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ABSTRACT

A mapping of the phase space onto itself with the same low-order resonance structure as the
3/1 commensurability in the planar-elliptic restricted three-body problem is derived. This map-
ping is approximately 1000 times faster than the usual method of numerically integrating the
averaged equations of motion (as used by Schubart, Froeschlé, and Scholl in their studies of the
asteroid belt). This mapping exhibits some surprising behavior that might provide a key to the
origin of the Kirkwood gaps. A test asteroid placed in the gap may evolve for a million years
with low eccentricity ( < 0.05) and then suddenly jump to large eccentricity (> 0.3), becoming a
Mars crosser. It is possible that the asteroid could then be removed by a close encounter with
Mars. As a first test of this hypothesis a distribution of 300 test asteroids in the neighborhood
of the 3/1 commensurability was evolved for two million years. When the Mars crossers are
removed, the distribution of initial conditions displays a gap at the location of the 3/1 Kirk-
wood gap. While this is the first demonstration of the formation of a gap, the gap is too narrow.
The planar-elliptic mapping is then extended to include the inclinations and the secular pertur-
bations of Jupiter’s orbit. The two-million-year evolution of the 300 test asteroids is repeated
using the full mapping. The resulting gap is somewhat larger yet still too small. Finally the
possibility that over longer times more asteroids will become Mars crossers is tested by study-
ing the evolution of one test asteroid near the border of the gap for a much longer time. A jump
in its eccentricity occurs after 18 million years, indicating that indeed it may simply be a matter
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of time for the full width of the gap to open.

L. INTRODUCTION

Over 100 years have passed since the discovery of the
Kirkwood gaps in the distribution of semimajor axes of
the asteroids, yet there is still no adequate theory of their
origin. Greenberg and Scholl (1979) give a review of the
competing hypotheses and some of their difficulties.
Briefly, there are four classes: (1) the gaps are only a
statistical phenomenon, (2) the gaps are formed by pure-
ly gravitational forces, (3) the gaps form because aster-
oids near resonances tend to have larger eccentricities
and hence larger probability of being removed by a colli-
sion with another asteroid away from the gaps, and (4)
no asteroids were ever in the gaps.

The statistical hypothesis is that asteroids near com-
mensurabilities undergo large variations in their semi-
major axes, spending most of their time away from the
commensurabilities, just as a pendulum spends most of
its time away from the bottom of its swing. The time-
averaged distribution could then display a gap.
Schweizer (1969) calculated the orbits of numbered as-
teroids near the gaps and found that most asteroids did
not cross the gaps. Wiesel (1976) studied the statistical
hypothesis theoretically within the averaged planar-cir-
cular restricted three-body problem. He obtained de-
pressions in the distribution but nothing resembling the
observed distribution. According to Wiesel the most se-
rious limitation in his theory is the truncation of the
disturbing function to the terms of lowest order in ec-
centricity. I believe that a more serious limitation is the
577 Astron. J. 87(3), March 1982
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neglect of Jupiter’s eccentricity, which introduces quali-
tative changes in the types of motion possible (see
Froeschlé and Scholl 1977), especially the possibility of
“ergodic” trajectories (Giffen 1973; Froeschlé and
Scholl 1978). Although it is not the main thrust of this
paper, I will show below that the statistical hypothesis
fails under much more general assumptions than con-
sidered previously. I include the eccentricity of Jupiter,
the inclinations, as well as the secular perturbations of
Jupiter’s orbit.

The gravitational hypothesis is that under the influ-
ence of gravitational forces alone, the semimajor axes of
asteroids drift away from commensurabilities. The
gravitational hypothesis has been studied analytically
by Schubart (1964) in the averaged planar-circular re-
stricted three-body problem. In this approximation the
problem is completely integrable, and asteroids do not
leave the gaps. Schubart’s assumptions are clearly too
restrictive, yet to lift any of the assumptions is to make
the theory analytically intractable. The long-time evolu-
tion of dynamical systems is in general a very difficult
and unsolved problem. The Kolmogorov-Arnol’d-
Moser (KAM) theorem (see, e.g., Moser 1973) in certain
special cases proves the existence of quasiperiodic tra-
jectories. Though a tremendous advance in our exact
understanding of dynamical systems, the KAM theo-
rem is not a practical theorem in the sense that it applies
only for sufficiently small perturbations where “suffi-
ciently” is not precisely defined. The numerical experi-
© 1982 Am. Astron. Soc. 577
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ments of Hénon and Heiles (1964) (and many others
now) revealed a division of the phase space of simple
Hamiltonian systems into quasiperiodic and “ergodic”
regions for a range of perturbation strengths. The reso-
nance overlap criterion (see Chirikov 1979, for a general
review, and Wisdom 1980, for an application to the re-
stricted three-body problem) provides some insight as to
which regions of phase space will be “ergodic,” but for
detailed results there is no other recourse than numeri-
cal studies. Asteroidal motion at commensurabilities
has been studied numerically by Scholl and Froeschlé
(1974, 1975), who integrated the averaged equations of
motion for the planar-elliptic problem as described by
Schubart (1964, 1968). None of their fictitious asteroids
were found to leave the gaps, though some did alternate
between circulation and libration. One possible objec-
tion to this work is that the integrations were continued
for only 100 000 yr, which is very short compared to the
age of the solar system. Is it possible that over much
longer times asteroids do drift out of the gaps? Arnol’d
has discovered that dynamical systems may exhibit a
very slow diffusion through phase space (see Chirikov
1979). However, Arnol’d diffusion does not occur in
autonomous systems with only two degrees of freedom
and since the averaged planar-elliptic problem has only
two degrees of freedom, it has no slow diffusion. If more
degrees of freedom are added, the possibility of diffusion
must be considered. In particular, diffusion is possible in
the unaveraged problem, i.e., the problem with high-
frequency terms, and in the three-dimensional elliptic
problem.

The validity of the collisional hypothesis was the pri-
mary topic addressed in the papers of Scholl and
Froeschlé (1974, 1975). Using the averaging procedure
for the planar-elliptic problem, they studied a large
number of fictitious asteroids with initial conditions
near the gaps. Their integrations generally covered a
time interval of less than or near 50 000 yr, though a few
were continued for 100 000 yr. The important question
is whether or not the orbits show large eccentricity vari-
ations. Scholl and Froeschlé found that test asteroids
close to the 3/1, 5/2, and 2/1 commensurabilities with
either small initial eccentricity or moderate eccentricity
near the borders of the observed gaps did not develop
large eccentricities. No test asteroids at the 7/3 reso-
nance developed large eccentricity. Since the Kirkwood
gaps are clear of asteroids of all eccentricities, these re-
sults seem to militate against the collision hypothesis.
The collision hypothesis is also doubtful because the col-
lision probability depends weakly on the eccentricity,
whereas the gaps have relatively sharp boundaries. Fur-
thermore, an asteroid with low eccentricity near the 2/1
commensurability has a higher probability of collision
than a high-eccentricity asteroid because of the sharp
drop in the number of asteroids beyond 3.2 AU (Ip
1979).

Largely because of the failure of these studies to ex-
plain the Kirkwood gaps the possibility that asteroids
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were never in the gaps has started to be explored (e.g.,
Heppenheimer 1978). Since the dynamical hypotheses
have not yet been fully disproved, it seems premature to
abandon them for the more speculative theories of ori-
gin. I will not discuss these further.

In this paper I introduce a significant new method for
studying asteroidal dynamics near commensurabilities,
namely, I derive algebraic mappings of the phase space
onto itself that have the same low-order resonant struc-
ture as the 3/1 commensurability. These mappings are
derived by first analytically averaging the Hamiltonian
to remove the nonresonant high-frequency contribu-
tions, the terms which are removed numerically by
Schubart’s averaging procedure. To this averaged, reso-
nant Hamiltonian, I then add new high-frequency terms
which are chosen so that the Hamiltonian becomes a
series of periodic (in time) delta functions, each of which
can be analytically integrated. Thus the averaged equa-
tions of motion for the mappings are identical to the
averaged equations of motion used by Schubart, Giffen,
and Froeschlé and Scholl (except that the mappings re-
tain only the lowest-order terms in the disturbing func-
tion). Mappings have two principal computational ad-
vantages over Schubart’s method of numerically
integrating the averaged equations of motion: (1) map-
pings are about 1000 times faster, the integrations that
lasted 40 min for Froeschlé and Scholl are reproduced in
only a couple of seconds by a mapping; and (2) they are
more accurate since they are purely algebraic and thus
have the full accuracy of the computer. An important
theoretical advantage is that the mappings have high-
frequency contributions which are not present in the
averaged equations of motion. The presence of high-fre-
quency perturbations introduces some qualitative
changes in the dynamics such as the “stochastic” separ-
atrix and the possibility of the Arnol’d diffusion (see
Chirikov 1979). I choose to study the 3/1 Kirkwood gap
because it is the largest of the gaps, except for the 2/1
gap, and is not confused with the boundaries of the as-
teroid belt as is the 2/1 gap. There are no fundamental
difficulties in deriving mappings for the other
commensurabilities.

In Sec. I1, I review the motivations for using the aver-
aging principle. In Sec. III, I derive a Hamiltonian that
approximates motion near the 3/1 commensurability.
In Sec. IV, I derive the mapping for the planar-elliptic
problem. I present in Sec. V some surprising results, and
then study a distribution of 300 test asteroids for two
million years. I extend the mapping in Sec. VI to include
the secular perturbations of Jupiter’s orbit and the incli-
nations. In Sec. VII, I reexamine with the full mapping
the evolution of the distribution of 300 test asteroids for
two million years. My conclusions are stated in Sec.
VIIL

II. THE AVERAGING PRINCIPLE

All of the theoretical and numerical studies men-
tioned in Sec. I, except for that of Schweizer, who inte-
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grates for at most only 2000 yr, rely on the averaging
principle. The averaging principle has always played an
important role in the study of the long-term evolution of
the planets and asteroids. The averaging principle was
introduced by Lagrange and Laplace (see Moulton 1970
for a historical summary) to argue that the secular terms
which had appeared in earlier perturbation schemes
were in fact the first terms in the expansions of purely
periodic functions. The averaging principle was explicit-
ly stated by Gauss, who calculated the long-period vari-
ations in the elliptic elements by replacing each planet
by a ring of mass whose density was inversely propor-
tional to the planet’s velocity. Newcomb, Lindstedt,
Poincaré, and many others (see Poincaré 1892 for a thor-
ough discussion) extended this idea and demonstrated
that it was possible to construct formal power series of
purely periodic terms which satisfy the equations of mo-
tion of celestial mechanics. At each order in the con-
struction of these formal series the averaged part of the
perturbation is used to modify the unperturbed frequen-
cies and the periodic part is removed by a canonical
transformation. The existence of these formal perturba-
tion theories seems to justify, then, the intuitive idea of
the averaging method, i.e., that the basic dynamics is
determined by the averaged equations of motion while
periodic perturbations, which may be formally eliminat-
ed by an infinite sequence of canonical transformations,
lead to purely periodic variations of the elements about
this underlying evolution. Unfortunately, the canonical
transformations which remove at each order the period-
ic part of the perturbation introduce in the next order
the infamous divisors, which may become arbitrarily
small. Thses small divisors are at the heart of Poincaré’s
famous theorem on the nonexistence of uniform inte-
grals other than the classical ones and his subsequent
proof that these formal periodic series generally do not
converge. After proving this, Poincaré goes on to say
that these series are still useful since they can be ex-
tremely good approximations for a long time. The diffi-
culties of the small divisors were partially overcome in
the work of Kolmogorov, Arnol’d, and Moser (see
Moser 1973) who constructed a perturbation scheme
which converges for sufficiently small and smooth per-
turbations, and frequencies which satisfy a diophantine
condition (i.e., which are sufficiently irrational). The
trick of the “superconvergent” perturbation scheme of
Arnol’d is that the frequencies of the solution are held
fixed, thus forever satisfying the diophantine condition
and overcoming the small divisors, while the initial con-
ditions are allowed to vary. This perturbation scheme
again relies on repeated averaging. The KAM theorem
proves by construction the existence of certain quasiper-
iodic motions. It says nothing about the regions of phase
space that are excluded by its assumptions. In fact, nu-
merical experiments (e.g., Hénon and Heiles 1964) seem
to indicate that quasiperiodic motion is far more preva-
lent than is actually proved by the KAM theorem. One
can argue then that it is only a matter of time before a
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more widely applicable convergent
scheme is constructed.

On the other hand, it is known that trajectories which
are not quasiperiodic can occur. It has been proved by
Arnol’d (see Arnol’d and Avez 1968) for a particular
Hamiltonian system that an unstable trajectory (non-
quasiperiodic) can always be found for arbitrarily small
values of the perturbation parameter. It is expected that
this instability is a generic feature of nonintegrable Ha-
miltonian systems, and that it leads to the so-called “Ar-
nol’d diffusion.” The mechanism of the Arnol’d diffu-
sion may be understood intuitively in the following way.
First, there are resonances arbitrarily close to every
point in plase space, because the frequencies, however
irrational, can be approximated arbitrarily well by ra-
tionals. Each of these resonances possesses a separating
trajectory, a separatrix, which divides the phase space
into regions where the resonant combination of angles
oscillates and those regions where it circulates. In a non-
integrable system these separatrices are broadened into
very narrow stochastic layers (see Chirikov 1979). The
width of these stochastic layers depends exponentially
on the ratio of the nearest perturbation frequency and
the basic frequency of oscillation of the resonant combi-
nation of angles. The width of these layers may thus be
extremely small. This everywhere-dense network of sto-
chastic layers has been termed the “Arnol’d web.” Nu-
merical experiments have indicated that motion in the
exponentially small stochastic layers is well modeled as
a diffusive process. That is why this unstable motion is
called the “Arnol’d diffusion.” In systems with two de-
grees of freedom, quasiperiodic trajectories confine the
stochastic layers and Arnol’d diffusion is not possible.
In cases where the motion is quasiperiodic, the averaged
equations of motion may be expected to give a good ap-
proximation, the periodic perturbations being removed
by an as yet unknown convergent-perturbation theory.
But in cases where the averaging reduces the number of
degrees of freedom to 2 or fewer, the averaging principle
must fail for those initial conditions within the Arnol’d
web, because diffusion is possible in the unaveraged sys-
tem but is not possible in the averaged system. Thus
Arnol’d (1978) says of the averaging principle: “We note
that this principle is neither a theorem, an axiom, nor a
definition, but a physical proposition, i.e., a vaguely for-
mulated and strictly speaking untrue assertion. Such as-
sertions are often fruitful sources of mathematical
theorems.”

Despite the fact that the averaging principle remains
an intuitive assertion which is, strictly speaking, untrue,
it has been used in essentially all theoretical studies of
the long-term behavior of objects in the solar system. It
is perhaps surprising at first, but the averaging principle
has also been used in almost all numerical studies that
span more than a few thousand years. The reason is sim-
ple. It is just too expensive to extensively study the un-
averaged equations of motion. The averaging principle
provides a compromise. Averaging the equations of mo-

perturbation
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tion eliminates the short-period variations, making the
equations much less expensive to study. Yet for some
initial conditions the unaveraged solution may be ex-
pected to slowly diffuse away from the averaged solu-
tion. The averaging principle was first applied to the
numerical study of commensurable motion by Schubart
(1964, 1968). His method was then used by Giffen (1973)
and Froeschlé and Scholl (1974, 1975, 1976, 1977) in
their extensive studies of motion at commensurabilities.
Even using the averaging method these integrations
span no more than 200 000 yr, an amazingly short time
considering the age of the solar system.

The mappings I will describe depend on the averaging
principle. Their averaged equations of motion are iden-
tical to those used by Schubart, Giffen, and Froeschlé
and Scholl (except that I retain only terms up to the
fourth order in the eccentricities and inclinations). The
method of Schubart relies on the averaging principle to
justify removing the high-frequency perturbations and
the mappings rely on the averaging principle to justify
changing the high-frequency perturbations. In each
case the assumption is that at least in the first approxi-
mation the high-frequency perturbations can be ig-
nored. The initial step, then, in the derivation of the
mappings is to analytically average the Hamiltonian to
obtain the resonant Hamiltonian.

III. THE RESONANT HAMILTONIAN

In terms of the Poincaré canonical elements (see, e.g.,
Plummer 1960), the Hamiltonian for a zero-mass test
body moving in the field of a large central mass (the Sun)
and perturbed by a smaller mass (Jupiter) whose orbit
lies outside that of the test body is

2
=5 _ru A, @, o) (1)
2L2 ’Pl’Pz» » Y 2]

where R is the disturbing function, u, = 1 — u, and p is
the mass of the secondary. I have chosen units so that
the product of the gravitational constant and the sum of
the masses is unity and the separation of the two masses
is also unity. Following Froeschlé and Scholl, I take
1 = 1/1047.355. The Poincaré momenta may be writ-
ten in terms of the usual osculating elliptic elements:

LE(/‘IG)I/Z,

pri=a)'’[1 — (1 — &)= (u,a)' 21 e,
and

p2=lpa(l — e*)]'"*(1 — cos i) = (u,a)" 2 182,

where a is the semimajor axis, e is the eccentricity, and i
is the inclination to the invariable plane. The conjugate
coordinates are the mean longitude 4; minus the longi-
tude of periapse, w,; and minus the longitude of the as-
cending node on the invariable plane, w,, respectively.
The disturbing function may be written as the sum

R= Z Kijk[mn(L’ P Pz)

ijkimn

X Cos(id + jw, + ko, + I + mo,' + nw,'), (2)
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which is constrained by the requirement that
i—j—k+1—m— n be zero and for definiteness i is
restricted to be greater than or equal to zero. Jupiter’s
elements carry a prime. A resonance occurs when one of
the cosine arguments is nearly stationary. Since the
mean longitudes move much faster than the other an-
gles, this means that il +I1'=0, or A~ —1/i
=(/ + g)/i. The integer q is called the order of the reso-
nance; resonance strengths decrease with increasing or-
der since for small e and i their terms in R are propor-
tional to e, where a + b = g. The most important 3/1
resonance terms have i = 1 and ¢ = 2 and are quadratic
in the eccentricities and inclinations. The / = 2 resonant
terms are smaller by factors quadratic in the eccentric-
ities and inclinations. In this paper all resonant terms
with i>2 are neglected. The terms whose arguments do
not involve the mean longitudes, i.e., which have
i=1=0, are called secular terms and also affect the
motion. In order to construct an algebraic mapping it is
necessary to neglect all secular terms that are fourth
order or greater in the eccentricities and inclinations.
Besides the higher-order 3/1 resonances, there are no
neighboring resonances in the range 0.47 < a <0.49 with
order less than ¢ = 21. The largest of these terms is pro-
portional to the 21st power of the eccentricity. It is thus
a very good approximation to ignore all nearby reson-
ances. The arguments of all other terms involve nonre-
sonant combinations of the mean longitudes, and rotate
at least as fast as the mean longitude of Jupiter. These
nonresonant terms will be called high-frequency terms.
These high-frequency terms are the terms removed by
Schubart’s numerical averaging procedure, and the
terms which are changed in deriving the mappings.
The explicit form of the disturbing function may be
found in, for example, Leverrier (1855), Peirce (1849), or
Brouwer and Clemence (1961). In Leverrier’s notation,

R = 01°( £ ) + (10002
+ (21)“”(%)(%)005(@L —&). (3

The primed quantities belong to Jupiter, 7; =sin® 1 J,
where J is the mutual inclination between the orbit of
Jupiter and the orbit of the test body, @ is the longitude
of the periapse, andw, =& + 2' + &' — 2 — &, where
¢ and J ' are the angles between the ascending nodes of
the orbits on the invariable plane and the ascending
node of the outer orbit on the inner orbit, and £2 and 2’
are the longitudes of the ascending nodes on the invari-

able plane. The coefficients are defined as follows:
d d?
(2)"=a o b (a) + ya? P b la), (4)
(11)%= — 164 (a), (5)

and

(21)"'=2b"1) () — 2a j—aba')z(a)
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2
—a—=bixa) (6)
The Laplace coefficients b | are defined by

1 ¥bMajcosi(ly —AL)

al—172
= -, 7
[1—2acos(l] —A,)+a*}) 0
Similarly,
2
Rresnnam = (172)(3)( %) cos (312, - AL - 2(‘)L)
(2), e e, , ~
+ (182) (—)(—)cos(3lL A, —w, — &)
2 2
e \? ~
+ (192)“’(7) cos (31, —A, —20")
+(212)92 cos (31, — A, —27}), (8)
where [/, is Leverrier’s mean longitude, A, =
l+0+02'"+3"— 02—, and 7, =2 + . The co-

efficients are

(172)9=1215, (a) + 5a % b, (a)

i (4 (5] o) 0

and

] 2
n*cos(3l; — A, —2TL)=(%) cos [3(/'+&')— (I + &) —

Xcos [3('+ ') — (I + &) — (2 + 2')] +(%>2cos (30" + &) — (I + &) — 202")].

581
2d? 5 '
+ 30— b0, ©)
182)@= (2) d o)
(182)'= — 206 ), (a) — 10a %“b i2(a)
d2
2a’a b, (a), (10)
(192)"=12b),(a) + 5a ;—ab V2(a)
2d?
+ ia ;i?bl/z(a)_zzla’ (11)
and
(212)® =162, (a). (12)

The coefficient (192)'" has been corrected to include the
indirect contribution (see Leverrier 1855). The coeffi-
cients vary little over the very small range of semimajor
axes of the 3/1 Kirkwood gap so I simply evaluate them
at exact resonance. In all terms not involving the mutual
inclination, each {2 + iscancelledbyans2’ + ¢ 'since
they differ only by terms of order J 2. The terms involv-
ing the mutual inclination, J, must be written in terms of

" the individual ihclinations and nodes. To order J 2 (see

Plummer 1960),

(13)

7-{3)(5)

(14)

The disturbing function can now be written in terms of the canonical Poincaré elements:

UR o optar = — Fi2p, — e’F_l(zpl)l/z cos (@, + @') — F2p, — i’F_z(ZPz)l/z cos (o, + 2)

and

(15)

KR eoonant = C12p, c0s (3t — A + 2,) + €'D,(2p,)"/* cos (3t — A + @, — &') + €"2E, cos (3t — A — 23"

+ C,2p, cos (3t — A + 2w,) + i'Dy(2p,)"* cos (3t — A + w, —

where the coefficients are

0)
F= __f‘(z)_m ~ —0.205069 4 1,
4pa, ;)
_ (—1)
F=— 2 01987054y,
4u,a, )
(0)
= L)m ~0.426 697 3 1,
4(/1101/3)
_ ©)
F=—MW" 071038124,

- 2(#1‘11/3)1/4
u(172)®

C=—-""
1 4’(#1‘11/3)1/2

~0.863 157 9 ,
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@
p=-tU8__ 6564074, (22)
4u1ay3)
(1
E= Lf)- ~0.362 953 6 1, (23)
3)
C=-HE2 0283461, (24)
4ua, )
3)
p=— L os34556p 23)
2uay3) '
3)
E=— “—(Zii ~0.172083 9 4. (26)
The resonant Hamiltonian is of the form
2
u
He=— 2L] 2 luRsecular (&)1, P1s @2 ,02) _#Rresonant (601, P> @2, P, 3t—4 ) (27)

In order to remove the explicit time dependence from Eq. (27),* I perform a canonical transformation to the
coordinate ¢ = 3t — A via the time-dependent generating function F = (3t — A )(® + L) + ®,p| + o, p}, where
for convenience I have also translated the origin of momentum to be the exact resonance. L, =(u,a, ;3)"/%is defined
so that u = dH /9P is zero at @ = 0. This gives L, = (4 ,u%) 173, Keeping only the quadratic term in @ the
resonant Hamiltonian is now

HR = %ad& 2 _/u’Rsecular ((01, pl’ wZ’ Pz) —)u'Rresonant ((0], Pn wza sz ¢’)y (28)
where
H 3u?
a= 22K =~ 1298851 (29)
9P* lo—o L%

and I have dropped the primes.
Finally the eccentricity and inclination of Jupiter must be specified. Brouwer and van Woerkom (1950) provide a
solution to the secular problem of planetary motion. The elements of Jupiter’s orbit are given in the form of sums:

;ck cos (— st + 8,) = e’ cos &'=¢,, (30)
;ck sin (— st +6,) = ¢ sind'=y,, (31)
;dk cos (—spt + 8;) =i’ cos 2'=¢E,, (32)
Sdu sin (— st +6;) = i'sin 2= (33)

Two of the ¢, dominate all the others, and I include only those terms. The values are ¢, = 0.044 818 8,
¢, =0.015354 6,5, = —3.977 69X 107°,5, = — 2.571 67X 10™* It is necessary to include three of the de:d,=
0.006 3064, d,=0.0009571, d;=0.0011689, s;=2.382736X10"% s, =2.687651X10"5, and
§5 =6.273 352107,

In terms of the canonical momenta x,=(2p,)"/? cos , and their canonical coordinates y:=(2p;)"/? sin w,, the
final form of the resonant Hamiltonian is

H, =%a¢2 +,“F1(X% +.V% ) +ﬂix(x1§1 — 1) +,uF2(x§ +y§ ) +/~‘F2(x2§2 — Y215)
—pulCi(x —21) +uDy(x& +yim) + E (€3 — 73 )] cos @
—u[C2x,y, — Dy(xm, —y.&) —E28m,] sing
— 1[G (x5 —13) + Dox, &, + 3, M) + Ey (2 — 73 )] cos
— [ C2x, p, — Dy(x, 0, — yoks) — Ex2£,m,] sin . (34)

*The resonant Hamiltonian still contains the explicit time dependence of Jupiter’s elements.
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The resonant Hamiltonian for the planar-elliptic problem can be obtained from the full resonant Hamiltonian,
Eq. (34), by setting the coefficients of all terms involving the inclinations to zero and fixing Jupiter’s orbit by setting
&, =e; and 7, = 0. ¢, is the constant value of Jupiter’s eccentricity. The resulting resonant Hamiltonian is

Hyp=1a®?+F,(x} +y}) + Fie;x, — [Ci(x} —y}) + Dye,x, + Ee} ] cos
— [Ci2x,y,+ D, y,e,;] sin g. (35)

IV. PLANAR-ELLIPTIC MAPPING

The resonant Hamiltonian was derived in Sec. III by analytically removing the high-frequency terms in the
disturbing function. These high-frequency terms are the same terms that are removed numerically by Schubart’s
averaging procedure. Their removal is justified by the averaging principle, which argues that the high-frequency
terms contribute only periodic variations about the motion determined by the resonant Hamiltonian. If the high-
frequency terms can be removed without qualitatively affecting the evolution, they can also be modified. This is
exactly what will be done to derive the mappings. The mappings thus bear the same relation to the unaveraged
equations of motion as the numerically averaged equations used by Schubart, Giffen, and Froeschlé and Scholl.
Each one differs from the real equations of motion by high-frequency terms. In the planar-elliptic case the mappings
are perhaps even closer to the original problem than Schubart’s method. In Schubart’s method the number of
degrees of freedom is reduced to 2, thus eliminating the possibility of Arnol’d diffusion. The mappings retain high-
frequency terms, albeit incorrect ones, and diffusion remains a possibility as in the actual problem.

In this section, then, I derive a mapping for the planar-elliptic problem, starting from the resonant Hamiltonian
H  given in Eq. (35). To H I add new high-frequency terms,

H'=1a®’+F,(x] +Y%)+Fleﬂ‘1—‘ i Ci(xt —y1) cos [ —i2(t - £))]

— 3 Dexcoslp—it—)~ 3 Eiecoslo— it L))

= — o i

+ Y C2xyicos[@— fr—iQ(t—p)] + S Dieyxicos[@—im—i(t—7,). (36)

= — o

The frequency 2 is the same as Jupiter’s mean motion when {2 = 1, but for the time being it will be left as a
parameter. These high-frequency terms are of the same form as the real high-frequency terms that were originally
removed, but are chosen so that each sum becomes a sum of delta functions. Consider just the first sum:

S coslp—ilt—£)] = (cosg) S cos [il2(e— )]

= (cosp) 3 2m8[Q(t—¢,) —2mi]

=(cos @ )278,, [2 (t — §)]. (37)
The second equality follows from the well-known Fourier transform of a delta function and the last equality

implicitly defines §,,, as a periodic delta function with period 27.
Thus the planar-elliptic mapping Hamiltonian becomes

H' = %CZ‘DZ +F (x} +y7) +F_|e.lx1 —C,(x} —.Vf ) (cos @ 275, [2¢—-¢)]
—Die;x, (cos @ )278,, [2 (t — £5)] — E e (cos ¢ )26, (2 (t — &,)]
— C\2x, p\(sin @ )27, [2 (t — 1)1 — Dye,p, (sin @ 278, [2 (t — y,)]. (38)
The constants £; and y; determine the times at which the delta functions act and are arbitrary. I choose
0<$1<6,< 8, m/202<y, <y, and let {30 and y,—7/202. The delta functions thus all act at either =0 or
t = /242, but they have a definite ordering. This ordering is a matter of choice and is certainly not the only one

possible, nor even necessarily the best. Between the delta functions the motion is determined entirely by the secular
terms

H o = %az +F,(x} +y7) + F—le.lxl' ’ (39)
This Hamiltonian has the trivial solution

x, = X,(ty) cos [2F(t — to)] — p,(to) sin [2F,(t — )] — (F/2F){1 — cos [2F(t — 1,)]}, (40)

Yy =x,(to) sin [2F,(t — to)] + y1(to) cos [2F\(t — £,)] + (F /2F ) sin [2F (¢ — 1,)], (41)
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and
@ = aPyt — to) + @o (43)

To integrate across the delta functions I use a limiting
procedure; the delta functions are replaced by
174, t<t<t, +4

’ . (44)

5(t—ti)<—1im{ ‘ .
, 4-0|0, ' otherwise

Each delta function is integrated in turn. The Hamilton-
ian during the first delta function is

H = — 220 (i~ yt)cos, (45)
which leads to the equations of motion
, oH 47C, R,
=——=— —2Lycosp=— —y, (46
X £ g 1 es® Ayl( )
. JH 47C R
y'=8—xl=— ‘xlcos<pz—7‘x,, (47)
6= — 2 — ) sine, (48)
and
@ =0. (49)
The solutions to the first two of these equations are
x,(t) = x,(t,) cosh ( Rig=14) )
i\
—y,(tl)sinh(M) (50)
a4
and
»i(t)=p,(,) cosh ( R_I(t’_—tl))
a4
—x,(t,)sinh(ﬁ'(’;—")). (51)

The changes in x, and y, across the first delta function
are then calculated by setting ¢t = ¢, + A (and letting 4
go to zero). They are

Ax, =x,(tl)[cosh( 4Z2C' cos¢7) - 1]

—nity) sinh(ﬁcow) (52)
n
and
Ay, =y1(t1)[cosh( 41;26" cosga) - 1]
—x,(t,)sinh(%-TC'cosgv). (53)

Having solved for x,(¢) and y,(¢), the equation for @
becomes

6= — 20 (i) —yi) I sing 1)

584

27C .
= — — 2t Ble) = )] sing (1),
which yields for the change in @ across the delta
function

(54)

27C,

AP = — a0 [xi () = yi)] sing(ty). (55)
The Hamiltonian during the second delta function is

Hy=— 221, cosolty) (56)
The equations of motion are

%, =0, (57)

ji=— 2Pre, cosplty), (58)

= — 220 x,sing e (59)

and

o=0. (60)

The changes in y, and @ across the second delta function
are

D,

27
Ay, = —

e; c0s @ (1), (61)

AD = — 27;2D‘ e,%,(t,) sin @ (). (62)

Only @ changes across the third delta function. The
change is

27E,

AP = — L2 t,). 63
0 ey sin @ (£3) (63)

During the fourth delta function the Hamiltonian is
_ 4nC,

4= A0 X,y sin @ (t,). (64)
The equations of motion are
. 47C .
X = ;’ﬂ‘ x, sin @ (1), (65)
. 47 C .
Ji= — 7”0—‘})1 sin @ (z,), (66)
and
. 4rC
&= an X, 9, cOS @ (t). (67)
Their solutions are
47t, sin @(t
x4(t) = x,(t,) exp ( Ay S ol m), (68)
47t, sin @t
Pit) = yilts) exp ( e m), (69)
and
47C
D(t)=D(t,) + (t—1,) Zn' cos @ (t,). (70)
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The changes across the fourth delta function are then

Ax,=x,(t4)[exp(M)— 1], (71)

4y, =y.<t4)[ exp (W) - 1], (12)
and

40 = 20 3 (L) cos @ (2,). (73)

The changes across the fifth delta function are evaluated
in exactly the same manner. They are

Ax, = 27D, e, sin @ (t5), (74)

27D

AP = ~e,pi(ts) cos @ (ts). (75)
The planar-elliptic mapping is now complete. For clar-
ity I will review one complete cycle of the mapping,
starting at = 0 and ending at ¢ = 277/42. Initially the

elementsarex”, y”, @ ¥, and ¢ *. There are seven steps:

Step 1
x" = x{" cosh ( 7€ cos @ “”)
— ¥ sinh ( 4rC, cos @ ‘0’), (76)
0
P =P cosh( 4rC, cos cp“’))
— X9 sinh ( 47C) s g “”), (77)
PV _pO _ 277'C1 [( o2 _ U)IIO])Z] sin @ © (78)
¢(l)=¢(0) (79)
Step 2
x = xil), (80)
== 221 cos 0 1)
o= _ 2Dy e;x sin @'V, (82)
(2) _ (p(l); (83)
Step 3
XY = x), (84)
W=y, (85)
45(3) — 45(2) _ 277'El e3 sin (P(Z) (86)
¢(3) — ¢7(2); (87)
Step 4
x¥ = x¥ cos Zﬂﬁ — P sin sl

585
- —Ii(l — cos ”—F) (88)
2F N
F

W= xBgin T 4y cos T2

y i Wi 0
+ £ gnTE (89)

2F )
¢ 4) _ ¢ (3P (90)
_¢l3)+ (77'(1/2..0 )45(3); (91)
Step 5
xP = x¥ exp ( 4rC, sin @ “”) (92)
0]

W =y exp ( sin @ “”) (93)
PO =W 4 1L 4rC, ——L x{Hyld cos @ “@ (94)
¢ (5) — ¢ (4); (95)

Step 6
x0=x + 27D, e, sing® (96)
W=, (97)
=Y 4 ZQD ey cos @ (98)
@ 6) ¢ (5); (99)
Step 7
x7' = x¥ cos 3nF Y sin 3nF
— i(l — cos 3’T—F) (100)
2F 0]
3rF 3rF
7 = x sin —— (¥ cos ——
b4 0 + ¥ 0
F . 3nF
+ — sin ——, 101
2F 0] (101)
[0} ™ _ 1)) (6) (102)
3ra
(6) (6)
= + — @ 103
=9 ) (103)

These seven steps constitute one iteration of the map-
ping. In Sec. V, I present the results of some calculations
using this planar-elliptic mapping.

V. PLANAR-ELLIPTIC MAPPING CALCULATIONS

Primarily as a test of the mapping I redid the work of
Scholl and Froeschlé (1974). They study the range of
variation of the orbital elements for a large number of
initial conditions near the 3/1 resonance and the map-
ping gave variations in the eccentricities and semimajor
axes which were in most cases very close to their results.
The differences arise for several reasons. First, Scholl
and Froeschlé do not specify exactly the initial condi-
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tions used nor the length of each integration. Some of
their orbits were integrated for 12 000 yr, while others
were integrated for 50 000 yr. There were no qualitative
differences in the variations over the two time intervals
so the times were not specified. A more fundamental
reason is that nearby orbits in the “ergodic’ region sepa-
rate at an exponential rate, so any small initial error
quickly manifests itself. Because of the presence of the
high-frequency terms there is an inherent ambiguity
about what starting values for the mapping correspond
to the initial conditions of the averaged differential
equations. In the “ergodic” region this uncertainty
grows exponentially. An exact comparison of the two
can be expected only in the quasiperiodic region of
phase space, 1.e., either for small eccentricities ( <0.1)
near the resonance or outside the resonance region. Fi-
nally, when the variation in the eccentricity is large
(>0.3), the mapping can be only qualitatively correct
because of the truncation of the disturbing function to
the second-order terms in the eccentricities.

In order to aid my comparison of the mapping and the
averaged differential equations, Scholl and Froeschlé
kindly provided the details of several orbits. Figure 1
shows a plot of the eccentricity versus time for one of
these orbits, with @(t=0)=0, ¢(t=0) =,
y(t=0)=0, and ¢(t = 0) = 0.05. For this calculation
e, was chosen to be 0.048. Even though this orbit is
started at exact resonance, it looks remarkably regular.
From the appearance of a surface of section, one would
conclude that this orbit is quasiperiodic. This is an ex-
ample of the low-eccentricity orbits that Greenberg and
Scholl describe as behaving “nonresonantly.” The inte-
gration step was three years with a relative accuracy per
integration step of 10~ "2, The calculation took 40 min
on an IBM 360. Next comes the real surprise. Figure 2

0.40 T T T

0.30- .

e 0,20 _

0.10 .

0.00 1 |
0D 0,250 0,500
t

B
0,750

Fi1G. 1. Eccentricity vs time using the averaged differential equations
(in the planar-elliptic approximation) for the initial conditions @ = 0,
@ =mp, =0, and e = 0.05. Here ¢ is measured in units of 20 0007,
~240 000 yr, where T, is Jupiter’s period.

1.000

586

0.50 T T T

0.40 1

0.30- ]

0.20 T

0.00L I ] !
0.00 0.25 0.50 0.75

1.00

Fi1G. 2. Eccentricity vs time using the planar-elliptic mapping for the
same initial conditions as in Fig. 1. As in Fig. 1 the time is measured in
units of 20 0007, =240 000 yr.

shows the results of the mapping (with 2 = 1/2) for the
same initial conditions. For the first 100 000 yr the map-
ping reproduces quite closely the very regular motion of
Fig. 1. The eccentricity then noticeably becomes more
irregular and after nearly 240 000 yr a huge spike oc-
curs. This mapping “integration” was calculated in dou-
ble precision (eight 8-bit bytes) on the Caltech IBM
370/3032. The calculation took only a couple of sec-
onds. Naturally one wonders if this jump could some-
how be due to an accumulation of roundoff error. In
order to check this the calculation was repeated in qua-
druple precision (16 8-bit bytes). Of course, the orbits
differed slightly but the eccentricity plots were indistin-
guishable. The jump still occurs, and at exactly the same
time. What causes the jump? Is the jump an artifact of
my special choice of high-frequency terms or would a
similar jump occur in the real unaveraged problem? The
underlying philosophy of this work is that high-frequen-
cy perturbations generally can be ignored. Their pres-
ence is important, though, because they permit a slow
diffusion. Because of the diffusive character of this in-
stability, the exact form of the high-frequency perturba-
tions is unimportant. At least in the first approximation
it is primarily just their frequency which will determine
the rate of diffusion.

In order to help isolate the effect of the high frequen-
cies in the planar-elliptic mapping, I studied the evolu-
tion of this same orbit with several different mapping
frequencies £2. The times to first jump, T;,,,,, are shown
in Fig. 3. As the mapping frequency gets higher, the time
to first jump gets longer. On a logarithmic scale the rela-
tionship between T, and {2 appears almost linear.

Jump
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I ] 1
05 075 1.0
Q

F1G. 3. The times to first jump (in years) plotted vs the mapping fre-
quency £2. The initial conditions are the same as Figs. 1 and 2. Jupiter’s
actual frequency corresponds to £2 = 1.

One possible explanation of this is that the trajectories
undergo a slow diffusion until they get to a point where
jumps occur. If the diffusion rate depends exponentially
on the high frequency, i.e.,

D« exp(—afl) (104)

and the distance in phase space that must be covered in
order to get the jump is Ax, then the time to first jump
would obey the simple diffusion law

Ax=DT%, «e “?T%_ (105)
which gives
]}ump oc(Ax)'/ze“”/Z. (106)

The line in Fig. 3 is a linear least-squares fit of the above
expression (with @ = 6.27). It thus seems possible that
diffusion is present, but it is certainly not proved. It is
also interesting to see how this behavior is affected by
varying Jupiter’s eccentricity. The principal effect is
that the height of the spike changes. Figure 4 shows the
results. Finally, I verified that qualitatively the same
results are obtained for several different choices of the
arbitrary phases £; and ¥, in Eq. (38).

The fact that this orbit undergoes such an extremely
large increase in eccentricity introduces a new possibil-
ity for the origin of the 3/1 Kirkwood gap. Taking into
account the secular variations of Mars’ orbit, an aster-
oid at the 3/1 commensurability need only have an ec-
centricity of 0.3 to be a Mars crosser. If large eccentric-
ity increases are typical for orbits near the 3/1
commensurability, it is possible that the gap was cleared
by close encounters with Mars. The first step in evaluat-
ing this hypothesis is to find out how typical it is for

587

orbits near the commensurability to cross the orbit of
Mars and to see if the removal of these Mars crossers
could account for the gap. Eventually it will be neces-
sary to estimate lifetimes for the asteroids and check
that they are consistent with what is known about the
collision history of Mars, but this is beyond the scope of
this paper. To test the hypothesis, I “integrated” with
the mapping a sample distribution of 300 test asteroids
with initial conditions in the neighborhood of the 3/1
commensurability for two million years each. In order
to get a distribution that would simulate the real aster-
oid distribution without a gap, I took the elements of the
first 300 asteroids in the TRIAD file with e < 0.3 and with
semimajor axes between 0.49 and 0.52 and shifted their
semimajor axes so that they ranged from 0.4725 to
0.4875. The resulting distribution of eccentricities and
semimajor axes is shown in Fig. 5. Since the mapping
frequency does not seem to affect the motion except to
change the rate of diffusion, I used the relatively small
mapping frequency of 2 = 1/4 to speed up any diffu-
sion. I also set Jupiter’s eccentricity to its maximum, e,
= 0.060 173 4 (see Plummer 1960). Figure 6 shows the
initial conditions of those test asteroids that did not
reach an eccentricity of 0.3 in two million years, i.e., it is
the same as Fig. 5 but with the Mars crossers removed.
It is clear that a definite gap has been formed. It should
be mentioned that perhaps 60% of those test asteroids
that became Mars crossing did so within the first 50 000
yr. Froeschlé and Scholl did not identify this process
even though it is consistent with their results. The great
advantage of the mapping is that many more initial con-
ditions could be studied. It seems probable that even
without diffusion at least some of the gap can be attrib-
uted to this mechanism of ciose encounters with Mars.

T i T T I |
0.4 o
(o]
0.3+ © -
emOX
o]
0.2k i
(o]
ol
o ]
0 | | | | | 1
0 00l 002 003 004 005 006
e
J

F1G. 4. The height of the jump in eccentricity vs the value given to
Jupiter’s eccentricity e,. Froeschlé and Scholl use e, = 0.048. Jupiter
has a maximum eccentricity of 0.060 173 4.
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Fi1G. 7. Histograms of the eccentricities and semimajor axes averaged
over 5000 yr for the full distribution of initial conditions.
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Fi1G. 8. Histograms of the averaged eccentricities and semimajor axes
FIG. 6. Same as Fig. 5, but with the initial conditions of those test  for those test asteroids that did not become Mars crossers in two mil-
asteroids that became Mars crossers in two million years removed. lion years.
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Note that no secular drift of semimajor axes could be
detected. Figures 5 and 6 are snapshots in time of the
distribution. To see what these distributions look like
when averaged over time, I again “integrated” each of
the test asteroids for 5000 yr and sampled the elements
at every mapping period (48 yr). The results are histo-
grammed in Figs. 7 and 8. The histograms of Fig. 7 show
the relative probabilities of the various semimajor axes
and eccentricities using all the initial conditions of Fig.
5. This histogram of semimajor axes completely demol-
ishes any remaining hopes that the statistical hypothesis
is correct. There is only a faint hint of a dip in the distri-
bution at the commensurability. Figure 8 shows the
histograms for the initial conditions of Fig. 6. Even after
time averaging there is a definite gap in the semimajor
axes.

Although this is the first real demonstration of the
formation of a gap, the gap is too narrow. The actual
distribution of asteroid elements is shown in Fig. 9. The
real Kirkwood gap is approximately twice as large.
There seem to be two possible explanations for this dis-
crepancy. Either the “integrations” were not continued
for along enough time (after all, two million years is still
short compared to the age of the solar system) or some
important physics has been left out. Two possibilities for
the latter are the inclinations and the secular variations
of Jupiter’s orbit. In Sec. VI, I will extend the derivation
of the mapping to include both the inclinations and the
secular perturbations. That is, I will derive a mapping
for the full resonance Hamiltonian (34).

589
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F1G. 9. The eccentricities vs semimajor axes for all asteroids in the
TRIAD file with semimajor axes between 0.47 and 0.49.

VI. DERIVATION OF THE COMPLETE MAPPING

The mapping Hamiltonian for the complete resonant Hamiltonian, Eq. (34), is derived in exactly the same
manner as was the planar-elliptic mapping Hamiltonian. It is

H, = %adﬂ + F (xf +» ) +F_1(x1§1 — M) +F2(x§ +J’§ )+ Fz(x2§2 — Ya72)
= C(x1 —y1)276,,[2(t — §))] cos @ — Dy(x,&, + y,7,)275,,, [£2 (t — &,)] cos P
—E (1 —m 278, [2(t — &3)] cos o — Cy (%] — y3)278,, [2 (¢ — £4)] cos 14
— Dy(x,6; + p12)276,, [2(t — §5)] cos @ — E5 (65 — 15 )278,, [2 (¢ — §¢)] cos

— C2x,y,276,, (2 (t — y,)] sin@p — D\(x,n, —

161218, [2(t — 7,)] sin g

+ E\26m,276,, [2 (t — ;)] sin @ — C,2x, y,275,,. [2 (t — y,)] sin @

— Dy(xym, — y,£,)276,,. [2 (t — ¥s)] sin @ + E,2£,1,278,,. [£2 (¢t — )] sin @.

(107)

Again, the §; and y, are arbitrary. I choose 0<&, <&, <3< &8s < s <&eand m/202<y, <V, <V3<¥V1<Vs < Ve and
let §c—0 and y,—m/2£2. The secular motion between delta functions is

x,(t) = x,(to) cos [2F,(t — )] — yy(to) sin [2F(t — ¢,)]

k

_ —d
—Flng—{cos(—skt-f-&k)—— cos [ — sty + 8, — 2F,(t — 1)1},
1

it) = xy(to) sin [2F,(z — £5)] + »1(to) cos [2F;(t — £,)]
+F—12——dk——{sin( syt +8,) — sin [ — sty + 8 — 2F\(t — 1)1},
< JF,

D(t)=D(ty),
e )=@(t) + (£ —1)aP (1)

(108)

(109)

(110)
(111)
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The solutions for x,(¢ ) and y,(¢) are similar to those for
x,(t) and y,(¢). The Hamiltonians during the first and
fourth delta functions are of the form

27C;
AN

wherei = 1 for H, and i = 2 for H,. This Hamiltonian is
the same as the Hamiltonian during the first delta func-
tion of the planar-elliptic mapping. Thus the changes in
the elements are

cos ¢7) — 1]

H,=— (x? —y?) cos @, (112)

47C,
Ax; = x;| cosh
0

4nC,
—y sinh( T cos<p), (113)
47C,;
Ay; =y;| cosh cosg |—1
0
4rC,
_xisinh( il cos¢7), (114)
2C,
a0= — L (2 =y sing, (115)
0
and
Ag = 0. (116)

During the second and fifth delta functions the Hamil-
tonians have the form

27D,
H,s = — —— (x;,§; +y:m,) cos @. (117)

AN
Again, i = 1 for H, and i = 2 for H. Consider just the
i =1 case, i.e., the second delta function. The equations
of motion are

; 27D

X, = —Zﬂ—'nlcosw, (118)
. 27D

V= —%gcoszp, (119)
. 27D .

D= — A_()I (x1§1 +ym)) sin @, (120)

and .

¢=0. (121)

Let ¢, be the time at which the delta function acts. Ex-
panding &, and 7, about ¢ = ¢,

Silto + At) = &(to) — At Y e —s4)

Xsin(—skto+§k)+o(Atz) (122)
and
Mlto + At) = 7,(t,) + At ch( —5)
Xcos (— sty + §i) +0(dr?).  (123)

Substituting these into the equations of motion gives
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, 27D
X = Z.(Zl (771(’0) + 41 Yo —si)
Xcos(—skt(,+§,\.)+o(At2)) (124)
and
. 27D
= % (gl(to) — 4t ch( —5i)
Xsin(—skt0+§k)+o(At2)>. (125)
These are trivially integrated to yield
27D
Xilto + At) = %,(to) + At =t (1)
2
><cos¢>(t0)+o( Aj ) (126)
and
27D
Willo + A1) = y(t)) = At =EEL £t
2
><cos<p(to)+o< AA’ ) (127)

Setting A¢ = A and letting A—0O gives the changes in x,
and y,:

Ax, = Z”TD'n, cos @, (128)

(129)

Substituting Eqgs. (122), (123), (126), and (127) into the
equation of motion for @ gives

b= — 2”3‘ (xx(to)g(ro)+y.(tom,tro)

27D
Ay, = — "—0'_|§1 Ccos @.

— At Yo (—si)[x4(to) sin (= si2o + &)

— il o5 (= suty + E0)] + 0lde ) sin g ()
(130)

Integrating, setting Az = A, and letting A—0 yields

AD— — 27D,

[x:&, +yim,] sin @. (131)
Since the third and sixth delta functions do not involve
X;, i, or @, they can be integrated without a limiting
procedure. The resulting changes in @ are

27E;

40 = — —0—(5?—77?)8in¢ (132)

for i = 1 and i = 2, respectively. The derivation of the
changes across the other six delta functions are com-
pletely analogous. I give only the results. Across the
seventh and tenth delta functions,

47C, . ) : ]
sing | — 1},
0 P

47C; . ) . ]
sing | — 1|,
0 @

Ax, =x,.[ exp ( (133)

Ay, =yi[exp<— (134)
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and

ap= G (135)
= X,V; COS @.
5K s @

The changes across the eighth and 11th delta functions
are

A 27C ¢ i (136)
X, = — ; sin @,
0 2
27C, )
4y, = — 7: sin @, (137)
0
and
2mD,
AD = — 0 (x;m; —y:&;) cos @. (138)
Finally, across the ninth and 12th deltas,
47E,
AP = — T§,<7],- COs @. (139)

In Sec. VII, I display the results of some calculations
using this mapping.

VII. FULL MAPPING CALCULATIONS

Using the full mapping (2 = 1/4), the same distribu-
tion of 300 test asteroids was “integrated” for two mil-
lion years. The inclinations and nodes were taken from
the TRIAD file as were the eccentricities before. So as not
to prejudice the distribution with one particular set of
the starting values for the phases of the secular terms
[see Egs. (30)—(33)], these phases were randomly chosen
for each test asteroid. An asteroid is considered to be a
Mars crosser if its eccentricity ever exceeds 0.3, thus the
possibility of correlations among e, i, @, and {2 that pre-
vent close encounters with Mars is ignored. The result-
ing distribution of asteroids that did not become Mars
crossers is shown in Fig. 10. The time-averaged distribu-
tions are in Figs. 11 and 12. The gap is only slightly
larger than before (cf. Figs. 6 and 8). The inclinations
and secular terms do not seem to make much difference,
at least in this two-million-year time interval. It remains
a possibility that over much longer times more asteroids
will show jumps in orbital eccentricity. The test asteroid
that is circled in Fig. 8 was found to have a sudden in-
crease in its eccentricity after 18 million years. This re-
sult is encouraging and indicates that indeed the full
width of the gap might be reproduced if integrations of
much longer time could be carried out.

VIII. SUMMARY AND CONCLUSIONS

The mappings in this paper are models for the motion
of asteroids near the 3/1 commensurability. They have
the correct secular and long-period resonant terms, but
possess false high-frequency terms which are similar to
high-frequency perturbations by Jupiter which have
been neglected in previous work.
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FIG. 10. Same as Fig. 6, but using the full mapping.

Mappings are useful for several reasons. First, they
are a very fast (inexpensive) method for studying quali-
tatively what types of motion are possible near reson-
ances. Second, within their approximations the map-
pings are more accurate since they are purely algebraic
and hence use the full accuracy of the computer. “Inte-
grations” using the mappings are thus valid for longer
times than numerical integrations of the corresponding
differential equations. Finally, and perhaps most impor-
tantly, the mappings include high-frequency contribu-
tions which are usually ignored yet seem to introduce
new types of motion, i.e., the slow diffusion to a region of
phase space where sudden large increases in eccentricity
occur. The discovery of these sudden eccentricity in-
creases introduced a new possibility for the origin of the
Kirkwood gaps. The hypothesis is that asteroids near
the commensurabilities undergo large jumps in eccen-
tricity, thus becoming Mars crossers. They are subse-
quently removed from the gaps through collisions or
close encounters with Mars. As a first test of this hy-
pothesis I studied the evolution over two million years of
adistribution of 300 test asteroids with initial conditions
near the 3/1 commensurability. If Mars crossers are re-
moved, a gap is produced at the proper location but it is
too narrow, both in the planar-elliptic approximation
and in the full three-dimensional problem with the secu-
lar perturbations of Jupiter’s orbit included. There re-
mains the possibility that two million years of evolution
is too short. One orbit near the boundary of the gap in
the mapping distribution was “integrated” for a much
longer time and after 18 million years it had a sudden
increase in its eccentricity. This implies that two million
years is simply too short a time to see the full width of
the gap to open. The difficulty is that even for the map-
ping 18 million years is a long time and it is not clear to
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F1G. 11. Same as Fig. 7, but using the full mapping.

what extent the diffusion is due to the actual dynamics
or to roundoff error.

A number of problems remain. The actual probability
of collision with Mars must be estimated. This may be
difficult since the behavior after the eccentricity in-
crease is often very complicated. In some cases the ec-
centricity continues to increase in an erratic way, while
in other cases, after a period of erratic behavior at large
eccentricities, the eccentricity suddenly drops for a peri-
od of time to low values. Wetherill (1975) gives 200 mil-
lion years as the typical lifetime for a Mars crosser. The
lifetimes of the Mars crossers considered in this paper
may be several times this value since they evidently
spend only a fraction of their time with large enough
eccentricity. To accurately estimate the collisional life-
times may be a formidable task.
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FIG. 12. Same as Fig. 8, but using the full mapping.

The other Kirkwood gaps are farther from Mars and
asteroids will require higher eccentricities to be Mars
crossers. It is still possible, though, that this mechanism
will work since it was often the case, especially in the full
three-dimensional mapping, that very large eccentric-
ities (> 0.5) were obtained. Further consideration of the
other Kirkwood gaps must await another study.

The mappings in this paper are only models for the
motion of asteroids near the 3/1 commensurability.
Those results which do not depend on the presence of
the high-frequency perturbations are justified by the
averaging principle. Thus the statistical hypothesis has
been much more strongly disproved, and the removal of
Mars crossers has been identified as a mechanism that is
probably partially responsible for the origin of the 3/1
gap. The most novel and interesting result of this paper,
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that test asteroids show sudden large increases in their
eccentricity after sometimes millions of years, must be
considered more speculative since it depends on the
presence of the high-frequency terms. I have argued that
in the first approximation it is the presence of the high-
frequency terms that is important, not their exact form.
Yet until this behavior is seen in an accurate numerical
integration or until it is understood in an approximate
analytic theory, this result cannot be fully believed.
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