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Basic Biology

Organisms need to produce proteins for a variety of
functions over a lifetime

- Enzymes to catalyze reactions

- Structural support

- Hormone to signal other parts of the organism

Problem one: how to encode the instructions for making a
specific protein

Step one: nucleotides

Adenine (A) Cytosine (C) Guanine (G) Thymine (T)




Basic Biology

¢ Complementary nucleotides form base pairs
® Base pairs are put together in chains (strands)
¢ Naturally form double helixes
¢ Redundant information in each strand

Chromosomes

We do not know exactly how strands of DNA wind up to make a
chromosome

Each chromosome has a single double-strand of DNA
22 human chromosomes are paired

In human females, there are two X chromosomes

In males, one X and one Y
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What does a gene look like?

Each gene encodes instructions to make a single protein

DNA before a gene is called upstream, and can contain
regulatory elements

Introns may be within the code for the protein

There is a code for the start and end of the protein
coding portion

Theoretically, the biological system can determine
promoter regions and intron-exon boundaries using the
sequence syntax alone

——Open reading frame
Exon Intron Exon
Upstream | | Downstream

A
Initiation codon Termination codon

Area between genes

¢ The human genome contains 3 billion base pairs (3000 Mb)
but only 35 thousand genes

e The coding region is 90 Mb (only 3% of the genome)

e Qver 50% of the genome
is repeated sequences e[l 0 p mom | e—

o 10

Long interspersed
nuclear elements e eI e

20
Short interspersed
nuclear elements n [(Heswe—mm = ma w8

Long terminal repeats
Microsatellites - Mo WE1
® Many repeated
sequences are different
between individuals




Genome size

We're the smartest, so we must have the
largest genome, right?

Not quite

Our genome contains
3000 Mb

(~750 megabytes) e i wn e  m o am
B 0 O, —— | L

50 kb

E. coli has 4 Mb

Yeast has 12 Mb

Pea has 4800 Mb o
Maize has 5000 Mb 0
Wheat has 17000 Mb 8 :
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Genomes of other organisms

Plasmodium falciparum chromosome 2

Gardner M, et al. Science; 282: 1126 (1998).




mRNA is made from DNA

NUCLEUS

Genes encode

instructions to make

proteins : RNA
S

. . Copying
The design of a protein s DNA in

needs to be duplicable
mRNA is transcribed
from DNA within the
nucleus

mRNA moves to the
cytoplasm, where the
protein is formed

., Protein

Digitizing amino acid codes

Proteins are made of 20 O
. . Free Amino Acids
(21) amino acids
Yet each position can {RNA Bringing
Amino Acid to {J
only be one of 4 Ribosome
nucleotides

Growing
Protein Chain

Nature evolved into using
3 nucleotides to encode
a single amino acid

Y g . Y RIBOSOME incorporatin
A chain of amino acids is S Sl
made from mRNA growing protein chain

CYTOPLASM




Genetic Code
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Nature; 409: 860 (2001).

Molecular Biology

Nucleotides

1 Are in

Double helix

1 Are in

Chromosome Amino Acid

1 Holds 1 Are in

Gene/DNA Protein

1 Held in

Genome Signal Sequence




Central Dogma

Nucleotides

1 Are in
Double helix
1 Are in

Chromosome i Amino Acid

Protein

Genome Signal Sequence

Protein targeting

e The first few amino acids may serve as a signal peptide

e Works in conjunction with other cellular machinery to
direct protein to the right place
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Transcriptional Regulation

¢ Amount of protein is roughly governed by RNA level

e Transcription into RNA can be activated or repressed by
transcription factors

A No hormone No hormone

B With hormone

@
e

frends in Endocrinoiogy and Metabelism

Figure 2. Displacement of the TBP by the

hormone-bound GR leads to repression of

the osteocalcin gene (B). With no hormone pre-

, the gene is not repressed (A). Abbreviation:

GR, glucocorticoid receptor; TBP, TATA binding
protein. Triangles represent hormone.

What starts the process?

e Transcriptional programs Serine-threonine receptor
can start from J{
- Hormone action on receptors Lﬁ%
- Shock or stress to the cell g
- New source of, or lack of
nutrients
Receptor-specific
Internal derangement of cell / SMAD
or genome N P

Many, many other internal
and external stimuli

Lt\

\\ Move to nucleus,

activate target genes




Temporal Programs

e Segmentation versus Homeosis: same two houses at
different times

I

THni g e

Scott M. Cell; 100: 27 (2000).

mRNA

mRNA can be transcribed at up to several hundred
nucleotides per minute
Some eukaryotic genes can take many hours to
transcribe

- Dystrophin takes 20 hours to transcribe

Most mRNA ends with poly-A, so it is easy to pick out
Can look for the presence of specific mRNA using the
complementary sequence

Single mismatch —

is —-b air
hybrid is unstable Hlismateh, = basa pal

Ve cannot form
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CTGGTCGTCAGTCTTTAGTT

—— GACCAGCAGTCACAAATCAA ——




Periodic Table for Biology

® Knowing all the genes
is the equivalent of
knowing the periodic
table of the elements
Instead of a table,
our periodic table
may read like a tree

More Information

e Department of Energy Primer on
Molecular Genetics
http://www.ornl.gov/hgmis/publicat/pr
imer/primer.pdf

GENOMES

A

e T. A. Brown, Genomes, John Wiley and
Sons, 1999.




Common Challenges

® High bandwidth data collection
- Physiological measurements with high sample rates
- Higher density microarrays
e Data storage
- 15% US population = 200 million multiGB images
- Raw sequencing trace files for one human = 300 terabytes
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® Measurement Noise
- Artifacts in physiological measures
- Poor expression measurement
reproducibility
¢ Data Models
- Lack of standards in medical records
e HL7, HIPAA
- Too many standards in bioinformatics
¢ Gene Expression Markup Language (GEML)
® Gene Expression Omnibus (GEO)
® Microarray Markup Language (MAML)
- Medical record as sample annotation
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Common Challenges

® Many frequencies and phase shifts
- Clinical endocrinology spans seconds to decades

- What are the naturally occurring genomic frequencies?

e \What is the relevant source for data?

- What is the functional tissue for sleep apnea, hypertension,
diabetes?

late G, phase, 53 genes

No Genes

Expression Levels

§  pol2: DNA polymerase
epsilon large subunit (DNA
replication)

POL2DPB2
1

dpb2: Polymerase epsilon
80 kDa subunit (DNA
replication)

r=072

6 snc2: Synaptobrevin
homolog (Secretion)

adh3: Alcohol
dehydrogenase |l
(Glycolysis)

r=057

Common Challenges

e Comparing new signals to old

Comparison of the Low Dose Short Synacthen Test
(1 pg), the Conventional Dose Short Synacthen Test
(250 ug), and the Insulin Tolerance Test for Assessment
of the Hypothalamo-Pituitary-Adrenal Axis in Patients
with Pituitary Disease
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Common Challenges

e Continued development of
controlled vocabularies

+n Standard Cortert Management Speci

Gene Ontology: tool for the
. unification of biology

The Gene Ontology Consortium*

Common Challenges

e Security

nature genetics volume 20 september 1998

screening. However, during the 36-year history of mandatory new-
born screening, states have paid relatively little attention to pro-
tecting the security of the tissue sample (a dried blood spot or
filter paper disc which many programs retain for an extend
period). The time is ripe for comprehensive reassessment of reg
lations governing newborr

BM] VOLUME 322 28 APRIL 2001  bmj.com

Ethical requirements for genetic databases

s Follow respectiul protocols in approaching people and eliciting medic:
screening. How will we acquire, analy | histories and information about relatives

and store these data? How will we use this information to help pe | » Secure
ple stay well or ameliorate disease? How will we ensure that t
information is not misused?

nformed consent to broad, perhaps open ended, study, and als
maybe commercial application of findings

» Manage anonymisation i inking of databases, and other privacy iss

» Establish confidentiality and security safeguards

s Develop defensible responses 1o requests for personal data by public
health authorities, police, courts, employers, lenders, insurers, and subjec

L P ri Va Cy redatives

» Devise sound

cess, ownership, and intellectual property policies)
» Be clear about whether and how individuals will be informed of findin

.
[} Eth'l CS that might be medically helpful to them

» Arrange supervision by research ethics and privacy protection bodies

Genetic Testing in Life Insurance
"TO BE, OR NOT TO BE"

Genetic testing has many controversial issues surrounding it. The way it affects life and disability insurance is only
one area of its reach. However with this area there are two very differing viewpoints. There is the group that
believe genetic testing is necessary to prevent insurers from insolvency due to adverse selection. Alternativly,
there is the group who believes it infringes on the public's privacy and leads to discrimination. This group wants to
protect the public from genetic testing's reign. Which group is right? That question may never be answered, but in
any case, there is a lot to be considered




How many samples do we need?

® To prove an 8% difference in event-free survival,
is it easier to use 10 patients or 100 patients?

* To make a list of genes that differentiate patients with
early relapse from LTDFS, is it easier to use 1 sample of
each, or 100 samples of each?

Relapse
LTDFS

Yeoh, et al. Cancer Cell 2002, 1:

Relapse

With _ .=

microarray B BN ...and
diagnostics, B8 ) m much
sample size e otnl l more
is less about e ] * . about

power... ’ 2 ' modeling
- the

variation
of the
condition
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How do we avoid overfitting?

¢ In other words, with too few samples, it is too easy to
overfit the measurements, especially when measuring 20
to 30 thousand genes

® We have techniques like support vector machines that
even further expand the number of features

¢ And even the ones we get wrong, we later find they're
been misclassified, or define a new subgroup...

Yeoh, et al. Cancer Cell 2002, 1: 133.

Cross-validation

Random permutation and cross-validation are
commonly used in evaluating strategies for
picking diagnostic genes

These can help reduce the danger of overfitting

But only additional samples will allow algorithms
to learn the variation in disease

This reduces false positives




Using Genomics to Diagnose

e Difficulty
distinguishing
between leukemias

® Microarrays can find
genes that help make
the diagnosis easier

RIS
T e ——
Golub TR. Science 286:531, 1999.
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i Using Genomics to Predict
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e Patients with seemingly the same B-cell
lymphoma

® Looking at pattern of activated genes
helped discover two subsets of
lymphoma

® Big differences in survival




Using Genomics to Treat

A common polymorphism associated with
antibiotic-induced cardiac arrhythmia

Federico Sesti™, Geoffrey W. Abbott®, Jian Wei', Katherine T. Murray®, Sanjeev Saksena®, Peter ). Schwartzs,
Silvia G. Priori%, Dan M. Roden®, Alfred L. George, Ir.", and Steve A. N. Goldstein*7
“Depertiments of Pediatrics and Cellular and Molecular Physiology, Buyer Center far Molecular Medicine, Yale University School af Medicine, New Haven, CT

D536, 'Departments of Medicine and Pharmacology, Vanderbilt University, Nashville, TN 37235; *Robert Waad Johrson Medical Schaal, Passaic, NJ 07055;
and ’DeDar\lnml of Cardiology, University of Pavia and Polidlinico San Mattes IRCCS, Pavia, Ialy 27100

Edited by Vincent T. Marchesi, Yale University Schoal of Medicine, New Haven, CT, and approved July §, 2000 (received for review May 16, 2000)
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e Genes will help us determine which drugs
to use in particular disease subtypes

¢ e Genes will help us predict those who get
(%f%m?* ‘ side-effects
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Using Genomics to Find New Drugs

article #4 © 2000 Nature America Inc. » hitp://genetics.nature.com

A gene expression database for the
molecular pharmacology of cancer

Uwe Scherf™, Douglas T. Ross?, Mark Waltham', Lawrence H. Smith!, Jae K. Lee!, Lorraine Tanabe!,
Kurt W. Kohn', William C. Reinhold", Timothy G. Myers*, Darren T. Andrews!, Dominic A. Scudiero”,
Michael B. Eisen®, Edward A. Sausville®, Yves Pommier', David Botstein®, Patrick O. Brown®’

& John N. Weinstein!

e The human genome project and
genomics will help us find new drugs J02923

® The entire pharmaceutical industry
currently targets 500 cellular targets;
this will grow to 3,000 to 10,000

Scherf, U. Nature Genetics 24:236.
Butte, AJ. PNAS 97:12182.




Many physicians do not know
how to use the genome

Science/Health  The Now Yotk Topes

HEIEA

Fien Hoslas wiliem Sowstiol

.rkl" ' L

‘_ ) '__ I ..' .LJJ'_-'-. .LL i e !
“Jeopardizing Your Future? *

September 19, 2000 (] E-Ladl This firicle

VITAL SIGNS
IN PRACTICE: Genetics: Blind Spot in Medical Training

he explosion of knowledge about what role genetics plays in disease has altered the way
medical care is being provided at the most basic levels, and many health professionals may
not be up to the task.

After microarrays comes wafers...

Chromosome 21 has 21 million base-pairs

¢ 5 inch square wafers (by Perlegen) hold 3.4 billion
probes

¢ (an sequence an entire chromosome in one
experiment

e Each scan takes up around 10 terabytes




Take Home Points

® Not all pathways will be reverse engineered

by microarrays

e With microarrays, sample size plays a larger
role in accuracy rather than power

¢ Due to rapidly changing information, one
is never truly finished analyzing a

microarray data set

Functionai Genomics

training a new generation
of quantitative scientists

in bioinformatics and

functional genomics

Bioinformatics and
Integrative Genomics

big.chip.org

NIH Funded

New PhD training
program in
bioinformatics for
quantitative
individuals

Includes training in wet-
and dry-biology,
clinical medicine

First class Fall 2002




Microarrays for an Integrative Genomics

e The first text-book on microarray analysis and

experimental design

e Barnes and Noble, Borders, Amazon: US$32-40
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