered. “ICU + 30 day
mortality” excludes deaths that occur after long post-ICU discharge hospitalizations.
If a patient leaves the hospital alive within this 30-day period, they are assumed to
have survived.
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Table 3.12: Outcome Variables

Variable Name Description and Source

Censored The last Expire Flg in the Admissions table indicates that
patient left the hospital alive

Died The patient dies in the ICU or dies within 30 days of discharge
to the hospital floor. Censoring within this period is assumed
to be equivalent to survival

3.5 Final Dataset

3.5.1 Patient Selection

For the preparation of my preliminary dataset, every effort was made to include all
reasonably complete patients. For the final dataset — to be used for training and
validating my models — I added a handful of important limitations to the scope of the
data. The range of ailments that warrants intensive care is quite large; the limitations
that I imposed were helpful in focusing my modeling efforts. In general, patients were
excluded entirely if they were thought to have a different set of risks and concerns than
the majority of the cases. The criteria I used for dropping entire patients (many of
which were redundant) are listed in Table 3.13. The rules in Table 3.13 generally flag
patients with severe trauma or neurological problems. While these patients require
the close monitoring of an ICU, the root insult to their body is quite different from
a medical patient or a heart patient and they often warrant different interpretations
of physiological responses than other patients.

Table 3.13: Final Dataset: Entire Patient Exclusions

Drop Rule Number of Patients
Neurosurgery patients (NSICU Service) 1987
Trauma patients (CSICU Service) 1676
Chronic Renal Failure (An ICD-9 code of 585) 225
Discharge summary contains “brain death” 56
Discharge summary contains “comatose” 41
Discharge summary contains “brain dead” 38
Discharge summary contains “brain steam dead” 2

In addition to dropping entire patients, other cases arose where it was helpful
to drop only portions of a patient’s stay. For example, periods of a patient’s stay
where the patient received limited care (e.g., comfort measures only) should clearly
be treated differently than cases where the caregivers were trying everything possible
to help the patient survive. The rules that I used for discarding such periods of a
patient’s stay are included in Table 3.14.
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Table 3.14: Final Dataset: Partial Patient Exclusions

Drop Rule Number of Rows
In the ICU for longer than seven days 728739
Received limited treatment, including 198942

CMO (“comfort measures only”)
DNR (“do not resuscitate”)
DNI (“do not intubate”)
“no CPR” or “other code”

Received hemodialysis or hemofiltration 139561

The motivation for these rules generally follows the reasoning for excluding entire
patients. For example, as Figure 3-6 indicates by plotting the mortality rate versus
the number of days spent in the ICU, most patients leave the ICU within seven days of
admission. For patients that do not leave in this 7-day window, the 30-day mortality
rate starts to noticeably decrease as caregivers are able to successfully prolong the
patient’s life while the patient remains in a compromised state often dependent on
various interventions.

3.5.2 Dataset Summary

The final dataset — after applying all of the exclusions mentioned above — is sum-
marized in Table 3.15. In addition, Appendix B lists the 438 individual variables
with brief summary statistics. Figure 3-7 provides an updated version of Figure 3-6
for the final dataset.

Table 3.15: Preprocessed Data

Number of Patients 10,066
Number of Rows 1,044,982
Number of Features 438
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Figure 3-7: Mortality rate versus the number of days spent in the ICU: Final dataset



Chapter 4

Methods: Modeling

This chapter provides the framework that I used for creating predictive patient mod-
els. All of the models I discuss in this thesis rely on the methodology in this chapter.
The discussion is kept general as it is necessary to defer details that depend on the
specific types of models discussed in the following chapters. While the final dataset
mentioned in the preceding chapter is the basis for all of the models that I consider,
some of the models that I discuss later will place further limitations on this data and
define a variety of outcomes to predict. For example, to predict the weaning of va-
sopressive medications, a model might be trained only on patients who are receiving
vasopressive medications. Consequently, the methodology that follows is kept at a
general level.

The patient models I developed are based on logistic regression. Logistic regression
models the log odds (“logit”) of a binary variable Y (e.g., mortality) using a linear
combination of covariates (explanatory variables), X:

log

(

P (Y = 1|X)

1 − P (Y = 1|X)

)

= Xβ.

This model can easily be rearranged to provide the probability of the outcome,
P (Y = 1|X), as follows

P (Y = 1|X) =
1

1 + exp (−Xβ)
.

The variable weights, β, are typically fit using maximum likelihood.

There were three motivating factors for using logistic regression: (1) logistic re-
gression results in transparent models that are easily understood and familiar to many
within the medical profession; (2) logistic regression is a powerful modeling technique
that can perform quite robustly at difficult prediction tasks; (3) the training—via
iterative maximum likelihood estimation of the regression coefficients—is generally
tractable. Given my large high-dimensional dataset, logistic regression allowed me

53
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to create interpretable, strongly performing models that were trained on all of the
available training data.

In [31] I explored Cox Proportional Hazards survival models on an earlier release
of the MIMIC II data. Survival models offered little benefit over logistic regression
and the maximum likelihood estimation process for the Cox models often suffered
from convergence problems. The primary limitation I encountered was quality fol-
lowup data.1 Even with followup data, some have argued that survival methods are
inappropriate for the ICU because some patients—who ultimately die in the ICU—
experience prolonged survival in the ICU that does not benefit them [77].

4.1 Model Construction

For my modeling, I started with a number of important assumptions. First, most
of the models that I created assume that the covariates are stationary. This is not
entirely accurate, as the ICU population is expected to change as some patients are
discharged and others remain in the unit over time. Some individual variables, such
as BUN, do demonstrate small trends over time in the unit. Work by Kayaalp et al.,
however, found that stationary ICU models often perform better than non-stationary
models [35]. One way to avoid the stationarity assumption is to build daily models
based on daily aggregates of the covariates. This is the approach that SAPS II takes
by looking at representative (typically worst) values from the first 24 hours. A sec-
ond important assumption, which is fundamental in logistic regression, is that the
observations are independent of each other and linearly related to the logit of the de-
pendent variable (i.e., outcome Y ). The methodology that I employed largely follows
the multivariate logistic regression methodology suggested by Ruttimann in [73].

4.1.1 Development and Validation Splits

To facilitate independent training and validation, I randomly partitioned the dataset
into 70% development patients and a 30% validation patients. My models were trained
exclusively using the development set. The validation set was used only to validate
my final models on previously unseen patients.

4.1.2 Model Selection

The concept of the “best model” has garnered considerable attention in statistical
modeling. The trade-off between model complexity and goodness of fit is typically a
significant concern. Furthermore, with 438 different variables, a significant challenge

1The latest release of MIMIC II contains slightly better followup data by supplying a unique
subject identifier to track the same patient across multiple hospital visits. For patients who leave
the hospital alive on their last recorded visit, however, no followup is known. Work is underway to
establish followup status by using the social security death records.
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exists in finding the best subset of variables to include in a predictive model. An
exhaustive search over the space of all possible models is combinatorially infeasible,
so a number of commonly used (but not necessarily optimal) strategies are employed
to simplify the search problem. I first filtered the candidate variables, then examined
univariate models and finally performed backwards elimination to arrive at a final
model. Each of these steps is further explained below.

Variable Filtering

Given the inclusive nature of my dataset preparation, a number of the dataset vari-
ables were included that had limited availability or were irrelevant. I eliminated a
variety of such covariates by applying simple filters. The filters removed three cat-
egories of covariates from consideration. The first two filters addressed the problem
of missing data: (1) I excluded covariates that were available for less than 80% of
the development patients; (2) I removed covariates that had an average per-patient
availability of less than than 60% of the patient instances (e.g., tests that were only
executed on the first day for a typical patient and unavailable for subsequent days).
The third filter removed irrelevant variables: (3) variables that remained effectively
constant across the development patients were dropped.

Univariate Analysis

Given a binary outcome of interest, Y , the set of potential covariates was further
reduced by selecting the most significant individual covariates. After ranking the
covariates based on significance, I used a fixed significance threshold (e.g., p=0.05)
to keep the top covariates for inclusion in my initial multivariate model. My ranking
was based on the Wald Z score of each covariate obtained from a univariate logistic
regression model trained to predict Y .2 The Wald statistic, Z, is defined as the
coefficient estimate for the univariate model, β̂, divided by the estimated standard
error of β̂,

Z =
β̂

ŜE(β̂)
.

In addition to their original form, dataset covariates were evaluated for a variety
of functional forms by applying transformations. The best form, in terms of the Wald
statistic, was used for each variable. If the different transformations were nearly iden-
tical to the original form, then the original form was preferred. The transformations
considered for each covariate included the following:

• Inverse (i)

• Absolute value (abs)

2p-values are easily obtained by comparing the squared Wald Z statistic against the χ2 distribution
with one degree of freedom
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• Value squared (sq)

• Square root of value (sqrt)

• Logarithm of absolute value (la)

• Absolute deviation from mean (derangement) (am)

• Logarithm of absolute deviation from mean (lam)

While most values in the dataset were greater than or equal to 0, the absolute
values in the above list were used for the few variables, such as Arterial Base Excess,
that do drop below 0. To prevent logarithms of zero, values that were transformed
with the logarithm were first shifted by adding a value of 0.0001.

The choice of the specific p-value threshold used for univariate screening warrants
additional discussion. Many researchers have suggested using a rather liberal p-value
such as 0.25 while others have been more conservative with lower p-values such as
0.05 [29]. The more stringent p-value thresholds avoid covariates of questionable
importance, while a more liberal threshold admits covariates that may become im-
portant when considered along with other covariates. In general, the amount of data
used for this research yields small p-values and most of the variables are significant
at the 0.05 level.3

Collinearity Analysis

Using the top covariates (in their best form), I next screened the covariates to identify
collinear or highly correlated covariates. This was done by first keeping only the best
variable (based on univariate ranking) from variables that were clearly correlated—
such as number of critical systolic blood pressure events over slightly different window
lengths. After this first pass was completed, Spearman’s rank correlation, ρ, was
used to create a large correlation matrix. Spearman’s rank correlation coefficient
is a nonparametric measure of correlation that will detect monotonic relationships.
Starting with the most significant univariate variables, correlation coefficients with
other variables were examined. If a variable with less importance had a ρ value greater
than 0.8, it was discarded.

With the variables that remained after filtering, univariate ranking, and collinear-
ity analysis, an initial multivariate model was fit to the data. First, however, the
model fitting process typically required manual removal of variables that caused sin-
gularity problems. While the collinearity analysis removed strong pairwise correla-
tions, in the context of several hundred covariates other more subtle correlations arose
that prevented the β estimation process from converging. With these considerations,

3For example, using the development split of the final dataset described in the previous chapter
and logistic regression on mortality, a p-value threshold of 0.05 only eliminates around 15 of the 438
possible covariates
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an initial multivariate model—typically containing several hundred variables—was
trained.

Backward Elimination

With an initial model, backward elimination was next performed to simplify the
model and remove variables (covariates) with marginal contribution. Backward elim-
ination simplifies a large model by greedily removing the weakest variables. I used
Akaike’s Information Criterion (AIC) to eliminate the weakest features. The AIC
metric penalizes the log likelihood of a candidate model by subtracting the number of
parameters that were estimated for the model. An alternative to AIC is the Bayesian
Information Criterion (BIC). BIC places more emphasis on model parsimony by mul-
tiplying the AIC complexity penalty by 1

2
log(n), where n is the sample size used to

train the model [24]. Backward elimination proceeded by iteratively eliminating the
least significant variable until removing the least significant variable caused the AIC
value of the model to surpass the typical AIC threshold of 0. When the AIC thresh-
old of 0 was reached, no more variables were removed and the model fitted with the
selected set of variables was retained.

Sensitivity Analysis

By progressively increasing the AIC threshold from 0, I evaluated the sensitivity of
the model to the number of covariates that it included. A plot of model performance
versus the number of covariates provided a reasonable estimate of asymptotic upper
bound on performance and the fewest number of covariates necessary to offer strong
performance. In the course of the sensitivity analysis, if a simpler model was found
that performed comparably to the more complex model, the complex model was
discarded in favor of the simpler model.

4.1.3 Final Model

The model construction process above was repeated 5 times on randomly selected,
unique 80%-training and 20%-validation partitions of the development data (5-fold
cross-validation). This provided a check against over-fitting the development data.
From the 5 models created, the union of the top features from each model was used
to form a new model on all of the development data. Backward elimination on this
new model was performed one last time.

As a final step, manual refinement of the model with human expertise was often
helpful to simplify the model. For example, in some cases the backward elimination
procedure would result in multiple variables that measure similar phenomenon. This
might happen when several I/O variables (e.g., allinput, Bal24 and LOSBal) were
highly significant in the model, even when dropping one of the three may have a
negligible effect on the model’s performance. In other cases, however, seemingly
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similar variables were used together by the model to get at a different measurement.
For example, by including the 24-hour fluid balance and the fluid balance for the
entire stay, the model might better understand recent changes in the fluid balance.
The effect in model performance was carefully considered before manually removing
variables.

I also examined the availability of the covariates that were automatically selected
for the models. Preference was given to covariates with high availability. As an
example, variables derived from the MIMIC II TotalBalEvents table were often
unavailable for the first ICU day while similar variables that were manually integrated
from the MIMIC II IOEvents table were available for the same day. When model
performance was similar, I used the more frequently available inputs. In other cases,
marginally important variables that were frequently missing were manually examined
and removed if the change in model performance was negligible. Frequently missing
variables that resulted in significant performance improvement can be easily identified
in plots that show the AUC performance versus the number of covariates: large jumps
in these smooth curves generally represent an increase in missing observations. Large
jumps were rare but when present influenced the choice of covariates for the final
model.

Before validating against the held-out validation data, the model resulting from
the above model selection process was examined to assess its fit on the development
data. The model assessment was done using ROC curves and the Hosmer-Lemeshow
test. In addition, bootstrapping (150 samples with replacement) was used to validate
a number of goodness of fit statistics such as the logistic calibration curve slope and
intercept (predicted probability versus actual probability). Each of these performance
metrics is discussed further in the following section. Models that performed well were
considered final and further validated on the held-out test data.

4.2 Model Validation

After the final model was found using the approach outlined above, I used the held-
out data in order to validate the model’s performance on unseen data. As in the
model construction, I relied on two primary metrics to validate model performance.
First, I looked at the Receiver Operating Characteristics (ROC) curve. As a second
metric, I examined the calibration of the fitted model using the Hosmer-Lemeshow
goodness of fit test and calibration plots.

4.2.1 Discrimination

To evaluate the model’s discriminatory ability, I looked at ROC curves. ROC curves
graphically illustrate the performance of a classifier by plotting the sensitivity ver-
sus specificity for different thresholds on the classifier’s output. By looking at the
area under the ROC curve (AUC), one can summarize the general performance of
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the classifier.4 The curve allows one to evaluate the performance of the model when,
for example, a given specificity is required. The ROC curve can be thought of as
evaluating the adequacy of risk ranking for the classifier. The discrimination ability
of two classifiers on the same subjects can be compared using a test suggested by
DeLong [42]. The test examines the difference between the ROC areas and the vari-
ance of the difference. Since the two curves are partly correlated, the test must also
correct for the correlation between the curves.

In many cases, it can be helpful to examine the positive predictive value (PPV)
and the negative predictive value (NPV) for a classifier. The PPV is defined as the
number of true positives at a given threshold for the model divided by the total
number of positive predictions (true positives and false positives) from the model.
Similarly, the NPV indicates the number of true negatives predicted by the model
divided by the total number of negatives predicted by the model. In contrast to the
AUC from an ROC curve, the PPV and NPV depend on the classification threshold
chosen and the prevalence of the outcome of interest.

4.2.2 Calibration

In addition to discrimination performance, it is important for models to demonstrate
strong calibration. Calibration can be viewed as evaluating the adequacy of the
individual risk estimates. Several calibration tests exist, such as the common Hosmer-
Lemeshow test [49, 29].

The Hosmer-Lemeshow test compares the observed frequencies and the estimated
expected frequencies for a set of risk groups. The number of groups, g, is typically 10
and are often referred to as “deciles of risk”, indicating that the highest 10% of the
predictions will be in one group, the next 10% will make up the next group, and so on.
The calibration statistic based on these groups will be referred to as H . In addition
to grouping the outputs based on risk, it is also common to group them based on
fixed cut-points over the output range (i.e., probability deciles). For example, the
with g = 10, the probability deciles would be [0.1, 0.2], (0.2, 0.3], and so on. This
version of the Hosmer-Lemeshow statistic will be referred to as C. In either case, the
overall fit of the model is evaluated by comparing the test statistic to the Pearson
χ2 distribution with g degrees of freedom for the validation data or a Pearson χ2

distribution with g − 2 degrees of freedom for the development data. Statistically
significant p-values for the Hosmer-Lemeshow test indicate poor model calibration.

Many fault the grouping choice for the Hosmer-Lemeshow as arbitrary. An al-
ternative method to evaluate calibration, proposed by Cox [11, 61], examines the
relationship between the predicted probability and the actual probability. Instead of
looking within local subgroups of the predictions, this method makes a more global
assessment of model fit. The actual calibrated probability, Pc, is found by fitting the

4The AUC is equivalent to the Mann-Whitney statistic.
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logit of the probability estimates, L = logit(P̂ ), against the actual outcome, Y :

Pc = P (Y = 1|Xβ̂) =
1

1 + exp(−(γ0 + γ1L))
.

In a correctly calibrated model, γ0 = 0 and γ1 = 1. Since the development data
will “fit” the data globally, it is necessary to use bootstrapping or cross-validation to
obtain bias-corrected estimates of γ0 and γ1. Using P̂ and P̂c (bias-corrected), one
index of unreliability is Emax, defined as

Emax = max |P̂ − P̂c|.

The corrected estimates of γ0 and γ1 provide useful insight into the level of overfit-
ting present in the model: (1) the bias-corrected γ0 (intercept) is positive when the
predicted probabilities are, on average, too high, and negative when the predicted
probabilities are, on average, too low; (2) the bias-corrected γ1 (slope) is greater than
1 when the predicted probabilities are, on average, too close to the mean, and less
than 1 when the predicted probabilities are, on average, too extreme.

When validating against the development data, I used bootstrapping with 150
samples (with replacement). A number of statistics were calculated for each sam-
ple [24]. Of these statistics, I focused on three in particular: (1) the Intercept, γ0, for
the fitted logistic calibration curve, (2) the Slope, γ1, for the fitted logistic calibration
curve, and (3) the maximum absolute difference in predicted and calibrated probabil-
ities Emax. The intercept, slope, and error allow one to quantify the correction needed
to calibrate the model predictions. Additional statistics that measure overfitting are
also calculated on the bootstrap samples and are described in Appendix A.

When validating against the held-out data, the validation data was used to make
one estimate of the above statistics (instead of the 150 estimates created by boot-
strapping). To plot Pc versus P̂ on validation data, I used Harrell’s val.prob function
included in the R Design package [66, 25]. The val.prob function shows the ideal cal-
ibration line (slope of 1 and intercept of 0), along with the fitted logistic calibration
curve and a smooth nonparametric calibration curve fit using lowess smoothing. The
relative frequency distribution of the probabilities (divided into 101 bins from 0 to 1)
is shown along the x-axis. In addition, the mean probabilities for the deciles of risk
used for the Hosmer-Lemeshow H statistic were added to the plots.

4.3 Other Severity of Illness Scores

For ICU models that predict patient mortality, it is useful to compare performance
against other ICU severity of illness scores. While a number of scores exist, I chose
to compare against SAPS II [44]. SAPS II was developed on a large set of ICU
patients from Europe and North America and it is quite common, especially in Eu-
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ropean countries. It is also simpler than the more complex Apache score. Despite
its simplicity, some of the variables were not directly available from the MIMIC II
data. The SAPS I score does not suffer from the same data difficulties, but the added
refinement of SAPS II (e.g., finer tuned granularity for the individual contributions),
along with the wealth of literature looking at its application to various patient popu-
lations, make it considerably more attractive than SAPS I. This section summarizes
the approach I took to calculate SAPS II.

4.3.1 SAPS II Calculation

For my comparisons, SAPS II scores were calculated for the same set of patients that
I used to construct and validate a given model. In calculating SAPS II, I followed the
description provided by Le Gall et al. in [44]. The specific variables that are used in
SAPS II are listed in Table 4.1. Two fields were not directly available in the MIMIC
II data: “chronic diseases” (Metastatic cancer, Hematologic malignancy, AIDS) and
“type of admission” (Scheduled surgical, Medical, Unscheduled surgical).

I was able to consistently identify chronic illnesses by searching through the patient
ICD-9 codes. The “type of admission” variable, however, was difficult to automati-
cally determine. The possible values for this variable were defined by Le Gall et al.
as follows:

• Scheduled surgery: patients who were scheduled for surgery at least 24 hours
in advance

• Unscheduled surgery: patients who were scheduled for surgery within 24 hours
of the operation.

• Medical admissions: patients who had no surgery within 1 week of admission
to the intensive care.

Often, even with manual review of the available progress/discharge notes, extracting
type of admission information was difficult.

For SAPS II calculations, most variables are considered normal (i.e., do not in-
crease the score) if they are unavailable. Two variables, however, were required by
Le Gall et al. for a patient to be included in their analysis. These included the “type
of admission” variable (discussed above) and, for patients who are ventilated or have
continuous positive airway pressure (CPAP), the PaO2/FiO2 ratio. For MIMIC II pa-
tients, it was typically not a problem to calculate the PaO2/FiO2 ratio for ventilated
or CPAP patients. If the PaO2/FiO2 ratio was unavailable, the patient was excluded.
The type of admission variable, however, presented a greater challenge. I attempted
to resolve this challenge with similar variables that were found important for strati-
fying risk. First, without the information to distinguish between types of admission,
the score for type of admission was left at zero in my score calculations. To compen-
sate for this omission, two additional variables indicating ICU service type (svCSRU
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and svMICU) were included in the logistic regression model that predicts mortality
from SAPS II. These two indicator variables were found by my mortality models to
be highly important at stratifying ICU patient risk and were also highly significant in
conjunction with SAPS II for predicting mortality. The resulting “pseudo-SAPS II”
offers less than an ideal comparison with published SAPS II results; with the inclu-
sion of the ICU service type variables and omission of the type of admission to the
SAPS II calculation, a small difference in SAPS II mortality prediction performance
can be expected. The CSRU service, however, should have a strong correlation with
elective (scheduled) surgery patients and, similarly, the MICU service should have a
strong correlation with medical admissions.

More recent severity of illness metrics, such as APACHE III, have found that
context variables, such as prior location or major disease category, are helpful in pre-
dicting patient outcomes [38]. While having a relatively small maximum contribution
of 8 points (unscheduled surgery) Le Gall et al. specifically note that the “type of
admission” information was important enough to be required for patients in their
model development and validation. Consequently, the SAPS II calculation included
in this work should be subject to additional scrutiny when compared with other met-
rics that utilize more complete patient context information. But for the purposes of
this work, the pseudo-SAPS II mortality predictions should provide a useful relative
comparison; the additional patient context that is unavailable for SAPS II is also
unavailable to my models.

Given the above considerations, the final SAPS II score was found by summing
the measures of derangement (points) for each individual SAPS II variable. The list
of SAPS II variables, including the maximum point contribution for each, is shown in
Table 4.1. Using the development patients with SAPS II scores, svCSRU indicators,
and svMICU indicators, a logistic regression model was trained to predict mortality.
An additional model, without the ICU service type variables, was also examined. To
compare with the equation published in [44], I also included the logarithm of the
SAPS II score, ln(SAPS II + 1), as a covariate in both logistic regression equations.
The logit equation published by Le Gall et al. in [44] is:

logit = −7.7631 + 0.0737(SAPS II score) + 0.9971[ln(SAPS II score + 1)].
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Table 4.1: SAPS II Variables
Variable Max Points
Age 18
Heart rate 11
Systolic BP 13
Body temperature 3
PaO2:FiO2 (if ventilated or continuous 11

positive airway pressure)
Urinary output 11
Serum urea nitrogen level 10
WBC count 12
Serum potassium 3
Serum sodium level 5
Serum bicarbonate level 6
Bilirubin level 9
Glasgow Coma Scorea 26
Chronic diseases 17
Type of admission 8

aIf the patient is sedated, the estimated GCS prior to
sedation
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Chapter 5

Mortality Models

Many severity of illness scores have been built to provide standard ICU patient risk
assessments. These models have generally focused on the first 24 hours of a patient’s
ICU stay. If applied later in a patient’s stay, they are still performed on a daily basis.
While useful for stratifying patient risk between hospitals, daily predictions do not
allow the score to closely track a patient’s ICU progression. Acute events, such as
the onset of septic shock or decompensation, may occur between daily scores.

Furthermore, most existing models emphasize simplicity in their inputs. In many
ways this is an obsolete requirement that stems from a time when the scores were
calculated by hand. Simplicity was also considered important for portability between
different hospitals. Today, in an era of digitally collected data, a computer should
be able to help analyze complex data patterns and assist caregivers in continually
assessing patient risk.

This chapter focuses on building models that predict patient mortality. I first
review the data that were used for training and validation, and then I present daily
mortality models and “real-time” mortality models. For comparison purposes, I also
present the customized SAPS II model described in the Chapter 4. I end the chapter
with a number of comparisons between the models presented and a discussion of my
findings.

5.1 The Data

Two datasets were used for the mortality models that I develop in this chapter. One
dataset used all observations from the final dataset described in Chapter 3. These
data were used to develop and validate the “real-time” models. In the second dataset,
the final dataset was aggregated by day. The aggregated data were used to develop
and validate daily models. Demographic information for patients included in the final
dataset is provided in Table 5.1.

The breakdown for the final dataset, after splitting it into development and vali-
dation sets, is described in Table 5.2. The number of variables for the development

65
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Table 5.1: Final dataset description. Prior hospital time was calculated using the
difference between the ICU admission time and the corresponding hospital admission
time. ICU LOS: ICU length of stay.

Age (yrs) Male % Female % Prior Hospital Time (days) ICU LOS (days)
65 ± 16 58.6 40.9 1.8 ± 3.6 2.8 ± 2.1

CSRU % CCU % MICU % MSICU % CSICU % NSICU %
31.7 23.2 22.3 10.9 0 0

Table 5.2: Real-time data

Patients Mortality Rows Variables
Final Dataset 10066 12.1% (1215) 1044982 438
Development Set 7048 12.1% (853) 736218 200
Validation Set 3018 12.0% (362) 308764 200

and validation sets represent those selected using the univariate analysis and filtering
described in Chapter 4.

For the daily aggregate data, Table 5.3 describes the breakdown between the
development and validation sets. In aggregating the data, the higher-frequency values
were summarized using a number of summary functions. These functions included
min, max, and mean. During univariate ranking of the resulting summary variables,
only the best of the three summary variables were kept. In addition, the standard
deviation of the variable over each day was independently included. As in the table
for the real-time data, the number of variables for the development and validation sets
reflects univariate analysis and filtering. The initial variable screening process was
repeated independently (yielding slightly different results) for the aggregate models
described in the following section. Table 5.3 indicates the number of variables used
for the Stationary Daily Acuity Score (SDAS), which is the first model described in
this chapter.

5.1.1 Outcomes

As noted in the data preparation, the definition of mortality that my models used
is ICU death or death within 30 days following ICU discharge. If a patient was
discharged from the hospital alive within 30 days of his or her ICU stay (i.e., censored),
survival was assumed. There are, of course, a number of cases where this survival
assumption could be problematic (e.g., discharge to hospice care) but such cases were
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Table 5.3: Aggregated daily data. ∗Number of variables used for the SDAS model; the
number of variables after univariate analysis and filtering for the DASn models varied.

Patients Mortality Rows Variables
Final Dataset 10066 12.1% (1215) 32480 1752
Development Set 7048 12.1% (853) 22888 349∗

Validation Set 3018 12.0% (362) 9592 349∗

difficult to avoid given the current constraints of MIMIC II.

5.2 Daily Acuity Scores

I first examined mortality models based on daily patient data. Two types of daily
models were explored. The first daily model was developed and validated on all of
the daily data (up to 7 days). This model will be referred to as the Stationary Daily
Acuity Score (SDAS), as it assumes that the data’s joint probability distribution does
not change between days. A second class of daily models, referred to as the Daily
Acuity Score (DASn), was developed for individual patient days n ∈ {1, 2, 3, 4, 5}. The
training and validation for SDAS and DASn are considered in this section. For each
model type, I provide a brief overview of the learning process, followed by a description
of the final model and performance on the development data. After I describe SDAS

and DASn, I examine their performance on the held-out validation data.

5.2.1 SDAS Model

The SDAS model considered observations from all ICU days. After the filtering, uni-
variate ranking, and collinearity analysis described in chapter 4, the daily aggre-
gate development data was reduced from 1752 to 349 variables. Using 5-fold cross-
validation on the development data, five initial models were developed and examined.
Figure 5-1 shows the performance of these five models on each validation fold (20% of
development data) as the number of covariates increases. These figures were generated
by backward elimination using a progressively increasing AIC threshold (starting at
zero). In general, the validation performance closely tracks the training performance
and little overfitting was observed.

The models developed on Fold 2 and Fold 3 appear particularly strong. The 30-
covariate model from Fold 2 is shown in detail in Model 5.1. In the description of
this model, the daily summary function (e.g., max ) lies between the variable name
and, if present, the type of transformation applied to the variable. For example, the
variable GCS max sq should be interpreted as the maximum daily GCS value squared.
To interpret the model, a positive coefficient should be understood as increasing the
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Figure 5-1: SDAS model selection. Sensitivity to number of covariates on each cross-
validation fold. The covariate(s) from the simplest model are marked on the training
curves.
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probability of mortality (positive correlation) while a negative coefficient means less
risk of mortality (negative correlation).

Model 5.1 includes a number of interesting covariates. By examining the Wald Z
scores, however, it appears that the model can likely be improved. For example, the
contributions from the largest length of stay fluid balance (LOSBal max, Z = 3.94)
and the largest 24 hour fluid balance (Bal24 max, Z = −3.68) may largely counteract
each other and the model may benefit from removing at least one of these variables
and possibly replacing it with an input variable (a mean hourly output for the day,
OutputB 60 mean sqrt, is already included). Similarly, the meaningfulness of the
pressD01 sd sq variable (that is, the squared standard deviation of the points marked
1 following the first pressor infusion and marked 0 before any pressors) is questionable
as it decreases risk for patients who have a pressor started in the middle of their first
day, but increases risk for patients who receive pressors early or late on their first day.

Examining all five folds from Figure 5-1, it is clear that there was negligible impact
on the validation performance by reducing the number of covariates to about 25.
Considering this, I took the top 25 covariates from the models for cross-validation
folds 1, 2, 3, and 5 (excluding fold 4) and created a model using these covariates.
By performing backward elimination one last time on this model a final model was
selected. As done with each cross-validation fold in Figure 5-1, a plot of performance
versus the number of covariates in a given model was created. This plot is shown in
Figure 5-2.
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Figure 5-2: SDAS model selection (all development data)

The models in Figure 5-2 indicate that most of the performance was captured
with about 35 inputs. This model was chosen for additional refinement. Upon exam-
ination, it was found to contain a number of pressor-related
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Model 5.1 SDAS Model for Fold 2 with 30 Covariates

Obs Max Deriv Model L.R. d.f. P C Dxy

20172 1e-09 5415.11 30 0 0.893 0.785

Gamma Tau-a R2 Brier

0.787 0.176 0.439 0.076

Coef S.E. Wald Z P

INR_mean_i -1.795e+00 1.423e-01 -12.61 0.0000

GCS_max_sq -7.485e-03 6.000e-04 -12.47 0.0000

OutputB_60_mean_sqrt -6.561e-02 6.885e-03 -9.53 0.0000

pacemkr_max -1.084e+00 1.183e-01 -9.16 0.0000

svCSRU_max -9.516e-01 1.208e-01 -7.88 0.0000

GCSrdv_mean -1.138e-01 1.528e-02 -7.45 0.0000

pressD01_mean_am -2.774e+00 3.893e-01 -7.13 0.0000

Platelets_Slope_1680_min -5.493e+00 8.615e-01 -6.38 0.0000

pressD01_sd_sq -5.085e+00 8.678e-01 -5.86 0.0000

sedatives_mean_sq -4.375e-01 8.455e-02 -5.17 0.0000

Bal24_max -4.493e-05 1.222e-05 -3.68 0.0002

CV_HRrng_max -3.267e-03 1.083e-03 -3.02 0.0026

Intercept 4.292e-01 4.085e-01 1.05 0.2934

Milrinone_perKg_min_sq 3.523e+00 1.113e+00 3.17 0.0015

LOSBal_max 2.247e-05 5.703e-06 3.94 0.0001

hrmVA_max 3.410e-01 6.767e-02 5.04 0.0000

MBPm.pr_min_am 1.904e+00 3.711e-01 5.13 0.0000

Mg_min_sq 1.067e-01 1.798e-02 5.93 0.0000

beta.Blocking_agent_mean_lam 2.418e-01 3.955e-02 6.11 0.0000

Na_mean_am 5.214e-02 8.415e-03 6.20 0.0000

mechVent_mean_sq 7.183e-01 1.047e-01 6.86 0.0000

RESP_mean_sq 9.226e-04 1.293e-04 7.13 0.0000

Platelets_mean_i 2.512e+01 3.512e+00 7.15 0.0000

Lasix_max_lam 2.550e-01 3.457e-02 7.38 0.0000

CO2_mean_i 2.038e+01 2.741e+00 7.43 0.0000

jaundiceSkin_mean_la 1.523e-01 2.014e-02 7.56 0.0000

hospTime_min_sqrt 6.860e-03 7.939e-04 8.64 0.0000

pressorSum.std_mean_sqrt 7.758e-01 7.225e-02 10.74 0.0000

SpO2.oor30.t_mean_sqrt 4.929e-01 4.095e-02 12.04 0.0000

BUNtoCr_min_sqrt 2.867e-01 2.323e-02 12.34 0.0000

Age_min_sq 2.258e-04 1.450e-05 15.57 0.0000
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variables: (1) Sympathomimetic agent min, (2) pressorSum.std mean sqrt,
(3) Dopamine perKg mean sqrt, (4) pressD01 mean am, and (5) pressD01 sd sq.
Since the influence of the Dopamine perKg mean sqrt and pressorSum.std mean sqrt

were the smallest, they were removed from the model with little consequence. The
pressD01 sd sq input was also removed with no appreciable change in model perfor-
mance. Similarly, the sedatives mean sq variable was removed in favor of only the
RikerSAS mean variable, and the automatically selected TotOut24 min sqrt variable
(from the TotalBalEvents table) was replaced with the similar, and more frequently
available, Alloutput max la variable (manually integrated from the IOEvents ta-
ble).1 These changes ultimately had little impact on the fit to the training data but
were felt to help simplify the model.

Additionally, comparison of the covariates in the model with inputs to other
severity scores revealed several noticeable omissions — namely WBC Count, AIDS,
Metastatic Carcinoma, and Hematologic Malignancy. I manually adding WBC, AIDS,
MetCarcinoma, and HemMalig to the model. Of these, each had a small, albeit signif-
icant (p < 0.005), contribution to the model. Hematologic Malignancy had the most
influence (Wald Z score of 4.98). The other three additions were significant but had
Wald Z score less than the other contributions (Wald Z < 3). Given the clear role
that these variables have in increasing the risk of mortality, they were included in the
final model with with minimal concern for overfitting. The final model is described
in detail in Model 5.2.

SDAS Validation (Development Data)

Next, I examined the goodness of fit for Model 5.2 on the development data. Fig-
ure 5-3 shows the ROC curve for the model on the development data. With an area of
0.898, the model does quite well at discriminating between patients who survive and
patients who expire. It should be noted that Figure 5-3 contains multiple predictions
for most patients. If the predictions are limited to day 1 (only one prediction per
patient), the AUC decreases slightly to 0.890.

The calibration of SDAS on development data was also considered. Tables 5.4
and 5.5 provide details on the Hosmer-Lemeshow statistic for the deciles of risk (H)
and the fixed probability deciles (C). While the model performs reasonably well in
general, several of the deciles have large deviations between the number of deaths
that were predicted and the number of deaths that were observed. With the large
number of observations, these differences are statistically significant as shown by the
χ2 values below each table. If the validation is limited to the first ICU day, the
calibration improves somewhat with p-values of 0.017 and 0.116 for the deciles of risk
(H) and deciles of probability (C), respectively. In contrast, the calibration is better
for the subsequent days with p-values ≥ 0.1 for days 2 through 5 (using H).

1The smoothness of the curve in Figure 5-2 (i.e., no large drops) indicates that the models were
generally insensitive to covariates with a large number of missing values
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Model 5.2 Final SDAS model

Obs Max Deriv Model L.R. d.f. P C Dxy

20130 3e-10 5619.28 35 0 0.898 0.797

Gamma Tau-a R2 Brier

0.798 0.177 0.456 0.074

Coef S.E. Wald Z P

GCS_max_sq -0.0064668 5.032e-04 -12.85 0.0000

INR_mean_i -1.8734049 1.458e-01 -12.85 0.0000

pacemkr_max -0.9337190 1.179e-01 -7.92 0.0000

svCSRU_max -0.9137522 1.250e-01 -7.31 0.0000

RikerSAS_mean -0.3430971 5.151e-02 -6.66 0.0000

Platelets_Slope_1680_min -5.8856843 8.839e-01 -6.66 0.0000

urineByHr_mean_sqrt -0.0584113 9.453e-03 -6.18 0.0000

GCSrdv_mean -0.0902717 1.552e-02 -5.82 0.0000

GCSrng_min_am -0.0812232 1.459e-02 -5.57 0.0000

pressD01_mean_am -1.6132643 3.005e-01 -5.37 0.0000

CV_HRrng_max -0.0061979 1.216e-03 -5.10 0.0000

Insulin_sd_sq -2.1686950 4.372e-01 -4.96 0.0000

alloutput_max_la -0.0890330 2.265e-02 -3.93 0.0001

MetCarcinoma_min 0.4468763 1.567e-01 2.85 0.0043

WBC_mean_am 0.0147036 5.149e-03 2.86 0.0043

AIDS_min 0.5954305 1.991e-01 2.99 0.0028

Intercept 1.5314512 4.529e-01 3.38 0.0007

MBPm.pr_min_am 1.4601630 3.518e-01 4.15 0.0000

HemMalig_min 0.6032027 1.212e-01 4.98 0.0000

RESP_mean_sq 0.0006615 1.324e-04 5.00 0.0000

hrmVA_max 0.3520834 6.823e-02 5.16 0.0000

PaO2toFiO2_mean 0.2672376 4.336e-02 6.16 0.0000

Na_mean_am 0.0549066 8.506e-03 6.45 0.0000

Mg_min_sq 0.1173220 1.815e-02 6.46 0.0000

ShockIdx_max 0.5742182 8.853e-02 6.49 0.0000

Platelets_mean_i 24.0719462 3.560e+00 6.76 0.0000

hospTime_min_sqrt 0.0057514 8.158e-04 7.05 0.0000

day_min_sq 0.0170075 2.372e-03 7.17 0.0000

jaundiceSkin_mean_la 0.1469141 2.045e-02 7.18 0.0000

CO2_mean_i 19.3845272 2.682e+00 7.23 0.0000

Lasix_max_lam 0.2523702 3.444e-02 7.33 0.0000

beta.Blocking_agent_mean_lam 0.2918077 3.923e-02 7.44 0.0000

Sympathomimetic_agent_min 0.8576883 9.254e-02 9.27 0.0000

SpO2.oor30.t_mean_sqrt 0.4059329 4.128e-02 9.83 0.0000

BUNtoCr_min_sqrt 0.2829088 2.348e-02 12.05 0.0000

Age_min_sq 0.0002601 1.495e-05 17.40 0.0000
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Figure 5-3: SDAS ROC curve (development data). AUC = the area under the curve;
n = the total number of available predictions used for curve; Missing = number of
missing predictions.

Table 5.4: SDAS Hosmer-Lemeshow H risk deciles (all days)
Died Survived

Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total
1 [0.000203,0.00335) 0.002 2 4.2 2011 2008.8 2013
2 [0.003353,0.00682) 0.005 3 9.9 2010 2003.1 2013
3 [0.006825,0.01281) 0.010 11 19.2 2002 1993.8 2013
4 [0.012812,0.02277) 0.017 24 34.8 1989 1978.2 2013
5 [0.022771,0.03971) 0.031 53 61.5 1960 1951.5 2013
6 [0.039706,0.06691) 0.052 104 104.8 1909 1908.2 2013
7 [0.066911,0.11297) 0.088 198 176.7 1815 1836.3 2013
8 [0.112972,0.20128) 0.152 324 305.3 1689 1707.7 2013
9 [0.201280,0.40232) 0.285 610 574.7 1403 1438.3 2013
10 [0.402321,0.99876] 0.634 1239 1276.9 774 736.1 2013

χ2 = 24.47, d.f. = 8; p = 0.002
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Table 5.5: SDAS Hosmer-Lemeshow C probability deciles (all days)
Died Survived

Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total
1 (0,0.1] 0.026 334 359.5 13270 13244.5 13604
2 (0.1,0.2] 0.142 376 353.1 2105 2127.9 2481
3 (0.2,0.3] 0.246 339 307.2 912 943.8 1251
4 (0.3,0.4] 0.346 274 266.1 494 501.9 768
5 (0.4,0.5] 0.447 275 272.9 335 337.1 610
6 (0.5,0.6] 0.550 215 221.5 188 181.5 403
7 (0.6,0.7] 0.651 204 216.7 129 116.3 333
8 (0.7,0.8] 0.749 196 193.9 63 65.1 259
9 (0.8,0.9] 0.849 179 191.0 46 34.0 225
10 (0.9,1] 0.950 176 186.2 20 9.8 196

χ2 = 27.08, d.f. = 8; p = 0.001

Table 5.6: SDAS bootstrapped goodness of fit statistics (development data)

Index Original Training Test Optimism Corrected Samples
Index Sample Sample Index

Dxy 0.797 0.799 0.795 0.004 0.793 150
R2 0.456 0.460 0.454 0.006 0.450 150
Intercept 0.000 0.000 -0.017 0.017 -0.017 150
Slope 1.000 1.000 0.986 0.014 0.986 150
Emax 0.000 0.000 0.006 0.006 0.006 150
D 0.279 0.282 0.277 0.004 0.275 150
U 0.000 0.000 0.000 0.000 0.000 150
Q 0.279 0.282 0.277 0.004 0.275 150
B 0.074 0.073 0.074 -0.001 0.075 150

Finally, to further validate the model, bootstrapping with 150 samples (with re-
placement) was performed to assess the model’s fit on the development data. Ta-
ble 5.6 summarizes the result of this validation procedure. The columns of this table
indicate the performance on the entire development data (“Original Index”), the per-
formance on the bootstrapped training sample (“Training Sample”), the performance
on the bootstrapped test sample (“Test Sample”), the difference between the two
bootstrapped performances (“Optimism”), and the corrected statistic (“Corrected
Index”). The level of optimism for individual statistics helps quantify the amount
overfitting in the model. The statistics listed in Table 5.6 are briefly described in
Appendix A.
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5.2.2 DASn Model

My second type of model, based on daily aggregate data, specifies a separate model
for each ICU day. These models allow us to explore the daily stationarity assumption
of the SDAS model. As noted earlier, these models are referred to as DASn, where
n indicates the day for which a particular model was trained. I followed a similar
procedure on the DASn models as I did on the SDAS model above. However, due to the
decreasing amount of data for each subsequent ICU day, I made a slight change in the
feature selection methods. First, I performed the feature selection for the first three
days as described using 5-fold cross-validation. However, with a similar number of
candidate covariates and a much smaller set of observations (limited to one day), the
greedy backward selection process often inadvertently deleted important covariates
too early. To mitigate this problem, I performed a second stage of cross-validation
using a limited set of candidate variables. This set included candidate variables
selected from the 5-fold cross-validation on days 1, 2, and 3, and variables included
in the final SDAS model (Model 5.2). This restricted the number of possible variables
to a total of 83 for each DASn model (60 variables from days 1 through 3, 35 variables
from SDAS, and an overlap of 12). As a result of the limitation on candidate variables,
DAS4 and DAS5 had a slight disadvantage which was felt to be unavoidable given their
limited data.

Appendix C shows the initial cross-validation performance of the models trained
on each of the five folds for each of the first three days. Appendix C also contains
sensitivity plots (performance as a function of number of covariates) for the second
stage cross-validation that was limited to 83 variables.

As noted, since most patients leave the ICU within a few days, the number of
patients available on later days was limited. Consequently, the Wald Z scores for co-
variates decreased as the ICU day increased. This led to more parsimonious models
for later days. Consequently, only the first five days were explored because the de-
creasing number of patients after five days made modeling difficult and comparisons
less meaningful.

Plots showing the sensitivity of model performance to the number of covariates
are given below in Figure 5-4 for each of the five daily models (days 1 through 5).
Models 5.3, 5.4,5.5,5.6, and 5.7 describe the final models. As in the SDAS model,
WBC Count, AIDS, Metastatic Carcinoma, and Hematologic Malignancy were man-
ually added to the model (if not already present). These variables were not always
helpful and were only included if their individual p-value was less less than 0.1. As a
reminder, the slope variables use units of change per minute; consequently, some of
the coefficients for slope variables (e.g., Na Slope 1680 mean in Model 5.5) are large.

To compare the sets of covariates included for different days I aligned them in
terms of ranked Wald Z scores for each day. This was done for the daily DASn models
shown in Models 5.3, 5.4, 5.5, 5.6, and 5.7. The alignment is shown in Figure 5-5.
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Figure 5-4: DASn model selection (all development data)
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Model 5.3 Final DAS1 model

Obs Max Deriv Model L.R. d.f. P C Dxy

6364 2e-06 1609.3 22 0 0.9 0.8

Gamma Tau-a R2 Brier

0.802 0.157 0.447 0.066

Coef S.E. Wald Z P

GCS_max_sq -0.0072777 8.114e-04 -8.97 0.0000

alloutput_max_sqrt -0.0262779 3.053e-03 -8.61 0.0000

GCSrdv_mean -0.3697803 4.745e-02 -7.79 0.0000

INR_mean_i -1.5899254 2.558e-01 -6.22 0.0000

pacemkr_max -0.9916790 2.072e-01 -4.79 0.0000

Insulin_mean_la -0.0685988 1.792e-02 -3.83 0.0001

LactateM_sd_i -0.0000371 1.107e-05 -3.35 0.0008

Intercept 0.1527354 6.926e-01 0.22 0.8255

MetCarcinoma_min 0.6146280 2.600e-01 2.36 0.0181

dopLg_mean_la 0.0841886 2.606e-02 3.23 0.0012

HemMalig_min 0.7508461 2.261e-01 3.32 0.0009

Lasix_max_lam 0.2567816 7.492e-02 3.43 0.0006

CO2_mean_i 15.0695137 4.323e+00 3.49 0.0005

Platelets_mean_i 26.1330763 6.959e+00 3.76 0.0002

SpO2_mean_am 0.1398357 3.270e-02 4.28 0.0000

PaO2toFiO2_mean 0.3556279 8.301e-02 4.28 0.0000

hrmVA_max 0.4476574 1.029e-01 4.35 0.0000

hospTime_min_sqrt 0.0065811 1.474e-03 4.46 0.0000

ShockIdx_mean_sq 0.6911597 1.489e-01 4.64 0.0000

Na_max_am 0.0722140 1.467e-02 4.92 0.0000

jaundiceSkin_mean_la 0.2107372 4.217e-02 5.00 0.0000

BUNtoCr_min_sqrt 0.2962917 4.515e-02 6.56 0.0000

Age_min_sq 0.0001780 2.684e-05 6.63 0.0000
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Model 5.4 Final DAS2 model

Obs Max Deriv Model L.R. d.f. P C Dxy

5179 0.002 1305.37 24 0 0.91 0.821

Gamma Tau-a R2 Brier

0.823 0.149 0.463 0.06

Coef S.E. Wald Z P

GCS_max_sq -0.0116307 8.848e-04 -13.14 0.0000

INR_max_i -2.2266609 2.892e-01 -7.70 0.0000

pacemkr_max -1.1589393 2.168e-01 -5.35 0.0000

GCSrdv_mean -0.1544221 3.357e-02 -4.60 0.0000

alloutput_min_sqrt -0.0181251 3.952e-03 -4.59 0.0000

UrineOutB_max_sqrt -0.0330005 1.069e-02 -3.09 0.0020

CV_HRrng_max -0.0083858 2.722e-03 -3.08 0.0021

Insulin_mean_la -0.0496108 1.927e-02 -2.57 0.0100

AIDS_min 0.9434952 4.231e-01 2.23 0.0257

MetCarcinoma_min 0.6917244 3.027e-01 2.28 0.0223

Intercept 1.7166820 6.954e-01 2.47 0.0136

RESP_mean_sq 0.0007393 2.853e-04 2.59 0.0096

HemMalig_min 0.8108085 2.517e-01 3.22 0.0013

hrmVA_max 0.5340514 1.611e-01 3.32 0.0009

Platelets_max_am 0.0021881 6.535e-04 3.35 0.0008

ShockIdx_mean_sq 0.6411199 1.902e-01 3.37 0.0008

hospTime_min_sqrt 0.0062001 1.745e-03 3.55 0.0004

Sympathomimetic_agent_min 0.6345344 1.762e-01 3.60 0.0003

Na_max_am 0.0682271 1.816e-02 3.76 0.0002

SpO2.oor30.t_mean_sqrt 0.3533329 9.198e-02 3.84 0.0001

jaundiceSkin_mean_la 0.1731920 4.284e-02 4.04 0.0001

beta.Blocking_agent_mean_lam 0.3351855 8.097e-02 4.14 0.0000

Amiodarone_min_am 3.0663969 6.177e-01 4.96 0.0000

Age_min_sq 0.0002075 3.311e-05 6.27 0.0000

BUNtoCr_mean_sqrt 0.3341310 4.989e-02 6.70 0.0000
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Model 5.5 Final DAS3 model

Obs Max Deriv Model L.R. d.f. P C Dxy

3526 0.003 964.81 26 0 0.904 0.809

Gamma Tau-a R2 Brier

0.811 0.169 0.463 0.069

Coef S.E. Wald Z P

GCS_max_sq -0.0118516 9.892e-04 -11.98 0.0000

alloutput_max_sqrt -0.0211350 3.189e-03 -6.63 0.0000

INR_max_i -2.1664111 3.317e-01 -6.53 0.0000

GCSrng_mean_sq -0.0067824 1.661e-03 -4.08 0.0000

svCSRU_max -0.8094515 2.598e-01 -3.12 0.0018

Platelets_Slope_1680_min -5.3871425 1.968e+00 -2.74 0.0062

pressD01_mean_am -5.2563880 1.918e+00 -2.74 0.0061

MetCarcinoma_min 0.8145271 3.686e-01 2.21 0.0271

Platelets_max_am 0.0017373 7.684e-04 2.26 0.0238

temp_mean_am 0.2003711 8.752e-02 2.29 0.0220

jaundiceSkin_mean_la 0.1106708 4.724e-02 2.34 0.0192

Intercept 3.0339128 1.256e+00 2.41 0.0157

Na_Slope_1680_mean 92.5097926 3.760e+01 2.46 0.0139

Mg_min_sq 0.1260452 5.001e-02 2.52 0.0117

InputB_mean_sqrt 0.0551695 2.000e-02 2.76 0.0058

SBPm.oor30.t_max_sq 0.0003288 1.171e-04 2.81 0.0050

beta.Blocking_agent_mean_lam 0.2764307 9.746e-02 2.84 0.0046

MBPm.pr_min_am 2.9511087 1.030e+00 2.87 0.0042

Na_max_am 0.0620932 2.148e-02 2.89 0.0038

HCTrdv_max 0.0635881 2.155e-02 2.95 0.0032

Lasix_perKg_max_sqrt 3.1703119 9.820e-01 3.23 0.0012

Sympathomimetic_agent_min 0.6961636 2.127e-01 3.27 0.0011

RESP_mean_sq 0.0010697 3.236e-04 3.31 0.0009

hospTime_min_sqrt 0.0081331 1.978e-03 4.11 0.0000

BUNtoCr_min_sqrt 0.2633152 5.732e-02 4.59 0.0000

Age_min_sq 0.0001728 3.633e-05 4.76 0.0000

SpO2.oor30.t_mean_sqrt 0.5154426 1.015e-01 5.08 0.0000
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Model 5.6 Final DAS4 model

Obs Max Deriv Model L.R. d.f. P C Dxy

2351 0.002 711.56 20 0 0.892 0.784

Gamma Tau-a R2 Brier

0.786 0.192 0.467 0.078

Coef S.E. Wald Z P

GCS_max_sq -7.201e-03 0.0012819 -5.62 0.0000

Platelets_Slope_1680_min -1.394e+01 2.8825629 -4.84 0.0000

svCSRU_max -1.470e+00 0.3113389 -4.72 0.0000

RikerSAS_mean -5.760e-01 0.1416631 -4.07 0.0000

GCSrng_mean_sq -7.241e-03 0.0017872 -4.05 0.0001

INR_mean_i -1.813e+00 0.4500497 -4.03 0.0001

pressD01_mean_am -8.687e+00 2.1800306 -3.98 0.0001

Insulin_sd_sq -3.347e+00 1.5514995 -2.16 0.0310

urineByHr_mean_sqrt -4.050e-02 0.0246355 -1.64 0.1002

Intercept 2.880e+00 1.3636750 2.11 0.0347

temp_mean_am 2.229e-01 0.0955437 2.33 0.0197

jaundiceSkin_mean_la 1.477e-01 0.0550705 2.68 0.0073

ShockIdx_max 7.627e-01 0.2664474 2.86 0.0042

MBPm.pr_min_am 3.238e+00 1.1310217 2.86 0.0042

hospTime_min_sqrt 6.546e-03 0.0022385 2.92 0.0034

Platelets_mean_i 2.962e+01 9.6453810 3.07 0.0021

CO2_mean_i 3.455e+01 8.8649392 3.90 0.0001

Sympathomimetic_agent_min 1.251e+00 0.2350043 5.32 0.0000

SpO2.oor30.t_mean_sqrt 6.704e-01 0.1255200 5.34 0.0000

BUNtoCr_mean_sqrt 3.361e-01 0.0603984 5.56 0.0000

Age_min_sq 2.402e-04 0.0000412 5.83 0.0000
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Model 5.7 Final DAS5 model

Obs Max Deriv Model L.R. d.f. P C Dxy

1690 4e-05 524.36 15 0 0.883 0.766

Gamma Tau-a R2 Brier

0.767 0.212 0.45 0.091

Coef S.E. Wald Z P

GCS_max_sq -7.754e-03 1.361e-03 -5.70 0.0000

svCSRU_max -1.633e+00 3.159e-01 -5.17 0.0000

RikerSAS_mean -7.203e-01 1.497e-01 -4.81 0.0000

Platelets_Slope_1680_min -1.313e+01 3.398e+00 -3.87 0.0001

INR_mean_i -1.865e+00 4.900e-01 -3.81 0.0001

GCSrng_mean_sq -6.519e-03 1.808e-03 -3.61 0.0003

Intercept -2.188e+00 9.628e-01 -2.27 0.0231

HemMalig_min 6.189e-01 3.600e-01 1.72 0.0856

Mg_min_sq 1.578e-01 6.055e-02 2.61 0.0092

MBPm.pr_min_am 3.467e+00 1.158e+00 2.99 0.0028

ShockIdx_max 8.850e-01 2.754e-01 3.21 0.0013

InputOtherBloodB_mean_lam 3.944e-01 1.134e-01 3.48 0.0005

BUNtoCr_mean_sqrt 2.580e-01 6.446e-02 4.00 0.0001

CO2_mean_i 4.318e+01 9.452e+00 4.57 0.0000

SpO2.oor30.t_mean_sqrt 8.058e-01 1.421e-01 5.67 0.0000

Age_min_sq 2.873e-04 4.602e-05 6.24 0.0000
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Figure 5-5: Ranked comparison of DASn inputs over days n ∈ {1, 2, 3, 4, 5}. Input names
are ranked (but equally spaced) for the positive Wald Z scores and the negative Wald Z

scores for each model. On a given day, variables absent from the previous day are prefixed
with “+”, and variables absent from the following day suffixed with “-”.
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DASn Validation (Development Data)

As with the SDAS model, we first validated the DASn models on the development
data to examine their goodness of fit. Figure 5-6 provides the ROC curves for the
DASn models. Table 5.7 shows the number of valid observations, “Obs”, the number of
missing observations (where at least one variable was missing), the number of variables
in the model, the AUC performance, and the Hosmer-Lemeshow H statistics for each
model. It also lists the d.f. used for the Hosmer-Lemeshow χ2 comparison and the
resulting p-values. The Hosmer-Lemeshow goodness of Fit tests using the deciles of
risk can be found for each of the DASn models in Appendix D.

Table 5.7: DASn model characteristics (development data)

Day Obs Missing Vars AUC H p (d.f.)
1 6364 684 22 0.900 13.03 0.043 (6)
2 5179 397 24 0.910 9.07 0.170 (6)
3 3526 182 26 0.904 8.84 0.183 (6)
4 2351 116 20 0.892 4.36 0.499 (5)
5 1690 60 15 0.883 3.59 0.732 (6)

To assess the fit, I also examined goodness of fit statistics from bootstrapping with
150 samples (with replacement) on the development data. The results are shown in
Tables 5.8, 5.9, 5.10, 5.11, and 5.12.
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Figure 5-6: DASn ROC curves (development data)
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Table 5.8: DAS1 bootstrapped goodness of fit statistics (development data). ∗not all
samples converged

Index Original Training Test Optimism Corrected Samples∗

Index Sample Sample Index
Dxy 0.800 0.802 0.797 0.006 0.794 108
R2 0.447 0.451 0.442 0.009 0.437 108
Intercept 0.000 0.000 -0.029 0.029 -0.029 108
Slope 1.000 1.000 0.980 0.020 0.980 108
Emax 0.000 0.000 0.010 0.010 0.010 108
D 0.253 0.256 0.249 0.007 0.246 108
U 0.000 0.000 0.000 0.000 0.000 108
Q 0.253 0.256 0.249 0.007 0.246 108
B 0.066 0.066 0.067 -0.001 0.067 108

Table 5.9: DAS2 bootstrapped goodness of fit statistics (development data). ∗not all
samples converged

Index Original Training Test Optimism Corrected Samples∗

Index Sample Sample Index
Dxy 0.821 0.825 0.816 0.010 0.811 126
R2 0.463 0.472 0.456 0.017 0.447 126
Intercept 0.000 0.000 -0.061 0.061 -0.061 126
Slope 1.000 1.000 0.961 0.039 0.961 126
Emax 0.000 0.000 0.020 0.020 0.020 126
D 0.252 0.258 0.247 0.011 0.241 126
U 0.000 0.000 0.000 -0.001 0.000 126
Q 0.252 0.258 0.247 0.012 0.241 126
B 0.060 0.059 0.061 -0.002 0.062 126
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Table 5.10: DAS3 bootstrapped goodness of fit statistics (development data). ∗not all
samples converged

Index Original Training Test Optimism Corrected Samples∗

Index Sample Sample Index
Dxy 0.809 0.815 0.801 0.014 0.795 149
R2 0.463 0.474 0.452 0.022 0.441 149
Intercept 0.000 0.000 -0.056 0.056 -0.056 149
Slope 1.000 1.000 0.947 0.053 0.947 149
Emax 0.000 0.000 0.022 0.022 0.022 149
D 0.273 0.280 0.266 0.014 0.259 149
U -0.001 -0.001 0.000 -0.001 0.000 149
Q 0.274 0.281 0.265 0.015 0.259 149
B 0.069 0.067 0.070 -0.003 0.072 149

Table 5.11: DAS4 bootstrapped goodness of fit statistics (development data)

Index Original Training Test Optimism Corrected Samples
Index Sample Sample Index

Dxy 0.784 0.793 0.777 0.016 0.769 150
R2 0.467 0.480 0.456 0.024 0.443 150
Intercept 0.000 0.000 -0.068 0.068 -0.068 150
Slope 1.000 1.000 0.943 0.057 0.943 150
Emax 0.000 0.000 0.025 0.025 0.025 150
D 0.302 0.313 0.294 0.019 0.284 150
U -0.001 -0.001 0.001 -0.002 0.001 150
Q 0.303 0.313 0.293 0.020 0.283 150
B 0.078 0.077 0.080 -0.003 0.082 150

Table 5.12: DAS5 bootstrapped goodness of fit statistics (development data)

Index Original Training Test Optimism Corrected Samples
Index Sample Sample Index

Dxy 0.766 0.770 0.759 0.011 0.755 150
R2 0.450 0.458 0.440 0.018 0.431 150
Intercept 0.000 0.000 -0.046 0.046 -0.046 150
Slope 1.000 1.000 0.955 0.045 0.955 150
Emax 0.000 0.000 0.018 0.018 0.018 150
D 0.310 0.318 0.302 0.016 0.294 150
U -0.001 -0.001 0.001 -0.002 0.001 150
Q 0.311 0.319 0.301 0.018 0.293 150
B 0.091 0.090 0.093 -0.002 0.094 150
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5.2.3 Held-out Validation

The last step for the daily models was to validate them on separate validation data.
To evaluate discrimination performance, the ROC curves for the SDAS model (on all
days, and on individual days 1 through 5) are provided in Figure 5-7. The ROC
curves for the individual DASn models (days 1 through 5) are provided in Figure 5-8.

The H calibration statistics for these models on the held-out validation data are
listed in Table 5.13. For each model and day, all predictions available were used for
the calibration calculation (i.e., the groups of patients were not matched between
models). Performance values for matched patient groups are shown later in this
chapter when I compare models directly with each other.

Table 5.13: Hosmer-Lemeshow calibration summaries for SDAS and DASn (validation
data)

Model Days H p (d.f.)
SDAS all 51.10 6.70e-08 (9)
SDAS 1 14.39 0.045 (7)
SDAS 2 15.31 0.018 (6)
SDAS 3 5.01 0.542 (6)
SDAS 4 10.37 0.110 (6)
SDAS 5 7.55 0.183 (5)
DASn 1 24.84 0.001 (7)
DASn 2 17.52 0.008 (6)
DASn 3 11.03 0.087 (6)
DASn 4 11.91 0.064 (6)
DASn 5 6.65 0.248 (5)

Table 5.14 shows the individual deciles for the SDAS mortality predictions on ICU
days 1 through 7. Table 5.15 shows the individual deciles for DAS1 on the first ICU
day.

The Hosmer-Lemeshow test is often sensitive to the choice of binning used for the
predictions. An alternative to the Hosmer-Lemeshow test is to plot the actual prob-
ability versus the predicted probability. Figures 5-9, 5-10, 5-11, 5-12 and 5-13 show
calibration plots for SDAS and DASn for days 1 through 5. For comparison with the
development data bootstrapped statistics in Tables 5.6, 5.8, 5.9, 5.10, 5.11, and 5.12,
the uncorrected probabilities were used. The corrected slope and intercept in these
tables could be applied to shrink the probabilities and improve the calibration per-
formance — although examination of Figures 5-9, 5-10, 5-11, 5-12 and 5-13, indicates
that the correction would still be optimistic.

In the figures, the risk deciles from the Hosmer-Lemeshow tests are represented
by triangles (referred to as “grouped observations” in the legends). In addition to
the logistic fit between the actual and the predicted probabilities (dashed line), the
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Figure 5-7: SDAS ROC curves (validation data)
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Figure 5-8: DASn ROC curves (validation data)
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Table 5.14: SDAS Hosmer-Lemeshow H deciles of risk (validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total
1-2 [0.000290,0.00623) 0.003 3 5.6 1683 1680.4 1686
3 [0.006233,0.01158) 0.009 7 7.2 836 835.8 843
4 [0.011578,0.02054) 0.016 19 13.3 824 829.7 843
5 [0.020540,0.03527) 0.028 28 23.2 814 818.8 842
6 [0.035274,0.05916) 0.046 44 38.8 799 804.2 843
7 [0.059156,0.09543) 0.076 80 63.8 763 779.2 843
8 [0.095427,0.17333) 0.130 136 109.7 707 733.3 843
9 [0.173330,0.37287) 0.256 233 216.2 610 626.8 843
10 [0.372869,0.99862] 0.635 456 535.1 386 306.9 842

χ2 = 51.10, d.f. = 9; p = 0.000

Table 5.15: DAS1 Hosmer-Lemeshow H deciles of risk (validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1-4 [9.42e-05,0.01731) 0.006 7 6.6 1077 1077.4 1084
5 [1.73e-02,0.02830) 0.023 8 6.2 263 264.8 271
6 [2.83e-02,0.04404) 0.036 15 9.6 256 261.4 271
7 [4.40e-02,0.07342) 0.057 18 15.5 253 255.5 271
8 [7.34e-02,0.12691) 0.097 42 26.3 229 244.7 271
9 [1.27e-01,0.28972) 0.191 66 51.8 205 219.2 271
10 [2.90e-01,0.99931] 0.553 134 149.8 137 121.2 271

χ2 = 22.96, d.f. = 7; p = 0.002
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calibration plots also provide a nonparametric fit that is shown as a dotted line.
The relative frequencies for each predicted probability are indicated by histogram
along the bottom. Further details about the statistics that are listed can be found in
Appendix A.
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Figure 5-9: Calibration plots for SDAS, SDAS day 1, and DAS1 (validation data). The
relative frequencies for each predicted probability are indicated by the bars along the
x-axis.
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Figure 5-10: Calibration plots for SDAS day 2 and DAS2 (validation data). The relative
frequencies for each predicted probability are indicated by the bars along the x-axis.
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Figure 5-11: Calibration plots for SDAS day 3 and DAS3 (validation data). The relative
frequencies for each predicted probability are indicated by the bars along the x-axis.
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Figure 5-12: Calibration plots for SDAS day 4 and DAS4 (validation data). The relative
frequencies for each predicted probability are indicated by the bars along the x-axis.
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Figure 5-13: Calibration plots for SDAS day 5 and DAS5 (validation data). The relative
frequencies for each predicted probability are indicated by the bars along the x-axis.
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5.3 RAS: Real-time Acuity Score

5.3.1 RAS Model

The third model type that I examined was a real-time acuity score (RAS) that used all
observations available in the final dataset (see Table 5.2). After filtering, univariate
analysis, and collinearity analysis, 200 variables remained for model training. Using
five-fold cross-validation, five initial models were trained. Using backward elimina-
tion, Figure 5-14 shows the performance for new models, on their respective validation
folds, as the AIC threshold was increased (and variables were dropped from the mod-
els). The top 60 variables from each of the best four models (the model for fold 3,
with its weak validation performance, was excluded) were combined to train a final
model using all of the development data.2 The AUC performance of models built
using this final feature set, as the number of inputs changes, is shown in Figure 5-15.

From Figure 5-15, it appears that the improvement in performance by using more
than 50 variables is negligible. Using the top 50 variables, a number of manual refine-
ments were made. First, as with the SDAS and DASn models, Hematologic Malignancy,
Metastatic Carcinoma, AIDS, and WBC count were manually added to the model
(they each had a significant contribution). Next, a number of redundant features were
eliminated: (1) Dopamine sqrt, (2) Dobutamine perKg sqrt, (3) 24hUrOut sqrt,
(4) SBPmThreshCnt sqrt, (5) SBPmThreshCntF sqrt, (6) totIV, (7) 24hBal,
(8) SpO2CritEvnts.24h la, (9) impairedSkin, and (10) LOSBalrdv. After these
variables were removed, the ventLen sqrt was also removed due to a low significance
(Wald Z = -6.09). The final model is described in Model 5.8. These adjustments had
a negligible effect on the performance of the RAS model on the development data.

RAS Validation (Development Data)

The ROC curves for the development data are shown in Figure 5-16 on page 102. With
RAS a number of summary functions are available to aggregate multiple predictions.
Figure 5-16 shows three performance measures: (1) using all of the predictions (“All
Patient Predictions”), (2) using the mean prediction over an entire patient’s stay, and
(3) using the mean daily prediction for a given day (days 1 through 7).

Table 5.16 lists the H and C statistics for each of the performance measures shown
in Figure 5-16.

To further assess the fit, I also examined goodness of fit statistics from bootstrap-
ping with 150 samples (with replacement) on the development data. The results are
shown in Table 5.17.

2The cross-validation folds were helpful in understanding the risk of overfitting. Fold 3 from
Figure 5-14, for example, fit the training data quite well but generalized to the validation data
poorly.
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Figure 5-14: RAS model selection. Sensitivity to number of covariates on each cross-
validation fold
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Model 5.8 Final RAS model
Obs Max Deriv Model L.R. d.f. P C Dxy

528850 2e-07 148516.3 43 0 0.885 0.769

Gamma Tau-a R2 Brier

0.771 0.19 0.436 0.084

Coef S.E. Wald Z P

GCS_sq -6.448e-03 8.410e-05 -76.68 0

Intercept -3.981e+00 6.471e-02 -61.51 0

svCSRU -1.198e+00 2.095e-02 -57.19 0

pacemkr -9.094e-01 2.019e-02 -45.04 0

alloutput_la -9.355e-02 2.437e-03 -38.39 0

pressD01 -4.026e-01 1.140e-02 -35.32 0

Platelets_Slope_1680 -4.809e+00 1.670e-01 -28.80 0

Insulin -3.085e-01 1.382e-02 -22.33 0

CV_HRrng_sqrt -5.498e-02 2.974e-03 -18.49 0

GCSrng_am -4.579e-02 2.499e-03 -18.32 0

MetCarcinoma 1.583e-01 3.246e-02 4.88 0

SBPm.oor120.t 1.292e-03 1.897e-04 6.81 0

PulsePres_i 6.265e+00 6.049e-01 10.36 0

admitWt_i 1.837e+01 1.421e+00 12.93 0

AIDS 5.078e-01 3.726e-02 13.63 0

RikerSAS_lam 1.215e-01 7.975e-03 15.23 0

Sandostatin_am 1.207e-02 6.423e-04 18.80 0

ShockIdx 4.788e-01 2.472e-02 19.37 0

temp_lam 9.002e-02 4.414e-03 20.40 0

cumPressorTime_am 9.326e-05 4.383e-06 21.28 0

INRrng 1.066e-01 4.958e-03 21.49 0

hrmVA_sqrt 7.107e-01 3.282e-02 21.66 0

CO2_am 3.167e-02 1.415e-03 22.38 0

WBC_am 2.045e-02 9.110e-04 22.44 0

Nondepolarizing_agent 7.739e-01 3.393e-02 22.81 0

PAPmeanM 3.213e-01 1.315e-02 24.44 0

Platelets_am 1.590e-03 6.318e-05 25.17 0

RESP 2.352e-02 8.055e-04 29.21 0

Lasix_perKg_lam 2.022e-01 6.741e-03 29.99 0

urineByHr.oor120.t 3.248e-03 1.072e-04 30.28 0

Antiarrhythmic_agent 5.823e-01 1.919e-02 30.35 0

Na_am 4.691e-02 1.530e-03 30.66 0

HemMalig 6.915e-01 2.240e-02 30.87 0

beta.Blocking_agent 1.037e+00 3.350e-02 30.96 0

SpO2.oor120.t_sqrt 9.728e-02 2.990e-03 32.54 0

PaO2toFiO2 2.257e-01 6.185e-03 36.49 0

hospTime_sqrt 5.970e-03 1.553e-04 38.44 0

index 1.022e-04 2.519e-06 40.57 0

jaundiceSkin 1.606e+00 3.770e-02 42.60 0

pressorSum.std_sqrt 5.373e-01 1.094e-02 49.11 0

Creatinine_la 4.255e-01 8.458e-03 50.31 0

INR_la 1.010e+00 1.626e-02 62.11 0

BUNtoCr_sqrt 3.065e-01 4.414e-03 69.45 0

Age_sq 2.640e-04 2.892e-06 91.28 0
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Table 5.16: RAS Hosmer-Lemeshow calibration (development data)

Day(s) Summary Func. H p (d.f.) C p (d.f.) n
all none 341.6 0 (8) 371.6 0.000 (8) 528850
all mean 44.4 1.75e-07 (7) 51.45 7.49e-09 (7) 5977
1 mean 16.7 0.019 (7) 10.1 0.185 (7) 5719
2 mean 4.42 0.620 (6) 7.25 0.404 (7) 4975
3 mean 6.60 0.359 (6) 12.3 0.091 (7) 3363
4 mean 18.4 0.005 (6) 16.2 0.013 (6) 2248
5 mean 12.5 0.052 (6) 14.3 0.026 (6) 1604
6 mean 15.2 0.019 (6) 17.6 0.007 (6) 1188
7 mean 17.6 0.007 (6) 16.2 0.013 (6) 938

Table 5.17: RAS bootstrapped goodness of fit statistics (development data)

Index Original Training Test Optimism Corrected Samples
Index Sample Sample Index

Dxy 0.7694 0.7694 0.7693 0.0001 0.7693 150
R2 0.4358 0.4359 0.4357 0.0002 0.4356 150
Intercept 0.0000 0.0000 -0.0004 0.0004 -0.0004 150
Slope 1.0000 1.0000 0.9998 0.0002 0.9998 150
Emax 0.0000 0.0000 0.0001 0.0001 0.0001 150
D 0.2808 0.2809 0.2807 0.0002 0.2806 150
U 0.0000 0.0000 0.0000 0.0000 0.0000 150
Q 0.2808 0.2809 0.2807 0.0002 0.2806 150
B 0.0838 0.0839 0.0838 0.0000 0.0838 150
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Figure 5-15: RAS model selection (all development data)

5.3.2 RAS Validation

The ROC curves for the RAS model on the validation data are provided in Figure 5-17.
The H and C statistics for these performance evaluations are listed in Table 5.18.
Details of the H statistic calculation using the mean prediction for each patient
(second row in Table 5.18) are provided in Table 5.19.

Finally, calibration plots for RAS, using all predictions, the mean prediction, and
the mean prediction from day 1, are provided in Figure 5-18 on page 105. The
calibration plots for the mean probabilities on days 2, 3, 4, and 5 are provided in

Table 5.18: RAS Hosmer-Lemeshow calibration (validation data)

Day(s) Summary Func. H p (d.f.) C p (d.f.) n
all none 2369 0 (10) 3284 0 (10) 218883
all mean 13.2 0.067 (7) 17.3 0.027 (8) 2534
1 mean 22.4 0.004 (8) 14.3 0.073 (8) 2428
2 mean 19.2 0.008 (7) 29.0 3.22e-04 (8) 2083
3 mean 13.1 0.041 (6) 17.3 0.028 (8) 1378
4 mean 10.4 0.108 (6) 11.1 0.195 (8) 925
5 mean 8.63 0.196 (6) 11.6 0.116 (7) 652
6 mean 6.30 0.390 (6) 8.60 0.377 (8) 495
7 mean 23.3 7.07e-04 (6) 24.5 9.33e-04 (7) 401
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Figure 5-16: RAS ROC curves (development data)
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Figure 5-17: RAS ROC curves (validation data)
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Table 5.19: RAS H statistic deciles of risk using mean prediction for each patient
(validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total
1-4 [0.000493,0.01802) 0.008 4 7.7 1010 1006.3 1014
5 [0.018023,0.02904) 0.023 3 5.8 250 247.2 253
6 [0.029036,0.04700) 0.038 7 9.6 247 244.4 254
7 [0.046996,0.08465) 0.065 15 16.3 238 236.7 253
8 [0.084650,0.14648) 0.111 27 28.2 227 225.8 254
9 [0.146479,0.29485) 0.208 71 52.7 182 200.3 253
10 [0.294848,0.98298] 0.536 144 135.6 109 117.4 253

χ2 = 13.22, d.f. = 7; p = 0.067

Figures 5-19 and 5-20 on pages 106 and 107. As previously done with SDAS and
DASn, the predictions from RAS are uncorrected; one could expect slightly improved
calibration performance if the corrected predictions, using the slope and intercept
values found in Table 5.17, were used.
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Figure 5-18: RAS calibration plots (validation data). The relative frequencies for each
predicted probability are indicated by the bars along the x-axis.
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Figure 5-19: RAS calibration plots, days 2 and 3 (validation data). The relative
frequencies for each predicted probability are indicated by the bars along the x-axis.



5.3. RAS: REAL-TIME ACUITY SCORE 107

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted Probability

A
ct

ua
l P

ro
ba

bi
lit

y

Ideal
Logistic calibration
Nonparametric
Grouped observations

Dxy      
C (ROC)  
R2       
D        
U        
Q        
Brier    
Intercept
Slope    
Emax     

 0.720
 0.860
 0.373
 0.234
 0.003
 0.231
 0.092

−0.050
 0.887
 0.035

RAS Mean Day 4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted Probability

A
ct

ua
l P

ro
ba

bi
lit

y

Ideal
Logistic calibration
Nonparametric
Grouped observations

Dxy      
C (ROC)  
R2       
D        
U        
Q        
Brier    
Intercept
Slope    
Emax     

 0.695
 0.848
 0.363
 0.245
 0.004
 0.240
 0.108

−0.175
 0.845
 0.070

RAS Mean Day 5

Figure 5-20: RAS calibration plots, days 4 and 5 (validation data). The relative
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5.4 SAPSII: Comparison Model

For comparison purposes, a customized SAPS II mortality prediction (described in
Chapter 4) was used. We refer to our customized SAPS II score as SAPSIIa.

The SAPSIIa model for each day can be described by looking at the Xβ terms in
the logistic regression equation,

P (Y = 1) =
1

1 + exp(−Xβ)
.

For each day, n ∈ {1, 2, 3, 4, 5}, the Xβn terms are given below:

Xβ̂1 = −4.331 + 0.0422 SAPSII + 0.301 ln(SAPSII + 1) − 2.714 CSRU

+0.204 MICU

Xβ̂2 = −11.113 + 0.00627 SAPSII + 2.579 ln(SAPSII + 1) − 1.921 CSRU

+0.353 MICU

Xβ̂3 = −9.808 + 0.0143 SAPSII + 2.203 ln(SAPSII + 1) − 2.051 CSRU

+0.241 MICU

Xβ̂4 = −7.832 + 0.0379 SAPSII + 1.468 ln(SAPSII + 1) − 2.123 CSRU

+0.0657 MICU

Xβ̂5 = −9.209 + 0.0201 SAPSII + 2.066 ln(SAPSII + 1) − 1.918 CSRU

+0.00737 MICU.

In contrast, the Xβ terms first published by Le Gall et al. [44] were,

logit = Xβ = −7.7631 + 0.0737 SAPSII + 0.9971 ln(SAPSII + 1).

By looking at the equations, the CSRU and MICU variables seem to have captured
the type of admission variable that they were intended to capture. The type of admis-
sion field in SAPS II has three different values. These values, along with the expected
proxy equivalents, are as follows: (1) 0 points for Scheduled Surgery (CSRU=1), (2) 6
points for Medical Admission (MICU=1), and (3) 7 points for Unscheduled Surgery
(CSRU=0 and MICU=0). When CSRU=1, the logit is reduced considerably which is
consistent with the scheduled surgery input. On the other hand, when MICU=1, the
risk is increased by a small amount. This is not expected, and indicates that in the
case where both CSRU and MICU are false (0), the patient falls in a risk bin that is
not quite as severe as might be explained by the unscheduled surgery contribution.
At the same time, however, the relative influence of the CSRU variable is much higher
than the type of admission variable in SAPS II. In my customized version of SAPS II,
the CSRU variable is the most important feature observed with a Wald Z score that
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Table 5.20: SAPSIIa calibration statistics
Development Data Validation Data

Day H p (d.f.) C p (d.f.) n H p (d.f.) C p (d.f.) n
1 11.2 0.345 (10) 8.01 0.432 (8) 6008 15.2 0.085 (9) 8.04 0.329 (7) 2598
2 3.88 0.868 (8) 4.02 0.855 (8) 5247 9.61 0.212 (7) 6.06 0.532 (7) 2207
3 5.18 0.627 (8) 0.513 0.999 (7) 3512 5.98 0.542 (7) 2.53 0.925 (7) 1440
4 3.90 0.866 (8) 6.79 0.560 (8) 2321 3.53 0.831 (7) 7.49 0.278 (6) 941
5 7.40 0.494 (8) 7.17 0.518 (8) 1620 7.21 0.408 (7) 8.07 0.326 (7) 668

Table 5.21: SAPSIIa bootstrapped goodness of fit statistics, day 1 (dev data)

Index Original Training Test Optimism Corrected Samples
Index Sample Sample Index

Dxy 0.593 0.592 0.592 0.001 0.592 150
R2 0.238 0.239 0.237 0.002 0.237 150
Intercept 0.000 0.000 -0.005 0.005 -0.005 150
Slope 1.000 1.000 0.997 0.003 0.997 150
Emax 0.000 0.000 0.001 0.001 0.001 150
D 0.133 0.134 0.133 0.001 0.132 150
U 0.000 0.000 0.000 0.000 0.000 150
Q 0.134 0.134 0.133 0.001 0.132 150
B 0.090 0.090 0.091 0.000 0.091 150

is large for all five models (more than twice as large as the contribution from SAPSII
or ln(SAPSII+1)). The Wald Z score for the MICU variable is much less significant.
The contribution from MICU is strongest on day 2 where its Wald Z score (Z = 3.25)
is not far behind the better of the two SAPSII inputs, ln(SAPSII+1) (Z = 4.85).
Considering the improvement offered by this customization, the customized SAPS II
that I used for my comparison is expected to perform favorably to the original SAPS
II with the type of admission variable, but we are unable to validate this expectation
with our available data.

Figure 5-21 shows the ROC curves for the five SAPSIIa models. The figure shows
the performance of SAPSIIa on both the development data and the validation data.
The development data was not used to define the weights of the individual SAPS II
components but it was used to fit the weights for each logistic regression equation.
The cases where a SAPSIIa prediction was unavailable came from episodes where a
patient was mechanically ventilated but no value for PaO2:FiO2 could be found. The
Hosmer-Lemeshow calibration statistics for SAPSIIa are listed in Table 5.20.

As done with my previous models, bootstrapping with 150 samples (with replace-
ment) was performed on the development data to validate the goodness of fit for the
SAPSIIa models. Tables 5.21, 5.22, 5.23, 5.24, and 5.25 show these results for days 1
through 5.
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Figure 5-21: SAPSIIa ROC curves
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Table 5.22: SAPSIIa bootstrapped goodness of fit statistics, day 2 (dev data)

Index Original Training Test Optimism Corrected Samples
Index Sample Sample Index

Dxy 0.714 0.714 0.713 0.001 0.713 150
R2 0.328 0.329 0.327 0.002 0.327 150
Intercept 0.000 0.000 -0.012 0.012 -0.012 150
Slope 1.000 1.000 0.996 0.004 0.996 150
Emax 0.000 0.000 0.003 0.003 0.003 150
D 0.171 0.172 0.171 0.001 0.170 150
U 0.000 0.000 0.000 0.000 0.000 150
Q 0.172 0.172 0.171 0.001 0.170 150
B 0.072 0.071 0.072 0.000 0.072 150

Table 5.23: SAPSIIa bootstrapped goodness of fit statistics, day 3 (dev data)

Index Original Training Test Optimism Corrected Samples
Index Sample Sample Index

Dxy 0.689 0.693 0.689 0.005 0.684 150
R2 0.313 0.317 0.311 0.006 0.307 150
Intercept 0.000 0.000 -0.024 0.024 -0.024 150
Slope 1.000 1.000 0.984 0.016 0.984 150
Emax 0.000 0.000 0.008 0.008 0.008 150
D 0.174 0.177 0.173 0.004 0.171 150
U -0.001 -0.001 0.000 -0.001 0.000 150
Q 0.175 0.178 0.173 0.004 0.170 150
B 0.082 0.082 0.083 -0.001 0.083 150

Table 5.24: SAPSIIa bootstrapped goodness of fit statistics, day 4 (dev data)

Index Original Training Test Optimism Corrected Samples
Index Sample Sample Index

Dxy 0.683 0.686 0.682 0.004 0.679 150
R2 0.326 0.329 0.324 0.006 0.320 150
Intercept 0.000 0.000 -0.010 0.010 -0.010 150
Slope 1.000 1.000 0.985 0.015 0.985 150
Emax 0.000 0.000 0.005 0.005 0.005 150
D 0.198 0.201 0.197 0.003 0.195 150
U -0.001 -0.001 0.000 -0.001 0.000 150
Q 0.199 0.201 0.197 0.004 0.195 150
B 0.094 0.093 0.094 -0.001 0.095 150
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Table 5.25: SAPSIIa bootstrapped goodness of fit statistics, day 5 (dev data)

Index Original Training Test Optimism Corrected Samples
Index Sample Sample Index

Dxy 0.660 0.665 0.659 0.006 0.654 150
R2 0.321 0.327 0.318 0.009 0.312 150
Intercept 0.000 0.000 -0.032 0.032 -0.032 150
Slope 1.000 1.000 0.977 0.023 0.977 150
Emax 0.000 0.000 0.011 0.011 0.011 150
D 0.208 0.213 0.206 0.007 0.202 150
U -0.001 -0.001 0.000 -0.001 0.000 150
Q 0.210 0.214 0.206 0.008 0.201 150
B 0.107 0.106 0.107 -0.001 0.108 150

The calibration plots for SAPSIIa on the validation data (days 1 through 5) are
shown in Figures 5-22 and 5-23. The uncorrected predictions from my models were
used in these plots.

Finally, the performance of the SAPS II score without the CSRU and MICU additions
was evaluated. With this configuration, the performance was considerably worse. For
example, day 1 validation performance dropped from AUC=0.781 to AUC=0.661.
The calibration on day 1 without the service-type inputs also suffered precipitously,
dropping from p = 0.085 (d.f.=9) to p = 0.004 (d.f.=10). On day 3, where the two
service-type inputs had much less relative importance, the performance decrease was
less, with the AUC dropping from AUC=0.853 to AUC=0.819. The calibration for
day 3 changed from p = 0.542 (d.f.=7) in the original model to p = 0.146 (d.f.=8)
without the service-type inputs.

To put these results in context, a model trained with only CSRU and MICU as
covariates resulted in an AUC of 0.673 on the validation data for day 1. Using 3 risk
bins (only three unique probability outputs are available with the two binary inputs
because a patient does not receive the CSRU and MICU services simultaneously), the
calibration of the model was also good, with p = 0.740 (d.f.=3). In essence, the
performance of SAPS II (without type of admission) on day 1 was inferior to a model
that uses only the CSRU and MICU service inputs.

5.5 Direct Model Comparisons

A number of direct comparisons between the models described above were performed.
First, we compared the models on each of the first 5 days in the ICU, with a decreasing
patient count on each day as some patients leave or expire. This was done by only
including patients with valid predictions available from each model for a specific
day. A second type of comparison involved looking at the performance of the models
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Figure 5-22: SAPSIIa calibration plots, days 1 through 3. The relative frequencies for
each predicted probability are indicated by the bars along the x-axis.
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Figure 5-23: SAPSIIa calibration plots, days 4 and 5. The relative frequencies for
each predicted probability are indicated by the bars along the x-axis.
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Table 5.26: SAPS II customization AUC performance (validation data). ∗no type of
admission information. ∗∗only three different risk predictions were available using the
two binary variables

SAPSIIa SAPS II∗ CSRU and MICU

Day AUC H AUC H AUC H∗∗

1 0.781 0.085 (9) 0.661 0.004 (10) 0.673 0.740 (3)
2 0.837 0.212 (7) 0.807 0.408 (8) 0.687 0.570 (3)
3 0.853 0.542 (7) 0.819 0.146 (8) 0.703 0.669 (3)
4 0.832 0.831 (7) 0.785 0.341 (8) 0.707 0.427 (3)
5 0.825 0.408 (7) 0.775 0.515 (8) 0.677 0.615 (3)

on patients that stayed in the ICU at least five days and had predictions available
from each model for every day. For the first comparison, the AUC and calibration
statistics were examined using the development data and the validation data. For the
second comparison, I only report the AUC performance over time for the two datasets
without calibration information.3 In order to better understand the differences in
AUC between models, I also provide a number of significance values derived using
DeLong’s method for comparing AUC areas [42].

The number of predictions available for the validation data using each model over
the first five ICU days is provided in Table 5.27. This table also indicates the size of
the intersection between all of these patients.

Table 5.27: Model coverage (i.e., number of patients with predictions) on validation
data

Day SDAS DASn RAS SAPSIIa Intersection
1 2434 2710 2428 2598 1954
2 2108 2177 2083 2207 1849
3 1389 1427 1378 1440 1245
4 928 976 925 941 836
5 662 696 652 668 596

Using the development data, Figure 5-24 shows the AUC for the four model types
over the first five ICU days. The Hosmer-Lemeshow H statistics for these daily com-
parisons are provided in Table 5.28. Similarly, using the validation data, Figure 5-25
shows the AUC for the four model types over the first five ICU days. The Hosmer-
Lemeshow H statistics for these daily comparisons are provided in Table 5.29.

Finally, Figures 5-26 and 5-26 plot the AUC for the first 5 ICU days when the
validation and development patients were limited to patients who stay in the ICU for
at least 5 days.

3The Hosmer-Lemeshow test was difficult to calculate for this smaller set of patients. In order
to get reasonable expected frequencies, it would have been necessary to collapse most of the deciles.
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Figure 5-24: AUC versus day, first 5 ICU days (development data)
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Figure 5-25: AUC versus day, first 5 ICU days (validation data). The 95% confidence
intervals are shown for the RAS and SAPSIIa performances.
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Figure 5-26: AUC versus day, patients with ICU stays ≥ 5 days (development data)
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The 95% confidence intervals are shown for the RAS performances.
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Table 5.28: Calibration statistics for daily model comparisons (development data)

RAS SDAS DASn SAPSIIa

Day H p (d.f.) H p (d.f.) H p (d.f.) H p (d.f.) n
1 13.9 0.031 (6) 13.6 0.035 (6) 8.31 0.216 (6) 34.6 0.000 (9) 4492
2 5.00 0.544 (6) 5.36 0.498 (6) 7.05 0.317 (6) 4.04 0.854 (8) 4318
3 4.29 0.637 (6) 5.59 0.471 (6) 8.34 0.139 (5) 5.31 0.724 (8) 3066
4 20.3 0.002 (6) 7.61 0.179 (5) 7.29 0.200 (5) 7.17 0.724 (8) 2051
5 9.64 0.141 (6) 6.23 0.285 (5) 2.20 0.821 (5) 6.33 0.610 (8) 1464

Table 5.29: Calibration statistics for daily model comparisons (validation data)

RAS SDAS DASn SAPSIIa

Day H p (d.f.) H p (d.f.) H p (d.f.) H p (d.f.) n
1 22.4 0.002 (7) 14.4 0.045 (7) 24.8 0.001 (7) 13.8 0.130 (9) 1954
2 17.9 0.006 (6) 15.3 0.018 (6) 17.5 0.008 (6) 6.90 0.439 (7) 1849
3 12.0 0.063 (6) 5.01 0.542 (6) 11.0 0.087 (6) 4.13 0.765 (7) 1245
4 10.7 0.097 (6) 10.4 0.110 (6) 11.9 0.064 (6) 3.01 0.884 (7) 836
5 9.58 0.143 (6) 7.55 0.183 (5) 6.65 0.248 (5) 8.70 0.275 (7) 596

Using DeLong’s method, I made a number of comparisons between the AUC values
in Figures 5-24, 5-25, 5-26, and 5-27. These comparisons focused on the relative
performance of RAS, so I compared the RAS AUC performance against the SAPSIIa

AUC performance and against the best performing daily model (SDAS or DASn). The
results are summarized in Tables 5.30 and 5.31.

Table 5.30: RAS DeLong AUC significance tests (days 1 through 5)

Development Data Validation Data
Day p (vs SAPSIIa) p (vs best model) p (vs SAPSIIa) p (vs best model)
1 0.0000 0.2899 0.0000 0.6888
2 0.0000 0.1505 0.0005 0.6986
3 0.0000 0.0788 0.0437 0.4692
4 0.0000 0.3216 0.0128 0.6761
5 0.0000 0.5122 0.0312 0.6032

5.6 Discussion

This chapter presented three types of mortality models based on the methodology
described in Chapter 4. For comparison, a customized SAPS II model was also
presented. While the differences between my models were generally small, there were
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Table 5.31: RAS DeLong AUC significance tests (5+ day patients)

Development Data Validation Data
Day p (vs SAPSIIa) p (vs best model) p (vs SAPSIIa) p (vs best model)
1 0.0102 0.6596 0.0654 0.8988
2 0.0002 0.6411 0.0565 0.7384
3 0.0000 0.3754 0.1857 0.7405
4 0.0005 0.4480 0.0572 0.7661
5 0.0003 0.3910 0.0860 0.4582

a number of noteworthy attributes for each individual model type that I will discuss
in order.

5.6.1 SDAS

Many of the 35 variables ultimately included in the SDAS model were expected. There
were, however, a number of interesting exceptions. In addition to the important fea-
tures included in SAPS II (e.g., GCS, Age, PaO2:FiO2, etc), a number of new features
were included, such as INR (tied for the second largest absolute Wald Z score) and
BUN:Creatinine (forth largest absolute Wald Z score). Clinically, the INR variable
serves as an indicator of blood coagulation and it is important in assessing liver func-
tionality, atrial fibrillation, and stroke risk. The BUN-to-Creatinine ratio helps indi-
cate pre-renal failure, dehydration, and gastrointestinal bleeding. A number of more
computationally intensive variables were included by our variable selection method
for SDAS. The most important of these was the SpO2.oor30.t variable that tracks the
amount of time that SpO2 was out of range (< 90%) within the past 30 minutes. An-
other important derived variable was the Platelets Slope 28hr min. An increased
level of Platelets was found to decrease risk of death. At first it seemed that the inclu-
sion of the Platelets features might be a result of confounding with the INR variable
(platelets increase blood coagulation), but manual removal of INR resulted in a slight
increase in significance for both Platelets mean i and Platelets Slope 28hr min.

It was also interesting to note the absence of several simple variables such as
Heart Rate (HR) and Systolic BP (SBP). In addition to the individual variability
of these variables, we have shown previously that they are generally undersampled
and sometimes miss important episodes [32, 33]. In their place, three variables were
included that summarized HR and SBP: (1) HR range (HRrng max), (2) ShockIndx

(HR divided by SBP), and (3) the ratio of mean blood pressure on pressors to mean
blood pressure off pressors (MBPm.pr min am). Each of the HR and SBP summary
variables, however, still had a minor role in the SDAS model.

Looking at the performance on the development data, the SDAS model had a
strong fit. The AUC was 0.898 for all days and 0.890 for day 1. The H statistic for
the development data was not strong, but from looking at the calibration statistics
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from in Table 5.6, the weakness appears to be from the choice of cut-points for the
Hosmer-Lemeshow statistic. The statistics in Table 5.6 show that the overfitting was
minimal and the corrected slope between predicted probability and actual probability
was 0.986 (with a corrected intercept of -0.017) and the maximum calibration error,
Emax, had a low value of 0.006.

On the validation data, the SDAS AUC was 0.876 for all days and 0.870 for day 1.
The calibration, however, was weaker with an H = 51.1 (d.f.=9) and an Emax = 0.094
(all days), and an H = 14.4 (d.f.=7) and an Emax = 0.046 looking only at day 1. As
Table 5.14 and 5-9 show, most all of this weakness was from the tenth decile, with
a large probability range between 0.3729 and 0.9986. In this decile, the expected
number of deaths was 535 while only 456 deaths were observed. The other deciles
demonstrated reasonable calibration.

5.6.2 DASn

The daily acuity model, DASn, explored using a different logistic model for each ICU
day. While the specific set of variables used for the model between days varied, the
significant inputs remained similar with consistent importance placed on GCS, INR,
Age, BUN:Creatinine and SpO2.oor30.t.

Some important variables only appeared in one or two of the models. Amiodarone,
for example, only appeared in DAS2 (but has the third largest Z score). This also
provided an example of the stratifying effect that many interventions have: while
amiodarone was being given to help patients, the act of administering it indicated
that the patient was having heart arrhythmias (and was therefore at a higher risk for
mortality). In this case Amiodarone was an independent predictor of mortality from
the ordinal ventricular arrhythmia variable (hrmVA) which was included in DAS1 and
DAS2.

The performance of DASn on the development data was quite strong. The AUC
was ≥ 0.90 for the first three ICU days and only slightly less for days 4 and 5. The
calibration was also consistently strong as shown by the H statistics in Table 5.7 and
the bootstrapped statistics in Tables 5.8, 5.9, 5.10, 5.11, and 5.12.

On the validation data, the DASn model did not perform as well. The AUC
performance was reasonable with AUC ≥ 0.870 for the first four days, and AUC=0.864
for day 5. The calibration, however, was generally poor with the possible exception
of DAS5 (H = 6.65 with d.f.=5 and Emax = 0.078). Day 2 (DAS2), in contrast, had
an Emax of 0.120 (see Figure 5-10). The weaker performance by DASn indicates that
whatever benefit a daily model had in identifying patient risks that change from day
to day was likely lost from the limitation of training on a subset of the data and the
overfitting of the model that resulted.
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5.6.3 RAS

The real-time model, by looking at each unique observation, had a wealth of data
to use for training and validation. The variables that were included in the final RAS
model were mostly seen previously in the daily models discussed above. There were,
however, some notable differences. For example, Creatinine was included in RAS

while it did not appear in any of the previous models. Similarly, the RAS model also
included medications/medication-categories previously unseen such as Sandostatin4

(used to treat acromegaly and endocrine tumors) and Nondepolarizing agent (neu-
romuscular blocking drugs used to cause paralysis).

On the development data, the performance of the RAS model was consistently
in the AUC=0.88 to AUC=0.91 range. If the model was evaluated using every ob-
servation in the development data, the AUC was 0.885. This represented strong
performance considering many of these observations relied on minimal prior informa-
tion, e.g., an observation at the beginning of ICU day 1 had limited information for
many of the evolving features. The daily mortality prediction problem had a more
thorough approach to summarizing the past 24 hours of each variable, which should
result in an easier prediction problem. If predictions were summarized for individual
days, the RAS model did quite well with AUCs between 0.905 (day 2) and 0.892 (day
4). The easiest prediction task looked at the mean prediction for each patient’s stay
up through day 7 (the limit placed on our dataset). This resulted in an AUC of 0.926.

Using the Hosmer-Lemeshow statistic, calibration for the RAS model was poor
when all observations were used but reasonable when daily mean predictions were
employed. As was the case in interpreting the significance of individual covariates
in the RAS model, however, the calibration significance according to the Hosmer-
Lemeshow H statistic was likely misleading due to increase in observations (about
a 2 orders of magnitude increase) between the real-time model and the daily model.
The calibrations using the mean prediction for ICU day 2 or ICU day 3 were in fact
strong (H = 4.42 and H = 6.60, respectively). The weakest calibration performance
using daily mean predictions was on ICU day 7, with H = 17.6 (d.f.=6) and C = 16.2
(d.f.=6).

In fact, the bootstrapped statistics in Table 5.17 showed that the optimism was
quite low for the RAS model. Looking at only four significant digits, the correction
was minimal with a corrected intercept of -0.0004 and corrected slope of 0.9998. The
small optimism estimates can likely be explained by the fact that, on average, each
patient had over 100 unique observations present in the training data. Consequently,
each sampling of the data likely had representation from each patient and therefore
underestimated the bootstrapped optimism.

When the performance on the validation data was examined, the RAS did well in
terms of discrimination, with an AUC of 0.866 for all observations, and an AUC of
0.880 using mean predictions for day 1. On most days, the mean prediction AUC was

4Sandostatin is a brand name for octreotide.
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about 0.88, with a low of AUC=0.856 on day 5.
The calibration for RAS on the validation data was weaker. The Hosmer-Lemeshow

tests, with H = 2369 and C = 3284 (see Table 5.18), indicated highly significant
deviation from calibration. This was somewhat supported by the calibration plot in
Figure 5-18, where the logistic calibration curve’s slope is 0.817 with an intercept of
−0.184 and Emax = 0.080. In comparison to SDAS (slope=0.820, intercept= −0.257
and Emax = 0.094) and DAS1 (slope=0.866, intercept= −0.132 and Emax = 0.066),
however, the overall calibration performance was quite similar (albeit imperfect).
When a daily mean prediction for each patient was used, the calibration performance
from the Hosmer-Lemeshow statistics and the calibration plots looked much better
(in general). Furthermore, based on the significant calibration corrections suggested
by Figure 5-18, the bootstrapped estimate of optimism for RAS using the development
data was clearly inadequate.

5.6.4 SAPS II

The customized SAPS II score described above performed moderately in terms of
discrimination. While worse than all of my models trained entirely from this patient
population, it did manage to obtain an AUC of 0.853 on the validation data for day
3 and an AUC of 0.857 on the development data for day 2. The day 1 performance
for both development data and validation data, however, was surprisingly poor with
an AUC less than 0.80.

The weight given to the type of service inputs for my customized SAPS II score
corroborated my claim that SAPSIIa provides a reasonable representation of SAPS
II for comparison purposes. The contribution from the SAPS II score, however, still
remained rather weak. A SDAS model trained using the development data and only
GCS max sq, CSRU, and MICU obtained an AUC of 0.782 on day 1 validation data,
which was close to the AUC=0.781 that resulted from the more complicated (but less
customized) SAPSIIa on day 1.

In contrast to its discrimination performance, the calibration of SAPSIIa was
strong. Over the first 5 ICU days, the only case where either the H or C statistic
fell below the p = 0.10 threshold was day 1 on the validation data (p = 0.085). The
corrected (bootstrapped) slope, intercept, and Emax statistics for the development
data indicated negligible overfitting (and often under-fitting). Using the validation
data, the calibration plots also indicated strong calibration, with the possible excep-
tion of day 2 and day 5 (which still compared favorably to my models).

5.6.5 Direct Model Comparisons

Due to differences in input requirements, slight differences existed between the sets of
validation patients used to validate the models discussed above. To better compare
the models against each other, I used a matched set of patients (the intersection
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of patients with valid predictions from each model). Table 5.27 on page 115 shows
that the SDAS and RAS models were consistently more constrained than the DASn and
SAPSIIa models. The DASn and SAPSIIa models had similar coverage.

The discrimination performance for the models was generally strong. If one com-
pares Figure 5-24 to Figure 5-25, it is clear that the AUC performance only dropped
by about 3% between the development and validation data. The worst validation
performance occurred on later ICU days.

Looking at the validation data, the DAS1 model had the best AUC performance
on day 1, but the SDAS model performed best on days 2 through 5. These differences,
however, were marginal. For example, on a given day no significant difference was
found between the AUC from the RAS model and the model with the best AUC per-
formance. The SAPSIIa AUC performance was consistently below the other models,
but discriminated best on day 3 with an AUC of 0.849. Even on this day the SAPSIIa

AUC performance remained significantly below the RAS performance (p = 0.0437).

According to the H and C statistics, the calibration performance on the validation
data generally improved with each day in the ICU. The calibration for SAPSIIa was
consistently stronger than the other models on both the development and validation
data except for day 1 development data where H = 34.6 with d.f.=9. When all
SAPSIIa development patients were used (i.e., not a matched subset), the SAPSIIa H
statistic was much smaller with a value of 11.2 (d.f.=10).

When the set of comparison patients was further restricted to only include patients
that were in the ICU for at least 5 days with a valid prediction from each model
for each day, the validation AUC performance generally suffered. A strong positive
trend was observed in AUC as the ICU day increased for both the development and
validation patients.

5.6.6 Limitations and Future Work

One weakness in the comparison of the models that I provided in this chapter is the
slight bias given to the most input-constrained model. The most input-constrained
models were validated on a subset of patients that may closer match the set of patients
used for development whereas the less input-constrained models may be validated on
a slightly constrained population that might deviate slightly from the less constrained
population used for development. While this bias likely exists, its effect appears to
be quite small. The AUC performances in Figure 5-25 align closely with those found
using the entire validation set available to each model. Using a principled method
for systemically dealing with missing variables, such as variable imputation, would
provide an even stronger comparison between models.

Another limitation for this study was the use of at most one transformation of a
given variable. By combining multiple transformations, I could have supported more
complex (e.g., parabolic-shaped) effects.

By including treatment features, the results that I present are open to additional
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scrutiny. One hopes that each patient received optimal care. The presence of pow-
erful intravenous drugs, for example, reflect a significant underlying patient risk as
understood by the caregiver. One way to possibly mitigate this would be to ex-
plore automatic prediction of the need to administer specific drugs, but this may be
infeasible given the patient data collected.

Throughout my analysis in this chapter, another question that remains is the best
way to compare models with different temporal resolutions. I chose to use the mean
daily-prediction for the higher resolution models as a summary, but there exist many
alternatives to this choice.

In comparing calibration between my models and the SAPSIIa model, I was likely
liberal on my choice to allow SAPS II an extra two degrees of freedom for the de-
velopment data. While the score was not derived using the development data, the
logistic regression coefficients were fitted to this data. Considering this, the p-values
for H and C statistics are likely somewhat inflated for the SAPSIIa development data
performance.

As one final note, my results are based on the analysis of the patient population
from only one hospital. As with other retrospective studies, the results need to be
validated on an external population to be fully generalized.

5.6.7 Conclusions

This chapter presented three types of mortality models: a stationary daily acuity
score (SDAS), a daily acuity score (DASn), and a real-time acuity score (RAS). For
comparison, a customized SAPS II model (SAPSIIa) was also fit to the same develop-
ment data. In general, my models demonstrated strong AUC performance that was
significantly better than SAPSIIa and mixed calibration performance that was weaker
than SAPSIIa.

Between my models, the real-time model, RAS, performed similarly to the daily
models, SDAS and DASn, on the validation data. This is significant because the RAS

model’s prediction — based on any individual observation and limited trend infor-
mation — was presumably more difficult than the prediction task of a daily model
(looking at daily aggregate data).

While AUC performance was consistently strong, the calibration performance was
mixed. Like many severity of illness metrics, without further adjustment, the proba-
bility values provided from these models should be used only with an understanding
of their limitations. Using the corrected slope and intercept from the calibration plot,
the calibration of the predicted probabilities from the model can be largely corrected.
Discrimination, on the other hand, is more difficult to improve [23].

If the individual inputs for my models are examined, a number of interesting
variables can be seen. Without the simplicity constraint commonly placed on other
severity of illness metrics, a number of computationally intensive variables, such as the
amount of time with a low SpO2 or the slope of platelet administration, were included.
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Also in contrast to most other severity scores, a number of interventions were included
in my acuity models. The impact of the caregiver interventions, however, was not
as strong as one might have expected. One explanation for this difference may be
variation in caregiver practice.

In conclusion, the results of this chapter indicate that real-time mortality models
are indeed feasible. I showed strong discriminatory ability for a real-time mortality
model (i.g., good risk ranking). When considering risk estimates for individual pa-
tients, however, it remains important to carefully consider the model calibration (i.e.,
adequacy of individual risk estimates). With these considerations, additional work is
needed to address the clinical utility of such real-time predictions.
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Chapter 6

Predicting Secondary Outcomes

In contrast to the previous chapter, which examined models that predicted mortality,
this chapter examines models to predict acute events that occur during a patient’s
ICU stay. These secondary outcomes represent significant events within a patient’s
stay that are automatically identifiable within our data. Both event onset (e.g.,
septic shock) where the outcome is bad and event resolution (e.g., successful weaning
of pressors) where the outcome is beneficial, are considered.

Specifically, I develop models for the following events: (1) weaning of pressors (PWM
model), (2) weaning of pressors and survival (PWLM model), (3) removal of intraaortic
balloon pump (IABP) (BPWM model), (4) onset of septic shock (SSOM model), and
(5) kidney injury (AKIM model).

After describing each individual model, I provide a comparison between the model
and the real-time acuity score (RAS model) developed in the previous chapter. I do
this by looking at the ROC performance, the positive predictive value, the negative
predictive value, and the context surrounding the events of interest. Comparing the
performance of our general models against specific models allows one to understand
the relationship between the general mortality model and models that are trained to
predict specific secondary events.

6.1 PWM: Weaning of Pressors

Vasopressor and inotropic drugs play an important role in managing vascular re-
sistance and cardiac output in critically ill patients. Throughout this thesis I will
refer to vasopressor and inotropic drugs collectively as “pressors”. Pressors allow
caregivers to manipulate a patient’s cardiovascular and respiratory systems. Three
common hypotensive situations that necessitate such intervention are vasodilation
due to sepsis, decreased cardiac output from cardiogenic shock, or hypovolemia due
to hemorrhaging. Hypotension is often life threatening if not treated quickly as irre-
versible ischemic organ damage can result in a matter of minutes. Most pressors fall
under the sympathomimetic (or adrenomimetic) agent category. Others stem from

127
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the phosphodiesterase inhibitor or antidiuretic hormone agonist groups.

Sympathomimetic agents are typically grouped by the adrenoreceptors that they
act on. In general, the three adrenoreceptors and their primary roles are as follows:
(1) α agonists increase peripheral vascular resistance and venous pressure; (2) β ago-
nists stimulate the heart and increase cardiac output and, in the case of β2 agonists,
often reduce peripheral vascular resistance; and (3) dopamine agonists dilate splanch-
nic (visceral organ) blood vessels and renal blood vessels but are dose related. While
many sympathomimetic agents act selectively on a subset of adrenoreceptors, none are
perfectly selective [87]. In order of frequency and with the primary adrenoreceptor tar-
gets in parenthesis, the sympathomimetic agents that are commonly used in MIMIC II
patients are as follows: (1) Neo-Synephrine1 (selective α1 > α2); (2) Levophed1 (se-
lective α1, α2, and β1); (3) dopamine (dopamine agonist2); (4) epinephrine (general
α and β); and (5) dobutamine (selective β1 > β2).

Other pressors found in the MIMIC II data include phosphodiesterase inhibitors
and antidiuretic hormone agonists. The two types of phosphodiesterase inhibitors
include milrinone and, much less frequently, amrinone. Milrinone and amrinone limit
the decomposition of cyclic adenosine monophosphate (cAMP) thereby increasing the
cardiac intracellular calcium and creating an effect similar to β agonists. In addition,
phosphodiesterase inhibitors cause vasodilation. As a secondary vasopressor, vaso-
pressin is often administered to patients who do not respond adequately to other
vasopressors [14]. Vasopressin, also referred to as antidiuretic hormone (ADH), is
a hormone that regulates the body’s water retention. Vasopressin causes the kid-
neys to retain fluid by increasing urine concentration and it also results in moderate
vasoconstriction.

Due to the powerful influences that pressors exert on a patient’s hemodynamic
system, they are typically only used after an attempt to stabilize a patient with fluids.
When pressors are needed, it is important to carefully monitor their administration as
a variety of harmful side effects can occur. Side effects include excessive vasoconstric-
tion, cardiac arrhythmias, myocardial infarction, pulmonary edema or hemorrhage,
and, in the case of vasopressin, dangerous hyponatremia.

After a patient has been stabilized, the protocol for weaning him or her from
pressors is typically an empirical choice made by the caregiver. Pressor weaning
typically proceeds by titrating the infusion rate and adapting to the patient’s response.
While this might seem straightforward, the process is complicated by varying patient
response to different pressor agents and the need to switch pressors or add multiple
pressors to sustain adequate perfusion.

In this section I develop a model to predict the successful transition from pressor
infusions to no pressor infusions. I refer to this model as the pressor wean model (PWM).

1We refer to phenylephrine and norepinephrine by the brand names Neo-Synephrine and
Levophed (respectively) to maintain consistency with the MIMIC II database labels.

2At moderate doses dopamine activates β receptors and at high doses dopamine also activates α

receptors.



6.1. PWM: WEANING OF PRESSORS 129

6.1.1 Data and Patient Inclusion Criteria

Prior to model selection, the data were limited to patient episodes that satisfied our
inclusion criteria. The inclusion criteria were specified to include patient episodes
where the patient was receiving pressors and had been receiving pressors for at least
two hours. As noted above, the following drugs were included: (1) Neo-Synephrine
(phenylephrine), (2) Levophed (norepinephrine), (3) Epinephrine, (4) Dobutamine,
(5) Milrinone, (6) Amrinone, (7) Dopamine, and (8) Vasopressin.

In the data, the median episode length for pressor infusions was about 12 hours.
Figure 6-1 provides a histogram showing the distribution of episode lengths. In defin-
ing a “pressor episode”, periods separated by up to 4 hours of no pressors were merged
together. I used the median episode length as the early-warning window for predict-
ing pressor weaning. The median episode length allowed for a warning period that
covered multiple nursing shifts while at the same time was not overly influenced by
the potentially obvious behavior at the end of a successful weaning attempt.
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Figure 6-1: Pressor-infusion episode lengths

After annotating the final dataset, a number of instances were excluded where
patients were not receiving pressors. Table 6.1 provides a summary of the included
data used to develop the PWM model.
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Table 6.1: PWM data
Count

Included patients 3916
Included instances 215800

Weaned within 12 hours 56591
Not weaned within 12 hours 159209

6.1.2 Outcome

The outcome of interest for the PWM model is the successful discontinuation of all
vasopressors and inotropic agents within 12 hours of the current point in a patient’s
stay. To qualify as discontinued, the patient must remain free of pressors for at least
four consecutive hours.

To illustrate the pressor wean annotations, Figure 6-2 shows how an example
patient (Subject ID 2917) was annotated. The top plot shows the “pressor weaned”
marks. To be weaned from pressors, the patient was required to be off all pressors
and stay off pressors for at least 4 hours. The bottom plot in the figure shows the 12
hour warning annotations (i.e., the desired output from the trained model). Episodes
where no annotations were made, due to absence of pressors or pressors for less than
2 hours, are marked with the dashed blue line. While the first pressor weaning for the
patient in Figure 6-2 was temporary, it was long enough (≥ 4 hours) to be marked as
a successful wean.

0 50 100 150

P
re

ss
or

on

off

0 50 100 150

P
re

di
ct

?

no

yes Include
Exclude

Time (hours)

Figure 6-2: PWM example annotations for Subject ID 2917

6.1.3 Model Development

To develop the PWM model, I follow the methodology described in Chapter 4. I first
describe the model selection process and the resulting logistic regression model. Fol-
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lowing the model selection description, I describe validation on the training (devel-
opment) data.

Model Selection

Candidate variables were initially ranked against the outcome variable (successful
weaning of pressors). Variables with a p-value greater than 0.05 were excluded. Fur-
thermore, if multiple variables were strongly correlated (Spearman’s rank correlation
test > 0.8) the best univariate variable was retained. After the initial screening of the
variables, variable selection for the PWM model was based on the best 40 variables from
each of the top 4 of the 5 cross-validation folds (the individual cross validation plots
are provided in Appendix F). When combined, the best 40 variables from the top 4
folds resulted in 72 candidate variables. Figure 6-3 shows the AUC that resulted from
gradually increasing the AIC backward elimination threshold and greedily dropping
additional variables.
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Figure 6-3: PWM model selection (all development data)

The abrupt drops in AUC performance in Figure 6-3 typically relate to removing
variables that contained missing observations. For example, the drop between 19 co-
variates and 17 covariates resulted from removing totOut am (total output deviation
from mean) and X24hUrOut am (24-hour urine output deviation from mean). These
output variables contained a large number of missing values (more than 27000 of the
152082 training instances). By removing frequently absent variables, the model was
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less constrained and performance deteriorated. The missing values for totOut am and
X24hUrOut am were not entirely random. Instead, they disproportionately affected the
instances from ICU day 1, where the fluid output was infrequent and measurements
were often unavailable. Given the critical role that fluid management plays in pressor
decisions, the total output and 24-hour urine variables were included in my model
despite their availability concerns. The final model was trained using the top 32 vari-
ables. No manual changes to the automatically derived model were deemed necessary,
and the final model is described in Model 6.1.

In the description of Model 6.1, transformations applied to variables are de-
noted by the variable’s suffix (such as “ i” for inverse). For example, the variable
pressorSum.std la should be interpreted as the logarithm of the absolute value of
pressorSum.std (for a list of transformations and their abbreviations, see page 55
of Chapter 4). As explained in Chapter 3, the range of a variable up to the current
point in a patient’s stay is denoted by a suffix of “rng”, and similarly the relative
deviation of a variable from its evolving baseline is denoted by the suffix “rdv”. To
interpret model inputs, a positive coefficient should be understood as increasing the
probability of a pressor wean (positive correlation) while a negative coefficient means
a lower probability of a pressor wean (negative correlation).

Most of the variables included in Model 6.1 are reasonably clear and expected. A
couple of the variables, however, may benefit from further description. For example,
cumPressorTime am — the difference between the cumulative amount of time that a
patient has spent on pressors and the average total time that the population spends
on pressors — increases the probability of a negative outcome.3 That is, if a patient
was recently started on pressors or has been on pressors for a long time he or she is
less likely to be weaned in the following 12 hours.

In addition to cumPressorTime am, a number of other important variables mea-
sure a variable’s deviation from the mean (the am or lam (log am) transforms). The
CV HR Slope 1680 am variable, for example, indicates that a large trend in the heart
rate over the past 28 hours increases the probability for a successful wean.4

Development Validation

To validate the PWM model, I examine calibration performance and AUC performance.
In addition, I also plot the positive predictive value (PPV) versus sensitivity and the
negative predictive value (NPV) versus specificity. Table 6.2 shows the deciles used
for the Hosmer-Lemeshow H statistic and Table 6.3 shows the deciles used for the
Hosmer-Lemeshow C statistic. The classification performance of PWM on the training
data is shown by the ROC curve in 6-4. In addition, plots showing the PPV versus
sensitivity and the NPV versus specificity are provided in Figure 6-5

3On average, patients in the dataset spend a total of about 13 hours on pressors, including
patients who never receive any pressors.

4The mean 28-hour heart rate slope for patients on pressors is about 0.00026 bpm/hr.
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Model 6.1 Final PWM model
Obs Max Deriv Model L.R. d.f. P C Dxy

102183 2e-06 26829.71 32 0 0.822 0.643

Gamma Tau-a R2 Brier

0.644 0.238 0.344 0.139

Coef S.E. Wald Z P

pressorSum.std_la -7.815e-01 1.515e-02 -51.57 0

cumPressorTime_am -2.580e-04 6.356e-06 -40.58 0

Milrinone_perKg -3.554e+00 1.230e-01 -28.89 0

Sympathomimetic_agent -8.035e-01 3.684e-02 -21.81 0

Intercept -3.272e+00 1.703e-01 -19.21 0

Creatinine_sqrt -4.703e-01 2.605e-02 -18.06 0

Neosynephrine_lam -1.912e-01 1.210e-02 -15.80 0

SBPm.oor120.t_sqrt -5.390e-02 3.514e-03 -15.34 0

iabp -4.192e-01 2.806e-02 -14.94 0

totOut_am -1.639e-04 1.121e-05 -14.63 0

Ativan_la -5.985e-02 4.626e-03 -12.94 0

Levophed_perKg_lam -1.464e-01 1.142e-02 -12.82 0

Art_PaCO2_am -2.360e-02 1.963e-03 -12.03 0

Fentanyl_perKg_la -3.461e-02 2.937e-03 -11.78 0

LactateM -2.087e-01 1.843e-02 -11.33 0

ShockIdx -5.089e-01 4.660e-02 -10.92 0

SpO2LowCntN_sqrt -1.314e-01 1.237e-02 -10.62 0

INRrng_sqrt -3.357e-01 3.262e-02 -10.29 0

Natrecor_la -8.382e-02 8.305e-03 -10.09 0

SICU -8.622e-01 8.576e-02 -10.05 0

PVC -1.962e-01 2.050e-02 -9.57 0

AIDS -9.189e-01 9.759e-02 -9.42 0

X24hUrOut_am 1.518e-04 1.574e-05 9.64 0

PTrng_sqrt 1.358e-01 1.388e-02 9.79 0

Fentanyl_Conc_i 9.733e-05 9.825e-06 9.91 0

pressD12 5.015e-01 4.819e-02 10.41 0

Sex 1.984e-01 1.812e-02 10.95 0

Integrelin_perKg_sq 4.428e-01 3.830e-02 11.56 0

CV_HR_Slope_1680_am 1.413e+01 1.180e+00 11.98 0

Doxacurium_sq 2.760e+00 2.010e-01 13.73 0

HCT_i 2.895e+01 1.967e+00 14.72 0

pressD01 6.084e-01 3.899e-02 15.60 0

GCS 4.479e-02 2.299e-03 19.48 0
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Table 6.2: PWM Hosmer-Lemeshow H risk deciles (development data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 [3.59e-05,0.0207) 0.011 58 108.2 10161 10110.8 10219
2 [2.07e-02,0.0466) 0.033 235 334.1 9983 9883.9 10218
3 [4.66e-02,0.0812) 0.063 635 645.3 9583 9572.7 10218
4 [8.12e-02,0.1281) 0.104 1067 1061.2 9152 9157.8 10219
5 [1.28e-01,0.1827) 0.155 1648 1582.2 8570 8635.8 10218
6 [1.83e-01,0.2475) 0.214 2245 2187 7973 8031 10218
7 [2.47e-01,0.3292) 0.286 2910 2925.5 7309 7293.5 10219
8 [3.29e-01,0.4301) 0.377 4026 3855.2 6192 6362.8 10218
9 [4.30e-01,0.5772) 0.499 5218 5097.3 5000 5120.7 10218
10 [5.77e-01,0.9974] 0.704 6947 7193.1 3271 3024.9 10218

χ2 = 105.76, d.f. = 8; p = 0.000

Table 6.3: PWM Hosmer-Lemeshow C probability deciles (development data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 (0,0.1] 0.042 1323 1484.7 33713 33551.3 35036
2 (0.1,0.2] 0.148 2895 2804.4 16078 16168.6 18973
3 (0.2,0.3] 0.247 3544 3514.7 10672 10701.3 14216
4 (0.3,0.4] 0.348 3785 3737.3 6947 6994.7 10732
5 (0.4,0.5] 0.447 3732 3617 4366 4481 8098
6 (0.5,0.6] 0.547 3485 3349.9 2635 2770.1 6120
7 (0.6,0.7] 0.65 2782 2825.2 1566 1522.8 4348
8 (0.7,0.8] 0.744 2096 2203.2 867 759.8 2963
9 (0.8,0.9] 0.842 1106 1194.2 313 224.8 1419
10 (0.9,1] 0.93 241 258.5 37 19.5 278

χ2 = 121.81, d.f. = 8; p = 0.000
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Figure 6-4: PWM ROC curve (development data). AUC = the area under the curve;
n = the total number of valid predictions used to make the curve; Missing = number
of unavailable predictions from the model due to missing data.
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Figure 6-5: PWM positive predictive value (PPV) versus sensitivity (left) and negative
predictive value (NPV) versus specificity (right) (development data).

To graphically summarize the PWM predictions in the context of successful pres-
sor weans, Figure 6-6 shows the aggregate behavior of PWM predictions over non-
overlapping 3-hour intervals up to 18 hours before and after the event. The event
(in this case, a “successful” pressor wean) is indicated by the dotted vertical line at
t = 0 in the center. This figure separates the prediction summaries by patients who
lived (left) and patients who died (right). The two missing bars following the center
event are the result of the inclusion criteria and the event definition: a patient must
have been receiving pressors for at least two hours previously to be included and a
successful wean by my definition is followed by at least 4 hours with no pressors.

For each time interval, the distribution of model predictions over the interval
is summarized by a box-and-whisker plot. The middle 50% of the data (i.e., the
interquartile-range or IQR) are represented by the hollow vertical box. The lines
extending from the box (i.e., the “whiskers”) extend to the furthest estimate that is
within 1.5×IQR of the top of the box and within 1.5×IQR of the bottom of the box.
The solid horizontal bar in each box represents the median prediction value for the
distribution over the respective interval. Finally, the number of predictions that fall
into each interval is provided along the x-axis and the average overall estimate (e.g.,
the average of all PWM predictions for patients who lived) is shown along the y-axis.
It is helpful to think of each interval as a conditional distribution (conditioned on
time). By placing the conditional distributions in temporal order, insight into the
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aggregate behavior of the estimate can be obtained. By stratifying patients based on
their final outcome, general differences in the model’s prediction for the two classes
of patients can be examined. Collectively, these visual representations allow one to
visualize the distribution of model estimates as a function time for patients who lived
and for patients who died.

A second pair of context plots is provided that examine all available predictions,
including points that did not satisfy the inclusion criteria. These plots are shown in
Figure 6-7. Without requiring the inclusion criteria to be satisfied, the left plot in
Figure 6-6 includes estimates for the two intervals directly following the successful
pressor wean.
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Figure 6-6: PWM prediction context surrounding successful pressor weans (development
data). Avg Prob: the mean PWM probability from all patients who lived (left) and died
(right).

Finally, as an illustration of predictions for an individual patient, Figure 6-8 shows
the predictions for the patient shown earlier (in Figure 6-2) during the discussion of
the annotation process.
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Figure 6-7: PWM prediction context surrounding successful pressor weans (development
data). Avg Prob: the mean PWM probability from all patient instances (left) and valid
instances (right).
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Table 6.4: PWM Hosmer-Lemeshow H risk deciles (validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 [8.85e-05,0.0242) 0.011 72 47.7 4296 4320.3 4368
2 [2.42e-02,0.0546) 0.039 149 170.4 4219 4197.6 4368
3 [5.46e-02,0.0909) 0.072 294 316.2 4074 4051.8 4368
4 [9.09e-02,0.1352) 0.112 479 488.2 3889 3879.8 4368
5 [1.35e-01,0.1941) 0.164 685 717.8 3683 3650.2 4368
6 [1.94e-01,0.2698) 0.231 986 1008.4 3382 3359.6 4368
7 [2.70e-01,0.3584) 0.313 1409 1366.9 2959 3001.1 4368
8 [3.58e-01,0.4692) 0.412 1716 1800.9 2652 2567.1 4368
9 [4.69e-01,0.6102) 0.537 2181 2344.7 2187 2023.3 4368
10 [6.10e-01,0.9592] 0.724 2823 3161.7 1545 1206.3 4368

χ2 = 184.31, d.f. = 10; p = 0.000

6.1.4 Model Validation

As a final step, I validate the PWM model on the separate validation data. To evaluate
calibration, Table 6.4 and Table 6.5 provide the deciles used for the Hosmer-Lemeshow
statistics. A plot of the calibration — actual probability versus estimated probability
— is shown in Figure 6-9. The PWM classification performance is summarized by the
ROC curve in Figure 6-10. If the performance evaluation is limited to exclude the
warnings that occur within 6 hours of full weaning of the patient (i.e., only considering
predictions between 6 and 12 hours before event instead of between 0 and 12 hours),
the AUC performance drops to 0.78 (development data) and 0.76 (validation data).
Excluding predictions that occur within 6 hours of a full pressor eliminates about
50% of the available predictions. For comparison purposes, Figure 6-10 includes a
curve generated by my real-time general acuity model (the RAS model discussed in
Chapter 5) applied to the same prediction task as PWM. The RAS predictions of pressor
weaning are shown in Figure 6-10 as dotted blue lines. The comparison of a specialized
model’s predictions (PWM) against the output from the general acuity model (RAS)
was motivated by the idea that a generic understanding of the patient’s condition
might be helpful in understanding other events. Strong correlation between mortality
predictions from RAS and predictions of clinically significant outcomes from specialized
models, such as PWM, may indicate that the specialized model is unnecessary.

Plots showing the PPV versus sensitivity and the NPV versus specificity are pro-
vided in Figure 6-11. The dotted blue lines show the performance obtained by using
the RAS model output as a proxy to predict the same outcome as PWM.

Finally, as done previously with the development patients, the context surround-
ing successful pressor weans for the validation patients is examined. Figure 6-12
shows the context surrounding successful weans for patients who survived (left) and
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Table 6.5: PWM Hosmer-Lemeshow C probability deciles (validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 (0,0.1] 0.045 604 631.3 13518 13490.7 14122
2 (0.1,0.2] 0.146 1142 1182.2 6947 6906.8 8089
3 (0.2,0.3] 0.248 1370 1379 4186 4177 5556
4 (0.3,0.4] 0.348 1607 1573 2916 2950 4523
5 (0.4,0.5] 0.448 1573 1670.4 2153 2055.6 3726
6 (0.5,0.6] 0.548 1503 1634 1477 1346 2980
7 (0.6,0.7] 0.645 1344 1488.2 963 818.8 2307
8 (0.7,0.8] 0.749 1084 1174.8 485 394.2 1569
9 (0.8,0.9] 0.84 463 556.1 199 105.9 662
10 (0.9,1] 0.917 104 133.9 42 12.1 146

χ2 = 283.18, d.f. = 10; p = 0.000

patients who died (right). In addition to the PWM predictions, the figure also shows
survival predictions from the RAS model. Figure 6-13 shows the prediction context
for all predictions, including ones that did not satisfy inclusion criteria (left), and the
prediction context for patients that did satisfy the inclusion criteria (right).
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Figure 6-10: PWM ROC curve (validation data). AUC = the area under the curve;
n = the total number of valid predictions used for curve.
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predictive value (NPV) versus specificity (right) (validation data).
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Figure 6-12: PWM prediction context surrounding successful pressor weans (validation
data). Avg Prob: the mean PWM probability from all patients who lived (left) and died
(right).
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Figure 6-13: PWM prediction context surrounding successful pressor weans (validation
data). Avg Prob: the mean PWM probability from all patient instances (left) and valid
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6.1.5 Discussion

The PWM model developed in this section performs well at discriminating between
patient segments that precede successful pressor weaning by 12 hours or less and
segments that precede pressor weaning by more than 12 hours. The AUC performance
of about 0.81 is especially good considering the somewhat arbitrary choice for the
warning window of 12 hours. While a 12-hour window includes cases where the
prediction should be quite easy, such as cases where a patient is nearly weaned from
pressors and goes entirely off in an hour, it also includes more challenging assessments
such as cases where the patient is not fully weaned until 11 hours in the future. In
fact, if the performance is limited to only look at warnings between 12 and 6 hours
the AUC only drops to 0.78 (development data) and 0.76 (validation data).

The final model (Model 6.1) includes 32 inputs. Unsurprisingly, the two most
significant inputs are the current level of pressors that the patient is receiving
(pressorSum.std la) and the total time that the patient has spent on pressors during
his or her stay (cumPressorTime am). If a patient is on a high dosage of pressors,
they are likely to remain on pressors for more than 12 hours. In terms of pressor
time, the deviation from the average cumulative time spent on pressors (the “am”
transformation) indicates that patients on pressors for a short period of time or a long
period of time are less likely to be weaned within 12 hours. The mean cumulative
time that the patients in the dataset spend on pressors is about 13 hours.

The third input, Milrinone perKg, is possibly more interesting. Milrinone is an
inotropic agent that is given for acute heart failure and it has a rather long half-life
of nearly 2.5 hours (dobutamine, in contrast, has a half-life of about 2 minutes).
The long half-life for milrinone results in a prolonged weaning process. Furthermore,
one of the common side effects for milrinone is an increase in ventricular ectopic
activity. A variable indicating the presence of premature ventricular contractions
(PVC) is included in the top 32 variables and also decreases the probability of a
successful wean within 12 hours.

The drugs that increase the probability of a successful pressor wean within 12
hours include doxacurium (Doxacurium sq), and Integrelin (Integrelin perKg sq).
Doxacurium is a muscle relaxant given to patients during surgery or other procedures
such as starting the patient on a mechanical ventilator. The presence of doxacurium
likely indicates that the patient is receiving interventions in addition to pressors.
Similarly, Integrelin is an antiplatelet agent that is often given to treat patients with
acute myocardial ischemia who are receiving coronary angioplasty. Integrelin and
doxacurium seem to serve as a proxy for why the patient received pressors and thereby
provide insight into how long the pressors will likely be needed.

Since the outcome of interest is the weaning of pressors, it is expected that a
number of the most predictive variables are therapy variables. A number of phys-
iologic variables are also important. Some of the most significant physiologic vari-
ables include the Glasgow Coma Scale (GCS), creatinine (Creatinine sqrt), amount
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of time that the systolic blood pressure was out of range during the past 2 hours
(SBPm.oor120.t sqrt), hematocrit (HCT i), the total output from the patient
(totOut am), and the shock index (i.e., heart rate/systolic blood pressure) (ShockIdx).
The interpretation for most of these physiologic variables is reasonably clear. A low
hematocrit level, for example, is often indicative of hemorrhaging. The increased
probability that the patient will be weaned within 12 hours that is associated with a
low hematocrit can be explained by the fact that, once the hemorrhaging is addressed,
the patient’s need for pressors should diminish.

In general, the calibration for the PWM model was strong. While statistically sig-
nificant values for the H and C statistics were found for the development and the
validation data, the individual deciles appear to align well between the observed
counts and the expected counts. As with the RAS model in the previous chapter,
the large number of observations make small differences statistically significant and
the differences are likely inflated as a result of multiple predictions per patient. The
calibration plot in Figure 6-9 shows that calibration is generally good, and that with
slight adjustment the predicted probabilities align quite well with the actual prob-
abilities. The maximum error (Emax) between the corrected curve and the actual
probabilities is about 0.057.

The classification performance for PWM was also strong. The AUC on the separate
validation data was found to be about 0.809 (Figure 6-10). This AUC was only 0.013
less than the AUC on the development data (Figure 6-4). The predictive value of
the model was moderate as shown by the PPV versus sensitivity and the NPV versus
specificity curves in Figure 6-11. For the included data points, the prevalence of
successful weans within 12 hours was about 0.247 for the matched validation data
(valid PWM and valid RAS estimates). By only sacrificing a small amount of sensitivity
(e.g., 30%), a PPV of about 50% was obtainable. The maximum PPV from the
model, however, was only about 70%. It is expected that the RAS estimates are less
effective in terms of PPV than the PWM estimates, as the RAS score should reflect a
number of dire conditions in addition to pressor dependence.

In the individual patient example provided in Figure 6-8, the PWM model appears
to do a reasonable job of interpreting the weaning prospects for the patient. The
gradually increasing probability until the time of the event (successful pressor wean)
is expected given the discontinuity of the 12-hour warning that is used for fitting the
model. If the context surrounding successful pressor weans is examined in aggregate,
the trend noted in Figure 6-8 can be observed for the validation patients (Figure 6-12).

Furthermore, notable differences can be seen by comparing the predictions for
the patients who lived to the predictions for the patients who died. The [3,0) hour
warning interval in Figure 6-12, for example, has a mean prediction of about 0.59 for
patients who lived and a mean of about 0.44 for patients who died (p < 0.00001).
For patients that live, the median prediction demonstrates a linear increase from 18
hours prior to the event up until the point of the event. In contrast, for patients
that died, the median prediction is lower and only starts to increase within 6 hours
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of the event. In general, the PWM model is much less sensitive at predicting weans for
patients that ultimately die.

In the second context figure for the validation data, Figure 6-13, all instances
with a prediction available (ignoring the inclusion criteria) are contrasted with the
estimates that do satisfy the inclusion criteria. As one would expect, the model
produces a very high probability output for instances that have no pressors present.
The high probability for cases without pressors causes the left-most bars to extend
much higher in the plot that looks at all instances, because many pressor episodes last
less than nine hours. The number of instances that were excluded by the inclusion
criteria can be found by calculating the difference between the interval counts between
the two plots.

In comparison, the RAS model does significantly worse (p < 0.00001) than the PWM
model at predicting the weaning of pressors within 12 hours. The RAS model provides
some useful information when determining if the patient will be successfully weaned.
When the PWM model is used to predict final patient outcome (instead of pressor
weaning), it obtains an AUC of 0.713 on the development data and an AUC of 0.686
on the validation data. When the mean estimate for each patient is used, the AUC
increases to 0.830 on the development data and 0.809 on the validation data. As one
would expect, there appears to be a strong association between the ease of weaning a
patient (PWM) and the risk of mortality (RAS). In fact, for the patients that died, the
median 1-RAS score is higher for the [-18, -15), [-9, 6), and [-6, 3) hour intervals than
it is for the [-3, 0) hour interval, which indicates an increasing mortality risk as the
patient is weaned.

In conclusion, the PWM model does a good job of discriminating between which
patient instances will be weaned from pressors within 12 hours and which patients
instances will not be weaned within 12 hours. To make the pressor wean predic-
tion, the most significant model inputs are treatments, but a number of important
physiological inputs are included in the model as well. One confounder in the model
construction is the inclusion of episodes where terminal patients were weaned from
pressors. There is no way to tell if weaning the patient was physiologically justified.
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Table 6.6: PWLM data
Count

Included patients 3916
Included instances 215800

Weaned within 12 hours (and lived) 52076
Not weaned within 12 hours 163724

6.2 PWLM: Weaning of Pressors and Survival

In this section I present a slight variant of the PWM model. For this model I augmented
the definition of a successful pressor wean used previously to also require patient
survival. This model will be referred to as the pressor wean and live model (PWLM).

The motivation for the PWLM model is not to increase the prognostic value of
the PWM model, but rather to further understand the limitations of the PWM model.
By not counting patients that ultimately die in my definition of a successful wean,
I do not penalize my model’s performance for cases where patients perhaps should
not have been weaned. Instead, the PWLM model only focuses on pressor weans that
were clearly successful as measured by the patient’s ultimate outcome. As noted
in Chapter 3, periods with any limitation of support (e.g., comfort measures only)
were excluded during the preparation of the dataset that all of my models are based
on. Consequently, the PWLM model excludes the potentially obvious cases where a
patient’s support is removed as they are allowed to expire. The PWLM model only
includes pressor weans during periods of full support (i.e., “full code”).

6.2.1 Data and Patient Inclusion Criteria

The inclusion criteria used for the PWLM model were the same as those used for the PWM
model: for an instance of a patient to be included, the patient was required to have
been receiving pressors for at least 2 hours directly prior to the time of the instance.

Figure 6-14 provides histograms showing the distribution of pressor episode lengths
for patients who lived (left) and patients who died (right). The median episode length
for pressor infusions is about 12 hours for patients who lived. Again, in defining a
“pressor episode”, periods separated by up to 4 hours without pressors were merged
together.

After annotating the final dataset, a number of patient instances were excluded
because of no pressors. Table 6.6 provides a summary of the included data.

6.2.2 Outcome

The outcome of interest for the PWLM model is the successful discontinuation of vaso-
pressors and/or inotropic agents (for at least four consecutive hours) occurring within
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Figure 6-14: Pressor-infusion episode lengths

12 hours of a given point in a patient’s stay and patient survival. The definition I use
for survival is the same as the survival definition used for the RAS model previously
— that is, the patient survived the ICU stay and at least 30 days in hospital or the
patient was discharged from the hospital alive within 30 days.

Since Subject ID 2917 (used previously to describe the annotation process for
the PWM model) survived, the annotation for this patient remains unchanged (see
Figure 6-15).

6.2.3 Model Development

Again, using the methodology described in Chapter 4, I first describe the PWLM model
selection process and the resulting logistic regression model. After I describe the
model selection, I explore the PWLM model’s performance on the training (develop-
ment) data.

Model Selection

Candidate variables were initially ranked against the outcome variable (successful
weaning of pressors and survival). Variables with a p-value greater than 0.05 were
excluded. Furthermore, if multiple variables were strongly correlated (Spearman’s
rank correlation test > 0.8) the best univariate variable was retained. After the
initial screening of the variables, variable selection for the PWLM model was based
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Figure 6-15: PWLM example annotations for Subject ID 2917. Patient survived.

on the best 50 variables from each of the top 4 of the 5 cross-validation folds (the
individual cross validation plots are provided in Appendix F). When combined, the
best 50 variables from the top 4 folds resulted in 83 candidate variables. Figure 6-16
shows the AUC that results from gradually increasing the AIC backward elimination
threshold and greedily dropping variables.

The top 32 variables were used to train the final model shown in Model 6.2. In
the final model, of the six most predictive variables, five measure the deviation from
normal (the am transform).

Development Validation

To validate the PWLM model, I examine calibration performance and AUC perfor-
mance. In addition, I also plot the PPV versus sensitivity and the NPV versus
specificity. Table 6.7 shows the deciles used for the Hosmer-Lemeshow H statistic
and Table 6.8 shows the deciles used for the Hosmer-Lemeshow C statistic. The
classification performance of PWLM on the training data is shown by the ROC curve
in 6-17. In addition, the PPV versus sensitivity plot and the NPV versus specificity
plot are provided in Figure 6-18

Figure 6-19 shows the context surrounding successful pressor weans for all predic-
tions, ignoring the inclusion criteria (left) and only patients that satisfied the inclusion
criteria (right). Since successful pressor weans are defined by the PWLM model to only
include patients that survive, no contrast is available between patients who lived and
patients who died.

As an illustration of predictions for an individual patient, Figure 6-20 shows the
predictions for the patient shown earlier (Figures 6-15 and 6-8).
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Figure 6-16: PWLM model selection (all development data)

Table 6.7: PWLM Hosmer-Lemeshow H risk deciles (development data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 [1.49e-06,0.0138) 0.006 49 70.5 11357 11335.5 11406
2 [1.38e-02,0.0347) 0.024 225 269.4 11181 11136.6 11406
3 [3.47e-02,0.0647) 0.049 519 558.4 10887 10847.6 11406
4 [6.47e-02,0.1047) 0.084 906 953.9 10499 10451.1 11405
5 [1.05e-01,0.1587) 0.131 1538 1489.1 9868 9916.9 11406
6 [1.59e-01,0.2243) 0.189 2239 2160.8 9167 9245.2 11406
7 [2.24e-01,0.3050) 0.263 2983 2996.7 8422 8408.3 11405
8 [3.05e-01,0.4067) 0.353 4198 4029.6 7208 7376.4 11406
9 [4.07e-01,0.5526) 0.474 5418 5401.1 5988 6004.9 11406
10 [5.53e-01,0.9634] 0.679 7604 7749.5 3801 3655.5 11405

χ2 = 44.61, d.f. = 8; p = 0.000



6.2. PWLM: WEANING OF PRESSORS AND SURVIVAL 151

Model 6.2 Final PWLM model

Obs Max Deriv Model L.R. d.f. P C Dxy

114057 2e-05 30004.52 32 0 0.83 0.659

Gamma Tau-a R2 Brier

0.661 0.23 0.353 0.13

Coef S.E. Wald Z P

Milrinone_perKg_am -4.574e+00 1.296e-01 -35.29 0

cumPressorTime_am -2.366e-04 7.593e-06 -31.17 0

vasopressorCnt_am -7.406e-01 3.099e-02 -23.89 0

Neosynephrine_lam -2.798e-01 1.280e-02 -21.85 0

Dobutamine_perKg -2.315e-01 1.094e-02 -21.16 0

Levophed_perKg_lam -2.441e-01 1.197e-02 -20.39 0

pressorSum.std_la -4.105e-01 2.103e-02 -19.52 0

SBP_i -1.095e+02 6.181e+00 -17.72 0

INRrng_sqrt -5.661e-01 3.260e-02 -17.36 0

pressD24 -8.227e-01 4.941e-02 -16.65 0

Creatinine_sqrt -4.585e-01 2.965e-02 -15.46 0

Art_PaCO2_am -2.919e-02 2.064e-03 -14.15 0

vasopressorSum.std_lam -1.315e-01 9.826e-03 -13.38 0

UrineEvnts.24h_sqrt -6.624e-02 5.329e-03 -12.43 0

SICU -1.187e+00 9.587e-02 -12.38 0

BUN_Slope_1680_lam -1.609e-01 1.307e-02 -12.30 0

mechVent -3.737e+03 3.097e+02 -12.07 0

VentMode_i -3.737e-01 3.097e-02 -12.07 0

Art_pHrng -1.296e+00 1.087e-01 -11.92 0

EctFreq_sqrt -1.446e-01 1.397e-02 -10.35 0

DBPmrng_sqrt -7.701e-02 7.804e-03 -9.87 0

BUNtoCr_sq -1.824e-04 1.861e-05 -9.80 0

iabp -2.580e-01 2.860e-02 -9.02 0

SBPmCritEvnts.24h_sqrt -4.555e-02 5.245e-03 -8.68 0

Anticoagulant -2.400e-01 3.103e-02 -7.73 0

Input_60rng_am -2.788e-05 3.973e-06 -7.02 0

Dilaudid_sq 2.409e-01 2.688e-02 8.96 0

BUNrdv_sqrt 1.415e-01 1.310e-02 10.80 0

CV_HRrng_sqrt 6.669e-02 5.608e-03 11.89 0

Intercept 3.737e+03 3.097e+02 12.07 0

Ativan_perKg_i 6.852e-05 5.147e-06 13.31 0

GCS_sq 2.709e-03 1.677e-04 16.16 0

PTrng_sqrt 2.494e-01 1.359e-02 18.35 0
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Table 6.8: PWLM Hosmer-Lemeshow C probability deciles (development data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 (0,0.1] 0.039 1587 1738 42919 42768 44506
2 (0.1,0.2] 0.147 3073 2979.7 17151 17244.3 20224
3 (0.2,0.3] 0.248 3614 3592.1 10871 10892.9 14485
4 (0.3,0.4] 0.348 4108 3951.5 7261 7417.5 11369
5 (0.4,0.5] 0.447 3925 3856.1 4694 4762.9 8619
6 (0.5,0.6] 0.547 3261 3358.7 2875 2777.3 6136
7 (0.6,0.7] 0.648 2852 2765.6 1416 1502.4 4268
8 (0.7,0.8] 0.745 2250 2373.1 935 811.9 3185
9 (0.8,0.9] 0.836 939 993.5 249 194.5 1188
10 (0.9,1] 0.918 70 70.7 7 6.3 77

χ2 = 86.36, d.f. = 8; p = 0.000
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Figure 6-17: PWLM ROC curve (development data).
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Figure 6-19: PWLM prediction context surrounding HDFR (development data). Avg
Prob: the mean PWLM probability from all patient instances (left) and valid instances
(right).
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Figure 6-20: PWLM annotations for Subject ID 2917 with PWLM and RAS predictions.
Patient survived.
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Table 6.9: PWLM Hosmer-Lemeshow H risk deciles (validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 [2.48e-05,0.0140) 0.005 39 26.2 4882 4894.8 4921
2 [1.40e-02,0.0381) 0.026 94 127 4827 4794 4921
3 [3.81e-02,0.0725) 0.054 233 267.2 4688 4653.8 4921
4 [7.25e-02,0.1155) 0.093 429 458.5 4492 4462.5 4921
5 [1.16e-01,0.1794) 0.146 721 719.6 4200 4201.4 4921
6 [1.79e-01,0.2530) 0.216 1029 1060.7 3892 3860.3 4921
7 [2.53e-01,0.3393) 0.294 1274 1448.9 3647 3472.1 4921
8 [3.39e-01,0.4460) 0.39 1769 1919.2 3152 3001.8 4921
9 [4.46e-01,0.5865) 0.512 2312 2519.8 2609 2401.2 4921
10 [5.87e-01,0.9422] 0.704 3165 3461.4 1755 1458.6 4920

χ2 = 192.85, d.f. = 10; p = 0.000

6.2.4 Model Validation

As a final step, I validate the PWLM model on the separate validation data. To eval-
uate calibration, Table 6.9 and Table 6.10 provide the deciles used by the Hosmer-
Lemeshow statistics. A plot of the calibration is shown in Figure 6-21. The PWLM

classification performance is summarized by the ROC curve in Figure 6-22. For com-
parison purposes, Figure 6-22 includes a curve generated by the RAS model developed
in the previous chapter applied to the same prediction task (dotted blue). If the per-
formance evaluation is limited to exclude the warnings that occur within 6 hours of
full weaning of the patient, the AUC performance drops to 0.83 for the development
data and 0.825 for the validation data.

Plots showing the PPV versus sensitivity and the NPV versus specificity are pro-
vided in Figure 6-23. The dotted blue lines show the performance obtained by using
the RAS model output as a proxy to predict the same outcome as PWLM.

Figure 6-24 shows the prediction context for all predictions, including ones that
did not satisfy inclusion criteria (left), and the prediction context for patients that did
satisfy the inclusion criteria (right). In addition to the PWLM predictions, the figure
also shows survival predictions from the RAS model.
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Table 6.10: PWLM Hosmer-Lemeshow C probability deciles (validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 (0,0.1] 0.039 612 702 17425 17335 18037
2 (0.1,0.2] 0.146 1187 1172.4 6834 6848.6 8021
3 (0.2,0.3] 0.249 1432 1565.1 4860 4726.9 6292
4 (0.3,0.4] 0.348 1586 1766.7 3488 3307.3 5074
5 (0.4,0.5] 0.448 1690 1805.6 2339 2223.4 4029
6 (0.5,0.6] 0.547 1584 1744.6 1605 1444.4 3189
7 (0.6,0.7] 0.646 1354 1472.1 926 807.9 2280
8 (0.7,0.8] 0.749 1091 1180.5 486 396.5 1577
9 (0.8,0.9] 0.839 501 559.1 165 106.9 666
10 (0.9,1] 0.916 28 40.3 16 3.7 44

χ2 = 238.13, d.f. = 10; p = 0.000
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Figure 6-21: PWLM calibration plot
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Figure 6-24: PWLM prediction context surrounding HDFR (validation data). Avg Prob:
the mean PWLM probability from all patient instances (left) and valid instances (right).
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6.2.5 Discussion

The PWLM model developed in this section is quite similar to the previous PWM model
but adds the requirement of patient survival. In general, the PWLM model performs
better than the PWM model. The PWLM model also performs better on the “hard”
predictions as seen by the strong performance (AUC = 0.82 for validation data) when
only the estimates between 12 and 6 hours before the successful wean are considered.

The final PWLM model (Model 6.2) includes 32 inputs. Most of the important in-
puts in the PWLM model also appeared in the PWM model. The coefficients for these
important PWM model inputs, weighted for the different outcome, change significantly
between the models. For example, in the PWLM model, the most significant input
is Milrinone (Milrinone perKg am) while the standardized pressure measurement
(pressorSum.std la), easily the most significant input for the PWM model, is only
the seventh most significant input in the PWLM model. This observation is consistent
with findings by other researchers indicating that sensitivity to pressors is associ-
ated with a decreased mortality rate [53]. In the context of a multivariate model,
the rankings of individual variables only explain part of the picture due to syner-
gistic relationships between variables. The influence of the prothrombin time range
(PTrng sqrt) seems to be much higher in the PWLM model, but this is mainly caused
by offsetting the influence of the INR range variable (INRrng sqrt) which was not
present in the PWM model. When the INR variable is manually removed, the PWLM

performance decreases slightly and the coefficient and error for the prothrombin time
closely match those found in the PWM model.

Notably absent from the PWLM model are the doxacurium and Integrelin inputs
found in the PWM model. The PWLM model also contains the pH range (Art pHrng),
an indicator noting if the patient is on a mechanical ventilator (mechVent) and a
categorical variable indicating the level of assistance from the mechanical ventilator
(VentMode i). The pH, ventilator, and ventilator mode variables are absent in the
PWM model. These variables help the PWLM model identify the general severity of
the patient’s current condition. For example, if a patient is receiving mechanical
ventilation the probability that the patient will be weaned from pressors within 12
hours and live decreases.

The calibration performance of the PWLM model is similar to that of the PWM model.
On the development data, the H and C statistics are much better for the PWLM model
than the PWM model, but on the validation data they are quite similar. The calibration
plot in Figure 6-21 indicates that the PWLM model might be slightly better with a slope
closer to 1 and a slightly smaller maximum error (0.053 vs 0.057).

At their respective prediction tasks, the PWLM model has a higher AUC than the
PWM model. The difference in AUC indicates that predicting weaning within 12 hours
and survival is easier than simply predicting weaning within 12 hours. The perfor-
mance improvement is likely the result of cases where terminal patients were weaned
(as a result of withdrawal of care) despite physiologic variables and treatment vari-
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ables indicating that they would not survive. The absence of fentanyl in the PWLM

model likely supports this conclusion.
Given the inclusion of survival in the outcome for the PWLM model, one would

expect the RAS model to do reasonably well at predicting the PWLM outcome. As
Figure 6-22 shows, this is indeed the case. The RAS predictions result in an AUC of
0.727 compared to the AUC of 0.825 for the specialized PWLM model. The significance
level for the difference in performance, however, is still quite high (p < 0.00001).

In conclusion, by augmenting the outcome used in PWM (i.e., pressor wean within 12
hours) to require survival, I am able to improve upon the PWM model. The resulting
PWLM model is not penalized for missing the “successful” weaning of pressors from
patients who do not survive the ICU. As with the PWM model, the PWLM model relies
heavily on treatments but also uses a variety of physiological measurements to make
predictions. A further improvement to the pressor wean model might be to place
stricter limits on the survival requirement used with PWLM to, for example, include
pressor weans that were followed by at least 24 hours of survival (or discharged alive
within 24 hours). Limiting the survival requirements would help to isolate cases where
the patient expired for reasons that were not directly related to the current episode.



6.3. BPWM: WEANING OF INTRAAORTIC BALLOON PUMP 161

6.3 BPWM: Weaning of Intraaortic Balloon Pump

Intraaortic balloon pumps have been used for over 40 years to provide hemodynamic
assistance to patients with heart failure. An IABP is an inflatable membrane that
is surgically implanted in the descending thoracic aorta via the femoral artery. It
functions by using gas to inflate a balloon in the aorta at the onset of cardiac diastole
and deflate the balloon at the onset of systole. In [88] Trost et al. describe a variety
of indications for IABP insertion, including:

• Cardiogenic shock

• Cardiogenic shock due to ventricular septal rupture or papillary muscle rupture,
with resultant mitral regurgitation

• Intractable ventricular arrhythmias

• Post-MI angina or unstable angina refractory to medical therapy

• Heart failure refractory to medical therapy

• Hemodynamic support for “high-risk” catheterization and angioplasty

• Hemodynamic support for high-risk coronary artery bypass grafting

• Myocardial dysfunction from septic shock

Cardiac assistance via an IABP is considered short-term therapy. Before an IABP
is initially inserted, the care team typically develops a plan to wean the device [28].
In many cases the endpoint is clear. For example, if the device is used to stabilize the
patient until cardiac surgery, the device is removed post-operatively. In other cases
the endpoint is more qualitative such as recovery from an myocardial infraction. After
multiple days of support, the risk of infection is an significant concern. In many cases
the device is removed as a result of other complications such as an ischemic leg or
uncontrollable bleeding despite hemodynamic contraindication. While the presence of
an IABP indicates serious heart impairment, the patient mix remains quite complex.
Furthermore, most of the procedural context for these patients (e.g., high risk coro-
nary artery bypass graft surgery) is lacking in the MIMIC II data under consideration
and there is likely a significant amount of variance between cardiologist’s decisions
regarding when and how to wean [28]. Despite these concerns, there are presumably
still differences between patients who need IABP assistance and those who no longer
need IABP assistance.

The IABP frequency can typically be set between 1:1 (one inflation per cardiac
cycle) and 1:8, as required by the patient’s hemodynamic status. One important
concern with inactive balloons is thrombosis, and the administration of heparin to
keep thromboplastin time to 50 to 70 seconds is common [88]. As a result, it is com-
monly suggested to remove an inactive IABP device within 30 minutes to prevent
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thrombosis complications. For patients with an IABP it is important to carefully ob-
serve the hematocrit, hemoglobin and platelet counts as thrombocytopenia (shortage
of platelets in the blood) may result from the device and/or the administration of
heparin [88].

Despite the long history of the device and common usage5, few studies specifi-
cally address the best protocol for IABP weaning. It is generally accepted practice
to remove inotropic and vasoactive medications prior to IABP weaning [54]. Pres-
sor drugs commonly include dopamine, dobutamine, and Levophed (norepinephrine).
Two methods exist for weaning an IABP: (1) volume reduction and (2) frequency
reduction. In volume reduction the volume of gas used to inflate the balloon is re-
duced in 20-25% increments. In contrast, frequency reduction gradually decreases the
ratio of cardiac cycles that receive assistance thereby exposing the heart to a wide
range of inter-beat afterloads. Clinical indicators suggested by Bolooki in 1984 for
determining if a patient is ready to be weaned from and IABP include: (1) Mean
blood pressure above 70 mmHg, (2) Systolic blood pressure or diastolic augmenta-
tion above 90 mmHg, (3) PCWP less than 18 mmHg, and (4) Cardiac index above
2.2 L/min/m2 [4]. Ideally, as a patient improves, the diastolic pressor augmentation
decreases as the patient’s stroke volume increases and the IABP blood displacement
is a smaller fraction of cardiac output.

Despite a dearth of formal studies, volume reduction appears to be the preferred
method as the frequency reduction method is more abrupt [54]. But in most ICUs a
combination of the two methods is common. Some have suggested volume reduction at
time intervals between 15 and 30 minutes [34]. During a weaning process, the nursing
staff closely watch patients for changes in urine output, temperature, sensorium,
hemodynamic profile, and heart or lung sounds as well as any chest pain [2]. If
the patient starts to decompensate as a result of the weaning process, the IABP is
typically returned to its maximum assist setting. If indicated by the hemodynamic
parameters, another weaning attempt can be made after a few hours.

In this section I develop a model to predict the successful removal of IABP support.
I refer to this model as the IABP wean model (BPWM).

6.3.1 Data and Patient Inclusion Criteria

In the MIMIC II dataset under consideration, most periods of IABP therapy last
about two days (median length of 38 hours). For particularly unstable patients,
however, IABP therapy can last much longer. Figure 6-25 provides a histogram of
IABP episode lengths. The figure shows some tendency for the therapy episodes to
last a multiple 24 hours. Weaning attempts require close attention to the patient

5The 2005 National Hospital Discharge Survey estimated 40,000 patients received an IABP in
2005 [12].
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Table 6.11: BPWM data
Count

IABP patients 595
Included instances 49046

IABP weaned within 12 hours 12162
IABP not weaned with 12 hours 36884

and the timing is influenced by caregiver-workload.6 The process of weaning from an
IABP occurs gradually as the caregivers first remove inotropic and vasoactive drugs
and then determine how the patient’s heart responds to the increased afterload of less
IABP assistance. The MIMIC II data contain the IABP frequency information for
patients on an IABP (ratio of assisted beats to total number of beats). While values
of 1:1, 1:2, 1:3, and 1:4 occur, the 1:4 frequency is quite rare and most patients are
completely weaned directly from 1:2 or after a short time at 1:3. The median duration
of the low frequency episodes (including 1:3 and 1:4) is about one hour. The median
length for 1:2 episodes is about 10 hours. For the purposes of the BPWM model, we
chose 12 hours for an early warning window.

Properly annotating the removal of the IABP was somewhat challenging. For most
patients, the time of IABP removal was denoted with a null value in the ChartEvents
entry. Not all patients, however, conformed to this pattern and null values do not
always indicate IABP removal. Many of the IABP patients undergo surgeries that
last several hours, during which no data is available. I used the following scheme to
annotate patients with an IABP: periods of up to 8 hours between IABP chart entries
were merged if no null value existed during the period. If a null existed, and preceded
the next IABP entry by at least 3 hours, the null ended the current IABP episode
and subsequent IABP entries were considered separate IABP episodes (re-insertions).
In general, the IABP was charted quite frequently with an average duration between
chart entries of about 40 minutes.

The only inclusion criterion that I required for the BPWM model training and val-
idation was IABP assistance that lasted at least two hours. Table 6.11 provides a
summary of the patients with an IABP that were used to develop the BPWM model.

6.3.2 Outcome

The outcome of interest for the BPWM is the successful removal of IABP assistance
within 12 hours. Figure 6-26 demonstrates a typical patient that receives an IABP
and is then weaned from it about 45 hours later.

6While patients are occasionally weaned during the night, most patients are weaned between
7:00 am and 7:00 pm, with the highest frequency occurring during late morning and early afternoon.



164 CHAPTER 6. PREDICTING SECONDARY OUTCOMES

Hours on IABP

F
re

qu
en

cy

0 50 100 150

0
20

40
60

80

Median 38 hrs

Figure 6-25: IABP episode lengths

0 50 100 150

IA
B

P
 R

em
ov

ed

no

yes

0 50 100 150

P
re

di
ct

?

no

yes Include
Exclude

Time (hours)

Figure 6-26: BPWM example annotations for Subject ID 354



6.3. BPWM: WEANING OF INTRAAORTIC BALLOON PUMP 165

6.3.3 Model Development

To develop the predictive model for the IABP removal task described above, I again
follow the methodology described in Chapter 4. The model selection process is de-
scribed this section. I also provide an overview of the resulting logistic regression
model and I describe the model’s performance on the training data.

Model Selection

Candidate variables were initially ranked against the outcome variable (successful
removal of IABP). Variables with a p-value greater than 0.05 were excluded. Further-
more, if multiple variables were strongly correlated (Spearman’s rank correlation test
> 0.8) the best univariate variable was retained. After the initial screening of the
variables, variable selection for the BPWM model was based on the best 20 variables
from each of the top 4 of the 5 cross-validation folds (the individual cross validation
plots are provided in Appendix F). When combined, the best 30 variables from the
top 4 folds resulted in 58 candidate variables. Figure 6-3 shows the AUC that re-
sults from gradually increasing the AIC backward elimination threshold and thereby
forcing additional variables to be greedily dropped.
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Figure 6-27: BPWM model selection (all development data)

The final model was trained using the top 31 variables obtained from cross vali-
dation. The details for the BPWM model are shown in Model 6.3.
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Model 6.3 Final BPWM model
Obs Max Deriv Model L.R. d.f. P C Dxy

18039 5e-07 7948.34 31 0 0.874 0.748

Gamma Tau-a R2 Brier

0.749 0.322 0.501 0.129

Coef S.E. Wald Z P

iabpVal_sq -1.940e-01 5.452e-03 -35.58 0

Anticoagulant -8.523e-01 4.965e-02 -17.17 0

CrdIndx_i -4.104e+00 2.664e-01 -15.41 0

X24hBal -2.054e-04 1.364e-05 -15.05 0

Milrinone_perKg_am -2.273e+00 1.674e-01 -13.58 0

PAPsd_sqrt -3.555e-01 2.843e-02 -12.50 0

ShockIdx_am -1.856e+00 1.514e-01 -12.26 0

cumPressorTime_lam -2.475e-01 2.247e-02 -11.02 0

pressD24 -9.921e-01 1.035e-01 -9.58 0

FullCode -9.099e-01 9.513e-02 -9.56 0

mechVent -5.130e-01 5.417e-02 -9.47 0

alloutput_lam -1.776e-01 1.951e-02 -9.10 0

Levophed_perKg_la -7.665e-02 8.648e-03 -8.86 0

Glucose_la -6.450e-01 7.534e-02 -8.56 0

BUN_Slope_1680 -5.215e+01 6.194e+00 -8.42 0

PTT_Slope_1680 -8.346e+00 1.014e+00 -8.23 0

Dobutamine_perKg -1.264e-01 1.602e-02 -7.89 0

Input_60rng_sqrt -1.054e-02 1.368e-03 -7.71 0

ventLen_lam -1.790e-01 2.372e-02 -7.55 0

Dopamine_perKg_sqrt -2.458e-01 3.335e-02 -7.37 0

Mg_Slope_1680 4.333e+02 5.525e+01 7.84 0

INRrng_i 1.083e-04 1.207e-05 8.97 0

pressD01 4.707e-01 4.972e-02 9.47 0

GCS_Slope_1680_sqrt 7.669e+00 7.790e-01 9.85 0

PT_i 3.396e+01 3.229e+00 10.52 0

SBP_Slope_1680 2.024e+01 1.858e+00 10.89 0

Vasopressin_i 1.174e-04 1.068e-05 10.99 0

INR_Slope_1680_sq 1.609e+05 1.339e+04 12.02 0

GCSrdv 9.518e-02 6.920e-03 13.75 0

Intercept 8.922e+00 5.759e-01 15.49 0

totIn_sqrt 2.509e-02 1.566e-03 16.02 0

LOSBalrng_sqrt 2.455e-02 9.026e-04 27.20 0
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Table 6.12: BPWM Hosmer-Lemeshow H risk deciles (development data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1-2 [3.40e-05,0.0479) 0.021 83 77.1 3525 3530.9 3608
3 [4.79e-02,0.0855) 0.067 108 120.9 1696 1683.1 1804
4 [8.55e-02,0.1336) 0.109 176 196.2 1628 1607.8 1804
5 [1.34e-01,0.2087) 0.171 318 308.2 1486 1495.8 1804
6 [2.09e-01,0.3004) 0.252 491 453.8 1313 1350.2 1804
7 [3.00e-01,0.4248) 0.36 648 649.4 1156 1154.6 1804
8 [4.25e-01,0.6176) 0.518 939 934 865 870 1804
9 [6.18e-01,0.8148) 0.717 1238 1293.8 566 510.2 1804
10 [8.15e-01,0.9999] 0.906 1666 1633.5 137 169.5 1803

χ2 = 24.15, d.f. = 7; p = 0.001

Development Validation

To validate the BPWM model, I examine calibration performance and AUC performance.
In addition, I also plot the positive predictive value (PPV) versus sensitivity and the
negative predictive value (NPV) versus specificity. Table 6.12 shows the deciles used
for the Hosmer-Lemeshow H statistic and Table 6.13 shows the deciles used for the
Hosmer-Lemeshow C statistic. The classification performance of the BPWM model on
the training data is shown by the ROC curve in 6-28. In addition, the PPV versus
sensitivity and the NPV versus specificity are plotted in Figure 6-29

Figure 6-30 shows the context surrounding successful IABP weans for patients
who lived (left) and patients who died (right). Similarly, Figure 6-31 shows the
context surrounding successful IABP weans for all predictions, ignoring the inclusion
criteria (left) and only patients that satisfied the inclusion criteria (right). The need
to reinsert an IABP is rare. There do appear to be a few patients who require the
IABP to be reinserted after weaning as shown by the small number of predictions
after IABP wean events in Figure 6-30.7

As an illustration of predictions for an individual patient, Figure 6-32 shows the
predictions for the patient used to demonstrate the annotation process (Figure 6-26).

7Many of the apparent re-insertions shown to the right of the IABP wean event are incorrect.
A number of gaps greater than 6-hours exist even when no sign of an IABP wean is present in the
nursing notes. In fact, many of the longer gaps correspond to times when the patient was moved
between care units (e.g., CCU to CSRU). Manual review of individual patients could reduce such
mislabeled cases.
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Table 6.13: BPWM Hosmer-Lemeshow C probability deciles (development data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 (0,0.1] 0.042 247 251.4 5744 5739.6 5991
2 (0.1,0.2] 0.145 387 407.9 2431 2410.1 2818
3 (0.2,0.3] 0.247 542 495.8 1469 1515.2 2011
4 (0.3,0.4] 0.35 518 527.1 990 980.9 1508
5 (0.4,0.5] 0.447 485 472.5 573 585.5 1058
6 (0.5,0.6] 0.549 478 477.3 391 391.7 869
7 (0.6,0.7] 0.65 578 607.4 357 327.6 935
8 (0.7,0.8] 0.75 627 660.8 254 220.2 881
9 (0.8,0.9] 0.848 844 824.3 128 147.7 972
10 (0.9,1] 0.946 961 942.5 35 53.5 996

χ2 = 28.71, d.f. = 8; p = 0.000
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Figure 6-28: BPWM ROC curve (development data).
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Figure 6-29: BPWM positive predictive value (PPV) versus sensitivity (left) and nega-
tive predictive value (NPV) versus specificity (right) (development data).

6.3.4 Model Validation

As a final step, I validate the BPWM model on the separate validation data. To eval-
uate calibration, Table 6.14 and Table 6.15 provide the deciles used for the Hosmer-
Lemeshow statistics. A plot of the calibration — actual probability versus estimated
probability — is shown in Figure 6-33. The BPWM classification performance is summa-
rized by the ROC curve in Figure 6-34. For comparison purposes, Figure 6-34 includes
a curve generated by the RAS model developed in the previous chapter applied to the
same prediction task (dotted blue).

Plots showing the PPV versus sensitivity and the NPV versus specificity are pro-
vided in Figure 6-35. The dotted blue lines show the performance obtained by using
the RAS model output as a proxy to predict the same outcome as BPWM.

Finally, as done previously with the development patients, the context surround-
ing successful IABP wean is examined for the validation data. Figure 6-36 shows the
context surrounding successful weans for patients who survived (left) and patients
who died (right). In addition to the BPWM predictions, the figure also shows survival
predictions from the RAS model. Figure 6-37 shows the prediction context for all pre-
dictions, including ones that did not satisfy inclusion criteria (left), and the prediction
context for patients that did satisfy the inclusion criteria (right).
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Figure 6-30: BPWM prediction context surrounding IABP removal (development data).
Avg Prob: the mean BPWM probability from all patients who lived (left) and died
(right).

Table 6.14: BPWM Hosmer-Lemeshow H risk deciles (validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1-3 [1.81e-05,0.0865) 0.038 233 91.8 2198 2339.2 2431
4 [8.65e-02,0.1280) 0.107 105 87 706 724 811
5 [1.28e-01,0.1872) 0.156 136 126.2 674 683.8 810
6 [1.87e-01,0.2740) 0.229 210 185.4 600 624.6 810
7 [2.74e-01,0.4153) 0.334 271 270.7 540 540.3 811
8 [4.15e-01,0.6075) 0.509 416 412.4 394 397.6 810
9 [6.07e-01,0.8237) 0.71 562 575.5 248 234.5 810
10 [8.24e-01,0.9965] 0.915 720 741.3 90 68.7 810

χ2 = 243.37, d.f. = 8; p = 0.000
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Figure 6-31: BPWM prediction context surrounding IABP removal (development data).
Avg Prob: the mean BPWM probability from all patient instances (left) and valid in-
stances (right).
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Figure 6-32: BPWM annotations for Subject ID 354 with BPWM and RAS predictions
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Table 6.15: BPWM Hosmer-Lemeshow C probability deciles (validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 (0,0.1] 0.043 259 114.7 2417 2561.3 2676
2 (0.1,0.2] 0.143 259 216.8 1254 1296.2 1513
3 (0.2,0.3] 0.248 223 218 655 660 878
4 (0.3,0.4] 0.343 191 187.7 356 359.3 547
5 (0.4,0.5] 0.45 189 188.3 230 230.7 419
6 (0.5,0.6] 0.548 229 231.8 194 191.2 423
7 (0.6,0.7] 0.649 269 262.8 136 142.2 405
8 (0.7,0.8] 0.749 243 260.8 105 87.2 348

9-10 (0.8,1] 0.905 791 809.4 103 84.6 894

χ2 = 209.43, d.f. = 9; p = 0.000
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Figure 6-33: BPWM calibration plot
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Figure 6-34: BPWM ROC curve (validation data).
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Figure 6-36: BPWM prediction context surrounding IABP removal (validation data).
Avg Prob: the mean BPWM probability from all patients who lived (left) and died
(right).
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Figure 6-37: BPWM prediction context surrounding IABP removal (validation data).
Avg Prob: the mean BPWM probability from all patient instances (left) and valid in-
stances (right).
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6.3.5 Discussion

The BPWM model developed in this section attempts to predict the successful removal
of an intraaortic balloon pump (IABP) within 12 hours. As the process of withdraw-
ing an IABP typically proceeds over a significant amount of time (e.g., 24 hours)
and is typically accompanied by withdrawal of pressors, there are a number of indi-
cators that IABP weaning is taking place. In addition, before the pump is physically
removed, anticoagulants are typically given to the patient to lower the risk of an
embolism or other related complications during removal. With standard steps called
for by IABP protocols, the prediction task for the BPWM model should be reasonably
straightforward. The final stages of the weaning process are often the most interest-
ing as the ability of the patient’s heart to pump without assistance is evaluated. A
prediction window of 12 hours focuses on these final stages.

In the BPWM model the most important indicator for IABP weaning is the frequency
of IABP assistance (iabpVal sq). The IABP frequency variable increases as more
IABP assistance is provided; assistance on every beat (1:1) is assigned an ordinal value
of “4” whereas the lowest assist rate (1:4) is coded as “1” and no assistance is coded as
“0”. As expected, patients that are receiving frequent IABP assistance are less likely
to be weaned in the following 12 hours. In contrast, less frequent assistance is a sign
that a weaning attempt has started — during a weaning attempt, it is often necessary
to revert back to higher assist frequencies if the patient responds poorly. Other highly
predictive variables in the BPWM model include the length of stay fluid balance range
(LOSBalrng sqrt), the administration of anticoagulants (Anticoagulant), the total
fluid input (totIn sqrt), and the cardiac index (CrdIndx i).

With the exception of vasopressin, the presence of pressors decreases the prob-
ability of an IABP wean. The total time that the patient has spent on pressors,
cumPressorTime lam, also decreases the probability that the patient will be weaned.
The presence of pressors generally reflects instability in the patient and it is not
surprising that spending a long time on pressors and receiving high pressor dosages
correlate with continued IABP therapy.

The BPWM model also includes more long-term slope variables than previous mod-
els. The slope variables include the blood urea nitrogen 28-hour slope
(BUN Slope 1680), the partial thromboplastin time 28-hour slope (PTT Slope 1680),
the magnesium 28-hour slope (Mg Slope 1680), the Glasgow Coma Scale 28-hour
slope (GCS Slope 1680 sqrt), the systolic blood pressure 28-hour slope
(SBP Slope 1680), and the international normalized ratio 28-hour slope
(INR Slope 1680 sq). The individual coefficients indicate that an increasing BUN or
PTT decreases the probability of a successful IABP wean within 12 hours. In con-
trast, the coefficients for the Mg, GCS, SBP, and INR slope variables indicate that
an increasing trend for these variables increases the probability of a successful IABP
wean within 12 hours. The physiologic interpretation of the BPWM model trend vari-
ables generally reflect relative improvement in blood circulation or changes in blood
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coagulation. Trends in these variables are predictive of imminent IABP removal.
Even with the small number of IABP validation patients, the BPWM predictions

from each of the three episodes preceding the IABP removed event are statistically
significant between the lived and died cases (p < 0.001). The BPWM predictions are also
statistically significant between consecutive intervals that precede IABP removal. In
contrast, the RAS predictions do not generally show statistically significant differences
between consecutive intervals preceding IABP removal.

In conclusion, the BPWM does well at tracking the progression of an IABP wean.
Unlike many of the other models considered in this chapter, the protocol surrounding
an IABP wean is fairly clear and the presence of an IABP limits our development
and validation population to a specific category of patients. The range of insults
necessitating cardiac assistance, however, yields a complex patient mix that raises
questions about the direct clinical utility of this model. Furthermore, while the BPWM

model contains a number of interesting relations, several recent advances in IABP
alternatives, such as percutaneous left ventricular assist devices, may finally replace
IABPs and render the BPWM discussed here largely irrelevant [28].
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6.4 SSOM: Onset of Septic Shock

Sepsis occurs when a patient demonstrates a systemic inflammatory response to an
infection. Common usage of the term sepsis varies, but recent efforts have tried to
clarify the term. A consensus conference of the American College of Chest Physicians
and the Society of Critical Care Medicine met in 1991 and subsequently published
a report seeking to clarify the definition of sepsis, severe sepsis and septic shock [5].
They proposed the systemic inflammatory response syndrome (SIRS) as an essential
component of sepsis, defining sepsis as the presence of SIRS with a confirmed infection.
This includes a spectrum of more severe conditions, including (1) severe sepsis, or
sepsis and evidence of end-organ dysfunction as a result of hypoperfusion and (2)
septic shock, where the patient has severe sepsis and persistent hypotension despite
adequate fluid resuscitation and resulting tissue hypoperfusion.

Severe sepsis and septic shock are grave conditions. Mortality rates ranging be-
tween 28% and 50% are commonly reported for severe sepsis and severe sepsis rep-
resents an increasing portion of hospitalizations and hospital mortality over the past
decade [55, 93, 15].

In this section I develop a model to predict septic shock. This model will be
referred to as the septic shock onset model (SSOM). Previous work by Shavdia [81]
trained a classifier using a subset of MIMIC II patients with ICD-9 codes indicat-
ing septic shock. I use similar definitions, but do not place the same limitations
on my training data. Instead, my work focuses solely on automatically annotated
Systemic Inflammatory Response Syndrome (SIRS) episodes as determined by the
charted MIMIC II data. I define septic shock as persistent hypotension despite fluid
resuscitation (HDFR). My model seeks to predict the transition from SIRS without
HDFR to SIRS with HDFR. Without confirmation that individual cases of HDFR
were secondary to sepsis (i.e., a confirmed infection), other insults that result in SIRS
and cause HDFR, which may not be associated with sepsis, are inevitably included
by our broad definition.

6.4.1 Data and Patient Inclusion Criteria

For training and validating my model, I included patient episodes with SIRS but no
evidence of HDFR. The definition of SIRS and HDFR are provided below.

For SIRS, I use the consensus definition developed by the American College of
Chest Physicians and the Society of Critical Care Medicine conference in 1991 [5]. The
SIRS definition requires the presence of at least two abnormalities among the variables
described in Table 6.16. An abnormal value is indicated by a value less than the
low threshold or greater than the high threshold. Following Shavdia’s methodology,
abnormal values were required to persist for at least 5 hours for inclusion and SIRS
intervals within 6 hours of each other were merged together to form a single SIRS
episode.
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Table 6.16: SIRS variables and their normal ranges. A value is considered abnormal
if it falls below the low threshold or above the high threshold. Two or more abnormal
values indicates SIRS.

Variable Low Thresh High Thresh
Temperature 36 ◦C 38 ◦C
Heart Rate - 90 bpm
Respiratory Rate - 20 bpm
WBC Count 4000/µL 10000/µL

HDFR was indicated by sustained hypotension in the presence of substantial fluid
input or, alternatively, increased pressor infusion without regard to blood pressure.
Hypotension was defined as a systolic blood pressure falling below 90 mmHg for at
least 30 minutes.8 Substantial fluid input was defined as at least 600mL of input over
the period ranging from one hour prior to the start of the hypotensive episode through
the midpoint of the hypotensive region. Pressor infusion was defined as an increase
of at least 20% in vasopressors (Vasopressin, Neo-Synephrine, Levophed, Dopamine,
Epinephrine) or inotropic agents (Dobutamine, Amrinone, Milrinone) between the av-
erage preceding three dosages (limited to 120 minutes) and the maximum subsequent
dose within 18 hours.

To emphasize the onset of septic shock, only episodes of SIRS without HDFR were
included. For each SIRS instance, if HDFR occurred within 12 hours the instance was
labeled positive for onset of septic shock. No minimum interval was required between
the onset of SIRS and the onset of HDFR. For example, if the start of a SIRS episode
occurred concurrently with evidence of HDFR, no prediction annotations were made.

The prediction window of 12 hours was often not fully utilized as the classification
of SIRS, on average, only preceded HDFR by 5.4 hours. The average HDFR warning
length excluded a large number of cases where the classification of HDFR and SIRS
occurred simultaneously. Figure 6-38 shows the distribution of lengths for the warning
annotations. As the figure shows, many HDFR warning episodes were limited by SIRS
periods that were less than 12 hours in length.

After annotating the final dataset, a number of instances were excluded that did
not contain episodes of SIRS. Table 6.17 provides a summary of the included data.

6.4.2 Outcome

The outcome I explore was the progression from SIRS without HDFR to SIRS with
HDFR within a 12 hour period. By focusing on periods up to 12 hours prior to
HDFR, I emphasize trends and other patterns that might provide early warning of
HDFR.

8While blood pressure is typically only documented hourly, documentation frequency typically
increases (e.g., every 5 minutes) during hypotensive episodes (See Figure 3-1).
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Figure 6-38: Septic shock onset warning lengths

Table 6.17: SSOM data
Count

SIRS patients 5449
HDFR patients 2802
Included instances 237412

HDFR 12-hour warn 22482
SIRS without HDFR within 12 hours 214930
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To illustrate our inclusion criteria and annotations, Figure 6-39 provides an exam-
ple from Subject ID 13325. The top plot in Figure 6-39 marks the episodes of SIRS
and HDFR. The lower plot shows the automatically annotated 12-hour warnings for
the top plot; periods without SIRS or with both SIRS and HDFR are indicated by
the dashed blue line.
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Figure 6-39: SSOM example annotations for Subject ID 13325

6.4.3 Model Development

To develop SSOM, I follow the methodology described in Chapter 4. I first describe
the model selection process and the resulting logistic regression model. Following the
model selection description, I describe validation on the training data.

Model Selection

Candidate variables were initially ranked against the outcome variable (onset of septic
shock). Variables with a p-value greater than 0.05 were excluded. Furthermore, if
multiple variables were strongly correlated (Spearman’s rank correlation test > 0.8)
the best univariate variable was retained. After the initial screening of the variables,
variable selection for the SSOM model was based on the best 30 variables from each
of the 5 cross-validation folds (the individual cross validation plots are provided in
Appendix F). When combined, the best 30 variables from the 5 folds resulted in 56
unique candidate variables. Figure 6-40 shows the AUC that results from gradually
increasing the AIC backward elimination threshold and greedily dropping additional
variables.

The initial model was trained using the top 32 variables obtained from cross
validation. From the variables included in the initial model, the Arterial PaO2

slope (Art PaO2 Slope la), magnesium (Mg lam), and PaO2:FiO2 (PaO2toFiO2) were
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Figure 6-40: SSOM model selection (all development data)

dropped because of limited availability. Removing the PaO2 slope, magnesium, and
PaO2:FiO2 variables did not noticeably change the model’s performance. In addition,
the diastolic blood pressure (DBPm sq) was replaced with the systolic blood pressure
(SBPm la) and the temperature (temp am) was added with a negligible improvement
in performance. The final model, with 30 inputs, is shown in Model 6.4.

Development Validation

To validate the SSOM model, I examine calibration performance and AUC performance.
In addition, I also examine plots of the positive predictive value (PPV) versus sensi-
tivity and the negative predictive value (NPV) versus specificity. Table 6.18 shows the
deciles used for the Hosmer-Lemeshow H statistic and Table 6.19 shows the deciles
used for the Hosmer-Lemeshow C statistic. The classification performance of SSOM on
the training data is shown by the ROC curve in 6-41. In addition, plots showing the
PPV versus sensitivity and the NPV versus specificity are provided in Figure 6-42.

Figure 6-43 shows the context surrounding the onset of HDFR for patients who
lived (left) and patients who died (right). Similarly, Figure 6-44 shows the context
surrounding the onset of HDFR for all predictions, ignoring the inclusion criteria
(left) and only patients that satisfied the inclusion criteria (right).

As an illustration of predictions for an individual patient, Figure 6-45 shows the
predictions for the patient used as an example of the annotation process (Figure 6-39).
The patient, Subject ID 13325, was admitted to the ICU with sepsis and expired after
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Model 6.4 Final SSOM model
Obs Max Deriv Model L.R. d.f. P C Dxy

144567 3e-07 21292.15 30 0 0.855 0.709

Gamma Tau-a R2 Brier

0.713 0.116 0.302 0.067

Coef S.E. Wald Z P

pressorTime_i -1.177e-04 4.044e-06 -29.10 0

SBPm_la -2.333e+00 1.491e-01 -15.65 0

alloutput_sqrt -1.041e-02 7.644e-04 -13.62 0

Esmolol_i -1.550e-04 1.202e-05 -12.90 0

X24hBal -6.837e-05 5.473e-06 -12.49 0

GCSrdv -3.930e-02 3.941e-03 -9.97 0

Morphine_Sulfate_sqrt -4.136e-01 4.215e-02 -9.81 0

SICU -7.848e-01 8.078e-02 -9.71 0

UrineEvnts.24h -5.484e-03 6.042e-04 -9.08 0

Lidocaine_i -9.965e-05 1.099e-05 -9.06 0

ventLenC_am -7.732e-05 8.571e-06 -9.02 0

CO2_Slope_1680 -4.313e+01 5.182e+00 -8.32 0

Output_60_i -2.560e-05 3.214e-06 -7.97 0

LOSBal -3.390e-05 4.314e-06 -7.86 0

Vasodilating_agent -3.038e-01 4.201e-02 -7.23 0

cvpM 1.730e-01 2.352e-02 7.35 0

temp_am 7.486e-02 9.911e-03 7.55 0

GCSrng_i 2.862e-05 3.255e-06 8.79 0

PulsePres_sqrt 1.502e-01 1.607e-02 9.35 0

Intercept 6.902e+00 7.362e-01 9.38 0

SpO2CritEvnts.24h_lam 1.351e-01 1.275e-02 10.60 0

Input_60_sqrt 1.710e-02 1.515e-03 11.29 0

allinput 4.785e-05 4.030e-06 11.88 0

totIV_sqrt 9.596e-03 7.845e-04 12.23 0

SBPmrdv 1.399e-02 1.116e-03 12.53 0

Age_la 5.291e-01 3.909e-02 13.54 0

WBC 2.100e-02 1.393e-03 15.07 0

Sympathomimetic_agent 6.394e-01 4.157e-02 15.38 0

mechVent 4.462e-01 2.636e-02 16.93 0

Neosynephrine_perKg_la 6.732e-02 3.215e-03 20.94 0

ShockIdx 1.541e+00 6.730e-02 22.91 0
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Table 6.18: SSOM Hosmer-Lemeshow H risk deciles (development data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 [0.00119,0.0132) 0.01 45 143.1 14412 14313.9 14457
2 [0.01322,0.0179) 0.016 154 225.7 14303 14231.3 14457
3 [0.01792,0.0225) 0.02 166 292 14291 14165 14457
4 [0.02255,0.0279) 0.025 234 363.3 14222 14092.7 14456
5 [0.02785,0.0345) 0.031 338 448.7 14119 14008.3 14457
6 [0.03446,0.0441) 0.039 491 562.6 13966 13894.4 14457
7 [0.04412,0.0618) 0.052 910 749.3 13546 13706.7 14456
8 [0.06184,0.1190) 0.083 1735 1201.1 12722 13255.9 14457
9 [0.11903,0.2857) 0.2 3165 2887.9 11292 11569.1 14457
10 [0.28571,0.9724] 0.424 5765 6129.3 8691 8326.7 14456

χ2 = 597.40, d.f. = 8; p = 0.000

Table 6.19: SSOM Hosmer-Lemeshow C probability deciles (development data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 (0,0.1] 0.033 3642 3689.2 109285 109237.8 112927
2 (0.1,0.2] 0.144 1739 1451.1 8313 8600.9 10052
3 (0.2,0.3] 0.25 2237 2076.7 6068 6228.3 8305
4 (0.3,0.4] 0.346 2234 2215.7 4175 4193.3 6409
5 (0.4,0.5] 0.445 1529 1635.1 2147 2040.9 3676
6 (0.5,0.6] 0.544 879 1021 998 856 1877
7 (0.6,0.7] 0.643 419 532.4 409 295.6 828
8 (0.7,0.8] 0.741 218 256.5 128 89.5 346

9-10 (0.8,1] 0.852 106 125.3 41 21.7 147

χ2 = 249.86, d.f. = 7; p = 0.000
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Figure 6-41: SSOM ROC curve (development data).
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Figure 6-42: SSOM positive predictive value (PPV) versus sensitivity (left) and nega-
tive predictive value (NPV) versus specificity (right) (development data).
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Figure 6-43: SSOM prediction context surrounding HDFR (development data). Avg
Prob: the mean SSOM probability from all patients who lived (left) and died (right).

about 16 days. Other specific examples of SSOM predictions for individual patients
(e.g., subjects 1124 and 24019) can be found in Appendix E.

6.4.4 Model Validation

As a final step, I validate the SSOM model on the separate validation data. To eval-
uate calibration, Table 6.20 and Table 6.21 provide the deciles used for the Hosmer-
Lemeshow statistics. A plot of the calibration — actual probability versus estimated
probability — is shown in Figure 6-46. The nonparametric curve on Figure 6-46
shows large deviations from the ideal calibration for large predicted probabilities,
but the number of such estimates is very limited as shown by the histogram along
the x-axis. Due to the limited number of estimates and the local lowess smoothing,
the nonparametric curve for the large probabilities should be considered unreliable.
The SSOM classification performance is summarized by the ROC curve in Figure 6-47.
For comparison purposes, Figure 6-47 includes a curve generated by the RAS model
developed in the previous chapter applied to the same prediction task (dotted blue).

Plots showing the PPV versus sensitivity and the NPV versus specificity are pro-
vided in Figure 6-48. The dotted blue lines show the performance obtained by using
the RAS model output as a proxy to predict the same outcome as SSOM.

Finally, as done previously with the development patients, the context surrounding
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Figure 6-44: SSOM prediction context surrounding HDFR (development data). Avg
Prob: the mean SSOM probability from all patient instances (left) and valid instances
(right).
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Table 6.20: SSOM Hosmer-Lemeshow H risk deciles (validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 [0.00237,0.0135) 0.01 30 56 5495 5469 5525
2 [0.01350,0.0184) 0.016 49 88.2 5476 5436.8 5525
3 [0.01837,0.0228) 0.021 86 113.6 5439 5411.4 5525
4 [0.02284,0.0280) 0.025 116 140 5409 5385 5525
5 [0.02797,0.0344) 0.031 167 171.6 5358 5353.4 5525
6 [0.03441,0.0440) 0.039 216 214.2 5309 5310.8 5525
7 [0.04400,0.0623) 0.052 370 287.1 5155 5237.9 5525
8 [0.06231,0.1242) 0.085 670 470.2 4855 5054.8 5525
9 [0.12419,0.3004) 0.21 1590 1159.6 3935 4365.4 5525
10 [0.30036,0.9749] 0.439 2193 2426.3 3331 3097.7 5524

χ2 = 401.38, d.f. = 10; p = 0.000

Table 6.21: SSOM Hosmer-Lemeshow C probability deciles (validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 (0,0.1] 0.033 1479 1401.8 41469 41546.2 42948
2 (0.1,0.2] 0.142 813 517.7 2831 3126.3 3644
3 (0.2,0.3] 0.249 997 777.4 2124 2343.6 3121
4 (0.3,0.4] 0.346 881 883.5 1675 1672.5 2556
5 (0.4,0.5] 0.447 645 717.1 959 886.9 1604
6 (0.5,0.6] 0.543 374 450 454 378 828
7 (0.6,0.7] 0.643 183 224.5 166 124.5 349
8 (0.7,0.8] 0.744 77 98.2 55 33.8 132

9-10 (0.8,1] 0.847 38 56.7 29 10.3 67

χ2 = 404.33, d.f. = 9; p = 0.000
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the onset of HDFR is examined for the validation data. Figure 6-49 shows the context
surrounding HDFR onset for patients who survived (left) and patients who died
(right). In addition to the SSOM predictions, the figure also shows mortality predictions
from the RAS model. Figure 6-50 shows the prediction context for all predictions,
including ones that did not satisfy inclusion criteria (left), and the prediction context
for patients that did satisfy the inclusion criteria (right).
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Figure 6-49: SSOM prediction context surrounding HDFR (validation data). Avg Prob:
the mean SSOM probability from all patients who lived (left) and died (right).
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Figure 6-50: SSOM prediction context surrounding HDFR (validation data). Avg Prob:
the mean SSOM probability from all patient instances (left) and valid instances (right).
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6.4.5 Discussion

The SSOM model developed in this section attempts to predict a transition from SIRS
without HDFR to SIRS with HDFR within 12 hours.

The SSOM model shown in Model 6.4 includes 30 inputs. Many of the most influen-
tial variables reflect the treatment that the patient is receiving. For example, the time
that the patient has spent on pressors (pressorTime i) is quite significant. Since the
time spent on pressors input has units of 1/min (from the inverse transformation),
it effectively serves as an indicator of the presence of pressors. If a patient is not
receiving pressors, the value of 1/(0min + 0.0001) = 1000/min is used for the input
and the estimate for the patient entering HDFR during the next 12 hours is lowered.
As the time that the patient has spent on pressors increases, the contribution of the
pressorTime i input quickly decreases.

Other important treatment variables include (1) the amount of Neo-Synephrine
the patient is receiving (Neosynephrine perKg la), which increases the probability
of HDFR, (2) mechanical ventilation (mechVent), which increases the probability
of HDFR, (3) the presence of sympathomimetic agents (Sympathomimetic agent),
which increases the probability of HDFR, and (4) the administration of esmolol
(Esmolol i), which also increases the probability of HDFR. The role of esmolol is
especially interesting. Esmolol is a beta1 receptor blocker with a very short half-life
(10 min) that is used to treat acute arrhythmias. Its presence identifies a set of pa-
tients that have caregiver-induced hypotension that is unlikely to be related to severe
sepsis. A variety of other variables, such as the patient being physically located in
the surgery ICU (SICU), or receiving vasodilating agents (Vasodilating agent) also
decrease the risk of HDFR and likely lower the risk of septic shock.

In addition to the intervention variables, a number of physiological variables have
significant influence in the model. Some of physiological variables include the shock
index (HR/SBPm) (ShockIdx), the white blood cell count (WBC), the total amount
of output from the patient (alloutput sqrt), the patient’s age (Age la), the 24-
hour fluid balance (X24hBal), and the total input received (allinput). In general,
the physiological interpretations of these variables are expected and each play an
important role in the diagnosis of HDFR and septic shock.

The calibration performance of the SSOM model is generally poor. The Hosmer-
Lemeshow H and C statistics are quite significant for both the development and the
validation data. The calibration plot (Figure 6-46) shows that the high probabilities
are especially poor, but the model is dominated by low-probability predictions which,
when corrected using the technique discussed in 4, translate to reasonable calibration
(slope=0.957, intercept=0.021, and Emax of 0.013).

Given the definitions used, the classification performance for the SSOM model is
strong. On the validation data, SSOM obtains an AUC of 0.843. The PPV is generally
weak as a result of the low prevalence of HDFR episodes.

Severe sepsis is one of the primary causes of mortality in the ICU. Considering
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the increased mortality risk for septic patients, the group of patients considered by
the SSOM model is expected to also represent high risk patients. The increased risk
is confirmed by comparing the average RAS score between the episodes included by
the SSOM model and instances not included by the SSOM model. The average RAS

prediction for each patient is 0.217 when only the SIRS periods preceding HDFR
(within the 12-hour limit) are considered. In contrast, the average value for SIRS-
only periods without HDFR within 12 hours is 0.127. For non-SIRS periods, the
average RAS prediction falls to 0.0907. The differences between each group are highly
significant. An increasing trend in RAS predictions can often be observed in septic
patients who continue to fight septic shock. Other patients with a better response
to treatment, often show a generally decreasing trend. The weak sensitivity for RAS
when predicting HDFR appears to be a result of a generally increased baseline for
periods where patients are at risk for septic shock. The RAS model was not trained
to limit this increase to a fixed time prior to HDFR and the RAS baseline often grows
between multiple periods of HDFR for the same patient and over the course of several
days.

In fact, the definitions used for the SSOM model are a major limitation. By manu-
ally reviewing a sample of patients that have the term “septic shock” present in their
nursing notes, it appears that the definition needs further refinement to maximize
predictive utility. Many of the patients experience an HDFR episode concurrently
with SIRS and thus no predictions are available for the HDFR episode. Similarly, af-
ter an episode has been resolved, the patient often remains in SIRS. The post-HDFR
SIRS helps to explain the low prevalence of warning annotations. In general it seems
that the caregivers are quite mindful of SIRS. When SIRS is present without hemody-
namic decompensation the patient is typically placed on a strict sepsis protocol and
monitored closely for worsening sepsis. One of the more interesting cases appears to
be when there is less warning and the cause of hypotension is not immediately clear
to the clinicians (i.e., suspected to be sepsis or cardiogenic shock).

Furthermore, the broad definitions used by the SSOM model include a number of
non-sepsis episodes. Manual review of the patients used for training and validation
could help make the SSOM model more specific to septic shock and exclude patient
episodes with HDFR but no sepsis (e.g., patients that are hypotensive due to beta
blockers). Another way to tighten the definition of sepsis might be to better under-
stand the septic shock treatment protocol used by the physicians in the units under
consideration. The surviving sepsis campaign, for example, suggests treating septic
shock with Levophed or dopamine as the initial vasopressor and epinephrine as the
first alternative to septic shock refractory to Levophed or dopamine [14].

The average mortality prediction of 0.217 prior to HDFR episodes from the RAS

model is reasonable. While the reported mortality rates for septic shock are typically
higher (i.e., 28-50%), 22% is not far below the reported mortality range and our
definitions of HDFR include a variety of sepsis severities and even non-sepsis cases.
A stricter definition of septic shock would likely result in a higher average mortality
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prediction from RAS.
In conclusion, the SSOM model performs well at predicting the transition from SIRS

without HDFR to SIRS with HDFR. Manual review of individual patients included
in the SSOM model, however, reveals that the model is quite sensitive to the definitions
used for SIRS and HDFR and the clinical utility of the model would likely benefit
from additional refinement.
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6.5 AKIM: Kidney Injury

Acute kidney injury (AKI) is a critical condition marked by a rapid loss of renal func-
tion. With decreased renal function, several waste products are not removed from the
blood and the body’s homeostatic balance can become compromised. The diagnosis
of AKI is based on elevated creatinine or blood urea nitrogen values and/or decreased
urine output. Due to varying kidney function between individuals (especially those
with chronic renal failure), absolute measurements need to be compared with previous
baseline measurements for a given patient.

An attempt was made in 2004 to provide a consensus definition to describe acute
kidney injury. The result was the RIFLE acronym for classifying kidney function:
Risk of renal dysfunction, I njury to the kidney, Failure of kidney function, Loss of
kidney function and End-stage kidney disease [3]. Previously more than 30 definitions
existed.

The RIFLE classification scheme relies on relative changes in creatinine (as a proxy
for the glomerular filtration rate or GFR), and urine output. The thresholds used
to classify each stage are provided in Table 6.22. A patient’s RIFLE classification is
based on the most deranged value for GFR or urine output. The serum creatinine
(SCreat) thresholds in Table 6.22 refer to change from baseline. Accurate baseline
measurements are unavailable for the MIMIC II patients. Instead, the abbreviated
“modification of diet in renal disease” (MDRD) study equation — based on serum
creatinine, age, gender, and race — can be used to to estimate the baseline serum
creatinine levels:

eGFR = 186 × SCreat−1.154 × Age−0.203 × [1.210 if Black] × [0.742 if Female].

Without a baseline creatinine value, an estimated GFR (eGFR) of 75mL/min per
1.73 m2, which is at the lower end of normal range, has been suggested for use with
the MDRD equation to estimate serum creatinine [19, 3].

For the purposes of this section, I used the MDFR SCreat baseline estimate for
RIFLE classification. In the MIMIC II data, patient race is unknown, so no separate
(higher) baselines were available for African-Americans. The baseline estimates from
the MDFR study equation are given in Table 6.23. For comparison, my entire dataset
had a median serum creatinine value of 0.90mg/dL, a mean value of 1.29mg/dL, and
a standard deviation of 1.19mg/dL.

In this section, I develop a model to predict acute kidney injury (AKI). I use the
term “kidney injury” to include both acute kidney injury and acute kidney failure.
The model developed in this section will be referred to as the acute kidney injury
model (AKIM).
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Table 6.22: RIFLE Classification Scheme [3]. A patient is classified as the worst stage
resulting from GFR or urine output.

Stage GFR Urine Output
Risk Increased SCreat x1.5 or GFR de-

crease > 25%
< 0.5ml/kg/h x 6 hr

Injury Increased SCreat x2 or GFR de-
crease > 50%

< 0.5ml/kg/h x 12 hr

Failure Increased SCreat x3 or GFR de-
crease 75% or SCreat ≥ 4mg/dL

< 0.3ml/kg/h x 24 hrs or Anuria x
12 hrs

Table 6.23: Estimated baseline creatinine using the abbreviated MDRD equation and
an estimated GFR = 75 ml/min per 1.73 m2

Age (years) Males (mg/dL) Females (mg/dL)
20-24 1.3 1.0
25-29 1.2 1.0
30-39 1.2 0.9
40-54 1.1 0.9
55-65 1.1 0.8
>65 1.0 0.8

6.5.1 Data and Patient Inclusion Criteria

As described in Chapter 3, I attempted to remove patients with chronic renal failure
by dropping patients that had an ICD-9 code of 585. The 225 patients that were
dropped based on an ICD-9 code of 585 were likely only a subset of the chronic renal
failure cases. In addition to the general inclusion criteria, I required that patient
episodes used to develop and validate the AKIM model were classified by RIFLE under
the “Risk” category. Patient episodes with a more severe RIFLE classification are
not included in order to emphasize the onset of kidney injury. The Risk category
requirement also omitted patient episodes with no valid creatinine measurement and
urine measurement.

While many patients only received one daily creatinine measurement, it was com-
mon for measurements to be made more frequently. Figure 6-51 shows that 6-hour
and 12-hour measurement intervals were also quite common.

After annotating the final dataset, a number of instances were excluded that did
not contain episodes annotated as kidney risk. Table 6.24 provides a summary of the
included data.
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Figure 6-51: Creatinine Measurement Intervals

Table 6.24: AKIM data
Count

Kidney risk patients 4591
Kidney injury/failure patients 3249
Included instances 103543

AKI 18-hour warn instances 31289
Risk but no AKI within 18 hours 72254
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6.5.2 Outcome

The outcome for the AKIM model is the transition from kidney risk to acute kidney
injury or failure, as specified by the RIFLE scheme, within 18 hours. The 18-hour
window, in addition to the 6 hours for the RIFLE oliguria kidney risk classification, al-
lows the development of injury and failure as determined by urine output, specifically
the kidney failure criterion that requires 24 hours of oliguria.

The entire prediction window of 18 hours is often not fully utilized. The classi-
fication of kidney risk, on average, only occurs 6 hours prior to the classification of
kidney injury. Figure 6-52 shows the distribution of lengths for the warning window.
As the figure shows, most kidney risk episodes limit the warning window to within 6
hours and only a small number of predictions are limited by the 18-hour window.
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Figure 6-52: Acute kidney injury onset warning lengths

To illustrate the annotation process, Figure 6-53 shows how an example patient
(Subject ID 2539) was annotated. The figure in the top plot shows the kidney injury
indicator. The bottom plot in the figure shows the 18 hour warning annotations;
episodes where no annotations are made (i.e., did not satisfy the kidney risk criteria)
are marked with the dashed blue line.
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Figure 6-53: AKIM example annotations for Subject ID 2539

6.5.3 Model Development

The AKIM model was developed using the same methodology as the other secondary
outcome models discussed in this chapter (described in Chapter 4). In this section I
describe the AKIM model selection process and the resulting logistic regression model.
I also provide a description of the model’s performance on the training data.

Model Selection

Candidate variables were initially ranked against the outcome variable (kidney in-
jury). Variables with a p-value greater than 0.05 were excluded. Furthermore, if
multiple variables were strongly correlated (Spearman’s rank correlation test > 0.8)
the best univariate variable was retained. After the initial screening of the variables,
variable selection for the AKIM model was based on the best 20 variables from each of
the 5 cross-validation folds (the individual cross validation plots are provided in Ap-
pendix F). For each cross-validation fold, the validation performance decreased after
20 variables. When combined, the best 20 variables from the 5 folds resulted in 40
unique candidate variables. Figure 6-54 shows the AUC that resulted from gradually
increasing the AIC backward elimination threshold and greedily dropping additional
variables.

The final AKIM model was trained using the top 26 variables. This model is shown
in Model 6.5.
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Model 6.5 Final AKIM model

Obs Max Deriv Model L.R. d.f. P C Dxy

56952 9e-07 10581.15 26 0 0.768 0.537

Gamma Tau-a R2 Brier

0.538 0.217 0.244 0.165

Coef S.E. Wald Z P

X24hUrOut_sqrt -2.701e-02 1.642e-03 -16.45 0

MBPm_la -1.745e+00 1.070e-01 -16.31 0

Nitroglycerine_i -5.674e-05 3.706e-06 -15.31 0

UrineOut_sqrt -5.105e-02 3.634e-03 -14.05 0

alloutput_sqrt -1.288e-02 9.633e-04 -13.37 0

BUN_la -3.480e-01 2.794e-02 -12.46 0

CO2_Slope_1680 -7.199e+01 5.986e+00 -12.03 0

Creatinine_sqrt -7.317e-01 7.656e-02 -9.56 0

Output_60_sqrt -2.208e-02 2.621e-03 -8.43 0

COtdM -2.343e-01 2.800e-02 -8.37 0

CO2_am 2.815e-02 3.721e-03 7.56 0

Platelets_Slope_1680_i 2.811e-05 3.292e-06 8.54 0

CV_HR_Slope_240_i 4.156e-05 4.762e-06 8.73 0

Midazolam_sqrt 1.674e-01 1.866e-02 8.97 0

temp_am 1.064e-01 1.143e-02 9.32 0

hrmPaced 3.358e-01 3.233e-02 10.39 0

Levophed_i 4.052e-05 3.894e-06 10.41 0

pressD24 7.416e-01 6.971e-02 10.64 0

totOut_sqrt 1.923e-02 1.712e-03 11.24 0

index_sqrt 1.370e-02 1.215e-03 11.27 0

DBPm_la 9.632e-01 8.374e-02 11.50 0

HCT_sq 4.451e-04 3.622e-05 12.29 0

Intercept 4.058e+00 2.877e-01 14.10 0

Sympathomimetic_agent 3.985e-01 2.792e-02 14.27 0

totIn_am 8.290e-05 5.074e-06 16.34 0

urineByHr.oor120.t_sqrt 6.669e-02 2.711e-03 24.60 0

admitWt_sq 6.204e-05 2.258e-06 27.48 0
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Figure 6-54: AKIM model selection (all development data)

Development Validation

To validate the AKIM model, I examine calibration performance and AUC perfor-
mance. In addition, I plot the PPV versus sensitivity and the NPV versus specificity.
Table 6.25 shows the deciles used for the Hosmer-Lemeshow H statistic and Table 6.26
shows the deciles used for the Hosmer-Lemeshow C statistic. The classification per-
formance of AKIM on the training data is shown by the ROC curve in 6-55. The PPV
versus sensitivity and the NPV versus specificity are plotted in Figure 6-56

Figure 6-57 shows the context surrounding transitions from kidney risk to kidney
injury for patients who lived (left) and patients who died (right). Similarly, Fig-
ure 6-58 shows the context surrounding transitions from kidney risk to kidney injury,
ignoring the inclusion criteria (i.e., not requiring kidney risk), on the left side and
only the patients that satisfied the inclusion criteria on the right.

As an illustration of predictions for an individual patient, Figure 6-59 shows the
predictions for the patient used to demonstrate the annotation process (Figure 6-53).

6.5.4 Model Validation

As a final step, I validate the AKIM model on the separate validation data. To eval-
uate calibration, Table 6.27 and Table 6.28 provide the deciles used for the Hosmer-
Lemeshow statistics. A plot of the calibration — actual probability versus estimated
probability — is shown in Figure 6-60. The AKIM classification performance is sum-
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Table 6.25: AKIM Hosmer-Lemeshow H risk deciles (development data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 [0.00387,0.0774) 0.055 352 313.3 5344 5382.7 5696
2 [0.07739,0.1108) 0.095 440 539.2 5255 5155.8 5695
3 [0.11081,0.1437) 0.127 566 724 5129 4971 5695
4 [0.14365,0.1810) 0.162 828 921.6 4867 4773.4 5695
5 [0.18096,0.2275) 0.204 1137 1160 4558 4535 5695
6 [0.22754,0.2847) 0.255 1518 1452.5 4178 4243.5 5696
7 [0.28466,0.3566) 0.319 2056 1819.2 3639 3875.8 5695
8 [0.35662,0.4474) 0.4 2452 2278.1 3243 3416.9 5695
9 [0.44744,0.5704) 0.505 2940 2876.5 2755 2818.5 5695
10 [0.57038,0.9873] 0.685 3697 3901.7 1998 1793.3 5695

χ2 = 184.93, d.f. = 8; p = 0.000

Table 6.26: AKIM Hosmer-Lemeshow C probability deciles (development data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 (0,0.1] 0.068 625 638.6 8739 8725.4 9364
2 (0.1,0.2] 0.146 1990 2311.4 13802 13480.6 15792
3 (0.2,0.3] 0.246 2672 2551.9 7683 7803.1 10355
4 (0.3,0.4] 0.348 2824 2524.9 4434 4733.1 7258
5 (0.4,0.5] 0.447 2586 2460.9 2915 3040.1 5501
6 (0.5,0.6] 0.547 2123 2179.7 1861 1804.3 3984
7 (0.6,0.7] 0.646 1698 1717 959 940 2657
8 (0.7,0.8] 0.743 907 999 438 346 1345
9 (0.8,0.9] 0.841 415 445.7 115 84.3 530
10 (0.9,1] 0.946 146 157 20 9 166

χ2 = 190.39, d.f. = 8; p = 0.000
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Figure 6-55: AKIM ROC curve (development data).
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tive predictive value (NPV) versus specificity (right) (development data).
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Figure 6-57: AKIM prediction context surrounding kidney injury (development data).
Avg Prob: the mean AKIM probability from all patients who lived (left) and died
(right).
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Figure 6-58: AKIM prediction context surrounding kidney injury (development data).
Avg Prob: the mean AKIM probability from all patient instances (left) and valid in-
stances (right).
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Figure 6-59: AKIM annotations for Subject ID 2539 with AKIM and RAS predictions

marized by the ROC curve in Figure 6-61. For comparison purposes, Figure 6-61
includes a curve generated by the RAS model from the previous chapter applied to
the kidney injury prediction task (dotted blue).

Plots showing the PPV versus sensitivity and the NPV versus specificity are pro-
vided in Figure 6-62. The dotted blue lines show the performance obtained by using
the RAS model output as a proxy to predict the same outcome as AKIM.

Finally, as done previously with the development patients, the context surrounding
the onset of kidney injury is examined for the validation data. Figure 6-63 shows the
context surrounding the onset of kidney injury for patients who survived (left) and
patients who died (right). In addition to the AKIM predictions, the figure also shows
mortality predictions from the RAS model. Figure 6-64 shows the prediction context
surrounding the onset of kidney injury for all predictions, including ones that did not
satisfy inclusion criteria (left), and the prediction context for all patients that did
satisfy the inclusion criteria (right).
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Table 6.27: AKIM Hosmer-Lemeshow H risk deciles (validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 [5.05e-05,0.077) 0.051 277 125.1 2163 2314.9 2440
2 [7.70e-02,0.111) 0.094 208 230 2231 2209 2439
3 [1.11e-01,0.146) 0.129 247 314.5 2193 2125.5 2440
4 [1.46e-01,0.181) 0.163 338 397.9 2101 2041.1 2439
5 [1.81e-01,0.226) 0.203 449 495.5 1990 1943.5 2439
6 [2.26e-01,0.283) 0.253 666 618 1774 1822 2440
7 [2.83e-01,0.353) 0.317 859 773.5 1580 1665.5 2439
8 [3.53e-01,0.439) 0.394 1086 961.4 1354 1478.6 2440
9 [4.39e-01,0.549) 0.49 1235 1195.8 1204 1243.2 2439
10 [5.49e-01,0.953] 0.652 1498 1589.1 941 849.9 2439

χ2 = 292.73, d.f. = 10; p = 0.000

Table 6.28: AKIM Hosmer-Lemeshow C probability deciles (validation data)

Died Survived
Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total

1 (0,0.1] 0.066 417 271 3666 3812 4083
2 (0.1,0.2] 0.148 820 1000.6 5925 5744.4 6745
3 (0.2,0.3] 0.246 1151 1092.9 3288 3346.1 4439
4 (0.3,0.4] 0.348 1269 1115.5 1939 2092.5 3208
5 (0.4,0.5] 0.447 1178 1116.1 1318 1379.9 2496
6 (0.5,0.6] 0.546 967 972.2 814 808.8 1781
7 (0.6,0.7] 0.644 621 662.9 408 366.1 1029
8 (0.7,0.8] 0.743 339 352.9 136 122.1 475

9-10 (0.8,1] 0.847 101 116.8 37 21.2 138

χ2 = 188.79, d.f. = 9; p = 0.000
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Figure 6-60: AKIM calibration plot (validation data)
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Figure 6-61: AKIM ROC curve (validation data).
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tive predictive value (NPV) versus specificity (right) (validation data).
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Figure 6-63: AKIM prediction context surrounding kidney injury (validation data).
Avg Prob: the mean AKIM probability from all patients who lived (left) and died
(right).
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Figure 6-64: AKIM prediction context surrounding kidney injury (validation data). Avg
Prob: the mean AKIM probability from all patient instances (left) and valid instances
(right).
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6.5.5 Discussion

The AKIM model that I presented in this section attempts to predict decreasing renal
function in the form of a progression from risk of kidney injury to kidney injury or
kidney failure. It uses the change in creatinine from an estimated baseline and the
hourly urine output specified by the RIFLE classification scheme to annotate these
kidney changes.

Of the models presented in this chapter, the AKIM model has the worst prediction
performance. The relatively poor performance is not surprising given the necessary
estimation of the creatinine baseline values and the rather coarse RIFLE definitions
used to build the model. Despite the predictive difficulty of the AKIM model, it
contains a number of interesting physiological inputs.

Some of the more predictive physiological inputs include the patient weight from
admission (admitWt sq), the number of out-of-range urine events during the past
2 hours (urineByHr.oor120.t sqrt), the 24-hour urine output (X24hUrOut sqrt),
and the mean blood pressure (MBPm la). The weights associated with these variables
appear to be consistent with what one would expect in their reflection of decreased
cardiac output and the symptoms of early kidney failure.

The AKIM model includes three trend variables. The three trend variables are
the CO2 slope over 28 hours (CO2 Slope 1680), the platelets slope over 28 hours
(Platelets Slope 1680 i), and the heart rate slope over 4 hours (CV HR Slope 1680 i).
The CO2 slope, for example, indicates that the patient is trending away from renal
acidosis that often results from an accumulation of urea and creatinine in the blood.

Unlike many of the other secondary outcome models developed in this chapter,
interventions appear to be less influential in the AKIM model. The most important
drug inputs include nitroglycerine (Nitroglycerine i), administration of a sympath-
omimetic agent (Sympathomimetic agent), Levophed (Levophed i), and midazolam
(Midazolam sqrt). Lasix was notably absent from this list.

The AKIM model demonstrates moderate calibration performance. The AKIM model
has significant values for the Hosmer-Lemeshow C and H statistics, but is calibrated
better than the other secondary models in this chapter. The calibration plot shown
in Figure 6-60 confirms this finding with a slope of 0.937, an intercept of -0.013, and
an Emax of 0.017 for the logistic correction.

The AKIM model offers only moderate performance at predicting kidney injury.
The AUC value for the AKIM model on the validation data is 0.742. By looking
at the context plots for the AKIM model predictions in Figure 6-57, it appears that
for both the training and validation patients a consistent increase in the model’s
prediction value is not observed until 6 hours prior to the classification of kidney
injury. The behavior displayed within 6 hours of kidney injury indicates that the
prediction window of 18 hours might adversely affect the performance of the model,
and a more realistic predictive window might be nine hours prior to the event. If
the n values along the bottom of the context plots are examined, it is clear that
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the vast majority of positive training instances already occur within 6 hours of the
kidney injury event. There are also notable prediction differences between patients
that live (left) and patients that die (right). For patients that ultimately die, there is
a significant increase in estimates between the interval [-12,-9) hours before the event
and [-9,-6) hours before the event (p < 0.00001). When making conclusions from the
context plots, however, it is important to consider the precipitous drop in the number
of predictions available for intervals that precede the kidney injury event by more
than 6 hours.

It is also interesting to note that, in general, the RAS model predictions are un-
helpful in identifying increased renal dysfunction. The predictions, however, may not
be entirely useless. In Figure 6-57, the RAS predictions, on average, reach their maxi-
mum between 12 and 9 hours prior to the kidney injury event and subsequently trend
in the wrong direction. This pattern is especially noticeable in a patients who died,
where the median RAS prediction is nearly 0.6 between 15 and 12 hours prior to the
kidney injury event. A peak in mortality risk several hours prior to kidney injury is
consistent with the understanding that kidney injury typically follows an event that
causes reduced cardiac output [65]. When the inclusion criteria are ignored (i.e., pre-
dictions are not limited to episodes that fall within the kidney risk classification) the
observed RAS pattern is no longer evident. If the structure of the prediction problem
were changed to focus on events that ultimately caused the renal dysfunction (e.g.,
hypovolemia), the RAS model would likely perform better. Many of the events that
led to kidney dysfunction are likely acute life-threatening events with interesting risk
profiles. Without any changes the average prediction from RAS for all kidney risk
periods up to 18 hours prior to a kidney injury event is 0.10 for patients who lived
and 0.39 for patients who died.

A number of limitations and areas for improvements exist for the AKIM model.
First, the model would benefit from better baseline estimates for creatinine. The
RIFLE criteria have been criticized for using the MDRD equation to estimate base-
line creatinine for ICU patients. The MDRD equation has not been validated for use
in an ICU setting and likely misclassifies a number of patients such as those with
low muscle mass [13]. Furthermore, the baseline creatinine estimate that I use does
not include information regarding the patient’s race. A better baseline creatinine
estimate would allow the model to include a larger range of kidney function in its
relative classification. Currently, with the coarse creatinine baseline estimates used,
patients with an underestimated baseline are directly classified in the injury or failure
group and are not represented in the model because no kidney risk episode precedes
the kidney injury classification. Similarly, patients with an overestimated creatinine
baseline may only satisfy the RIFLE risk category while experiencing renal failure.
Providing a better baseline creatinine estimate might add cases that provide addi-
tional creatinine-based injury classifications and adjust the model’s current emphasis
on urine output. In other cases, a patient’s renal function rapidly deteriorated and
the patient transitioned directly from no kidney risk to kidney injury. Such transi-
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tions were observed a number of times, and indicate that my inclusion criteria would
likely benefit from a more inclusive definition of kidney risk than that specified by
the RIFLE criteria. My model is currently not evaluated against acute kidney injury
episodes that are not preceded by kidney risk as defined by RIFLE.

In conclusion, the prediction model developed in this section does a moderate
job of predicting acute kidney injury. By examining the predictions from our model,
however, it appears that warnings more than 6 hours in advance are difficult. In
contrast, the RAS model tends to peak between 12 and 6 hours before the kidney
injury classification is made, but drops for the 6 hours where the AKIM predictions
tend to rise.
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6.6 Other Outcomes

6.6.1 Weaning of Mechanical Ventilator

Many of the ICU patients in the data receive mechanical ventilation support. In
general, when patients are mechanically ventilated, CareVue has fields that indicate
the ventilator type and the ventilator mode that are updated every 4 hours (see Fig-
ure 6-65). It is not uncommon for the charting interval to be 5 hours and sometimes 6
hours. Long delays between ventilator status entries make the task of finding the hour
that the patient was weaned difficult. As noted in Chapter 3, in my data preparations
I used a 5 hour hold window to retain ventilator information between intermittent up-
dates in my dataset. Consequently, the exact point of weaning was difficult to discern.
Further work is necessary to better isolate when exactly a patient was weaned from
the mechanical ventilator. If an accurate timestamp for ventilator removal could be
found, predicting when the ventilator weaning happens would provide an interesting
regression task.
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6.6.2 Tracheotomy Insertion

One relatively common procedure in the ICU is the surgical insertion of an opening
that provides direct access to a patient’s trachea. The tracheotomy procedure is
performed for a variety of reasons, e.g., to assist in ventilator weaning, and provides
a number of benefits over endotracheal intubation (especially when needed for longer
periods of time).

In the dataset that we consider in this report (limited to 7 days), a relatively small
number of patients receive a tracheotomy. Several patients have tracheotomies upon
admission but admission cases are not helpful for training predictive models. If the
data are examined without the 7-day limitation, most of the tracheotomy insertions
occurred for patients who have long stays. But using my dataset, which included only
90 tracheotomy insertions in the development data and 23 insertions in the validation
data, it was difficult to train a model to predict tracheotomy insertions. Without
the 7-day limitation, predicting tracheotomy insertion may provide an interesting
modeling problem.

6.6.3 Pressor Dependence

Possibly of more clinical interest than whether or not a patient is entirely weaned
from pressors within a fixed time period, is how a patient responds when pressors
are first reduced. A model that could predict the nature of the first response to
a weaning attempt could be useful for determining which patients are ready to be
weaned. Given a patient on a high dose of pressors, can I predict if he or she will
tolerate a 25% reduction in pressor dosage?

As an initial step in exploring pressor dependence, Figure 6-66 shows a discretized
joint distribution between the relative change in pressors and the time from the first
high pressor dosage recorded for each patient. Only the first high dose pressor episode
is used for each patient; if a patient has pressors removed for at least 4 hours, the
remaining data for that patient are ignored. If pressors are removed for less than 4
hours, the drop is ignored and additional pressor doses are still represented relative
to the first high dose (i.e., 0 on the y-axis). Similarly, Figure 6-67 shows the same
joint distribution for a much lower dose-inclusion threshold.

Figures 6-66 and 6-67 are discretized into fixed 3-hour periods along the x-axis
and 10% or 20% change increments along the y-axis. the median time until a 50%
reduction in pressors and the median time until a 90% reduction in pressors are
provided on each plot. By looking at a fixed value along either the x-axis or the
y-axis, one can gain insight into the distribution that follows from conditioning on
the fixed value.

In Figure 6-66, for example, the distribution for time conditioned on a 45-55%
drop in pressor infusions has a mode of about 5 hours and a median of about 21
hours. Similarly, one might examine the distribution of relative pressor changes after
37.5 to 40.5 hours. For this case, the conditional distribution is skewed towards



6.6. OTHER OUTCOMES 215

decreased pressor dosages with a mode of about -80% but it also has a long tail with
a number of cases where the pressors rise by more than 50%. The most common path
for relative pressor doses, starting at the origin (relative pressor change between -5%
and 5%, time < 1.5 hours), is to decrease along the ridge of the contours shown in
the plot, quickly falling to about -60% within 6 hours. At this point, the ridge is
not as clear, but the pressors continue to decline albeit at a generally reduced rate.
The final reduction from -75% to -100% indicates diffuse weaning trajectories at these
lower pressor infusion rates.

The differences in the joint distributions can also be stratified by the final outcome
of the patient. Figures 6-68 and 6-69 show the pressor change versus time for patients
who died and lived, respectively. As expected, patients who live have a clear down-
ward trajectory in pressor dosages. The downward trend is less evident for patients
who do not survive.
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Figure 6-66: Joint density showing relationship between relative changes in pressors
and time following first large (top 25%) pressor infusion. Each cell represents a 10%
change over a period of 3 hours. Pressor changes following four hours with no pressors
are ignored.
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Figure 6-67: Joint density showing relationship between relative changes in pressors
and time following first moderate-high (top 75%) pressor infusion. Each cell represents
a 20% change over a period of 3 hours. Pressor changes following four hours with no
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Figure 6-68: Non-survivors. Joint
density for pressor changes and
time following first large pressor in-
fusions. Pressor changes following
four hours without pressors are ig-
nored.
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6.7 Conclusion

The secondary outcome models developed in this chapter illustrate a variety of the
prediction tasks that are possible with the framework that we established in Chap-
ter 4. On the separate validation patients, the models generally performed well with
ROC areas of 0.809 (pressor wean model), 0.825 (pressor wean and live model), 0.816
(IABP wean model), 0.843 (septic shock onset model), and 0.742 (acute kidney injury
model). In terms of calibration, the probabilities produced by the models were gen-
erally less reliable with highly significant values for all of the Hosmer-Lemeshow tests
considered. The calibration plots, however, generally reflected acceptable calibra-
tion. These calibration observations were expected given similar calibration behavior
displayed by the real-time model (RAS) developed in Chapter 5.

The more specific populations of patients that each secondary outcome model
examined resulted in a variety of interesting inputs previously not utilized in the
mortality models considered in Chapter 5. The BPWM model, for example, included
six 28-hour trend variables as it attempted to understand the patient’s response to
weaning of his or her intraaortic balloon pump.

The usefulness of the RAS model varied between the secondary outcomes consid-
ered. In terms of AUC for secondary outcomes, RAS predictions resulted in an area of
0.679 for the PWM outcome, 0.727 for the PWLM outcome, 0.679 for the BPWM outcome,
0.587 for the SSOM outcome, and 0.495 for the AKIM outcome. The pressor wean and
live model outcome is the only outcome that had an AUC > 0.7 using RAS predictions.
The RAS performance is reasonably strong if one considers the wide range of baseline
risks associated with the secondary outcomes and the diversity of patients included
by each model. With the AKIM model, for example, there is a pattern of higher RAS

predictions about 12 hours before classification of kidney injury.

Based on the findings in this chapter, a number of conclusions can be drawn. First,
with enough data it is possible to develop models that perform well at predicting
intermediate or secondary ICU outcomes. These models are better at predicting
their respective outcomes than a general model that is trained to predict mortality.
For some of the secondary outcomes, however, general mortality model predictions
appear to be strongly correlated with the predictions of a specialized model. Second,
the general acuity score synthesizes a variety of mortality risk factors, so it is often
much less sensitive to the fixed prediction windows used to train and validate models
that predict secondary outcomes. Instead, the general acuity score focuses on the
severity of the patient’s condition (which often increases in the context of a severe
secondary event). While a septic shock warning might look similar between a generally
stable septic patient and a septic patient with chronic heart failure, the baseline risk
profiles between the patients is likely to be quite different. In fact, for the acute
kidney injury prediction task the general acuity model provided essentially no early
warning assistance for the secondary event. Similarly, despite a significant increase in
the RAS mortality probabilities during septic episodes, the RAS predictions provided
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only marginal utility for the septic shock onset prediction as defined.
For decision support it may be beneficial to look at the output from a specialized

model in conjunction with a general acuity model. Such an approach might help
caregivers decide on the likely cause of an increase in mortality risk and how to
proceed. The positive predictive value requirements for a secondary warning model
may decrease with a patient’s mortality risk. For example, as a patient’s mortality
risk increases, the acceptable threshold for acting on a septic shock warning may
decrease.

One important observation is that it is difficult to make clinically meaningful
definitions for use in training the models. The models that rely on a fixed outcome
that can be directly inferred from the data (e.g. successful pressor wean or IABP
wean) have a significant advantage. Other definitions, such as those used for the SSOM
model, are much more sophisticated and include a variety of parameters that can be
adjusted. In addition, careful consideration is needed in developing the inclusion
criteria used by the secondary outcome definitions to remove patients that might
weaken the model’s clinical utility (such as patients weaned from pressors following a
surgical procedure). With careful consideration, however, models that rely on more
complex outcome definitions (e.g., classifying pressor-dependent patients) will likely
prove to be the most beneficial to clinical practice.



Chapter 7

Conclusion

7.1 Summary of Contributions

Large bodies of rich ICU data have only recently been available for data mining
and analysis. With ongoing advances in computing technology, digital charting, disk
storage capacities, and electronic medical records, ICU data archives continue to grow
in size, quality, and scope.

In this thesis, I utilized one such resource — namely, the MIMIC II database
— to develop predictive models for ICU patients. Two categories of models were
explored. First, I developed general models that predicted patient mortality. Second,
I developed models that predicted a number of intermediate patient outcomes.

7.1.1 Mortality Models

For the mortality prediction task, I compared four types of models at predicting
patient mortality. First, I trained a model that used aggregate daily data to predict
mortality for any ICU day (SDAS). Next, I developed five daily models that were
specialized for ICU day n (DASn for n ∈ {1, 2, 3, 4, 5}). Third, I developed a real-time
acuity model that utilized any unique observation to make a prediction of mortality
(RAS). Finally, I created a customized SAPS II algorithm for comparison (SAPSIIa).

I found that for each day, AUC validation performance was significantly greater
(p < 0.05) for my mortality models developed on MIMIC II patient data than it
was for the MIMIC II-customized SAPSIIa model. Furthermore, no significant per-
formance difference was observed between the RAS model and the other models that
were based on aggregate daily data. The performance of RAS was somewhat sur-
prising as the task of predicting mortality based on daily data is presumably easier
than predicting mortality based on intra-day moment-to-moment observations. The
greater temporal granularity available from the RAS model allows one to track intra-
day changes during periods of clinical interest. The RAS model might, for example,
indicate a strong decreasing trend over the course of a day (e.g., due to the resolution
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of cardiogenic shock). In contrast, a daily score is forced to summarize intra-day
trends with a single number and thereby offers less clinical insight into the patient’s
changing risk.

These findings indicate that real-time risk assessment for ICU patients is feasible.
While others have augmented existing severity of illness scores with a few frequently
updated inputs (e.g., [82, 67]), as far as I know, no one else has yet explored models
that use rich patient data to provide estimates that are updated more frequently than
once per day.

My real-time mortality model also includes a variety of complex inputs that are
customized to individual patients. Two examples of complex inputs include: (1)
trend information such as the platelet slope over the past 28 hours and (2) the num-
ber of threshold events that occurred for a particular observation in recent history
such as the number of times the SpO2 fell below 90% in the past 2 hours. Several
of these complex inputs provide important summaries of observations and make a
significant contribution to the model’s understanding of patient risk. Most exist-
ing severity scores, with their emphasis on simplicity, do not take advantage of such
computationally-complex inputs.

The inclusion of therapeutic interventions provides another important distinguish-
ing characteristic for my real-time acuity model. Most existing severity of illness
metrics ignore interventions and instead focus solely on physiologic observations. One
notable exception is the SOFA score which includes vasopressor administration, along
with the mean arterial pressure, to assess a patient’s cardiovascular system [92, 91].
The other model that uses some intervention input (albeit in a limited manner) is
the MPM model. The MPM24 and MPM48 models each include the number of hours
with mechanical ventilation, and the 24-hour version includes the “number of lines”
while the 48-hour version includes hours of vasoactive IV drugs. Apart from SOFA
the later MPM models, other common scores explicitly exclude interventions from
consideration as score inputs. While including interventions made by caregivers may
worry someone who wants to only observe physiologic indicators, the changes brought
by interventions often influence how one interprets a patient’s observations. In the
RAS model that I developed, the most influential intervention input was the quantity
of pressors that the patient was receiving. The importance of this input, however,
was lower than might be expected; six physiologic variables were more influential in
the model than the pressor level. Nonetheless, the pressor administration was helpful
in interpreting the patient’s risk profile. Knowledge of pressor dose is often necessary
to properly interpret physiologic observations during an acute event that requires ag-
gressive treatment. Furthermore, the differences between inputs for the daily acuity
model for ICU day 1 (DAS1) and subsequent daily models indicate that intervention
considerations are more important for later ICU days. From these observations I
can conclude that therapeutic interventions were especially important for providing
meaningful intra-day predictions and predictions following the initial 24 hours of a
patient’s ICU stay.
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7.1.2 Secondary Outcome Models

Chapter 6 discussed models that were trained to predict five separate secondary out-
comes. These secondary outcomes represent clinically significant events that might
occur during a patient’s ICU stay. The predictive models included (1) the successful
weaning of pressors (PWM), (2) the successful weaning of pressors and ICU survival
(PWLM), (3) the removal of an intraaortic balloon pump (IABP) (BPWM), (4) the onset
of septic shock (SSOM), and (5) acute kidney injury (AKIM):

1. The PWM model predicted if a patient would be successfully weaned from pressors
within 12 hours. On the separate validation data, the PWM model performed well
with an AUC of 0.809. To predict weaning, the PWM model relied heavily on the
level of pressors being administered, how long the patient had received pressors,
and several other intervention inputs. A number of physiologic variables were
also important such as the Glasgow Coma Scale and the creatinine level.

2. The PWLM used an augmented version of the PWM outcome to include patient
survival in addition to weaning of pressors within 12 hours. On this slightly
different prediction task, the PWLM model obtained an AUC of 0.825 on the
separate validation data. The prognostic utility of this model is not clear, but
it allows a contrast to be drawn with the PWM model in that it does not penalize
for patient weans that in reality may not have truly been “successful”. The set
of inputs selected for the outcome of pressor wean within 12 hours and survival
included many of the inputs selected for the PWM model.

3. The BPWM model predicted the successful removal of an IABP pump within 12
hours (BPWM). The BPWM predictions on the separate validation data yielded an
AUC of 0.816. To make predictions, the BPWM model relied on a number of
therapies that were indicative of IABP weaning but also a number of physio-
logic trends that indicated how the patient’s heart was responding to increased
afterloads.

4. The SSOM model predicted the onset of septic shock within 12 hours. Septic
shock was defined as hypotension despite fluid resuscitation (HDFR) in addition
to the systemic inflammatory response syndrome (SIRS). The model attempted
to identify transitions from SIRS only to SIRS and HDFR. The performance for
the SSOM model was quite strong with an AUC of 0.843 on separate validation
patients. To make the predictions, the SSOM model relied heavily on medication
interventions (e.g., the time that the patient had spent on pressors) and obvious
physiologic inputs such as the shock index (heart rate divided by systolic blood
pressure).

5. The AKIM model used the RIFLE kidney classification scheme to predict the
transition from kidney risk to kidney injury within 12 hours. The performance
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of the AKIM model was weaker than the other models, but it still managed to
obtain an AUC of 0.742 on the separate validation patients. To predict kidney
injury, the model had a strong focus on urine output, fluid balance and the
mean arterial blood pressure.

For each of the secondary models described above, I examined the performance
of the RAS model in the context of the secondary event. Specifically, I compared the
performance of using the RAS mortality estimate as an indicator of the secondary
event. This resulted in the following AUC numbers: (1) AUC of 0.679 for pressor
wean in 12 hours, (2) AUC of 0.727 for pressor wean in 12 hours and survival, (3)
AUC of 0.679 for IABP removal within 12 hours, (4) AUC of 0.587 for the onset
of septic shock within 12 hours, and (5) AUC of 0.495 for kidney injury within 12
hours. The first three of these performance numbers indicate the RAS risk estimates
are reasonably correlated with the estimates produced by the specialized models. For
the last two outcomes of septic shock and kidney injury the RAS prediction was less
useful. In general, it is expected that models trained on specific outcomes would
be more sensitive to those outcomes. Consequently, it may be most useful to use
secondary outcome predictions in conjunction with RAS estimates for early warnings
of specific pathologies in the context of a patient’s general risk assessment.

Appendix E provides 40 randomly selected patients (20 who expired and 20 who
survived) to illustrate the application of each of my models on individual patients.

7.2 Limitations and Future Work

A number of limitations exist with the present work. In addition to these limitations,
over the course of this work several ideas for further exploration were identified. For
discussion, I divide these limitations and areas for future work into three categories:
mortality models, secondary models, and general methodology.

Mortality models While the real-time mortality model presented in this report
generally performed well, it is important to be clear about its many limitations. First,
the model did not demonstrate perfect calibration. The high probability estimates
were particularly unreliable. In fact, for the RAS model on the validation data, the
highest probability estimates often needed significant correction to align with the
actual mortality probabilities. Many high estimates come from short-lived “peaks”
in an otherwise generally low risk profile. Abrupt changes should be accompanied by
additional uncertainty especially if the cause of the change is known and expected to
be ephemeral.1 Likewise, it is important to understand that low risk estimates have

1If the RAS predictions are averaged by taking the mean prediction for each patient, this problem
is greatly mitigated. A variety of smoothing techniques could also be applied to decrease local
variance.
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better, but still imperfect, calibration. This is especially important in the intensive
care setting where every patient has an increased mortality risk and could deteriorate
quickly. A patient’s current observations might reflect stability, but they may have
other developing or ongoing conditions that concern caregivers. A patient with a
failing heart, for example, may receive an IABP and stabilize well. The same patient’s
ICU survival, however, may be contingent on a successful high-risk heart surgery.
Important context information, often limited to unstructured or semi-structured free
text, is generally lacking from the MIMIC II data that my model is built from. For
these reasons, the RAS score should be interpreted along the lines of “the patient’s
current clinical profile is similar to other patients who had a mortality risk of x”, and
the individual considerations for the patient should continue to guide therapy.

With a wide range of patient conditions, it is essential to remember that a model
will simply not account for some patients. The exact composition of my patient pop-
ulation, in relation to mortality risk estimation, merits further investigation. That
is, are there specific categories of patients where the model consistently underesti-
mates or overestimates patient risk? One such category of “difficult” patients that
I identified early in this work was severe head injury patients. Often the most im-
portant observations for such patients are the head scans that reflect the amount
of intracranial pressure. Image data were unavailable in the MIMIC II data that I
considered. Without such information, many of high-risk head trauma patients ap-
peared to present normal physiologic observations. Identifying other such groups by
thoroughly examining the population used for building the RAS model could reduce
the number of patients that have an inherently different risk profile requiring special
observations and clinical considerations.

The definition of mortality used in this thesis represents an interesting area for
further exploration. For example, the advantage of using a 30-day mortality window
over a 10-day mortality window is unclear. A perfect prediction of mortality (despite
being impossible) would not necessarily be useful for patient tracking. There appears
to be a trade-off between acute risk and baseline mortality risk. If one considers the
RAS model as a similarity metric, by increasing the mortality window, the score should
reflect more of a baseline mortality risk (taken to the extreme, everyone eventually
dies). On the other hand, if the mortality window is short, the score is weighted more
toward acute risk. With too short of a window, however, many individuals — such
as elderly individuals with dire chronic illnesses who are successfully stabilized for a
short while — are perhaps considered less severely ill because they are not rapidly
deteriorating.

Secondary Outcomes The secondary outcome models presented in this report
also have a variety of limitations and areas for future work. Further refinement of
the secondary outcome models could help maximize their clinical utility. A number
of adjustments to the secondary model prediction tasks are possible: (1) the length
window used for early warning, (2) the inclusion criteria for episodes that can have
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warnings issued (e.g., SIRS), and (3) the definition of the events of interest.
With the SSOM model I observed that the most difficult episodes were often also

the most interesting. The first onset of septic shock, for example, was often not
preceded by SIRS. In other cases that I manually reviewed, it seemed that there was
little doubt that the shock episode was cardiogenic shock and not septic shock. This
is supported by the presence of beta blockers as an input in the SSOM model. Further
refinement, such as loosening the SIRS requirement or further restricting the HDFR
definition, might allow the SSOM model to target a more specific epidemiology.

General Methodology A number of methodological limitations also exist in this
work. Many of these represent areas for further exploration. A selection of important
limitations include:

• External validation The results of this work are confined to a single hospital’s
ICU population. Before fully generalizing my results it is necessary to validate
them on external data.

• Independence assumptions While a number of variables were included to
try to summarize the temporal dynamics of a patient, a strong assumption is
made to consider subsequent patient observations as independent of each other.
One might consider an alternative modeling technique, such as a hidden Markov
model, that has “memory” of recent observations. This could potentially lead to
better prediction performance and a smoother model with less local variation.

• Therapeutic interventions It is important that clinical application of models
such as the ones developed in this thesis proceed with an understanding of the
limitations that come by including patient interventions. While it is assumed
that caregivers generally make the correct decisions, it is possible that a model
which relies on caregiver interventions could propagate suboptimal treatment.
This is felt to be somewhat mitigated by the large sample sizes and variance
between individual caregivers in the data, but it is still a concern. To bet-
ter understand the role that therapies take in my models, therapy-free models
could be built to contrast the exact benefits of including caregiver therapies in
predictive models.

• Standardized pressor measurements The method I used for combining
pressor medications into an overall pressor level indicator (pressorSum.std) war-
rants further exploration. Instead of combining pressor medications based on
their general dosage patterns, one might consider a more principled approach by
analyzing dose response curves and the interactive effects of combining multiple
pressors.

• Other machine learning techniques In addition to logistic regression, a
number of other advanced machine learning algorithms exist. As the MIMIC II
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data is refined, such algorithms may present attractive alternatives. For most
of our models, with the large quantity of data available (about 10000 patients),
overfitting was not a significant problem. More powerful techniques might be
used to create better performing predictive models. From my experience, how-
ever, transparent models are nearly essential as the data continue to be refined
and better understood. The ability of a Bayesian network to model nonlinear
relationships and handle missing data, for example, might prove to be a useful
modeling technique for future work.

• Missing observations The sparsity of the data matrix used for my modeling
could be reduced by applying sophisticated imputation techniques. This would
be especially helpful for predicting secondary outcomes that occur rarely and
therefore have severely limited data. Imputation on other predictive inputs,
such as the bilirubin level — which my current methodology often excludes
based on infrequent availability — might allow additional variables to be in-
cluded in my modeling process and further enhance my predictive performance.
More complete data would also allow other techniques such as principal com-
ponent analysis that do not tolerate missing observations.

7.3 Conclusion

Real-time mortality prediction is a feasible way to provide continuous risk assessment
for ICU patients. RAS offers similar discrimination ability when compared to models
computed once per day, based on aggregate data over that day. Moreover, RAS
mortality predictions are better at discrimination than a customized SAPS II score
(Day 3 AUC=0.878 vs AUC=0.849, p < 0.05). The secondary outcome models also
provide interesting insights into patient responses to care and patient risk profiles.
While models trained for specifically recognizing secondary outcomes consistently
outperform the RAS model at their specific tasks, RAS provides useful baseline risk
estimates throughout these events and in some cases offers a notable level of predictive
utility. By providing a similarity measure between a patient and other patients who
ultimately died, the RAS model offers a succinct summary of a patient’s acuity. The
availability of a real-time acuity summary may affect the use of other models that
predict specific pathologies which develop over a diverse population with a wide range
of risks and confounders. Additional work remains to be done in order to better
understand the future clinical utility of such real-time acuity models.

While much work remains to be done to add to and improve the work described
in this report, my results contribute to the following broad ideas: (1) relatively sim-
ple modeling frameworks can produce highly predictive models using a large volume
multi-resolution temporal ICU data; (2) real-time risk assessment is feasible in the
ICU; and (3) generic patient tracking is a reasonable goal that can be advanced
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through a variety of predictive models and real-time risk models may play an impor-
tant role in this advancement.
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Appendix A

Summary of Statistical Measures

A variety of statistical measures are referenced in this thesis. A summary of these
statistics are provided in Table A.1.

Table A.1: Statistical Measures
Statistic Description
Dxy The Somers’ Dxy rank correlation between the predicted outcome

and the actual outcome
R2 Nagelkerke-Cox-Snell-Maddala-Magee R2 index
γ0 Intercept for the fitted logistic calibration curve
γ1 Slope for the fitted logistic calibration curve
Emax The maximum absolute difference in predicted and calibrated prob-

abilities Emax

D The discrimination index D [(model L.R. χ2 − 1)/n]
U The unreliability index (difference in -2 log likelihood between un-

calibrated Xβ terms and the Xβ terms with overall intercept and
slope calibrated to the test sample)/n

Q the overall quality index (Q = D − U)
B The Brier score (average squared difference between predicted out-

come probability and actual outcome)
C Hosmer-Lemeshow calibration statistic using fixed probability

deciles
H Hosmer-Lemeshow calibration statistic using deciles of risk
AUC or C Area under the ROC curve

Z Wald Z score, Z = β̂/ŜE(β̂)

239



240 APPENDIX A. SUMMARY OF STATISTICAL MEASURES



Appendix B

Summary of Final Dataset

Each variable included in my final dataset, along with the number of instances (n),
the number of missing instances (missing), the mean, the median, and the standard
deviation (std dev) are listed in this appendix. Chapter 2 describes the preparation
of this dataset and the meaning of the variable naming notations.

Variable num missing mean median std.dev
Index 1044982 0 2.86e+03 2.04e+03 2.59e+03
AdmitWt 1044982 51538 8.18e+01 7.94e+01 2.23e+01
Age 1044982 6441 6.52e+01 6.70e+01 1.55e+01
Aggrastat 1044982 0 2.38e-02 0.00e+00 4.82e-01
Aggrastat perKg 1044982 0 2.74e-04 0.00e+00 5.56e-03
AIDS 1044982 0 1.07e-02 0.00e+00 1.03e-01
Albumin 1044982 863268 2.81e+00 2.80e+00 6.32e-01
Albumin Slope 1680 1044982 784195 -2.42e-06 0.00e+00 1.04e-04
Allinput 1044982 26925 8.82e+03 7.04e+03 7.68e+03
Alloutput 1044982 26925 5.50e+03 3.90e+03 5.49e+03
ALT 1044982 828439 8.07e+01 3.60e+01 1.30e+02
ALT Slope 1680 1044982 755633 -1.79e-04 0.00e+00 3.40e-02
Amicar 1044982 0 4.61e-04 0.00e+00 3.15e-02
Amicar perKg 1044982 0 5.86e-06 0.00e+00 3.77e-04
Aminophylline 1044982 0 3.32e-03 0.00e+00 2.45e-01
Aminophylline perKg 1044982 0 5.45e-05 0.00e+00 4.02e-03
Amiodarone 1044982 26 4.47e-02 0.00e+00 1.80e-01
Amiodarone perKg 1044982 26 5.37e-04 0.00e+00 2.50e-03
Amrinone 1044982 0 5.78e-03 0.00e+00 1.30e+00
Amrinone perKg 1044982 0 9.52e-05 0.00e+00 2.20e-02
Antiarrhythmic agent 1044982 0 7.19e-02 0.00e+00 2.58e-01
Anticoagulant 1044982 0 1.20e-01 0.00e+00 3.25e-01
Antiplatelet agent 1044982 0 2.13e-02 0.00e+00 1.44e-01
Argatroban 1044982 0 2.47e-01 0.00e+00 6.61e+00
Argatroban perKg 1044982 0 3.47e-03 0.00e+00 1.01e-01
Art BE 1044982 333506 -1.93e-01 0.00e+00 4.31e+00
Art BE Slope 1680 1044982 342098 6.34e-05 0.00e+00 2.97e-03
Art CO2 1044982 296679 2.55e+01 2.50e+01 5.09e+00
Art CO2 Slope 1680 1044982 236662 1.04e-04 0.00e+00 2.08e-03
Art PaCO2 1044982 296899 4.06e+01 4.00e+01 8.56e+00
Art PaCO2 Slope 1680 1044982 236870 -1.66e-04 0.00e+00 4.63e-03
Art PaO2 1044982 297402 1.30e+02 1.10e+02 7.05e+01
Art PaO2 Slope 1680 1044982 237530 -2.90e-02 -5.00e-03 6.46e-02
Art pH 1044982 279769 7.39e+00 7.40e+00 6.57e-02
Art pH Slope 1680 1044982 229813 3.68e-09 0.00e+00 1.92e-06
Art pH.basedev 1044982 279769 1.18e-02 7.53e-03 4.59e-02
Art pH.range 1044982 196547 1.35e-01 1.20e-01 9.80e-02
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Variable num missing mean median std.dev
AST 1044982 819367 1.05e+02 5.10e+01 1.47e+02
AST Slope 1680 1044982 742903 -2.50e-03 0.00e+00 4.74e-02
Ativan 1044982 102 1.26e-01 0.00e+00 9.64e-01
Ativan perKg 1044982 102 1.56e-03 0.00e+00 1.24e-02
Atracurium 1044982 0 2.61e-03 0.00e+00 2.35e-01
Atracurium perKg 1044982 0 3.44e-05 0.00e+00 3.08e-03
Barbiturate 1044982 0 3.89e-04 0.00e+00 1.97e-02
Benzodiazepine 1044982 0 1.17e-01 0.00e+00 3.22e-01
Beta.Blocking agent 1044982 0 1.45e-02 0.00e+00 1.20e-01
Bivalirudin 1044982 0 1.14e-04 0.00e+00 1.07e-02
Bivalirudin perKg 1044982 0 1.25e-05 0.00e+00 1.24e-03
Bpcor 1044982 536208 1.00e+00 1.00e+00 0.00e+00
BUN 1044982 129322 2.71e+01 2.00e+01 2.08e+01
BUN Slope 1680 1044982 134662 3.41e-04 0.00e+00 3.97e-03
BUN.basedev 1044982 129322 1.03e+00 0.00e+00 6.82e+00
BUN.range 1044982 124717 7.59e+00 4.00e+00 1.07e+01
BUNtoCr 1044982 129852 2.32e+01 2.07e+01 1.20e+01
Ca 1044982 407850 8.19e+00 8.20e+00 7.39e-01
Ca Slope 1680 1044982 362136 1.08e-05 0.00e+00 3.51e-04
Calcium channel blocking agent 1044982 0 1.01e-02 0.00e+00 9.98e-02
Calprevflg 1044982 27087 9.99e-01 1.00e+00 2.40e-02
Calprevflg Slope 1680 1044982 36893 0.00e+00 0.00e+00 0.00e+00
CCU 1044982 0 2.00e-01 0.00e+00 4.00e-01
Cisatracurium 1044982 0 1.00e-01 0.00e+00 2.48e+00
Cisatracurium perKg 1044982 0 1.08e-03 0.00e+00 2.67e-02
Cl 1044982 146557 1.06e+02 1.06e+02 5.68e+00
Cl Slope 1680 1044982 148449 -1.68e-04 0.00e+00 2.22e-03
CO2 1044982 145831 2.41e+01 2.40e+01 4.62e+00
CO2 Slope 1680 1044982 148093 2.78e-04 0.00e+00 1.72e-03
COfick 1044982 910451 5.92e+00 5.50e+00 2.12e+00
COfick Slope 1680 1044982 838925 -2.93e-05 0.00e+00 1.36e-03
COfick Slope 240 1044982 896519 -1.04e-04 0.00e+00 4.82e-03
ComfortMeas 1044982 0 0.00e+00 0.00e+00 0.00e+00
COtd 1044982 798107 5.29e+00 5.10e+00 1.59e+00
COtd Slope 1680 1044982 725412 1.32e-04 0.00e+00 8.82e-04
COtd Slope 240 1044982 786908 2.43e-04 0.00e+00 4.18e-03
COtdM 1044982 0 2.36e-01 0.00e+00 4.25e-01
CrdIndx 1044982 744396 2.77e+00 2.65e+00 7.35e-01
CrdIndx Slope 1680 1044982 675140 6.75e-05 0.00e+00 5.52e-04
CrdIndx Slope 240 1044982 733203 1.36e-04 0.00e+00 2.66e-03
CrdIndxM 1044982 0 2.88e-01 0.00e+00 4.53e-01
Creatinine 1044982 128631 1.29e+00 9.00e-01 1.19e+00
Creatinine Slope 1680 1044982 134053 7.44e-06 0.00e+00 2.05e-04
Creatinine.basedev 1044982 128631 1.60e-02 0.00e+00 3.09e-01
Creatinine.range 1044982 124086 3.22e-01 2.00e-01 5.32e-01
CSRU 1044982 0 4.86e-01 0.00e+00 5.00e-01
CumPressorTime 1044982 0 7.80e+02 2.50e+01 1.44e+03
HR 1044982 28131 8.66e+01 8.50e+01 1.74e+01
HR.oor120.c 1044982 0 8.39e+00 0.00e+00 2.70e+01
HR.oor120.t 1044982 0 8.63e+00 0.00e+00 2.75e+01
HR.oor30.c 1044982 0 1.67e+00 0.00e+00 6.40e+00
HR.oor30.t 1044982 0 1.68e+00 0.00e+00 6.44e+00
HR Slope 1680 1044982 34948 -4.48e-04 0.00e+00 9.92e-03
HR Slope 240 1044982 36021 6.14e-05 0.00e+00 5.39e-02
HR.basedev 1044982 28131 -8.08e-01 -6.96e-01 1.19e+01
HR.range 1044982 25108 4.01e+01 3.60e+01 2.61e+01
CVP 1044982 574885 1.12e+01 1.10e+01 5.82e+00
CVP Min 1440 1044982 474652 5.74e+00 5.00e+00 4.71e+00
CVP Slope 1680 1044982 485061 -6.93e-05 0.00e+00 6.09e-03
CVP Slope 240 1044982 568430 6.13e-04 0.00e+00 2.21e-02
CvpM 1044982 0 4.50e-01 0.00e+00 4.97e-01
DBili 1044982 1021961 3.82e+00 1.50e+00 5.89e+00
DBili Slope 1680 1044982 1011019 1.39e-05 0.00e+00 8.86e-04
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Variable num missing mean median std.dev
DBP 1044982 354854 5.91e+01 5.80e+01 1.23e+01
DBP Slope 1680 1044982 284266 -2.78e-04 0.00e+00 9.23e-03
DBP Slope 240 1044982 342191 -4.72e-04 0.00e+00 4.82e-02
DBPm 1044982 31914 5.82e+01 5.70e+01 1.32e+01
DBPm.basedev 1044982 31914 -2.89e-01 -6.25e-01 9.82e+00
DBPm.range 1044982 25495 4.17e+01 4.00e+01 2.03e+01
Dilaudid 1044982 0 5.38e-03 0.00e+00 1.67e-01
Dilaudid perKg 1044982 0 5.92e-05 0.00e+00 2.04e-03
Diltiazem 1044982 0 9.41e-02 0.00e+00 1.12e+00
Diltiazem perKg 1044982 0 1.13e-03 0.00e+00 1.37e-02
Diuretic 1044982 0 1.26e-02 0.00e+00 1.12e-01
DNI 1044982 0 4.78e-06 0.00e+00 2.19e-03
DNR 1044982 0 3.35e-05 0.00e+00 5.79e-03
Dobutamine 1044982 0 7.51e+00 0.00e+00 6.81e+01
Dobutamine perKg 1044982 0 8.93e-02 0.00e+00 7.76e-01
Dopamine 1044982 39 2.00e+01 0.00e+00 1.29e+02
Dopamine perKg 1044982 39 2.45e-01 0.00e+00 1.54e+00
DopLg 1044982 39 5.46e-03 0.00e+00 7.37e-02
DopMd 1044982 39 2.77e-02 0.00e+00 1.64e-01
DopSm 1044982 39 6.41e-03 0.00e+00 7.98e-02
Doxacurium 1044982 0 1.41e-03 0.00e+00 5.02e-02
Doxacurium perKg 1044982 0 1.83e-05 0.00e+00 6.58e-04
ECO 1044982 36119 3.33e+01 3.21e+01 1.08e+01
ECOSlope 1044982 39154 -5.90e-04 4.63e-04 1.04e-01
EctFreq 1044982 0 4.24e-01 0.00e+00 8.35e-01
Epinephrine 1044982 135 8.91e-02 0.00e+00 9.14e-01
Epinephrine perKg 1044982 135 1.00e-03 0.00e+00 9.35e-03
Esmolol 1044982 0 4.62e+01 0.00e+00 7.85e+02
Esmolol perKg 1044982 0 5.57e-01 0.00e+00 9.18e+00
FallRisk 1044982 0 5.19e-01 1.00e+00 5.00e-01
Fentanyl 1044982 0 1.08e+01 0.00e+00 4.59e+01
Fentanyl Conc 1044982 2 5.77e-01 0.00e+00 1.01e+01
Fentanyl Conc perKg 1044982 2 7.30e-03 0.00e+00 1.36e-01
Fentanyl perKg 1044982 0 1.31e-01 0.00e+00 5.75e-01
FiO2Set 1044982 393806 5.32e-01 5.00e-01 1.84e-01
FiO2Set Slope 1680 1044982 328620 -1.10e-05 0.00e+00 1.47e-04
FlushSkin 1044982 0 8.40e-03 0.00e+00 9.13e-02
FullCode 1044982 0 8.86e-01 1.00e+00 3.18e-01
GCS 1044982 51831 1.13e+01 1.40e+01 4.23e+00
GCS Slope 1680 1044982 61291 8.07e-04 0.00e+00 2.76e-03
GCS.basedev 1044982 51831 1.05e+00 1.67e-01 2.78e+00
GCS.range 1044982 51508 5.51e+00 5.00e+00 4.70e+00
General anesthetic 1044982 0 1.97e-01 0.00e+00 3.98e-01
Glucose 1044982 70035 1.36e+02 1.26e+02 4.84e+01
Glucose Slope 1680 1044982 75671 -5.63e-03 0.00e+00 3.75e-02
HCT 1044982 69067 3.10e+01 3.05e+01 4.66e+00
HCT Slope 1680 1044982 75778 -1.17e-04 0.00e+00 2.69e-03
HCTM 1044982 0 9.34e-01 1.00e+00 2.48e-01
HCT.basedev 1044982 69067 -3.34e-01 -1.07e-14 2.70e+00
HCT.range 1044982 65885 6.80e+00 6.00e+00 5.37e+00
HemMalig 1044982 0 3.04e-02 0.00e+00 1.72e-01
Hemostatic agent 1044982 0 2.87e-02 0.00e+00 1.67e-01
Heparin 1044982 3 1.19e+02 0.00e+00 3.54e+02
Heparin perKg 1044982 3 1.39e+00 0.00e+00 4.06e+00
Hgb 1044982 150841 1.05e+01 1.04e+01 1.63e+00
Hgb Slope 1680 1044982 153327 -4.30e-05 0.00e+00 8.33e-04
Hgb.basedev 1044982 150841 -1.26e-01 -1.78e-15 8.90e-01
Hgb.range 1044982 143443 1.64e+00 1.30e+00 1.58e+00
HospTime 1044982 0 2.72e+03 1.15e+03 5.13e+03
HRCritEvnts.24h 1044982 0 6.67e+00 0.00e+00 1.65e+01
HRCritEvnts.cum 1044982 0 0.00e+00 0.00e+00 0.00e+00
HREvnts.24h 1044982 0 7.97e+00 0.00e+00 1.74e+01
HREvnts.cum 1044982 0 0.00e+00 0.00e+00 0.00e+00
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Variable num missing mean median std.dev
HrmHB 1044982 0 2.94e-02 0.00e+00 2.40e-01
HrmPaced 1044982 0 1.26e-01 0.00e+00 3.31e-01
HrmSA 1044982 0 6.87e-01 0.00e+00 1.91e+00
HrmVA 1044982 0 1.49e-02 0.00e+00 1.77e-01
HRThreshCnt 1044982 0 6.89e+00 0.00e+00 1.60e+01
HRThreshCntF 1044982 25108 8.62e-02 0.00e+00 1.81e-01
HRThreshCntN 1044982 0 2.86e+00 0.00e+00 6.80e+00
IABP 1044982 0 4.98e-02 0.00e+00 2.18e-01
ImpairedSkin 1044982 0 2.25e-01 0.00e+00 4.18e-01
Inotropic agent 1044982 0 4.92e-02 0.00e+00 2.16e-01
Input 60 1044982 26925 2.70e+02 8.99e+01 7.53e+02
Input 60.basedev 1044982 26925 -2.52e+02 -1.39e+02 6.48e+02
Input 60.range 1044982 24840 2.51e+03 1.42e+03 2.70e+03
InputB 1044982 429799 1.53e+02 6.70e+01 4.13e+02
InputB 60 1044982 429799 2.36e+02 8.25e+01 6.75e+02
InputOtherBlood 1044982 0 1.74e+01 0.00e+00 1.00e+02
InputOtherBloodB 1044982 0 1.60e+00 0.00e+00 2.73e+01
InputRBCs 1044982 0 4.72e+01 0.00e+00 1.78e+02
InputRBCsB 1044982 0 3.68e+00 0.00e+00 4.75e+01
INR 1044982 0 1.35e+00 1.20e+00 5.49e-01
INR Slope 1680 1044982 234157 -2.60e-05 0.00e+00 3.18e-04
INR.basedev 1044982 0 -9.12e-03 0.00e+00 3.61e-01
INR.range 1044982 0 5.51e-01 3.00e-01 8.96e-01
Insulin 1044982 0 1.73e-01 0.00e+00 3.78e-01
Insulin perKg 1044982 0 8.62e-03 0.00e+00 4.02e-02
Integrelin 1044982 27 2.73e+00 0.00e+00 2.14e+01
Integrelin perKg 1044982 27 3.28e-02 0.00e+00 2.48e-01
IonCa 1044982 474733 1.13e+00 1.14e+00 1.11e-01
IonCa Slope 1680 1044982 416770 -1.03e-07 0.00e+00 2.70e-05
JaundiceSkin 1044982 0 8.34e-03 0.00e+00 9.10e-02
K 1044982 61530 4.11e+00 4.10e+00 5.59e-01
K Slope 1680 1044982 68977 -3.01e-05 0.00e+00 4.99e-04
Ketamine 1044982 0 8.23e-05 0.00e+00 9.07e-03
Ketamine perKg 1044982 0 9.14e-04 0.00e+00 1.23e-01
Labetolol 1044982 0 1.53e-02 0.00e+00 2.05e-01
Labetolol perKg 1044982 0 1.82e-04 0.00e+00 2.45e-03
Lactate 1044982 756439 2.45e+00 1.80e+00 2.24e+00
Lactate Slope 1680 1044982 666906 -1.24e-04 0.00e+00 9.67e-04
LactateM 1044982 0 2.76e-01 0.00e+00 4.47e-01
Lactate.basedev 1044982 756439 -2.55e-01 -4.44e-16 1.12e+00
Lactate.range 1044982 570744 1.29e+00 5.00e-01 2.13e+00
Lasix 1044982 0 1.07e-01 0.00e+00 1.16e+00
Lasix perKg 1044982 0 1.25e-03 0.00e+00 1.38e-02
Lepirudin 1044982 0 1.11e-03 0.00e+00 1.15e-01
Lepirudin perKg 1044982 0 1.39e-05 0.00e+00 1.42e-03
Levophed 1044982 67 8.70e-01 0.00e+00 4.58e+00
Levophed perKg 1044982 67 1.01e-02 0.00e+00 5.20e-02
Lidocaine 1044982 5 1.19e-02 0.00e+00 1.49e-01
Lidocaine perKg 1044982 5 1.36e-04 0.00e+00 1.74e-03
LOSBal 1044982 235013 3.11e+03 2.10e+03 5.10e+03
LOSBal.basedev 1044982 235013 4.64e+02 0.00e+00 2.27e+03
LOSBal.range 1044982 232778 2.37e+03 1.00e+03 3.55e+03
MAP 1044982 358738 7.88e+01 7.70e+01 1.49e+01
MAP Slope 1680 1044982 285006 -2.91e-04 0.00e+00 1.14e-02
MAP Slope 240 1044982 343167 -9.13e-04 0.00e+00 6.38e-02
MBPm 1044982 35683 7.86e+01 7.67e+01 1.49e+01
MBPm.pr 1044982 0 9.82e-01 1.00e+00 8.58e-02
MBPm.basedev 1044982 35683 9.52e-02 -4.02e-01 1.16e+01
MBPm.range 1044982 25854 4.80e+01 4.60e+01 2.26e+01
MeanObsIntv 1044982 10066 3.34e+01 3.29e+01 1.52e+01
MechVent 1044982 0 4.85e-01 0.00e+00 5.00e-01
MetCarcinoma 1044982 0 1.86e-02 0.00e+00 1.35e-01
Mg 1044982 199888 2.07e+00 2.00e+00 3.86e-01
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Variable num missing mean median std.dev
Mg Slope 1680 1044982 189486 2.03e-05 0.00e+00 2.53e-04
MICU 1044982 0 2.01e-01 0.00e+00 4.01e-01
Midazolam 1044982 0 3.14e-01 0.00e+00 1.55e+00
Midazolam perKg 1044982 0 3.81e-03 0.00e+00 1.94e-02
Milrinone 1044982 14 1.43e+00 0.00e+00 7.17e+00
Milrinone perKg 1044982 14 1.64e-02 0.00e+00 7.95e-02
Morphine Sulfate 1044982 0 4.98e-02 0.00e+00 5.35e-01
Morphine Sulfate perKg 1044982 0 6.30e-04 0.00e+00 7.21e-03
MSICU 1044982 0 8.38e-02 0.00e+00 2.77e-01
Na 1044982 86686 1.38e+02 1.38e+02 4.44e+00
Na Slope 1680 1044982 91126 1.56e-04 0.00e+00 1.99e-03
Narcan 1044982 0 2.10e-04 0.00e+00 1.45e-02
Narcan perKg 1044982 0 1.74e-05 0.00e+00 2.34e-03
Natrecor 1044982 11 1.31e-02 0.00e+00 1.41e-01
Natrecor perKg 1044982 11 1.49e-04 0.00e+00 1.58e-03
NBPDias 1044982 593020 5.69e+01 5.50e+01 1.49e+01
NBPDias Slope 1680 1044982 439728 -6.51e-04 0.00e+00 1.30e-02
NBPDias Slope 240 1044982 567504 -1.52e-03 0.00e+00 6.12e-02
NBPMean 1044982 594471 7.66e+01 7.50e+01 1.51e+01
NBPMean Slope 1680 1044982 440194 -6.71e-04 0.00e+00 1.37e-02
NBPMean Slope 240 1044982 568402 -1.78e-03 0.00e+00 5.93e-02
NBPSys 1044982 592489 1.17e+02 1.15e+02 2.22e+01
NBPSys Slope 1680 1044982 439347 -7.29e-04 0.00e+00 1.92e-02
NBPSys Slope 240 1044982 567327 -2.34e-03 0.00e+00 8.03e-02
Neosynephrine 1044982 72 1.24e+01 0.00e+00 4.63e+01
Neosynephrine perKg 1044982 72 1.43e-01 0.00e+00 5.21e-01
Nicardipine 1044982 0 1.76e-01 0.00e+00 5.64e+00
Nicardipine perKg 1044982 0 2.00e-03 0.00e+00 6.22e-02
Nitroglycerine 1044982 75 1.00e+01 0.00e+00 4.42e+01
Nitroglycerine perKg 1044982 75 1.22e-01 0.00e+00 5.42e-01
Nitroprusside 1044982 9 2.72e+00 0.00e+00 2.31e+01
Nitroprusside perKg 1044982 9 3.39e-02 0.00e+00 2.79e-01
NoCPR 1044982 0 1.91e-06 0.00e+00 1.38e-03
Nondepolarizing agent 1044982 0 1.01e-02 0.00e+00 9.97e-02
ObsFreq2hr 1044982 0 2.07e+00 1.50e+00 1.37e+00
Opiate 1044982 0 1.27e-01 0.00e+00 3.33e-01
Orientation 1044982 0 6.41e-01 0.00e+00 8.10e-01
OrientUnableAs 1044982 0 2.15e-01 0.00e+00 4.11e-01
OtherCode 1044982 0 0.00e+00 0.00e+00 0.00e+00
Output 60 1044982 26925 1.60e+02 8.00e+01 2.98e+02
OutputB 60 1044982 429799 1.49e+02 8.00e+01 2.74e+02
PAC 1044982 0 7.86e-02 0.00e+00 2.69e-01
Pacemkr 1044982 0 3.52e-01 0.00e+00 4.78e-01
PaleSkin 1044982 0 1.89e-02 0.00e+00 1.36e-01
Pancuronium 1044982 0 2.77e-04 0.00e+00 3.84e-02
Pancuronium perKg 1044982 0 3.71e-06 0.00e+00 5.21e-04
PaO2toFiO2 1044982 67328 4.64e-01 0.00e+00 7.90e-01
PAPmean 1044982 940747 3.03e+01 2.90e+01 9.22e+00
PAPmean Slope 1680 1044982 916138 -1.59e-04 0.00e+00 6.70e-03
PAPmean Slope 240 1044982 936868 1.51e-04 0.00e+00 3.03e-02
PAPmeanM 1044982 0 9.97e-02 0.00e+00 3.00e-01
PAPsd 1044982 734789 3.81e+01 3.60e+01 1.20e+01
PAPsd Slope 1680 1044982 659671 3.26e-04 0.00e+00 7.51e-03
PAPsd Slope 240 1044982 723053 1.30e-03 0.00e+00 3.27e-02
PCWP 1044982 998797 1.80e+01 1.70e+01 6.66e+00
PCWP Slope 1680 1044982 967522 -7.26e-05 0.00e+00 3.45e-03
PCWP Slope 240 1044982 992876 -9.90e-05 0.00e+00 1.28e-02
PCWPM 1044982 0 4.42e-02 0.00e+00 2.06e-01
PEEPSet 1044982 381198 5.74e+00 5.00e+00 3.44e+00
PEEPSet Slope 1680 1044982 350684 2.26e-05 0.00e+00 1.56e-03
Pentobarbitol 1044982 0 1.10e-01 0.00e+00 5.83e+00
Pentobarbitol perKg 1044982 0 9.96e-04 0.00e+00 5.21e-02
PIP 1044982 473547 2.72e+01 2.70e+01 6.98e+00



246 APPENDIX B. SUMMARY OF FINAL DATASET

Variable num missing mean median std.dev
PIP Slope 1680 1044982 377420 -3.24e-04 0.00e+00 3.24e-03
PlateauPres 1044982 510143 2.17e+01 2.10e+01 5.59e+00
PlateauPres Slope 1680 1044982 410636 -2.45e-05 0.00e+00 2.37e-03
Platelets 1044982 106401 1.88e+02 1.70e+02 1.01e+02
Platelets Slope 1680 1044982 109682 -1.73e-03 0.00e+00 2.82e-02
PNC 1044982 0 7.77e-04 0.00e+00 2.79e-02
Precedex 1044982 3 3.11e-01 0.00e+00 4.17e+00
Precedex perKg 1044982 2 3.33e-03 0.00e+00 4.36e-02
PressD01 1044982 0 4.73e-01 0.00e+00 4.99e-01
PressD12 1044982 0 3.29e-02 0.00e+00 1.78e-01
PressD24 1044982 0 1.75e-02 0.00e+00 1.31e-01
PressD4 1044982 0 4.60e-03 0.00e+00 6.76e-02
PressorCnt 1044982 342 3.57e-01 0.00e+00 6.81e-01
PressorM 1044982 342 2.64e-01 0.00e+00 4.41e-01
PressorSum.std 1044982 342 3.56e-01 0.00e+00 9.98e-01
PressorTime 1044982 0 3.38e+02 0.00e+00 1.02e+03
Procainamide 1044982 6 1.96e-03 0.00e+00 7.30e-02
Procainamide perKg 1044982 6 2.45e-05 0.00e+00 9.08e-04
Propofol 1044982 58 5.87e+02 0.00e+00 1.46e+03
Propofol perKg 1044982 58 6.66e+00 0.00e+00 1.59e+01
PT 1044982 325961 1.48e+01 1.41e+01 2.72e+00
PT Slope 1680 1044982 235875 -2.08e-04 0.00e+00 1.15e-03
PT.basedev 1044982 325961 -3.31e-01 -1.07e-14 1.38e+00
PT.range 1044982 175440 1.87e+00 9.00e-01 2.68e+00
PTT 1044982 319543 4.02e+01 3.30e+01 2.16e+01
PTT Slope 1680 1044982 231764 -1.13e-03 0.00e+00 1.37e-02
PulsePres 1044982 33686 6.03e+01 5.80e+01 1.84e+01
PVC 1044982 0 1.85e-01 0.00e+00 3.88e-01
PVR 1044982 1028665 2.33e+02 2.00e+02 1.51e+02
PVR Slope 1680 1044982 1018344 -1.97e-03 0.00e+00 6.82e-02
PVR Slope 240 1044982 1026750 -3.61e-03 0.00e+00 2.83e-01
RBC 1044982 161758 3.49e+00 3.44e+00 5.66e-01
RBC Slope 1680 1044982 163450 3.13e-06 0.00e+00 2.65e-04
Reopro 1044982 0 7.17e-02 0.00e+00 7.50e+00
Reopro perKg 1044982 0 8.82e-04 0.00e+00 9.21e-02
RESP 1044982 47616 1.92e+01 1.90e+01 6.04e+00
RESP Slope 1680 1044982 40344 5.48e-04 0.00e+00 3.76e-03
RESP Slope 240 1044982 50458 1.21e-03 0.00e+00 2.57e-02
Respiratory smooth muscle relaxant 1044982 0 2.09e-04 0.00e+00 1.44e-02
RespSet 1044982 474001 1.41e+01 1.20e+01 4.94e+00
RespSet Slope 1680 1044982 377164 8.59e-05 0.00e+00 1.87e-03
RespSpon 1044982 717716 6.87e+00 5.00e+00 6.12e+00
RespSpon Slope 1680 1044982 635585 1.70e-04 0.00e+00 3.21e-03
RespTot 1044982 398799 1.83e+01 1.80e+01 6.31e+00
RespTot Slope 1680 1044982 327635 1.04e-03 0.00e+00 3.83e-03
RikerSAS 1044982 0 3.73e+00 4.00e+00 7.44e-01
Sandostatin 1044982 0 6.67e-01 0.00e+00 5.80e+00
Sandostatin perKg 1044982 0 7.77e-03 0.00e+00 6.94e-02
SaO2 1044982 595009 9.69e+01 9.70e+01 2.10e+00
SaO2 Slope 1680 1044982 522394 -7.76e-05 0.00e+00 1.30e-03
SBP 1044982 355024 1.18e+02 1.15e+02 2.28e+01
SBP Slope 1680 1044982 284252 2.03e-04 0.00e+00 1.59e-02
SBP Slope 240 1044982 342184 -7.04e-04 0.00e+00 9.09e-02
SBPm 1044982 31710 1.19e+02 1.16e+02 2.22e+01
SBPm.oor120.c 1044982 0 7.28e+00 0.00e+00 2.14e+01
SBPm.oor120.t 1044982 0 7.76e+00 0.00e+00 2.24e+01
SBPm.oor30.c 1044982 0 1.79e+00 0.00e+00 6.33e+00
SBPm.oor30.t 1044982 0 1.82e+00 0.00e+00 6.41e+00
SBPm.pr 1044982 0 9.78e-01 1.00e+00 8.70e-02
SBPmCritEvnts.24h 1044982 0 5.69e+00 0.00e+00 1.22e+01
SBPmCritEvnts.cum 1044982 0 0.00e+00 0.00e+00 0.00e+00
SBPmEvnts.24h 1044982 0 9.69e+00 4.00e+00 1.51e+01
SBPmEvnts.cum 1044982 0 0.00e+00 0.00e+00 0.00e+00
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Variable num missing mean median std.dev
SBPm.basedev 1044982 31710 1.49e+00 3.86e-01 1.67e+01
SBPm.range 1044982 25462 6.75e+01 6.50e+01 3.22e+01
SBPmThreshCnt 1044982 0 7.03e+00 3.00e+00 1.20e+01
SBPmThreshCntF 1044982 25462 8.77e-02 4.30e-02 1.31e-01
SBPmThreshCntN 1044982 0 3.13e+00 1.00e+00 4.86e+00
Sedatives 1044982 0 3.19e-01 0.00e+00 4.66e-01
Sex 1044982 4897 5.83e-01 1.00e+00 4.93e-01
ShockIdx 1044982 32009 7.57e-01 7.31e-01 2.17e-01
SICU 1044982 0 2.81e-02 0.00e+00 1.65e-01
Sid 1044982 0 1.32e+04 1.32e+04 7.67e+03
Somatostatin preparation 1044982 0 1.36e-02 0.00e+00 1.16e-01
SpO2 1044982 42290 9.71e+01 9.80e+01 2.94e+00
SpO2.oor120.c 1044982 0 1.77e+00 0.00e+00 1.11e+01
SpO2.oor120.t 1044982 0 1.82e+00 0.00e+00 1.14e+01
SpO2.oor30.c 1044982 0 4.13e-01 0.00e+00 3.17e+00
SpO2.oor30.t 1044982 0 4.16e-01 0.00e+00 3.19e+00
SpO2 Slope 1680 1044982 37253 -2.71e-04 0.00e+00 1.97e-03
SpO2 Slope 240 1044982 43240 -5.25e-04 0.00e+00 1.32e-02
SpO2CritEvnts.24h 1044982 0 1.31e+00 0.00e+00 5.49e+00
SpO2CritEvnts.cum 1044982 0 0.00e+00 0.00e+00 0.00e+00
SpO2Evnts.24h 1044982 0 2.16e+00 0.00e+00 6.52e+00
SpO2Evnts.cum 1044982 0 0.00e+00 0.00e+00 0.00e+00
SpO2LowCnt 1044982 0 1.57e+00 0.00e+00 5.40e+00
SpO2LowCntF 1044982 27091 1.89e-02 0.00e+00 6.78e-02
SpO2LowCntN 1044982 0 7.40e-01 0.00e+00 1.92e+00
SvCCU 1044982 0 1.72e-01 0.00e+00 3.77e-01
SvCSICU 1044982 0 0.00e+00 0.00e+00 0.00e+00
SvCSRU 1044982 0 3.51e-01 0.00e+00 4.77e-01
SvMICU 1044982 0 2.21e-01 0.00e+00 4.15e-01
SvMSICU 1044982 0 9.40e-02 0.00e+00 2.92e-01
SvNSICU 1044982 0 0.00e+00 0.00e+00 0.00e+00
SvOther 1044982 0 0.00e+00 0.00e+00 0.00e+00
SVR 1044982 756061 1.01e+03 9.57e+02 3.61e+02
SVR Slope 1680 1044982 690076 -5.08e-02 -1.50e-02 2.44e-01
SVR Slope 240 1044982 745295 -1.13e-01 0.00e+00 1.31e+00
Sympathomimetic agent 1044982 0 2.68e-01 0.00e+00 4.43e-01
TBili 1044982 830068 2.72e+00 8.00e-01 5.69e+00
TBili Slope 1680 1044982 762419 2.38e-05 0.00e+00 6.05e-04
Temp 1044982 37576 9.86e+01 9.86e+01 1.47e+00
Temp Slope 1680 1044982 47164 2.65e-04 0.00e+00 1.15e-03
Thrombolytic agent 1044982 0 1.90e-04 0.00e+00 1.38e-02
TidVolObs 1044982 467579 6.03e+02 6.00e+02 1.31e+02
TidVolObs Slope 1680 1044982 373740 -7.36e-03 0.00e+00 5.19e-02
TidVolSet 1044982 483249 6.06e+02 6.00e+02 1.21e+02
TidVolSet Slope 1680 1044982 383901 -2.28e-03 0.00e+00 2.72e-02
TidVolSpon 1044982 709376 4.90e+02 4.78e+02 1.58e+02
TidVolSpon Slope 1680 1044982 626579 3.27e-03 0.00e+00 7.84e-02
TotIn24 1044982 238077 3.33e+03 2.49e+03 2.88e+03
TotIV 1044982 247376 1.99e+03 1.53e+03 1.76e+03
TotOut24 1044982 240813 2.25e+03 2.01e+03 1.59e+03
TPA 1044982 0 4.01e-04 0.00e+00 1.10e-01
TPA perKg 1044982 0 4.23e-06 0.00e+00 1.04e-03
TProtein 1044982 1034847 5.37e+00 5.40e+00 1.06e+00
TProtein Slope 1680 1044982 1028940 -1.25e-06 0.00e+00 3.53e-05
Trach 1044982 0 7.70e-03 0.00e+00 8.74e-02
Troponin 1044982 1017024 8.71e+00 3.50e+00 1.16e+01
Troponin Slope 1680 1044982 1005734 -6.31e-05 0.00e+00 3.47e-03
UrHiCntN 1044982 0 0.00e+00 0.00e+00 0.00e+00
UrineByHr 1044982 57454 1.10e+02 6.00e+01 1.66e+02
UrineByHr.oor120.c 1044982 0 1.85e+01 0.00e+00 3.90e+01
UrineByHr.oor120.t 1044982 0 1.86e+01 0.00e+00 3.92e+01
UrineByHr.oor60.c 1044982 0 9.55e+00 0.00e+00 2.17e+01
UrineByHr.oor60.t 1044982 0 9.55e+00 0.00e+00 2.17e+01
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Variable num missing mean median std.dev
UrineCritEvnts 1044982 0 7.01e-02 0.00e+00 2.55e-01
UrineCritEvnts.24h 1044982 0 5.77e+00 0.00e+00 1.40e+01
UrineCritEvnts.cum 1044982 0 0.00e+00 0.00e+00 0.00e+00
UrineEvnts.24h 1044982 0 8.36e+00 2.00e+00 1.62e+01
UrineEvnts.cum 1044982 0 0.00e+00 0.00e+00 0.00e+00
UrineOut 1044982 85448 1.38e+02 8.00e+01 1.73e+02
UrineOutB 1044982 573884 1.25e+02 8.00e+01 1.48e+02
Vasodilating agent 1044982 0 1.20e-01 0.00e+00 3.25e-01
Vasopressin 1044982 46 2.28e-02 0.00e+00 2.40e-01
Vasopressin perKg 1044982 46 2.59e-04 0.00e+00 2.73e-03
VasopressorCnt 1044982 328 2.79e-01 0.00e+00 5.50e-01
VasopressorSum.std 1044982 328 2.87e-01 0.00e+00 8.89e-01
Vecuronium 1044982 3 1.04e-02 0.00e+00 2.53e-01
Vecuronium perKg 1044982 3 1.18e-04 0.00e+00 2.76e-03
Vent 1044982 0 4.97e-01 0.00e+00 5.00e-01
VentLen 1044982 0 8.45e+02 0.00e+00 1.69e+03
VentLenC 1044982 0 1.54e+03 5.84e+02 2.16e+03
VentMode 1044982 0 1.91e+00 0.00e+00 2.80e+00
WBC 1044982 158454 1.27e+01 1.16e+01 6.28e+00
WBC Slope 1680 1044982 161553 -1.28e-04 0.00e+00 2.49e-03
Weight 1044982 441981 8.60e+01 8.31e+01 2.41e+01
Weight Slope 1680 1044982 412468 1.94e-04 0.00e+00 3.14e-03
Weight.basedev 1044982 441981 5.26e-01 0.00e+00 4.50e+00
Weight.range 1044982 373323 2.38e+00 0.00e+00 6.91e+00
Bal24 1044982 235489 1.10e+03 5.02e+02 2.76e+03
UrOut24 1044982 245526 1.81e+03 1.56e+03 1.37e+03



Appendix C

DASn Model Selection

The DASn model selection was done in two steps. The first step looked for models
by performing model selection from scratch and entirely based on the specific day, n,
for the model. This was difficult, especially for the later days that had more limited
data as the number of candidate covariates increased in proportion to the number of
observations. To complement this selection, the covariates from the final SDAS model
were used in conjunction with the ones selected from day 1, 2, and 3. The figures in
this appendix describe both stages of the DASn model selection.
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Figure C-1: DAS1 Model Selection Stage 1: Sensitivity to Number of Covariates on
Each Cross Validation Fold (Day 1)
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Figure C-2: DAS2 Model Selection Stage 1: Sensitivity to Number of Covariates on
Each Cross Validation Fold (Day 2)
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Figure C-3: DAS3 Model Selection Stage 1: Sensitivity to Number of Covariates on
Each Cross Validation Fold (Day 3)
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Figure C-5: DAS2 Model Selection Stage 2: Sensitivity to Number of Covariates on
Each Cross Validation Fold (Day 2)
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Figure C-6: DAS3 Model Selection Stage 2: Sensitivity to Number of Covariates on
Each Cross Validation Fold (Day 3)
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Figure C-7: DAS4 Model Selection Stage 2: Sensitivity to Number of Covariates on
Each Cross Validation Fold (Day 4)
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Figure C-8: DAS5 Model Selection Stage 2: Sensitivity to Number of Covariates on
Each Cross Validation Fold (Day 5)
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Appendix D

Hosmer-Lemeshow Tests for DASn
Models

In this appendix, Hosmer-Lemeshow goodness of fit tests are provided for each DASn
model.

Table D.1: DAS1: Hosmer-Lemeshow Goodness of Fit Test: Risk Deciles
Died Survived

Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total
1-3 [0.00027,0.01090) 0.004 5 7.9 1905 1902.1 1910
4 [0.01090,0.01925) 0.015 5 9.5 631 626.5 636
5 [0.01925,0.03284) 0.025 8 16.2 628 619.8 636
6 [0.03284,0.05405) 0.042 29 26.9 608 610.1 637
7 [0.05405,0.08823) 0.07 53 44.2 583 591.8 636
8 [0.08823,0.16135) 0.119 77 75.8 560 561.2 637
9 [0.16135,0.33751) 0.237 167 150.5 469 485.5 636
10 [0.33751,0.99911] 0.58 356 369 280 267 636

χ2 = 13.03, d.f. = 6; p = 0.043
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Table D.2: DAS2: Hosmer-Lemeshow Goodness of Fit Test: Risk Deciles
Died Survived

Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total
1-3 [0.00031,0.00842) 0.004 3 6.8 1551 1547.2 1554
4 [0.00842,0.01375) 0.011 3 5.6 515 512.4 518
5 [0.01375,0.02284) 0.018 9 9.3 509 508.7 518
6 [0.02284,0.03880) 0.03 13 15.5 505 502.5 518
7 [0.03880,0.07282) 0.054 29 28 489 490 518
8 [0.07282,0.14273) 0.102 68 52.8 450 465.2 518
9 [0.14273,0.32484) 0.213 110 110.5 408 407.5 518
10 [0.32484,0.99953] 0.572 289 295.6 228 221.4 517

χ2 = 9.07, d.f. = 6; p = 0.170

Table D.3: DAS3: Hosmer-Lemeshow Goodness of Fit Test: Risk Deciles
Died Survived

Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total
1-3 [0.000385,0.00962) 0.004 5 4.3 1053 1053.7 1058
4 [0.009622,0.01846) 0.014 4 4.8 349 348.2 353
5 [0.018458,0.03251) 0.025 3 8.7 349 343.3 352
6 [0.032506,0.05560) 0.043 11 15.1 342 337.9 353
7 [0.055603,0.10060) 0.076 32 26.8 321 326.2 353
8 [0.100602,0.18451) 0.136 50 47.7 302 304.3 352
9 [0.184515,0.38466) 0.268 105 94.5 248 258.5 353
10 [0.384663,0.99884] 0.614 208 216 144 136 352

χ2 = 8.84, d.f. = 6; p = 0.183

Table D.4: DAS4: Hosmer-Lemeshow Goodness of Fit Test: Risk Deciles
Died Survived

Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total
1-4 [0.00035,0.0279) 0.009 11 8.8 930 932.2 941
5 [0.02790,0.0499) 0.038 9 8.9 226 226.1 235
6 [0.04994,0.0808) 0.064 16 15.1 219 219.9 235
7 [0.08081,0.1373) 0.105 19 24.7 216 210.3 235
8 [0.13727,0.2399) 0.183 51 42.9 184 192.1 235
9 [0.23992,0.4357) 0.324 72 76.2 163 158.8 235
10 [0.43567,0.9987] 0.674 157 158.5 78 76.5 235

χ2 = 4.36, d.f. = 5; p = 0.499
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Table D.5: DAS5: Hosmer-Lemeshow Goodness of Fit Test: Risk Deciles
Died Survived

Decile Prob.Range Prob. Obs. Exp. Obs. Exp. Total
1-3 [0.000203,0.02133) 0.009 4 4.5 503 502.5 507
4 [0.021331,0.03864) 0.029 3 4.9 166 164.1 169
5 [0.038638,0.07023) 0.054 13 9.1 156 159.9 169
6 [0.070234,0.11305) 0.09 12 15.3 157 153.7 169
7 [0.113049,0.17858) 0.142 23 24.1 146 144.9 169
8 [0.178583,0.29531) 0.231 41 39.1 128 129.9 169
9 [0.295315,0.51441) 0.383 65 64.8 104 104.2 169
10 [0.514414,0.99608] 0.706 120 119.3 49 49.7 169

χ2 = 3.59, d.f. = 6; p = 0.732
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Appendix E

RAS Individual Patient Risk Profiles

This appendix contains examples of the models developed in this thesis applied to
20 randomly selected patients who expired and 20 random patients who survived.
The real-time acuity score (RAS) is discussed Chapter in 5. The secondary outcome
models (SSOM, PWM, AKIM, and BPWM) are discussed in Chapter 6. To provide interesting
examples, I required that patients have at least 20 RAS predictions to be considered
for random selection.

Each patient plot displays the RAS predictions in solid black. If available, the
secondary outcome predictions are also indicated: SSOM predictions are displayed
with red dashes, PWM predictions are displayed with blue dots, AKIM predictions are
displayed with a green dot-dash-dot pattern, and the BPWM predictions are displayed
with long cyan dashes. If the outcome of interest for a secondary model is present
(e.g., SIRS and HDFR for SSOM), the corresponding line (type and color) is shown
along the x-axis for the duration of the outcome.

E.1 Expired Patients
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Figure E-1: Model outputs for patient 13319. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-2: Model outputs for patient 23047. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-3: Model outputs for patient 14386. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-4: Model outputs for patient 23335. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-5: Model outputs for patient 5872. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-6: Model outputs for patient 21521. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-7: Model outputs for patient 7272. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-8: Model outputs for patient 23600. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-9: Model outputs for patient 931. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-10: Model outputs for patient 8451. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-11: Model outputs for patient 14302. The presence of secondary outcomes
is marked along the x-axis.
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Figure E-12: Model outputs for patient 1224. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-13: Model outputs for patient 8929. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-14: Model outputs for patient 20113. The presence of secondary outcomes
is marked along the x-axis.
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Figure E-15: Model outputs for patient 10855. The presence of secondary outcomes
is marked along the x-axis.
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Figure E-16: Model outputs for patient 18687. The presence of secondary outcomes
is marked along the x-axis.
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Figure E-17: Model outputs for patient 13538. The presence of secondary outcomes
is marked along the x-axis.
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Figure E-18: Model outputs for patient 14692. The presence of secondary outcomes
is marked along the x-axis.
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Figure E-19: Model outputs for patient 4754. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-20: Model outputs for patient 24019. The presence of secondary outcomes
is marked along the x-axis.
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Figure E-21: Model outputs for patient 12483. The presence of secondary outcomes
is marked along the x-axis.
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Figure E-22: Model outputs for patient 22716. The presence of secondary outcomes
is marked along the x-axis.
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Figure E-23: Model outputs for patient 13642. The presence of secondary outcomes
is marked along the x-axis.
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Figure E-24: Model outputs for patient 23224. The presence of secondary outcomes
is marked along the x-axis.
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Figure E-25: Model outputs for patient 5947. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-26: Model outputs for patient 21799. The presence of secondary outcomes
is marked along the x-axis.



290 APPENDIX E. RAS INDIVIDUAL PATIENT RISK PROFILES

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (days)

P
ro

ba
bi

lit
y

Patient 6946; 
Discharged alive after 6.20 days

RAS
(died)

SSOM
(SIRS & HDFR)

PWM
(no pressors)

AKIM
(AKI or AKF)

BPWM
(no IABP)

Secondary Outcome Present?

Figure E-27: Model outputs for patient 6946. The presence of secondary outcomes is
marked along the x-axis.
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Discharged alive after 8.92 days
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Figure E-28: Model outputs for patient 23877. The presence of secondary outcomes
is marked along the x-axis.



292 APPENDIX E. RAS INDIVIDUAL PATIENT RISK PROFILES

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (days)

P
ro

ba
bi

lit
y

Patient 864; 
Discharged alive after 5.58 days

RAS
(died)

SSOM
(SIRS & HDFR)

PWM
(no pressors)

AKIM
(AKI or AKF)

BPWM
(no IABP)

Secondary Outcome Present?

Figure E-29: Model outputs for patient 864. The presence of secondary outcomes is
marked along the x-axis.
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Discharged alive after 30.86 days
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Figure E-30: Model outputs for patient 7803. The presence of secondary outcomes is
marked along the x-axis.
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Discharged alive after 5.53 days
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Figure E-31: Model outputs for patient 13765. The presence of secondary outcomes
is marked along the x-axis.
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Discharged alive after 10.54 days
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Figure E-32: Model outputs for patient 1168. The presence of secondary outcomes is
marked along the x-axis.
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Figure E-33: Model outputs for patient 8817. The presence of secondary outcomes is
marked along the x-axis.
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Discharged alive after 41.00 days
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Figure E-34: Model outputs for patient 20353. The presence of secondary outcomes
is marked along the x-axis.
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Patient 10776; 
Discharged alive after 4.59 days
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Figure E-35: Model outputs for patient 10776. The presence of secondary outcomes
is marked along the x-axis.
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Patient 19108; 
Discharged alive after 1.28 days

RAS
(died)

SSOM
(SIRS & HDFR)

PWM
(no pressors)

AKIM
(AKI or AKF)

BPWM
(no IABP)

Secondary Outcome Present?

Figure E-36: Model outputs for patient 19108. The presence of secondary outcomes
is marked along the x-axis.
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Discharged alive after 5.41 days
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Figure E-37: Model outputs for patient 13032. The presence of secondary outcomes
is marked along the x-axis.
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Discharged alive after 5.59 days
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Figure E-38: Model outputs for patient 14466. The presence of secondary outcomes
is marked along the x-axis.
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Discharged alive after 1953.63 days
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Figure E-39: Model outputs for patient 4690. The presence of secondary outcomes is
marked along the x-axis.
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Discharged alive after 2.44 days
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Figure E-40: Model outputs for patient 24847. The presence of secondary outcomes
is marked along the x-axis.



Appendix F

Secondary Outcome Model
Selection

This appendix provides cross validation performance plots that detail the feature
selection process used for each secondary outcome model discussed in Chapter 6.
Plots showing the cross validation performance on the final set of features are also
provided. For plots that show less than 50 covariates, the individual points are shown
on the plots. When a plot covers more than 50 covariates, I only show the line that
connects the points.
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Figure F-1: PWM model selection, sensitivity to number of covariates on each cross
validation fold (development data)
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Figure F-2: PWM final feature set performance on cross validation folds
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Figure F-3: PWLM model selection, sensitivity to number of covariates on each cross
validation fold (development data)
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Figure F-4: PWLM final feature set performance on cross validation folds
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Figure F-5: BPWM model selection, sensitivity to number of covariates on each cross
validation fold (development data)
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Figure F-6: BPWM final feature set performance on cross validation folds
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Figure F-7: SSOM model selection, sensitivity to number of covariates on each cross
validation fold (development data)
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Figure F-8: SSOM final feature set performance on cross validation folds
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Figure F-9: AKIM model selection, sensitivity to number of covariates on each cross
validation fold (development data)
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Figure F-10: AKIM final feature set performance on cross validation folds
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