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ABSTRACT

The stability of the symplectic mapping method for the n-body problem introduced recently by Wisdom
& Holman [AJ, 102, 1528 (1991)] is analyzed in a novel application of the methods of nonlinear

dynamics.

1. INTRODUCTION

We recently introduced a new symplectic mapping
method for studying the long term evolution of n-body
problems with a dominant central mass (Wisdom & Hol-
man, 1991, hereafter WH91). The method shows promise
of being a valuable tool in the numerical exploration of
planetary and satellite n-body systems. Tests of the method
in various problems have indicated that the new mapping
method can be an order of magnitude faster than other
methods of numerical integration. It has already been used
to carry out record-breaking, long-term integrations of the
solar system. In particular, Sussman & Wisdom (1992)
used the mapping method to integrate the whole solar sys-
tem for 100 million years. This integration confirmed the
result of Laskar (1990) that the evolution of the solar
system is chaotic with a surprisingly short timescale for
exponential divergence of only 4 million years. In this pa-
per, we examine more carefully the dynamical mechanisms
which govern the stability of the mapping method. Our
goal is to clarify the regime of applicability and understand
more clearly the limitations of the mapping method.

We present here a novel technique for analyzing the
nonlinear stability of a numerical integration technique.
The mapping is derived as the time evolution of a Hamil-
tonian. We analyze the mapping Hamiltonian as we would
any other dynamical system using the tools of nonlinear
dynamics. The true Hamiltonian and the mapping Hamil-
tonian differ by the addition of a suite of resonances asso-
ciated with the mapping stepsize. The evolution computed
with the mapping approximates the true evolution pro-
vided these stepsize resonances do not significantly affect
the evolution. We identify the principal stepsize resonances
and analyze each in detail. Gross instability of the mapping
method is associated with overlap of the principal stepsize
resonances.

2. MAPPING METHOD

The mapping method is a generalization of the reso-
nance mapping method of Wisdom (1982, 1983). The der-
ivation of the mapping method is detailed in WHO91.
Briefly, the Hamiltonian for the n-body problem can be
written
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H=H, Kepler+ Hiyggeraction s (1

where Hyepy, represents the basic Keplerian motion of
each of the planets around the dominant central mass, and
Hyreraction TEPresents the interactions among them. Elimi-
nation of the center of mass may be accomplished by using
Jacobi coordinates or canonical heliocentric coordinates.
There is considerable freedom in deriving maps; see WH91
for details. The mapping method is based on the averaging
principle: rapidly varying terms do not contribute signifi-
cantly to the long-term evolution. Thus rapidly varying
terms can be added or subtracted from the Hamiltonian
with impunity. The simplest mapping is obtained by intro-
ducing extra high-frequency terms through periodic delta
functions

H Map = H Kepler + 2776211( Qt )H Interactions ( 2 )

where 6,,(2) is a periodic sequence of Dirac delta func-
tions with period 27, and ) is the mapping frequency. The
time between delta functions is the stepsize A=27/(}. The
delta functions have the Fourier representation

.

> cos(lf). (3)

l=—c

1
8277(t) =§;

Multiplying the interaction part of the Hamiltonian by the
periodic delta function gives the original interaction
Hamiltonian plus the same terms multiplied by terms of
high frequency. The average of the mapping Hamiltonian
over a mapping period gives the original n-body Hamilto-
nian. The advantage of introducing the delta functions is
that the mapping Hamiltonian is locally integrable: Be-
tween the delta functions each planet evolves along an un-
perturbed Keplerian orbit, and, also, the system is trivially
integrated across the delta functions since the interaction
Hamiltonian can be written solely in terms of the Cartesian
coordinates. For the map to be a viable numerical method
it is essential to be able to rapidly advance Keplerian or-
bits, and minimize intermediate canonical transformations.
We eliminate the need for intermediate transformations by
using Cartesian coordinates throughout; Keplerian orbits
can be rapidly advanced directly in Cartesian coordinates
using Gauss’ f and g functions. Several extensions of the
mapping method are presented in WH91.
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3. OVERVIEW OF NONLINEAR STABILITY

Traditionally, the stability of an integrator is analyzed
by applying the integrator to a linear system, and then
solving the resulting set of linear difference equations. The
linear stability of the method is then hoped to be relevant
to the stability of the method when it is applied to the
integration of nonlinear problems. There is really no other
choice, because the system of nonlinear difference equa-
tions obtained in the approximation of a nonintegrable dy-
namical system are too complicated to tackle directly. The
Hamiltonian nature of the mapping offers a tremendous
advantage for stability analysis. It allows us to study the
nonlinear stability of our mapping method using the usual
tools of Hamiltonian dynamics. For background on Hamil-
tonian dynamics see, for example, Chirikov (1979) and
Lichtenberg & Lieberman (1983).

An analogy will help clarify the following stability anal-
ysis. Let us construct a simple mapping for the mathemat-
ical pendulum

H=}p*+ecos 6. 4

According to our usual procedure we introduce a periodic
sequence of delta functions into the “perturbation” part of
the Hamiltonian (ignoring and, in fact, destroying the in-
tegrability of the original system)

Hytap=5 p*+278,,(Q1)€ cos 6. (3)

This Hamiltonian is locally integrable: we easily compute
the momentum change as the system crosses a delta func-
tion, and between the delta functions the angle rotates uni-
formly. The resulting map is

2T
p'=p+gesinb, (6)
27
0'=0+p (7)

Higher order versions of this map could easily be con-
structed, as described in WH91. This map is a simple finite
difference approximation to the evolution of the pendulum.
As a consequence of being derived from a Hamiltonian,
this finite difference scheme is symplectic, which in this
case simply means it is area preserving. So we have a first-
order symplectic integrator for the pendulum. The step-
size, or mapping step, is A=2m/€. In terms of the scaled
momentum I=ph, and the parameter K=h’, the map
takes the form

I'=I+Ksin 6, (8)
0'=6+1I". ' (9)

We furthermore note that the dynamics is unchanged if we
write the map in terms of a shifted momentum J=1+2mn,
where n is some integer. Thus, without any loss of dynam-
ical possibilities we can consider the momentum to be pe-
riodically wrapped through the interval O to 2, i.e., the
momentum can be considered to be an angle variable. This
is now the usual standard map (Chirikov 1979). In the
context of this paper though it is clearer to not restrict the
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momentum to be an angle. This identification of the stan-
dard map as a symplectic finite difference approximation to
the pendulum is well known (see, for example, Sanz-Serna
& Vadillo 1986).

The behavior of the standard map has been the object of
a tremendous number of investigations, both mathematical
and numerical. In the present context the review of
Chirikov (1979) is most relevant. Though much is known
about its behavior, it is not likely ever to be exhaustively
understood. In what sense then does the standard map
approximate the pendulum? Let us review the gross behav-
ior of the standard map from this point of view.

The standard map exhibits a gross transition to large
scale chaos roughly for K> 1. In that regime the dynamics
has little to do with the pendulum. For small values of the
parameter K (equivalently small mapping stepsize /) the
phase space of the standard map displays a single
pendulum-like resonance centered at /=p=0, as well as
periodic copies of this resonance, as described above,
spaced by AI=2m (equivalently Ap=(). As long as we
avoid the phase space near the periodic copies of our basic
pendulum resonance the most notable departure of the
mapping approximation to the pendulum from the pendu-
lum itself is the appearance of a chaotic zone near the
pendulum separatrix. The size of this chaotic zone has been
estimated by Chirikov using the resonance overlap crite-
rion. The resonances which overlap are the resonances be-
tween the libration period of the pendulum and the map-
ping period. There is an accumulation of these resonances
as the unstable equilibrium is approached because the li-
bration period of the pendulum diverges and as it diverges
it successively matches every multiple of the mapping pe-
riod. For our mapping approximation to the pendulum,
application of the Chirikov formula for the width of the
separatrix yields

8 7
A6=W exp(—w), (10)
where A0 is the half-width in 6 of the chaotic zone near the
unstable equilibrium. For small stepsizes 4 the size of this
unwanted chaotic zone decreases very rapidly, as
exp( —c/h). For example, even if we take only 10 mapping
steps per small amplitude libration period of the pendulum
(the natural timescale), the unwanted chaotic zone has a
fractional width of only about one percent. With 50 steps
per libration period the size of the chaotic zone is reduced
to less than one part in 10", If we are not interested in this
particular region of the phase space, it is easy to avoid. In
general, we are interested in some particular finite ampli-
tude oscillation of the pendulum. The mapping will be-
come grossly unstable for this particular trajectory if a
stepsize A is chosen for which the chaotic zone near the
separatrix is so large that the trajectory is engulfed in it.
This clearly depends on the particular trajectory of inter-
est; the closer the trajectory is to the separatrix the smaller
the stepsize has to be to avoid this gross instability.

There are other artifacts introduced by the mapping
approximation. From the Poincare-Birkhoff theorem we
expect there are an infinite set of islands in the phase space
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of the standard map. Whenever the libration frequency is
commensurate with the mapping frequency a chain of al-
ternating stable and unstable periodic orbits appears in the
phase space. Since the rationals are dense, the secondary
islands associated with the stable periodic orbits are dense
in the phase space. Of course these islands do not exist in
the original pendulum problem. These islands however do
not give rise to significant artifacts; they are generally ex-
tremely small. Only by extreme bad luck would the trajec-
tory of interest, with an arbitrarily chosen stepsize, fall on
one of these islands. We must, however, keep in mind this
possible artifact. For example, each of these secondary un-
stable points is associated with its own chaotic zone. If we
are calculating the Lyapunov exponent for our system, we
should consider the possibility that by chance we fell into
one of these chaotic zones introduced by the mapping ap-
proximation.

We can say more clearly what it means for the mapping
method to be nonlinearly stable. If we could prove that the
trajectory as computed by the map is an invariant curve or
is bound in the phase space by invariant curves, then the
trajectory will always remain just as far from the pendulum
orbit as it was in the beginning. Of course, this is extremely
difficult to do. The Kolmogorov-Arnold-Moser theorem
proves that near the stable fixed point of the pendulum
map that most of the invariant curves (with given fre-
quency) of the pendulum are preserved in the mapping
approximation. The exceptions are those which are too
near the Poincare-Birkhoff islands, but these are of small
measure. What happens at larger distances from the stable
fixed point? Though it is not proven, numerical experi-
ments suggest that the phase space is still dominated by
invariant curves. One possibility, however, is that the in-
variant curves are actually cantori with small holes
through which the mapping trajectory can ultimately leak
out (Percival 1979). Thus to prove the nonlinear stability
of the method for a particular trajectory for a particular
stepsize, one must prove either that the trajectory is an
invariant curve or that it is bounded by invariant curves
rather than cantori. Practically though, the islands appear
to behave as though most of the trajectories in them are
invariant curves. An exception might be if the trajectory is
very close to the edge of the island, for then the timescale
to leak through the cantori may be comparable to the
timescale of interest in the numerical experiment, but if the
trajectory is close to the edge of the island then the stepsize
has been chosen so that the mapping method is very close
to the border of instability, as discussed above. This situa-
tion is easy to avoid, by choosing a better stepsize.

For systems with many degrees of freedom, the question
of stability is much more complicated, principally because
trajectories of the actual system can now be chaotic. We
must consider what stability would mean for both quasi-
periodic and chaotic trajectories. For quasiperiodic trajec-
tories the situation is similar to the single degree-of-
freedom case. If the mapping trajectory can be proven to
lie on an invariant curve that remains close to the true
invariant curve of the original system then the method can
be declared to be stable. Of course, if we could prove these
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things we would not be using a mapping approximation to
study the system. With two degrees of freedom, if the map-
ping trajectory is chaotic, but bound close to the true tra-
jectory by invariant curves, then the mapping can be said
to be stable. With many degrees of freedom, it is conjec-
tured that all chaotic zones are connected (the “Arnold
web””) and that Arnold diffusion eventually carries the tra-
jectory everywhere along it. Practically speaking though
the Arnold diffusion is usually extremely slow, and the
connectedness of the chaotic zones is often ignorable. Thus
even if the mapping trajectory corresponding to a quasip-
eriodic trajectory of the modeled system is chaotic, because
for instance that it fell on one of the chaotic zones associ-
ated with one of the Poincare-Birkhoff unstable periodic
orbits, we may still think of the mapping method as stable
provided the computed trajectory stays near the actual tra-
jectory for the duration of the numerical experiment. Of
course the small positive Lyapunov exponent of the com-
puted trajectory must be recognized as an artifact. It is also
possible for the actual trajectory of the system to be cha-
otic. Stability of the mapping method in this case means
that any quantity which characterizes the chaotic zone in
which the trajectory moves is accurately reproduced by the
mapping approximation. For example, it should be the case
that the size and shape of the chaotic zone are well repro-
duced, as well as the Lyapunov exponent. It would not be
expected that individual trajectories of the actual system
and the map are the same. Rather, shadowing results sug-
gest that computed trajectories approximate real trajecto-
ries of the original system, though they do not approximate
trajectories which can be specified a priori (Grebogi et al.
1990). We have argued that maps make sense from the
point of view of averaging and this argument is born out by
practical experience. The chaotic zones near the 3/1 reso-
nance are well described by the mappings; the size and
shape of the chaotic zones are reproduced, as well as the
Lyapunov exponent (Wisdom, 1983). However, we do not
know of rigorous results which show that chaotic trajecto-
ries of averaged systems shadow trajectories of unaveraged
systems for long time. Nevertheless, it is plausible that the
chaotic trajectories of the mapping approximations are sat-
isfactory representations of the chaotic trajectories in the
modeled system. Proving numerical reliability is much
more difficult in this case. Thus, especially in more com-
plicated problems, it is not likely that we can rigorously
prove the stability of the method, especially since each
trajectory and stepsize must be considered individually.
We can, however, hope to determine the borders and
mechanisms of the gross instabilities through the applica-
tion of the more heuristic tools of nonlinear dynamics such
as the resonance overlap criterion for the onset of chaos.
We should not think of these possible artifacts as defects
of the mapping method. The fact that the mapping method
is itself a Hamiltonian system allows us to use the insight
and methods of modern Hamiltonian dynamics to more
clearly understand the issues of nonlinear stability, as well
as these possible artifacts. Surely similar artifacts would
appear in any finite difference scheme for solving a system
of ordinary differential equations; for example, stepsize res-
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onances have also recently been found in the family of
symmetric integrators (Quinlan & Tremaine 1990; Quin-
lan & Toomre 1992).

4. STABILITY OF THE n-BODY MAPS

The Hamiltonian nature of our mapping method allows
us to study the nonlinear stability of our mapping method
using the usual tools of Hamiltonian dynamics. We pro-
pose that the principal instability of the mapping method is
associated with an onset of chaos due to the overlap of
resonances associated with the extra high-frequency terms
introduced to generate the mapping. These resonances we
call the stepsize dependent resonances. As usual in the
analysis of the onset of chaos in a Hamiltonian system, we
must first identify the principal resonances. We than cal-
culate the location of each resonance and the width of the
libration region associated with it. Chaos ensues if the prin-
cipal resonance regions overlap. The resonance overlap cri-
terion has been previously used in celestial mechanics to
successfully predict the region of instability near the sec-
ondary in the restricted three-body body (Wisdom 1980;
Duncan et al. 1989).

Resonances occur when linear combinations of the an-
gular variables are slowly varying. When the Hamiltonian
is written as a Poisson series in the angular variables, the
most important resonances correspond to terms in the se-
ries with the largest coefficients. Writing the interaction
Hamiltonian as a Poisson series in the Keplerian angle
variables is the classical problem of the expansion of the
disturbing function (e.g., Pierce 1849; Plummer 1960). An
important property of this expansion is that the terms are
proportional to various powers of the eccentricities and
inclinations of the interacting planets; terms with argu-
ments containing larger multiples of the longitudes of peri-
helion and longitudes of the ascending node are propor-
tional to larger powers of the eccentricities and
inclinations, respectively.

Expressing the mapping interaction Hamiltonian as a
Poisson series is a straightforward extension of the usual
expansion of the disturbing function. If we write the orig-
inal interaction Hamiltonian as

Hlnteraction= E'Bl cos(i-9), (11)

1
where 0 represents the full set of angle variables of the
problem, and i is a vector of integers, i-0 then represents a
particular angular argument of the Poisson series, and f;
represents its coefficient in the sum. In the mapping, the
interaction Hamiltonian is multiplied by delta functions.
The interaction Hamiltonian becomes

2778211( Qt)Hintcraction:‘ iEI’ Bi cos(i-6—1Q1). (12)
That this equality holds may be seen by expanding the
cosines of differences as a sum of a product of cosines and
a product of sines. The sum over sines is zero because for
every term with />0 there is an equal but opposite term
with /<O0.
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The most important resonances correspond to the terms
in the Hamiltonian with the largest amplitudes. The largest
terms in the expansion of the disturbing function are gen-
erally those with the smallest number of factors of the
eccentricities and inclinations, since planetary eccentrici-
ties and inclinations are generally small. We consider only
the lowest order terms. In the disturbing function itself
there is only a single collection of terms which have no
factors of eccentricity and inclination. The arguments of
these terms are multiples of the difference between the
mean longitudes of the pair of planets under consideration.
These terms are not resonant except when the mean mo-
tions of the two planets are equal, but in this case the usual
expansion of the disturbing function is not valid. Other
terms in the expansion of the disturbing function are
smaller because they are multiplied by various factors of
the eccentricities and inclinations, but often are more im-
portant because in certain regions of the phase space their
arguments can be slowly varying and there are large reso-
nance effects. In the case of the mapping Hamiltonian,
however, the terms in the disturbing function containing
only pairwise differences of mean longitudes are now com-
bined with multiples of the mapping frequency. The new
combinations can be resonant. These are the dominant
stepsize dependent terms in the mapping interaction
Hamiltonian; they control the basic stability of the map-
ping method.

We analyze the resonances resulting from the stepsize
dependent terms as we would any other Hamiltonian res-
onance. We write the resonance Hamiltonian as the unper-
turbed Hamiltonian plus those interaction terms corre-
sponding to the resonances of interest. We presume for the
moment that the nonresonant terms can be pushed to
higher order by some suitable canonical transformation. In
this analysis, we also ignore any physical resonances that
may also exist in the system. Thus, the Hamiltonian gov-
erning the dominant stepsize dependent resonances is given
by

Gm imj

H; Stepsize ™= H, Kepler — Z a
>-

O<i<j<n

8

X X Bil@) X cos[k(A;—A)—IQt], (13)
0 1

k= =— 0
where
bf (@) k>1,
k
Bi(a)={bn(@)—a k=1, (14)
k(@) k=0

The sum over i and j is a sum over distinct pairs of planets,
the number of planets being #— 1. The masses of the plan-
ets are m,. The semimajor axes are a;, a=a_/a., a is the
larger of a; and a;, and a_ is the smaller of the two. The
sum over k gives the set of terms in the disturbing function
which are independent of the eccentricities and inclina-
tions, the coefficients of which are given in terms of the
usual Laplace coefficients b(a), and the arguments of
which depend solely on the pairwise differences of the
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mean longitudes. There is a contribution from the indirect
part of the disturbing function for k=1. The sum over /
comes from the Fourier representation of the Dirac delta
functions.

Resonances occur when one of the angular arguments is
nearly stationary. In considering which resonances are im-
portant we must keep in mind that the mapping frequency
is larger than all the orbital frequencies. We found empir-
ically that the mapping method performed well provided
that 10 or more mapping steps were taken for each orbit
period. Thus the mapping frequency £ is larger than all of
the mean motions (the orbital frequencies) by a consider-
able factor. Stepsize resonances occur only if k is rather
large. The coefficients are proportional to the Laplace co-
efficient b%/,(a), which for small « is proportional to a*.
Terms with very high k are not as important as those with
lower values of k. The most important stepsize resonances
are those for which /==1. In any particular region of
phase space, terms with larger |/| have proportionately
larger |k|

In the derivation of the mapping method we used ca-
nonical Cartesian Jacobi coordinates and conjugate mo-
menta (see WH91). Resonance analysis is more easily car-
ried out in some form of canonical Keplerian elements.
The most convenient set for the present purpose is the set
of modified Delaunay elements which have as coordinates
the mean longitude, the longitude of pericenter, and the
longitude of the ascending node (see Plummer 1960). Now
our resonance Hamiltonian depends only on the mean lon-
gitudes, and the semimajor axes. The momentum conju-
gate to the mean longitude A;is L; = /m;pa; where m] is
the i Jacobi mass, which is nearly equal to m; since the
planetary masses are small, and u;=Gmm,, where m is
the mass of the dominant central object. In terms of these
canonical elements, the Keplerian Hamiltonian is

n—1 m' “2
HKepler=— igl EIZIZL (15)
In these variables, the Keplerian Hamiltonian is obviously
integrable, since no angles appear.

Having identified the set of resonances of interest, we
now analyze each in detail. For simplicity, we consider first
only the terms for which /= = 1, the most important terms;
the generalization to |/| > 1 will be immediate. Thus for
each pair of planets we consider each term in the sum over
k separately. We call this the k' stepsize resonance. For
definiteness, we shall assume ;> n, i.e., that a;<a; The
Hamiltonian for the k' stepsize resonance for planets / and
Jj is then

" miu? mj’pjz Gmm;
= ——— — g —
WETRLE TR g

Bi(a)cos[k(A;—A;) —Qt].
(16)

This resonance Hamiltonian contains only a single linearly
independent combination of the angles. As usual we make
a canonical transformation to a resonance variable which is
this sole combination of angles. The transformation is car-
ried out with a generating function of the form
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FUuhpA 20 =[k(Ai—A) — Q11+ (ci+dADA,  (17)

where the constants ¢ and d are subject only to the con-
straint that cA,4-dA; be linearly independent from the com-
bination k(1,—A4;). We arbitrarily choose c=d=1. The
new angle variables are the resonance variable c=0F/3%
=k(/1i—/1j) — ¢ and the fast variable A =03F/dA=A;+A;
The relationships among the momenta are L;=3dF/dA,=A
+kZ and L;=0F/3dA;=A—kZ. The new Hamiltonian is

, . OF
Hij =Hijk+5; (18)
_ mig mip;
T T2(A+AZ)?T 2(A—K3)?
Gm,-mj
Bila)cos(o) —QZ, 19)

J

where a; and a are assumed to be written in terms of the
new momenta. This Hamiltonian now has only a single
angle variable, o, and is cyclic in A. Thus the momentum
conjugate to A is an integral of the resonance Hamiltonian.
The orbits of the conjugate pair (0,2) can be determined
simply by drawing contours of the resonance Hamiltonian
Hjy, upon fixing the other constants.

Though the resonant motion is completely described by
the contours of Hjy, it is instructive to study an approxi-
mation to it. We anticipate that the variations of the system
away from exact resonance will be small. The resonance
condition is that a difference of the mean motions of a pair
of planets when multiplied by a relatively large integer is
the mapping frequency. The fact that the coefficient B is
small for large k suggests that only if the match of mean
motions is rather good will there be any resonance effect.
This will be confirmed by the following discussion. Thus,
we assume the variations of 2 about some center =* are
small, and we expand the resonance Hamiltonian about
this center. The o dependent term is already small and to
a good approximation it is well represented by its value at
the resonance center. Define H to be the o independent
terms

’ 2 )
H°='2(:522)2’2(:172)2‘02‘ (20)
Now expand H,, about the resonance center
Hom ol o) (3-3%) 43700
0z 292
s* Sk
X(Z—3%)24 - . (21)

The first term is a constant and can be ignored. The second
term can be used to define the resonance center. At reso-
nance the time derivative of o is near zero. The time de-
rivative of ¢ is given by Hamilton’s equations as the deriv-
ative of the Hamiltonian with respect to =. Since the o
dependent term is small, the time derivative of o is domi-
nated by the derivative of H,, with respect to 2. Thus it is
natural to define the resonance center =¥ to be that point at
which dH,/d3=0. Variables evaluated at the resonance
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center will be denoted by a superscript *. In more detail,
the resonance center =¥ is defined by
v 2
kmjp;

= s T (A+AS*) T (A=kZH)3T T

*

(22)

Written in terms of the mean motions this resonance con-
dition is just k(n} — n}") — Q = 0, as is easy to verify. As
A is varied there is a continuous family of resonance cen-
ters. That there is a continuous family of resonance centers
is easy to see: if for some #f and n} there is a resonance,
then if both are increased by the same amount the reso-
nance is maintained since the resonance condition depends
only on their difference.

Returning now to the expansion of the resonance
Hamiltonian about the resonance center, the linear term
vanished through the definition of the resonance center.
We are left with the quadratic term in AS=3 —3* and the
o dependent term

1#=17(AZ)?+B cos(a), (23)
where the second derivative of Hj is
&H,
Y=337 . (24)
) ’ 2
=38 AT,';*)“ ( ATJ:E{.*)“ : (25)
= ——3k2[,—1*5+%2 , (26)
mia}” " mta]

and B represents the coefficient of the o dependent term

Gmm;

B=—

Bi(a*). (27)

*
a;

The width of the resonance is determined by tracing the
separatrix. For >0 and y <0, the unstable equilibrium is
at AZ =0 and 0=0, so the value of the Hamiltonian on the
separatrix is B. The resonance is widest at o= at which
point AZ =2 ‘/B/y. This width corresponds to the maxi-
mum deviation from the resonance center for which libra-
tion is allowed. In terms of the modified Delaunay
variables the half width is |AL,| =| AL;| = kAZ
= 2k |B/y. Note that because of the constraint that A
=(L;+L;)/2 is constant, the maximum of L,
corresponds to the minimum of L; and vice versa. For
small resonance widths we can approximate the width in
a=a/a, by Aa/a=2(AL/L,—~AL/L)=2(1+L/
L)AL/L,

We have confirmed the existence of these stepsize reso-
nances by computing the evolution of trajectories of a two
planet system. To be specific, we chose the masses and
semimajor axes to correspond to those of Jupiter and Sat-
urn. We set the initial eccentricities and inclinations to
zero to minimize the effect of physical resonances in the
system. We then carried out a large number of short inte-
grations (only 1000 iterations) with a large number of
stepsizes and monitored the variations in energy. The re-
sulting diagram (see Fig. 1) displays a resonance structure
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FIG. 1. The mapping exhibits stepsize resonances as predicted by the
theoretical analysis. The points present observed short term relative
energy variations for a large number of stepsizes. The lines at the top
mark the location of the stepsize resonances in the region where the
effect on the energy is greatest. Shorter lines correspond to higher
order stepsize resonances.

which closely matches the predicted locations of the step-
size resonances. The relative energy variations are defined
by AE=(E ;s — Ein)/ (Eax+ Eqin) - Using this same sys-
tem, we have also confirmed the detailed predictions of the
analytical resonance analysis. We tuned the stepsize so that
the system fell on the separatrix of the k=10, /=1 stepsize
resonance. The resulting evolution is shown in Fig. 2. We
plot the ratio of semimajor axes a versus the difference of
mean longitudes of the two planets. We find a ten-lobed
chain of islands, as expected. The width of each island, in
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0.544 -

0.543 t i
/
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FIG. 2. The stepsize resonances have the width predicted by the
theoretical analysis. The evolution of a trajectory near the separa-
trix of the k=10, /=1 stepsize resonance is shown.
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FIG. 3. The positions and widths of the stepsize resonances with
k<30, I=1. The infinity of resonances for larger & fall in the empty
region in the lower right. For small @ and 4/T) the resonances get
smaller faster than they accumulate. The region of resonance over-
lap is shaded. The overlap of resonances for a near 1 and moderate
h is indicative of a real integrator instability.

a, agrees with the above resonance analysis to better than
one part in a thousand. Variables referring to the inner
planet with the mass of Jupiter are denoted by subscript 1;
those referring to the body with the mass of Saturn by a
subscript 2. The initial conditions are =0.54365, 1,—A1,
=1/10, to machine precision, and the stepsize is approxi-
mately given by A/7T,=0.16701..., where T, is the orbital
period of our Jupiter. The semimajor axis of our Jupiter is
a;=5.2 AU, with m;=mg,,/1047.355, and m,=mg,,/
3501.0. The length of the integration was about 20 000
years.

We now turn to the full ensemble of stepsize resonances.
Figure 3 displays the positions and widths of the stepsize
resonances for k=2-30, with /=1. There are an infinite
number of resonances in the lower part of the figure for
larger k. The stepsize resonances accumulate both near
zero stepsize, and for a near 1. As the stepsize goes to zero
the linear density of resonances is proportional to 1/k2, but
the widths of these resonances decreases exponentially as
a*”2. They decrease in size much more rapidly than they
accumulate. Thus this region does not give resonance over-
lap. As expected, small stepsizes are stable. This large
number of very small stepsize resonances corresponds to a
subset of the multitude of small Poincare-Birkhoff islands
we saw in the standard-map analogy given above. The ac-
cumulation of resonances as a approaches 1 is indicative of
a real integrator instability. The widths increase as the
stepsize gets larger, so for any a there is a critical stepsize
above which the mapping method is unstable. In Fig. 4, we
show the same diagram when resonances with /<4, and
k<30 are included. The higher order stepsize resonances
fill in the gaps somewhat. Keep in mind that this figure has
been computed for masses appropriate for the Jupiter—
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FIG. 4. The same as Fig. 3, but including stepsize resonances with
l1<4.

Saturn system; for other masses the diagram will be differ-
ent.

We have tested the prediction of integrator instability in
the region of resonance overlap, by computing the evolu-
tion of a large number of Jupiter—Saturn-like systems with
various stepsizes and initial semimajor axis ratios. The grid
of initial stepsizes and semimajor axis ratios is quite fine,
with 100 values in each parameter. Thus 10 000 experi-
ments were carried out. Each integration was continued up
to the point of dissolution of the system, or for 100 000
years, whichever came first. The cumulative time spanned
by these test integrations is of order one billion years. This
test of the map would have been unthinkable without the
speed of the mapping method. The results are shown in
Fig. 5. In this figure a point is plotted if, during the inte-
gration, one of the planets became hyperbolic. Lyapunov
exponents were also computed; the regions of rapid diver-
gence of trajectories were essentially identical to the re-
gions of gross instability. We see that the agreement of the
unstable regions with the regions of resonance overlap is
quite good. The tongues of instability that reach down
from the right part of the diagram correspond well with
the tongues of resonance overlap. Including higher order
resonances and the chaotic width of the separatrices them-
selves would surely improve the agreement, but these are
unnecessary refinements. The major instability is clear.

The experiment also reveals a second instability, unre-
lated to resonance overlap of the stepsize resonances, when
the mapping stepsize is precisely half the orbital period of
the innermost planet. Evidently, it is necessary for the step-
size to avoid low order commensurabilities so that the dy-
namics can accomplish a natural averaging over the orbit.

5. CONCLUSIONS

We have examined the stability of the new symplectic
n-body maps from the point of view of nonlinear dynamics.
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FIG. 5. Unstable integrations are indicated by a dot. The agreement
with the predictions of the resonance overlap of stepsize resonances
is quite good. The overlap of first order resonances of the real system
accounts for the physical instability at small 4 for a> 0.8.

We have identified the resonances responsible for the prin-
cipal artifacts. These are resonances between the stepsize
and the difference of mean motions between pairs of plan-
ets. For larger stepsizes resonant perturbations are evident
in the variation of the energy of the system corresponding
to these stepsize resonances. We have shown that the prin-
cipal instability of the method can be predicted and corre-
sponds to the overlap of the stepsize resonances. We note
that the analysis suggests other artifacts will occur. For
example, the overlap of a stepsize resonance with a reso-
nance of the actual system may also give a region of cha-
otic behavior that is an artifact. We point out that the fact
that the principal artifacts correspond to a particular set of
stepsize resonances suggests that it may be possible to per-
turbatively remove the effect when the stepsize resonances
are nonoverlapping (see Tittemore & Wisdom 1989).
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