

Privacy Right to be let alone; e.g.: snooping on Dan Quayle by J. Rothfeder "outing" of Arthur Ashe (HIV), Henry Hyde (adultery) celebrity medical problems (Tammy Wynette, Nicole Simpson) ... applies mostly to known individuals

Confidentiality Use and sharing of information by multiple users at many institutions Should be controlled by coherent policy Enforced by appropriate technology E.g., who may use results of your life insurance physical exam, for what purposes?

Difficulty getting insurance Individual insurers may deny you coverage based on your medical history if it includes: Use of prescription drugs to treat anxiety, depression or a physical condition, including Ativan, Klonipin, Paxil, Prozac, Serzone, Zoloft, Xanax and Wellbutrin. Counseling for anxiety, depression, grief or an eating or sleep disorder. Even if you briefly sought counseling as a way to cope with the Sept. 11 terrorist attacks, you could be denied individual health insurance, according to researchers with Georgetown's Health Privacy Project." (MSN, March 9, 2004) Medical Information Bureau Data on all applicants for private life insurance in past 7 years

More Legitimate Concerns

- When employer pays insurance premiums, you may lose your job
 - Self-insured companies
 - Small employers facing "experience rated" policies
- Non-employment discrimination based on health
 - Adoption
 - Politics

National Academy of Sciences Study, 1997

Charge to the committee:

- Observe and assess technical and nontechnical mechanisms for protecting privacy and maintaining security in health care information systems.
- > Identify other methods worthy of testing in health care settings.
- Outline promising areas for further research.

Committee Members

Paul Clayton. Chair.

Columbia Presbyterian Medical Center

Earl Boebert, Sandia National Laboratories

Gordon DeFriese. Sheps Ctr. for Health Services Research

Susan Dowell

Medicus Systems Corp.

Mary Fennell, Brown University

Kathleen Frawley,

John Glaser

Partners Healthcare System

Richard Kemmerer

Univ. of Calif., Santa Barbara

Carl Landwehr

U.S. Naval Research Laboratory

Thomas Rindfleisch

Stanford University Sheila Rvan

Univ. of Rochester, School of Nursing

Bruce Sams,

Kaiser Permanente (retired) Peter Szolovits

Robbie Trussell

Presbyterian Healthcare System, Dallas Elizabeth Ward

Washington State Dept. of Health

Paul Schwartz (Special Advisor), Univ. of Arkansas School of Law

Site Visits

- Institutions Visited
- Large, urban hospital
- Integrated delivery system
- Affiliated health care system Community Health Info Network (CHIN)
- > State health system
- Insurer

- Issues Discussed
- > Problems encountered
- Security and confidentiality policies
- Security mechanisms
- > Effectiveness of mechanisms
- Education and training
- Disciplinary sanctions
- Needs to promote better security

Clinical Computing in Patient Care, September 25, 1998

Trade-offs among IT characteristics

- > Critical to improve the quality and reduce the costs of health care.
- > Privacy and security must be resolved if patients are to share sensitive health information with care providers.
- Protect patient privacy while ensuring that providers have legitimate access to information for purposes of care.

Privacy and Security Concerns Addressed in the Report

- > Inappropriate releases of information from individual organizations
 - > authorized users leaking information
 - > unauthorized users breaking into systems to retrieve or alter information, or to render systems dysfunctional
- Systemic flows of information among organizations in health care and related industries

Health Information Held by Individual Organizations Can Be Protected

- Technical practice: A variety of practices provide effective protection in an operational environment and can be implemented with reasonable effort.
- Policy and implementation: Technical mechanisms must be accompanied by organizational mechanisms for developing access and release policies, training workers, and penalizing violations of policy.
- Incentives: Health care organizations need proper set of incentives to address privacy and security concerns.

Dates Casterite

Clinical Computing in Patient Care, September 25

Two Approaches to Protect Privacy

- Pre-emptive controls
 - Lock & key
 - > "Need to know"
 - ... often need pre-specified understanding of who needs what under which circumstances -- military model
- > Retroactive controls
 - Community of trust
 - Checking up, not prevention
 - Sanctions

Peter Szolovits

linical Computing in Patient Care, September 25,

Threat Model

Must understand what you are protecting against:

- Nature: confidentiality, security
- > Source: insider, outsider
- Means: tourist, cracker, ..., NSA
- Information at risk
- Scale

Credible threats:

- accidental disclosures by insiders
- abuse of record access priveleges by insiders
- insider access for profit or spite
- unauthorized physical intruder
- vengeful outsider who seeks to access, damage, disrupt

Peter Szolovits

Clinical Computing in Patient Care, September 25, 1998

Recommended Technical Practices for Immediate Implementation

- Individual Authentication—such as login IDs and passwords to ensure accountability
- > Access Controls—restrict access to need-to-know
- ➤ Audit Trails—track all accesses to clinical information
- > Protection of remote access points
- Software discipline—limit ability to download, install, or copy software
- > System assessment—evaluate vulnerabilities
- Physical Security & Disaster Recovery

Peter Szolo

Clinical Computing in Patient Care, September 25, 1998

Authentication and Access

Eliminate undesirable (horrendous) current practices, e.g.,

- > all doctors log in as "MD"
- > nurses, receptionists use doctor's account
- > four-digit (or six-digit) "id+password"
- > all data available to everyone
- > no record of who creates, alters or destroys data
- > poorly-controlled access from networks, remote sites

Peter Szolov

Clinical Computing in Patient Care, September 25,

System and Software Discipline

- > Standard workstations
 - hardware
 - > approved software
- Control over networking
- > Control over software installation/dissemination
 - > viruses
 - > network downloads
 - > floppy drives
- Testing of security features

Peter Szolovits

Dinical Computing in Patient Care, September 25,

Physical Security

- > Lock the computer room (wherever it may be!)
- > Backups, recovery procedures
 - > protect the backup data
 - > test the recovery procedure
- > Erase the disk when de-commissioning the computer

Clinical Computing in Patient Care, September 25,
Peter Szolovits 1998

Observed Security Features

		Site						
Security Feature	A	В	C	D	E	F		
Physical								
Terminal security						Г		
Security perimeter/network layout			1			,		
Network physical security			1			Γ		
Server physical security	-		1	✓	✓	,		
Secure destruction of obsolete data/equip						Г		
Authentication								
Token -based authentication (card plus password)						Γ		
Change passwords often						Γ		
No cleartext passwords						Г		
Uniform user ID across organization		1	1			Г		
Incentives to reduce key sharing	-	1	1		✓	Г		

Clinical Computing in Patient Care, September 29
Peter Szolovits 1998

Observed Security Features

	Site						
Security Feature	A	В	C	D	E	F	
Access Control							
Need to know/right to know			1				
Access control list technology/management							
Role-based access profiles			1				
Access overrides for emergencies							
Audits							
Audit trails & self audit					V		
Software-based audit analysis							

Observed Security Features

	Site							
Security Feature	A	В	С	D	E	F		
External Access	•					_		
Firewall	·		1	1		V		
Dial-in protections	V	n/a						
Mobile access protection		n/a	n/a	n/a	n/a	n/a		
Intruder script protection						V		
Control IP addresses			4			Г		
Encryption								
Crypto-based authentication								
Encrypt network traffic						Г		
Encrypt database contents								
Digital signatures								
Document integrity						Г		
Transaction non-repudiation						П		
Encrypt backup media						П		

Clinical Computing in Patient Care, September

Observed Security Features

		Site				
Security Feature	A	В	C	Đ	E	F
Software Discipline						
Use antivirus technology			✓			
Checksum/validate software			1			
Control user software						
Control PC software loading						
Network software census			1			
Integrated software tools						
Disaster Recovery						
Backups, multiple storage sites	1		1	1	1	✓
Data content integrity						
Operations recoverability	1		1	1	1	✓
Evaluation/Staying Technically Current						
Run anti-intrusion programs			1			
Vulnerability evaluation			✓			
Stay up on CERT alerts			✓			
Avoid/update obsolete technologies			✓			

ter Szolovits 1998

Recommended Organizational Practices for Immediate Implementation

- > Security and confidentiality policies
- > Security and confidentiality committees
- > Information security officers
- > Education and training programs
- Sanctions
- Improved authorization forms
- > Patient access to audit logs

Dates Casterio

Clinical Computing in Patient Care, September 25

Policies and Governance Clearly stated policy: Governance Responsibility Policy-making body Education Security officer Data access > Buy-in > CIO Guardianship 🜟 Human Resources Associating people with their Entire community actions (identification, capabilities, temporary Education access, termination) > Enforcement Testing Transparency **

Enforcement

- Auditing
 - Periodic sampling of access logs
 - > Users' ability to check
- Human Resources (Personnel)
 - > Emphasize importance
 - > Explicit criterion of evaluation
 - Education and training
 - Reprimand, ..., termination for all levels of employees
 - "Public floggings"

Peter Szolovi

Clinical Computing in Patient Care, September 25,

Testing

sine qua non

- Monitoring and awareness
- Review of performance
- Auditing
- "Tiger teams"
- Published results

Clinical Computing in Patient Care, September 25, 1998

Recommended Security Practices for Future Implementation

Strong authentication:

- single-session passwords,
- > encrypted authentication sessions,
- > token-based authentication
- > Enterprise-wide authentication (single logon)
- Access validation—to ensure that retrieved information matches user's access privileges
- > Expanded audit trails
 - > all internal accesses to information
 - global audit trails to trace secondary distribution of data
- Electronic authentication of records

Peter Szolov

Clinical Computing in Patient Care, September 2

Stronger Incentives Needed

- > Strong incentives to use IT, but fewer incentives to address privacy and security issues.
 - Existing legislation is inconsistent across states; no strong federal legislation mandating protections [in 1997]
 - Sporadic violations of privacy and security have not rallied broad public interest.
- Little guidance for improving privacy and security
 - no effective standards to guide attempts to better protect health information.
 - > few means of sharing information about privacy and security violations, effective ways of protecting health information

Peter Szolovit

inical Computing in Patient Care, September 25, 1998

Recommended Elements of Industry Infrastructure for Privacy & Security

- Standing committee for developing and updating privacy and security standards.
 - examine security mechanisms and help establish rules governing data flows.
 - > reports directly to Secretary of HHS
- Organization for gathering and sharing information about security threats, incidents, and solutions in health care
 - similar to the computer emergency response team (CERT) for the Internet
 - > seed funding from Congress

Dates Casterite

linical Computing in Patient Care, September 25

Systemic Concerns Regarding Privacy and Security

- Many concerns regarding patient privacy stem from sharing of information among organizations in health care industry.
- > Existing data flows are largely *unregulated* and often occur *without patient consent* or knowledge.
- Possible development of a universal patient identifier could exacerbate such concerns.

Peter Szolovits

Clinical Computing in Patient Care, September :

Typical Flows of Health Information Patient's Employer Care Provider Care Provi

Proposed Means of Addressing Systemic Concerns

Encourage national debate to determine appropriate balance between patient privacy and organizational needs for information

- Fair information practices (e.g., federal Privacy Act of 1974)
- DHHS should establish program to promote consumer awareness of issues and uses of health information.
- Professional societies should educate members about privacy and security issues
- > DHHS should conduct studies to determine extent to which various users need patient identifiable health information
- DHHS should work with the U.S. Office of Consumer Affairs to determine way to give consumers a visible, centralized point of contact re: privacy issues (such as an ombudsman).

Peter Szolovit

Clinical Computing in Patient Care, September 25, 1998

Fair Information Practices (Federal Privacy Act, 1974)

- No secret databases that include personally identified information
- Agencies must publish policies on all databases
- Right to see my information, with ability to correct
- Prevent data collected for one purpose from being used for another
- > Agency responsible for reliability and security of data
- Right to sue

Peter Szolovi

Clinical Computing in Patient Care, September 25,

Recommendation on Patient Identifiers

UHID postponed until privacy legislation

 $\ensuremath{\textit{Any}}$ method used to identify patients or link patient records should:

- be accompanied by a policy framework that identifies the kinds of linkages that violate patient privacy and that specifies legal sanctions.
- 2. facilitate identification of parties that link records.
- allow unidirectional linking of information: it should facilitate linking of records based on information given by patient (such as an identifier), but prevent a patient's identity from being easily deduced from records or the identifying scheme itself.

Peter Szolovits

Dinical Computing in Patient Care, September 25, 1998

Meeting Future Challenges

Continued attention to privacy and security issues is necessary to keep pace with the evolution of:

- > applications of information technology in health care;
- nature and capabilities of the threats to electronic health information;
- technical and nontechnical mechanisms for providing privacy and security

Dates Casterite

Clinical Computing in Patient Care, September 25

Recommendation for Meeting Future Technological Needs

- establish formal liaisons with industry and government security working groups.
- support research in areas of particular importance to health care, but that might not be otherwise pursued.
- fund experimental testbeds to explore different means of controlling access in an operational environment.

Peter Szolovits

Clinical Computing in Patient Care, September 2

Future Security Technologies of Particular Interest to Health Care

- Methods of identifying and linking patient records that protect patient privacy.
- Technologies for enabling patients to receive health care anonymously: pseudonyms, cryptographically generated aliases, narrative templates, smart cards.
- Audit tools that allow more frequent examination of audit logs to detect inappropriate accesses to information.
- Tools for rights enforcement and management to control secondary distribution of data

Peter Szolovit

Clinical Computing in Patient Care, September 25, 1998

Closing thoughts

- Plan and design security and confidentiality, don't just tack it on
- Leverage:
 - Technology
 - Policy
 - > Standards and Cooperation
 - Legislation
- Remember "Spy vs. Spy"

Peter Szol

Clinical Computing in Patient Care, September 25, 1998

HIPAA Regulations on Individually Identifiable Health Information

Based on 45 CFR parts 160 & 164 Federal Register Vol. 65, No. 250, Pp. 82462-82829, Dec. 28, 2000 http://aspe.hhs.gov/admnsimp/final/PvcPre01.htm

Peter SzolovitsPeter Szolovits Clinical Computing in Patient Care, September 25, 1998

11

Why?

- Part of Administrative Simplification section of HIPAA (Health Insurance Portability and Accountability Act of 1996
 - --Kennedy/Kassebaum Bill)
- > 1/5 of Americans believe personal health information (PHI) has been used inappropriately
- > PHI use necessary for improved quality, reduced cost
- existing protections fragmented

Peter Szolovits

Clinical Computing in Patient Care, September 25, 1998

History of Privacy Provisions

- Congress gave itself until Aug 21, 1999 to enact legislation -- it did not do so
- Backup was that Secretary of HHS was to promulgate rules by Feb 21, 2000 -- this was extended because of 70,000 comments
- Rule promulgated Dec. 2000
- Bush administration has put it on "hold", mainly because of cost
- Sec. Thompson agreed to issue the rule, Apr. 2001
- Congress may legislate later, based on experience
- > Rules are now in force, mostly
- work in progress

Other "simplification" issues

- Standards for electronic health care transactions, including detailed data elements
 - unique health identifiers
 - > providers
 - > patients
 - code sets
 - > security standards
 - electronic signatures
 - transfer of information among health plans
- > Target date: Feb 21, 1998

Sanctions

- Civil penalties for violations of standards: \$100/person/violation, max \$25,000/violation/year
- Knowing violations of health identifier or deliberate disclosure:
 - > \$50,000 + 1 year jail
 - > \$100,000 + 5 years jail if "under false pretenses"
 - > \$250,000 + 10 years jail if "with intent to sell, transfer or use ... for commercial advantage, personal gain, or malicious harm"

Clinical Computing in Patient Care, September 25, 1998

Principles

- Allow smooth flow of PHI for treatment, payment, related operations, public interest
- Prohibit flow of PHI for other purposes, without consent of subject
- Fair information practices
 - Allow subject to access PHI (later, excludes psych notes)
 - Allow subject to have records amended for errors or incompleteness
- Allow subject to know who else uses PHI
- Require persons who hold PHI to safeguard it
 - accountable for own use and disclosure
- Minimal Necessary Use and Disclosure
- Few limits on use for treatment, more for other functions

Clinical Computing in Patient Care, September 25, 1998

Limitations of HIPAA

- Responsibilities cannot follow data; therefore
 - Recommendation applies to Health Plans

 - Health Care Clearinghouses
 Providers who transmit PHI electronically

 - Does not apply to others who hold/process data contractors, third-party administrators, researchers, public health officials, life insurance issuers, employers, marketing firms, ...
 - ... but: Covered Entities required to contract with business associates to pass on responsibilities, along with identified health data used *in behalf of* a covered entity
- Does not apply to paper records
- ... but: if the information was ever in electronic form, responsibility is "sticky"
- No private right of action

Changed, applies

Covered Entities

Consent (before HIPAA)

- Most patients believe their private medical data may not be divulged without specific consent
- But, consent may effectively be forced
- But, many exemptions exist:
 - For treatment and related purposes (e.g, utilization review)
 - > For obtaining payment
 - Emergency care, health depts., law enforcement, coroners, business operations, oversight, research, ...

When is a nod a nod?

- > Agreement: informal, perhaps implied, e.g., to let a consultant see clinical notes, let hospital include patient in a directory
- > Consent: written, but often generic, e.g., on admission to hospital. This covers most "health care operations"
- Authorization: written, specific to the case. For psychiatric notes and all data uses other than health care operations. E.g., research.
- > Patient may negotiate *Restrictions* on disclosure, e.g., to particular staff, family members, etc.

Uses of data by Covered Entities

- > For treatment, payment, health care operations without patient authorization
- For public health, research, health oversight, law enforcement, use by coroners, mandatory State reporting, search warrants without patient authorization
- Must allow access to the subject of the records
- Must get individual consent for any other uses

Substitute regulatory protections for pro forma authorizations often used today.

Rejected in comment period

Health Care Operations

- > Treatment
- Payment
- Quality assessment and improvement activities
- Review competence of professionals, organizations; conduct training; accreditation
- Insurance rating concerning existing coverage
- Auditina
- Legal proceedings
- Added: Business planning and development, management, general administration, fundraising, "internal marketing"

Clinical Computing in Patient Care, September 25, 1998

NOT Health Care Operations

- Marketing
- > Sale, rent or barter of information
- Use in parts of organization not health-related
- Rate setting prior to subject's enrollment
- Employment determinations
- Fund raising
- Research "to obtain generalizable knowledge"

These uses require explicit authorization

Clinical Computing in Patient Care, September 25, 1998

Identifiable

- Name, address, phone number, fax number, email address, URL, IP address, social security number, medical record n., health plan n., account n., certificate/license n., vehicle id, device id, biometric id, full-face photo,
 - "any other unique identifying number, characteristic, or code"
 - "actual knowledge that the information could be used ... to identify"
- Date of birth, zip code, gender, race, profession, etc.
 - 9-digit zip code + dob make 97% of Cambridge, MA residents uniquely identifiable (!!!!)
- Patterns of doctor visits, immunizations, etc.
 - identifiable by inference
 - depends on knowledge and abilities of data user
- Small bin sizes lead to identifiability
- Aggregate data into larger bins
 - dob => age

Dodo => aye
 3 digits of zip code Cinical Computing in Patient Care, September 25, 1998

 1998

Sweeney's "All the Data on All the People"

Global disk storage per person:

	1983	1996	2000
(MB/person)	0.02	28	472

Sweeney's Cambridge

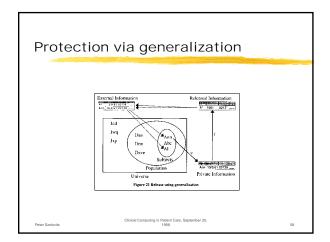
- > 1997 Cambridge, MA voting list on 54,805 voters
 - > Name, address, ZIP, birth date, gender, ...
- > Combinations that uniquely identify:

Birth date (mm/dd/yy) 12%
 BD + gender 29%
 BD + 5-digit ZIP 69%
 BD + 9-digit ZIP 97%

- Unique individuals
 - > Kid in a retirement community
 - > Black woman resident in Provincetown

Dater Systemite

linical Computing in Patient Care, September 25


Problem of "other information"

- Governor Weld's data found in Mass "de-identified dataset"
- Dates you visited a health care provider (over a lifetime) are probably unique
- Can be used to re-identify you if someone has both deidentified data and other data that link to identifiers

Dater Synlowite

Clinical Computing in Patient Care, September 25,

Danger of Re-identification Televal Information Released Information Privale Information Privale Information Released Informat

Computational Disclosure Control

- Make sure data cannot be traced back to a set of size <</p>
 - п
 - Generalization
 - > Suppression of unique combinations
 - Account for leakage from what has been suppressed; e.g., back-calculating from aggregate statistics
- How to estimate "external information"?
- > Every release becomes more external info.

Peter Szolov

Clinical Computing in Patient Care, September 25,

Methods of Generalization/Suppression

- Underlying problem (find minimal generalization/suppression to achieve a level of anonymity) is NP-hard (Vinterbo)
- Mainly heuristic search over space of possible generalizations/suppressions
 - Scrub
 - Datafly
 - > μ-Argus (Netherlands)
 - k-Similar

Peter Szolovit

Clinical Computing in Patient Care, September 25, 1998

Sources

- For the Record: Protecting Electronic Health Information, National Academy Press, 1997 (http://www.nap.edu/readingroom/books/for/)
- (http://www.nap.edu/readingroom/books/for/)
 Universal Health Identifiers:
 P. Szolovits and I. Kohane, "Against Simple Universal Health-care Identifiers," J Am Med Informatics Assoc, vol. 1, pp. 316-319, 1994.
 Confidentiality policy:
 D. M. Rind, I. S. Kohane, P. Szolovits, C. Safran, H. C. Chueh, and G. O. Barnett, "Maintaining the Confidentiality of Medical Records Shared over the Internet and World Wide Web," Annals of Internal Medicine, vol. in press, 1997. 1997(127): 138-141.
 (http://www.acponline.org/journals/annals/15/jul97/mronnet.htm)
- Web implementation:
 J. Halamka, P. Szolovits, D. Rind, and C. Safran, "A WWW implementation of national recommendations for protecting electronic health information," J Am Med Informatics Assoc, vol. 4, pp. 459-464, 1997.
- HIPAA: http://aspe.hhs.gov/admnsimp/final/PvcPre01.htm

Clinical Computing in Patient Care, September 25, 1998