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Monitoring

6.872/HST950

Peter Szolovits

Outline

• Problem of information overload
• How to reason with/about time
• Interpreting temporal data

Problem

• ICU alarms sound roughly every 30 
seconds, in a typical (full) ICU

• Nurse takes ~minutes to resolve alarm
• How to resolve?

– Ignore (turn off) alarms
– Prioritize
– Automate
– Make alarming algorithms more intelligent

Time is Critical
• Some systems have no explicit representation of 

time
– E.g., Internist

• <ABDOMEN TRAUMA RECENT>
• <ABDOMEN TRAUMA REMOTE HX>
• <CHEST PAIN SUBSTERNAL LASTING GTR THAN 20 

MINUTE <S>>
• <CHEST PAIN SUBSTERNAL LASTING LESS THAN 20 

MINUTE <S>>

• No representation of these pairs being “the 
same,” but at different times.

• Note: Same problem with space; need orthogonality!

Motivating Example: Distinguishing Four 
Possible Relationships

Between Transfusion and  Jaundice

• Post-transfusion antigen incompatibility 
hemolytic anemia

• Post-Transfusion Hepatitis B: Acute Hepatitis
• G-6-PD hemolytic anemia treated by transfusion
• Post-Transfusion Hepatitis B: Chronic Active

blood
transfusion

abdominal
pain

jaundice

?

?

Even Simple Models Help

• PIP’s temporal model:
– PAST, RECENT, NOW, SOON, FUTURE

• Example: 
– in “chronic glomerulonephritis” model, “past acute 

GN”
– (to my surprise), program hypothesized “future 

chronic GN” after diagnosing “now acute GN”

AGN CGN

past present future

past present future
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What is Time?

• (Macroscopically) unidirectional
• Related to causality
• May be modeled in various ways

– Continuous quantity, as in differential 
equations

– Discrete time points, as in discrete event 
simulations

– Intervals, as in ordinary descriptions of 
durations, processes, etc.

… or combinations

Continuous View

• Differential equation view of world
• States (state variables) evolve according 

to their laws
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Discrete Event View

• Designated (countable) time points
• Nothing “interesting” between events
• Events may be defined by

– Clock “ticks”
– Interactions among objects in universe
– Distinguished points in representation of state 

variables (e.g., highest point of cannon shell)

What Can Be a Time Point?

• Calendrical point—a specific date/time
• Recognizable event—e.g., “when I had my 

tonsils out,” or “start of high school,” or 
“my ninth birthday”

• Now—special, because it moves

Discrete Events are
Associated with State Transitions

E.g., Beck & Pauker’s model to help compute quality-adjusted years of survival:

Constraint Propagation
among Time Points

• Clearly, T(A,B)+T(B,C) = T(A,C)
• But we only know lower/upper bounds on T
• L(A,C) = L(A,B)+L(B,C)
• U(A,C) = U(A,B)+U(B,C)
• and thus, we can infer relationships

A C

B
l, u

l, u

l, u



3

Interval “Overlaps” in TUPese

Most medical history 
temporal terminology 
is expressible in 
statements composed 
from TUP assertions.

ANOREXIA>

<IRRITABILITY <ANOREXIA
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IRRITABILITY>

ε

ε

ε

Intervals and Points are
Alternate Representations

• “Overlaps” defined in terms of its 
endpoints:

<Irritability Irritability>

<Anorexia Anorexia>
+0,+∞

+0,+∞

+ε,+∞ +ε,+∞

+ε,+∞

+ε,+∞

Initial Assertions
• Completing 

all the 
relations not 
explicitly 
asserted

ANOREXIA>

Externally asserted

<ANOREXIA

<IRRITABILITY

3 DAYS

2 DAYS

7 DAYS

5 DAYS

Legend

Inferred

3 DAYS

4 DAYS

Constraint

<ANOREXIA

<IRRITABILITY ANOREXIA>
5 DAYS

5 DAYS

2 DAYS

3 DAYS

3 DAYS

3 DAYS

Propagated  Constraint

• Order n2 edges in fully interconnected graph
• Order n3 computation
• Work to localize propagation to semantically 

related events

<ANOREXIA

<IRRITABILITY ANOREXIA>
5 DAYS

5 DAYS

3 DAYS
2 DAYS

2 DAYS

3 DAYS

Forms of Temporal Uncertainty

• Lower/upper 
bounds on temporal 
distances

• Central range + 
fringe

• Continuous 
distributions
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Interval View

• Activities, processes take place over 
extended intervals of time

• Observations are true over periods of time
• Systems remain in steady (from some 

viewpoints) states over intervals

Allen’s Temporal Intervals

Inference among Intervals
by Composition

X-Y

Y-Z

e.g., if A starts B and B overlaps C,

what are the possible relationships 
between A and C?

1. A before C

2. A meets C

3. A overlaps C

Temporal Control Structure. 
- T. Russ

• Processes maintaining truth of abstractions over 
specified interval

• Update of past beliefs from corrections or new data.
• Actions are permanent.

Back to Monitoring

• Detecting Trends
• Language for Trend Description
• Matching algorithms
• Top-down vs. bottom-up vs. both
• Learning trend detectors

“Two-Point” Trend Detectors

• Restricted to hospitals with the most 
complete information systems

• Rind & Safran, 1992
• Two point event detector

– rise in creatinine > 0.5 mg/dl
• Therapeutic context

– Renally cleared or nephrotoxic medication
– Possible care providers

• Implementation
– M procedures linked to E-mail
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BIH Experience (cont’d)
• Time series trial
• 607 in 348 

admissions during 
control periods

• 497 events in 
intervention period

• 369 alerts, sent to 
584 different 
physicians, 9.25 
recipients per alert

• Improved response 
time

• Improved outcomes

Representation
Easily implemented as an Arden Syntax 
MLM

Are these two-point trend 
detectors sufficient?

• If not, why not?
• Noisy data.
• Multi-phased processes. 
• Uncertainty over time. 
• Uncertainty over values.

Issues in Trend Detection

• Defining significant trends
– Multiple variables
– Multiple phases
– Temporal and value uncertainty

• Detecting trends from data

• Generating alarms

• Displaying, explaining results

• Changing clinical context

Pediatric Growth
Monitoring

Pediatric Growth
Monitoring

• Data:
- heights, weights 
- family history 
- bone ages  
- pubertal data, 
stages
- hormone values

• Disorders show 
characteristic 
patterns on growth 
chart.

Boy with constitutional 
delay

--Haimowitz

Curve Fitting Approach

a1

1  +  e -b1  (t - c1)

a
31  +  e-b3  (t - c3)

a
21  +  e-b2  (t - c2)

+ +Height(t) = 

ak = component k’s contribution to mature stature

bk = a parameter proportional to the maximum growth velocity of the 
component (maximum rate of growth is (a * b) /4 centimeters per year)

ck = the age in years at which the maximum growth velocity occurs

Triple-logistic curve [Thissen and Bock 
1990]

Describing Average Normal GrowthDescribing Average Normal Growth

• Def.  Z-score ≡ Number of standard deviations a patient's 
parameter is from the mean for that age.

• From birth until age 2 - 3 years, height and weight vary 
together and establish baseline Z-scores.

• From then until onset of puberty, height and weight 
maintain approximately the same Z-scores.

• Throughout this time, bone age is approximately equal to 
chronological age.
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Trend Template for  
Male Average Normal Growth
Trend Template for  
Male Average Normal Growth

Landmark points
Time 
constraints

Intervals
Time 
constraints
Value 
constraints

Age 0 2 3 10 13

Birth

17 19

Ht Z-score 
- Wt Z-score

Wt Z-score

Puberty
onset

Growth
stops

Ht Z-score

Birth
Growth

stops
Chron. age
- bone age

Puberty
onset

Pubertal
stage

Birth Pubertal
stage

Growth
stops

Ht Ht

12.5 14.5

Peak Ht
veloc

0

1
2

3

Pubertal
stage Pubertal

stage

4

Pubertal
stage
5

Trend Template, continuedTrend Template, continued

Age 0

Birth

17 19

Ht Z-score
- Wt Z-score

Wt Z-score

10 13

Puberty
onset

Growth
stops

Ht Z-score

32

Ht
Ht

12.5 14.5

Peak height
velocity

Landmark points
Time constraints

Intervals
Time constraints
Value 
constraints

Trend Template, continuedTrend Template, continued

Birth

Chron. age
- bone age

Puberty
onset

Pubertal
stageBirth

Pubertal
stage

Growth
stops

0

Landmark points
Time 
constraints

Intervals
Time 
constraints
Value 
constraints

1

5

Pubertal
stage

4

Pubertal
stage

3
Pubertal
stage
2

Growth
stops

0

11.5 14.5

Value Constraints Have Regression Models Value Constraints Have Regression Models 

Quadratic
f(D)t = a t 2 + b t + c + εt

Constant
f(D)t =  K + εt

Linear 

f(D)t = a t + b + εt
• Low-order 
polynomials

• Parameter estimates: 
quantitative or 
qualitative 

Goodness of Fit of a HypothesesGoodness of Fit of a Hypotheses

Mean Absolute 
% Error

Least-Squared 
Error Line

Yt

Y’t

Value Constraint

Σ Yt - Y’t

Ytt=

•Hypothesis score is weighted average of value constraint 
scores.

N - (no. estim. pars.)

TrenDxTrenDx
• Matches process data to trend templates.
• Optimizes over alternate trend 

chronologies. 
• Compares best matches of competing 

trends within same clinical context.
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Linking Patient Data to Trend TemplateLinking Patient Data to Trend Template

Age 0

Birth

10 13

Puberty
onset

32

Int1

Int2

Patient-1
Date of Birth
3/17/1992

Patient Data

Trend Template

Patient-1
Height
4/28/1994

Temporal Utility Package 
[Kohane 1987]

Processing height and weight, 2.1 yearsProcessing height and weight, 2.1 years

• Branch to two hypotheses of average normal 
growth:

Int1 Int2
2.1 3

Wt
2.1

Ht
2.1

(1)
Int1 Int2

2.12

Ht
2.1

Wt
2.1

(2)

Processing data through age 4.1  Processing data through age 4.1  

Ht
3.1

•First hypothesis has lower error.

•Refining patient history from population pattern and data. 

Int1 Int2
2.1 + ε 3

Wt
2.1

Ht
2.1

(1)
Int1 Int2

2.1 - ε2

Ht
2.1

Wt
2.1

(2)

Score: 0.37Score: 0.14

Wt
3.1

Ht
4.1

Wt
41

Ht
3.1

Wt
3.1

Ht
4.1

Wt
41

Maximizing Chronologies for a Trend Maximizing Chronologies for a Trend 

Beam search

Data:  D1 D2 ... Dt-1  Dt

TT normal - Chron1 TT normal - Chron2 TT normal - Chron3

time

0.052 0.043 0.055

0.0480.063 0.0330.056 0.0720.0690.045

Beam search - soundness vs. efficiencyBeam search - soundness vs. efficiency

Linear (D1 -)Phase 1
Phase 2

Data:
1 1 1 1

2

22 2
2

2
2

2

Noise? Actual 
transition?

Constant

2
2

Diagnostic Monitoring FrameworkDiagnostic Monitoring Framework
• Clinical context 

• Partition of trend templates
• One normal; others faulty
• TrenDx concurrently matches to same process data

• Compare best matching hypothesis of 
each trend template

• Significant faulty trend match triggers 
actions

• Alarms
• Displays
• Other clinical contexts 
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TrenDx Results on Growth Patient TrenDx Results on Growth Patient 
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Patient 39, Const. DelayBoy with constitutional 
delay

Exploratory Clinical TrialExploratory Clinical Trial
• 30 growth records from Children’s Hospital 

Endocrinology Clinic
• 26 have disorders; 4 normals. 

• 20 growth records from general pediatrician 
• All  20 declared normal

• Alarm based on (TTF - TTN) 
• Single wide gap
• Persistent narrower gap

Constitutional delay Early puberty

Sensitivity

Specificity

.52

.96

.67

.75

Intensive Care Unit MonitoringIntensive Care Unit Monitoring

Hemodynamic fault during oxygen handbagging
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Hemodynamic
fault 
becomes 
significant 
trend.
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Top-Down vs. Bottom-Up Long’s Signal Segmentation 
Algorithm

• Goals:
– Segment multiple data streams into a 

sequence of time intervals (cover time line)
– Within each interval, characterize each signal 

by a (linear) regression line
– Optimize for least total residual (greedy)
– Parameter controls maximum tolerable error

• Trades fitting error vs. number of segments
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Segmentation Segmentation

Segmentation Multiple Data Streams

Effect of Varying Sensitivity to Change

Event Discovery in Medical 
Time-Series Data

Christine L. Tsien, Ph.D.
Harvard Medical School, Boston MA

Massachusetts Institute of Technology, Cambridge MA
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Overview

• Background: Intensive Care Unit (ICU)
• TrendFinder approach to event discovery

– components
– performance metrics

• Applications: ICU signal artifacts, events
• Summary

Observational Study of ICU 
Alarms

• Prospective 10-wk study at Children’s Hospital
• 2942 alarms; 298 hours

• Problems
– Wider limits
– Silenced alarms
– Stress

86%

6%
8%

Alarm
Types

TrendFinder Approach to 
Event Discovery

Event
Identification

Annotated
Data

Collection

Annotated
Data

Preprocessing

Model
Derivation

Performance
Evaluation

Annotated
Data

Preprocessing

TrendFinder Application: 
Detecting Events in the MICU

• Event: clinically-relevant systolic BP alarms
• Data collection (Children’s Hospital)

– 12 weeks
– 585 hours of 5-sec data

• Prospective alarm annotations

Annotated
Data

Collection

Event
Identification

Model
Derivation

Performance
Evaluation

Annotated Data Collection 
Setup

Patient

Bedside
device 1

Bedside
device 2

Bedside
device n

Spacelabs
monitor

Laptop
computer

Data files Annotations

. . .

Alarms

Trained
observer

Annotated Data Collection Program
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Feature Attribute Derivation Feature Attribute Derivation

Feature Attribute Derivation

maximum = 10

Feature Attribute Derivation

minimum = 7

Feature Attribute Derivation

range = 3

Feature Attribute Derivation

mean = 8.5
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Feature Attribute Derivation

median = 8.5

Feature Attribute Derivation

slope = -1

Feature Attribute Derivation

absolute value of slope = +1

Feature Attribute Derivation

standard deviation = 1.29

Feature Attribute Derivation Feature Attribute Derivation
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Feature Attribute Derivation Feature Attribute Derivation

Feature Attribute Derivation Feature Attribute Derivation

Feature Attribute Derivation Feature Attribute Derivation
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Feature Attribute Derivation Feature Attribute Derivation

Feature Attribute Derivation Feature Attribute Derivation

Model Derivation
• Data 

– labeled feature vectors of derived values
– training, evaluation, test sets

• Supervised machine learning methods
– Decision trees (c4.5)
– Neural networks (LNKnet)
– Logistic regression (JMP)

• Models: labels previously unseen feature vectors as 
event or non-event

Example Decision Tree Model 
for BP Artifact Detection

bp_med3 <= 4: artifact (114.0/3.0)
bp_med3 > 4:

bp_range3 <= 7: non-artifact (10959.0/72.5)
bp_range3 > 7: 

bp_med10 > 46: non-artifact (126.0/23.7)
bp_med10 <= 46:

bp_std_dev3 <= 5.51: non-artifact (78.0/28.5)
bp_std_dev3 > 5.51:

co2_low10 <= 5.3: artifact (46.0/10.1)
co2_low10 > 5.3:

hr_high5 <= 157: non-artifact (27.0/12.8)
hr_high5 > 157: artifact (21.0/8.2)
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If temporal representation provides 
leverage in reasoning over time...

• What temporal representation have we 
overlooked?
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Time series: Arterial BP and HbO2

Methods
Fourier transformation: translation from the 
time domain to the frequency domain.  
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Opportunities of the frequency 
domain

• For new kinds of alarms
• Machine learning on different part of the 

feature space
• Informative displays
• Toolkit to focus on events with time-

constants of interest

Summary

• Careful selection of temporal representations are 
necessary to capture the aspect of interest of a 
biological/clinical system.

• Temporal reasoning programs have been developed but 
are not widely used.

• Trend detection  with on-line data can be useful (low-
hanging fruit)

• Much can be accomplished with simple 1 and 2 point trend 
detectors

• Noisy data and medically complex trends require more 
sophisticated representation and reasoning mechanisms
– E.g. conversion into the frequency domain


