Introduction to Genomics

Atul Butte, MD atul butte@harvard.edu **Children's Hospital Informatics Program** www.chip.org

Children's Hospital • Boston Harvard Medical School **Massachusetts Institute of Technology**

Introduction

- Molecular biology for the bioinformaticist * Long
 Microarrays Long Med Sho
- Gene measurement * Long
- Fold-difference calculations Link
- Measurement noise Lin
- Reproducibility Long S •
- Using microarrays is not hypothesis-free Link

Analytic methods

- Multiple-chip analysis methods
- Relevance Networks * Link
- Advantages of Relevance Networks
- Model-independence Long Short
- Causality (real data) Link

Real data and relevance networks

- Cancer Pharmacogenomics * Link
- CardioGenomics
- Muscular Dystrophy * Link
- Laboratory / Phenotypic Long Short

Bio+medical informatics

- Data types in bioinformatics Link
- Parallels between medical and bioinformatics * Li
- Developing diagnostic tests * Link

Advanced analysis and future directions

- Differential analysis (real data) Lin
- Publicly available tools Lin
- Web-based microarray tools * Link
- Linking results to findings with Unchip
- PGA Multi-center integration Link
- Visualization * Lin
- How this will change medicine * Link •
- Conclusion and our team Link

Basic Biology

- Organisms need to produce proteins for a variety of functions over a lifetime
 - Enzymes to catalyze reactions
 - Structural support
 - Hormone to signal other parts of the organism
- Problem one: how to encode the instructions for making a specific protein
- Step one: nucleotides

Basic Biology

- Complementary nucleotides form base pairs
- Base pairs are put together in chains (strands)
 - Naturally form double helixes

• Redundant information in each strand

								C	h	r	omo	SO 1	me	S			
	ch Ea 22 In	roi ch h h	mo cł um um	oso nro nar an	ome ome n cl n fe	e oso hro em	om om ale	e l os	nas om th	s a nes	single are pa are tw	doubl ired	le-stra	NA wind and of I osomes	DNA	o mal	ke a
2	3		5	6	7	8	9	10		12			1(3 3 3 8	9	§ § 10	4 26 11) [5 it 12
14	00000000000000000000000000000000000000	0000000 16	17	18	19	20	21	22	X		13 13 19	14 14	15	21	16 16 22	1 3 17	18 18 X Y

What does a gene look like?

- Each gene encodes instructions to make a single protein
- DNA before a gene is called upstream, and can contain regulatory elements
- Introns may be within the code for the protein
- There is a code for the start and end of the protein coding portion
- Theoretically, the biological system can determine promoter regions and intron-exon boundaries using the sequence syntax alone

Genome size

- We're the smartest, so we must have the largest genome, right?
- Not quite
- Our genome contains 3000 Mb (~750 megabytes)
- E. coli has 4 Mb
- Yeast has 12 Mb
- Pea has 4800 Mb
- Maize has 5000 Mb
- Wheat has 17000 Mb

Genomes of other organisms

• Plasmodium falciparum chromosome 2

Gardner M, et al. Science; 282: 1126 (1998).

mRNA is made from DNA

- Genes encode instructions to make proteins
- The design of a protein needs to be duplicable
- mRNA is transcribed from DNA within the nucleus
- mRNA moves to the cytoplasm, where the protein is formed

Digitizing amino acid codes

- Proteins are made of 20 (21) amino acids
- Yet each position can only be one of 4 nucleotides
- Nature evolved into using 3 nucleotides to encode a single amino acid
- A chain of amino acids is made from mRNA

Temporal Programs

• Segmentation versus Homeosis: same two houses at different times

Periodic Table for Biology

- Knowing all the genes is the equivalent of knowing the periodic table of the elements
- Instead of a table, our periodic table may read like a tree

More Information

 Department of Energy Primer on Molecular Genetics http://www.ornl.gov/hgmis/publicat/pr imer/primer.pdf

• T. A. Brown, Genomes, John Wiley and Sons, 1999.

Take Home Points

• Not all pathways will be reverse engineered by microarrays

• With microarrays, sample size plays a larger role in accuracy rather than power

ardio Genomics	unCHIP!
Backersten Instantion Auszahlen Staden Estaden Auszahlen Staden Ererek File Joch	Nation is a class and it. Class International Internation

• Due to rapidly changing information, one is never truly finished analyzing a microarray data set

Collaborators and Support

1

Genomics

Cardio

- Collaborations
 - Scott Weiss / Channing Laboratory NHLBI Program of Genomics Applications Nurses Health Study Physicians Health Study Normative Aging Study
 - Seigo Izumo / Beth Israel NHLBI Program of Genomic Applications Framingham Heart Study
 - David Rowitch / Dana Farber NINDS Innovative Technologies
 - Dietrich Stephan / Children's National Medical Center Leukemia Diagnostics
 - Towia Libermann / Beth Israel NIDDK Biotechnology Center

- Victor Dzau / Brigham and Women's Angiotensin signaling
- Terry Strom / Beth Israel
 NIAID Immune Tolerance Network
- Louis Kunkel / Children's Hospital Muscular Dystrophy
- C. Ron Kahn and M. E. Patti / Joslin Diabetes Center Diabetes Genomic Anatomy Project
- Support
 - NIH: NLM, NINDS, NHLBI, NIDDK, NIAID, NHGRI, NCI, NIGMS
 - Lawson Wilkins NovoNordisk Award
 - Merck / MIT Fellowship
 - Genentech Foundation Fellowship
 - Endocrine Fellow Foundation

Bioinformatics at the Children's Hospital Informatics Program www.chip.org

Staff

- Isaac Kohane, Director
- Atul Butte
- Steven Greenberg
- Peter Park
- Marco Ramoni
- Alberto Riva
- Yao Sun
- Zoltan Szallagi

Fellows

- Ashish Nimgaonkar
- Sunil Saluja
- Dominic Alloco

Post-doctoral fellows

• Zhaohui Cai

- Sangeeta English
- Alvin Kho
- Voichita Marinescu
- Eric Tsung
- Alex Turchin

Students

- Kyungjoon Lee
- Jinyun Chen
 - nyun Chen

Atul Butte, MD atul_butte@harvard.edu

- Alumni • Ling Bao
- Aaron Homer
- Janet Karlix
- Ju Han Kim
- Winston Kuo
- Mark Whipple
- Maneesh Yadav