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ABSTRACT

The n-body mapping méthod of Wisdom & Holman [AJ, 102, 1528 (1991)] is generalized to encompass
rotational dynamics. The Lie-Poisson structure of rigid body dynamics is discussed. Integrators which
preserve that structure are derived for the motion of a free rigid body and for the motion of rigid bodies

MARCH 1994

interacting gravitationally with mass points.

1. INTRODUCTION

There is a growing appreciation of the importance of
understanding the dynamics of the solar system on very
long time scales and there is no way to study this dynamics
other than long-term numerical integration. Such compu-
tational journeys in the solar system are taking place with
greater frequency. They have been made possible by im-
provements in computer hardware as well as improve-
ments in numerical integration algorithms. As a recent ex-
ample, Wisdom & Holman (1991, hereafter referred to as
WHO1) presented a new symplectic mapping method for
integration of the planetary n-body problem which is an
order of magnitude faster than conventional integrators.
Sussman & Wisdom (1992) used the new mapping method
with the Supercomputer Toolkit (Abelson et al. 1992), a
specialized parallel supercomputer, to integrate the evolu-
tion of the whole solar system for 100 mil yr. That calcu-
lation confirmed the result of Laskar (1989) that the evo-
lution of the solar system is chaotic with an exponential
divergence time scale of only 4-5 mil yr. In this paper we
extend the algorithmic developments of WH91 to encom-
pass rigid body motion in the context of solar system dy-
namics. We introduce a symplectic scheme for integrating
the motion of a free rigid body, which conserves the mag-
nitude of the angular momentum vector and its orientation
in space. Then, we incorporate gravitational interactions to
obtain a symplectic scheme which integrates the motion of
rigid bodies interacting gravitationally with mass points,
while preserving the total angular momentum vector.

2. THE IDEA: DIVIDE AND CONQUER

As described in WH91, symplectic mappings analogous
to the n-body mapping method can be generated for any
problem for which the Hamiltonian can be split into parts
which are individually integrable and efficiently solvable.
Consider a Hamiltonian of the form

H=H,+H,, (2.0.1)
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where H, and H, are individually efficiently solvable. The
simplest mapping is obtained by multiplying the perturba-
tion H, by a periodic sequence of Dirac delta functions

Hypop=H,+278,,(Q1) H,, (2.0.2)
where
o 1 )
8= 2 8(t—m2m)=5= 2 cos(nt),
n=-—o0 27 n=—co
(2.0.3)

and Q is the mapping frequency, which is related to the
step size 4 of the mapping by Q=27/A. The motivation is
the averaging principle: provided step size resonances are
avoided (see Wisdom & Holman 1992, and below) the
extra-high-frequency terms introduced by the delta func-
tions tend to average out and do not contribute substan-
tially to the evolution of the system. The advantage is that
the evolution of the whole system can be computed in
terms of the efficiently solvable pieces: between the delta
functions the motion is entirely governed by H, and cross-
ing the delta functions the evolution is governed solely by
H,. The simple mapping method, as just presented, is only
accurate to first order in the step size, but has the correct
average Hamiltonian. The mapping can be made accurate
to second order while preserving the average Hamiltonian
by offsetting the delta functions by half a mapping step.
Higher order can be achieved by a more intricate interleav-
ing of the evolutions governed by the integrable parts of the
Hamiltonian. Of course, similar mappings can also be gen-
erated from Hamiltonians which are separated into more
than two solvable parts, but achieving high order is more
complicated, though perfectly straightforward. In what
follows we concentrate on the efficient solution of parts of
the Hamiltonian under the presumption that the method of
putting them together to form the map of the desired order
is understood.

Deriving a map for the problem of celestial rigid bodies
appears to be a straightforward application of the proce-
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dure just described. We write the full Hamiltonian as a
sum of integrable pieces

H=Hgye+H, Kepler +Hinteraction » (2.0.4)
where Hpy, describes the free rigid body motion of each
extended body, Hyep,, describes the interaction of each
body with the massive central object (which may be an
extended body itself), and Hi; e oction includes all remaining
gravitational interactions. Each of the components is sep-
arately integrable, as required. The problem with this di-
rect application of the mapping procedure is that though
the motion of the rigid body is integrable, to our knowl-
edge, it is not efficiently solvable. The solution is complex
and involves elliptic functions (see Whittaker 1929).

We can avoid the use of elliptic functions by further
dividing the Hamiltonian for the free rigid body into two
integrable pieces: a part which describes the integrable mo-
tion of an axisymmetric rigid body and an integrable per-
turbation which describes the triaxial deviation from axi-
symmetry. This division is motivated by the near
axisymmetry of many bodies in the solar system; however,
the algorithm is not limited to such situations. The solu-
tions of these subproblems are simple and free of elliptic
integrals.

This approach still has further problems. A fundamen-
tal problem in the description of the motion of the rigid
body is that any choice of canonical angles, such as Euler
angles, is singular. A complete covering of the phase space
without singularities requires at least two independent co-
ordinate systems (see, e.g., Wisdom er al. 1984). So, we
take Euler’s advice and look at the motion of the angular
momentum vector in a frame moving with the body. This
move has the advantage of dealing with nonsingular Car-
tesian components, and, for the free rigid body, of looking
at the dynamics on the sphere defined by the conserved
angular momentum. We first solve for the evolution of the
Cartesian components of the angular momentum vector in
the rigid body frame and then recover the configuration via
a set of kinematic equations. Euler’s equations have three
dimensions; the phase space of the rigid body is six dimen-
sional. Euler’s approach to rigid body dynamics is a par-
ticular case of a more general formalism which can be used
to reduce the dimensionality of problems with symmetry,
the Lie-Poisson formalism. We make use of the Lie-
Poisson formalism to derive singularity free algorithms for
the problem at hand.

3. GRAVITATING RIGID BODIES

The Hamiltonian of a rigid body gravitationally inter-
acting with a mass point is the sum of the kinetic and
potential energy. The kinetic energy of a rigid body can be
written as the sum of the translational kinetic energy of the
center of mass and the kinetic energy of rotation about the

‘center of mass. The potential energy is that of an arbitrary

mass distribution in the Newtonian field of a mass point.
The Hamiltonian is given by

2 2
pl p;_ 1 —1 J. Gm1
(3.0.1)

where m;, r;, and p, are the mass, position, and linear
momentum of the mass point S, and m,, r,, and p, are the
mass, position of the center of mass, and the linear mo-
mentum of the rigid body B. The vector r is the relative
position vector: r=r,—r;, and dm(Q) is a differential
mass element of the body at position Q. The vector M is
the angular momentum of B, and | is the inertia tensor. C
is the orthogonal matrix that situates the body frame %
with respect to the inertial frame .. We denote by lower-
case letters vectors in the inertial frame . and by upper-
case letters their counterparts in the rigid body frame %.
The generalization to more point masses or extended rigid
bodies is straightforward and will be presented in later
sections. '

The Hamiltonian only depends on the relative positions
of the bodies; a transformation to relative coordinates and
center of mass coordinates separates the interesting relative
dynamics from the trivial dynamics of the center of mass.
The Hamiltonian for the relative motion is

L 1.1 1M I-'M
2 (ml+m2)+§ )
f O™ im(Q) (3.02)
— 5 |r+CQ| m N U,

where p is the linear momentum conjugate to r.

To derive the mapping we must separate the Hamilto-
nian into integrable pieces. We want to take advantage of
the fact that the unperturbed motion consists of the com-
position of an elliptical two-body motion and of free rigid
body motion governed by Euler’s equations. With this in
mind, we expand the potential function in terms of Leg-
endre polynomials. For the applications we have in mind,
it is sufficient to consider the first three terms. Higher order
terms can be included without a substantial increase in
computational effort. This procedure gives us McCullagh’s
formula (Danby 1988; Plummer 1960) for the potential,
which when incorporated with the kinetic energy yields the
Hamiltonian

H p2 1 1 1 M |"1M Gm1m2
2_2 (ml+m2)+2 - r
- - J
Hfree
27 TR
~ J
I:Iimeraction- ( 3.0.3 )

In Hg,., the rotational and translational motions decou-

ple. We write
Hfree=Hchler+HEuler ’ (3.0.4)

where

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994AJ....107.1189T&amp;db_key=AST

rT992AT.- - CI07- 11891

1191 J. TOUMA AND J. WISDOM: LIE-POISSON INTEGRATORS 1191

’

- —4—
m; m, r

2
p 1 1 Gm1m2
HKepler= ) ( ) -

Hgye,=M-17'M. (3.0.5)

We diagonalize | by choosing the principal axis frame as
the body frame, and denote by I, I,, and I the moments
of inertia about the principal axes 0X, 0¥, and 0Z, respec-
tively. In the principal axis frame the rigid body Hamilto-
nian is

M M; M;
Aﬁm=ﬂ#ﬂfa? (3.0.6)
where M, M,, and M; denote the components of the
angular momentum on the principal axes.

As outlined earlier, we divide the rigid body Hamilto-
nian into two sub-Hamiltonians

Mi+M3; M Mi(1 1
HEuler=—“‘—"+_ +— (_—_)
2I, 2 2 \1, I, . (3.0.7)
H, axisymmetric H, triaxial

H yisymmetric governs the motion of an axisymmetric body,
and H,g,,ia acts as a perturbation. This splitting is moti-
vated by applications in solar system dynamics where de-
partures from axisymmetry are often small, though the
application of the mapping is not limited to problems with
small triaxiality.

We must find efficiently computable solutions to each
piece of the Hamiltonian. We first present a canonical ver-
sion of the rigid body mapping, and then turn to the Lie—
Poisson formalism.

4. CANONICAL MAP FOR THE FREE RIGID BODY

In this section the pieces of the free rigid body Hamil-
tonian are integrated in a convenient set of canonical co-
ordinates, the Andoyer coordinates (Andoyer 1923; Deprit
1967). The Andoyer momenta have simple physical inter-
pretations in terms of the angular momentum and its pro-
jections in the body and inertial reference frames. In An-
doyer variables the free rigid body Hamiltonian is cyclic in
the coordinate conjugate to the total angular momentum;
thus Andoyer variables naturally express the conservation
of total angular momentum. This property is not shared by
the traditional Euler angles. A further advantage of the
Andoyer variables is that H, o mmetric a1d Hiiayiq are easily
solved when expressed in terms of them.

We denote by oxyz an inertial reference frame and by
0XYZ a frame rotating with the rigid body. Let M be the
angular momentum vector as seen in the body frame, and
T the plane normal to the angular momentum vector M.
The canonical system consists of the momenta

e F, the projection of M on oz;

® G, the magnitude of M;

e L, the projection of M on 0Z,

and the angles conjugate to them: ‘

e f, the angle between ox and the line of intersection of’ -
T with oxy. :

@ g, the angle between the lines of intersection of I" with
oxy and oXY;

@ /, the angle between the line of intersection of I' with
0oXY and oX.

From the definitions, it follows that

M= \/GE—L2 sin(/),
M,= \[Gi—L2 cos(/),
M;=L,

where M, M,, and M are the components of M along 0X,
oY, and 0Z, respectively. Using these we can reexpress the
rigid body Hamiltonian in terms of the Andoyer variables

G* /1 1
HEuler='—'+_ ( )+

(4.0.1)

(m—ﬁmﬁm(ll)

2, 2\ I, 2 Ln
N J’
—~
Haxisymmetric Htriaxial
(4.0.2)

The equations of motion are derived via Hamilton’s
equations or equivalently the canonical Poisson bracket.
We solve H,iymmetric 30d Hipiayia1 Separately, and then ap-
proximate the solutions of Hg, with the method outlined
above. ,

The Hamiltonian H,yeymmetric is cyclic in all the coordi-
nates, so the momenta are conserved

L(t)=L(0),
11 (4.0.3)
1I(t)=L(0) (I_s—f_z)H_l(O)’
and
G(1)=G(0),
G(0)
g(2) =I—2 t+£(0). (4.0.4)

Of course, F, which is a spatial component, is conserved,
and with it the angle f.

The Hamiltonian H,,,;, is independent of F, and cyclic
in g and f, so G(¢) =G(0), F(t)=F(0), and f(z)=/(0).
The other variables must satisfy

d 3 ,
d_t l=a_L Hiaxia1 = —BL sin*(),

d a s o
7t L=~ 37 Hiriaxia= —B(G"— L)sin(1)cos (1),
(4.0.5)
d ,
#%=3G Hia501=BG sin (1),

where B=1/1,—1/1,.
We can integrate these equations as follows:
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I(t) =arctan M,(0)
- M,(0)cos(vt) +M;(0)sin(ve) )’

L(t) =—M,(0)sin(vt) +M;(0)cos(vt),

g(t) =arctan( M, (0)M(0)cos(vt)

where M,(0), M,(0), M;(0), and M(0) are the initial
values of the the angular momentum components and
magnitude which we can compute in terms of /(0), L(0),
and G(0), and v=8M,(0). These are the equations of a
rotation about the X axis expressed in canonical coordi-
nates.

Having solved for the flows generated by H,yisymmetric
and H,;,,;1 We can use our method to construct approxi-
mations of the trajectories generated by Hgy,, to the de-
sired accuracy. Note that the transformations are symplec-
tic (canonical) and they explicitly conserve G and F.

5. DO THE RIGHT THING: EULER’S MOVE

A while ago, Euler demonstrated the simplicity of rigid
body dynamics when seen in a frame that is rotating with
the body. In the absence of external forces, the angular
momentum vector is fixed in space, and the motion of the
body can be recovered by following the projections of that
vector on a basis fixed in the body (Arnold 1978).

The configuration of the rigid body is specified by a
special orthogonal transformation, CeSO(3) which takes
body vectors into space vectors

v=CV. (5.0.1)

Since no torques are acting on the body, the angular
momentum vector m is invariant in space

Em:O,

or,

(5.0.2)

A (5.0.3)
For any time-dependent orthogonal matrix C(?),
[(d/dt)C]C~! is skew symmetric, and, in the case of a
rigid body, corresponds to the space angular velocity vec-
tor, w:

d CM —CdM dCM—O
& CW=C ZM+(Z0 )Mo

" rd
(— C)C“v:va. (5.0.4)

dt

The body angular velocity vector is given by 2=C~w.
Equation (5.0.3) reduces to

- d
—M=MXQ.
o dt

The angular momentum and velocity vectors are related by
the symmetric moment of inertia tensor I:

(5.0.5)

M3(0)sin(vt) + M3(0)sin(vz) +M2(0)M3(0)cos(vt))

(4.0.6)
|
M=IQ. (5.0.6)
So, we can rewrite Eq. (5.0.5) as
a M=MXI"'M 5.0.7
ZM= . (5.0.7)

Euler’s equations, as these equations are known, put us
directly on the angular momentum sphere and are free of
singularities. . '
To get the time evolution of % with respect to ., we
need to follow C(#). We can do it directly by solving for
the configuration matrix
d 1
d—tC=CS[I‘ M], (5.0.8)

where we denote by S[V] the skew symmetric matrix as-
sociated with V:

0 -V, v,
S[Vl=| V3 0 -r (5.0.9)
-V, W 0

Alternatively, one can take an indirect route and follow the
motion of a spatially fixed vector in the body frame. We
adopt the second course since it fits naturally in the prob-
lem we are considering. Let r be an arbitrary vector fixed in
& R=C"!r. Since d/(dt)r=0, the motion of R is gov-
erned by

d
—R=RXOQ=RXI-'M.

P (5.0.10)

Clearly at any time t, we have
R(#)=C~'(£)r=C~!()C(0)R(0). So, by solving Eq.
(5.0.10), we isolate C~1(¢), and recover the configuration
matrix C(#) by transposition.

In summary, the motion of a rigid body is governed by
the equations

d
—M=MXI|"1M,
dt

d
—R=RX|—1M.

7 (5.0.11)

6. LIE-POISSON DYNAMICS

An interesting feature of Euler’s equations is that the
rate of change of the components of the angular momen-
tum is expressible solely in terms of the components of the
angular momentum. Even though the phase space of the
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rigid body is six dimensional, the dynamics governing the
angular momentum is only three dimensional. Now, the
rate of change of any component of the angular momen-
tum can be written as a Poisson bracket of that component
with the rigid body Hamiltonian. Euler’s equations show
that the resulting Poisson bracket can be written solely in
terms of the angular momentum. It turns out that a more
general property holds: The Poisson bracket of any two
functions of the angular momentum can be written solely
in terms of the angular momentum. This property was
known to Sophus Lie, and was first discussed in modern
terms by Arnold (1966). Here, we give a coordinate-
dependent proof of this interesting feature which we shall
use later to connect functions defined on the angular mo-
mentum sphere to the dynamics they generate.

The Cartesian components of M were expressed as func-
tions of the canonical Andoyer variables in Egs. (4.0.1).
The Poisson bracket of the components of the angular mo-
mentum with an arbitrary function of the angular momen-
tum F(M) is

8 3 3 3
3 6 a
(6.0.1)
Mo F a a
M3, F(M)}=5; M3 57 F(M) —37 M3 5, F(M).

We carry out the computations explicitly for M, and
derive the others by analogy. We have

9 pvrim
gt = uf 7;M
S v im 6.0.2
ar =Vl M (6.0.2)

where V), refers to the gradient with respect to the com-
ponents of M. Using Eqgs. (4.0.1), we obtain

. M,
glM —M,
0

(6.0.3)
MM,
P M21-|—M2I
g M=| _ MM,
M71+M22
1
Replacing in the equation for M, we obtain
{M,,F(M)}
Iy dF M3M1 oF M3M2
- 2( M, M+ M~ M, M*+ M., aM3)
—ﬁM’M‘ O b F 6.0.4
+M1+M2( 2a81, " M1 5ag, ) (6.04)

which after reduction gives
oF oF

{M,FM)}=M, B—M_M3;9—M—2' (6.0.5);..
Similarly, we find that
{M, F(M)}=M; i{_Ml or )
oM, M,
{M3,F(M)}=M, j—}—?——Mza—F. (6.0.6)
oM, M,

Thus, we are able to express the canonical Poisson bracket
of M with any real valued function F of M, in terms of M
alone:

{M,F}=MXVy\F. (6.0.7)
In particular, when F is equal to Hpgyer,ViF=1"'M
and

={M,F(M)}=MXI|"M, (6.0.8)

dt
which is Euler’s equation.

We can generalize this computation by finding the Pois-
son bracket of two arbitrary real valued functions F, and
F, of M. The time derivative of F; along the trajectories
generated by F, is given by

d
M=VMF1 M (MXVMFz)

a =" g
=—M-+ (VpF  XVpF,).  (6.0.9)
Thus,
{F,Fy}=—M- (VF XVpiFy). (6.0.10)

We can recover the equation governing the motion of a
spatially fixed vector in the body frame within this formal-
ism. We start by generalizing the configuration Eq. (5.0.8)
to the case of the flow generated by an arbitrary Hamilto-
nian F(M). Using Eq. (6.0.7), we rewrite Eq. (5.0.3) as

d .
C(MXVMF)+(d—tC)M=O. (6.0.11)

Using the fact that this equation holds for any M, we find

d
- C=CS[VwF1. (6.0.12)

Next, we consider an arbitrary space fixed vector
r=CR. As before, we can write

C R+ (;C) =0. (6.0.13)
Using Eq. (6.0.12), we obtain

%R——S[VMF]R. (6.0.14)
Expanding the matrix multiplication, we get

—R={R,F(M)}=RXVyF. (6.0.15)
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As before, when F(M) is equal to Hg,,,, we get the ex-
pected equation for R:

d
d—tR=R><VMHEu1e,=RXl—‘M.

Note that for any Hamiltonian H, which only depends
on M, the equations of motion generated by the Poisson
bracket conserves the magnitude of R:

(6.0.16)

R- %R:Ro (RXVpH) =0.
The same is true for M. So, for any such H, the motion of
M and R consists of finite rotations.

The reduction procedure is not specific to the free rigid
body problem. A reduction of the Poisson bracket from a
high-dimensional phase space to one of lower dimensions,
is possible whenever a group of symmetries acts on the
original phase space. In the case that the phase space is the
cotangent bundle of a Lie group, and the symmetry group
is the Lie group itself, the reduction procedure leads to
what is known as the Lie—Poisson bracket. This is precisely
the case of the free rigid body problem where the config-
uration space is the group of special orthogonal transfor-
mations and the dual Lie algebra can be identified with the
angular momentum space. In Sec. 6.1, we derive a Lie-
Poisson bracket for the problem of a rigid body interacting
gravitationally with a mass point, a problem which is in-
variant under the group of Euclidean motions.

(6.0.17)

6.1 Spin-Orbit Lie—Poisson Bracket

Hamiltonian Eq. (3.0.2), the spin-orbit Hamiltonian,
admits the group of Euclidean motions as a group of sym-
metry. This translates into the conservation of the total
linear and angular momenta. We used the conservation of
linear momentum when we moved to the center of mass
frame. In order to enforce the rotational symmetry, we
move to #Z. Denoting vectors in the body by capital letters
as before, R is the relative vector in the rigid body frame,
and P is the relative linear momentum in the body frame.
The equations of motion, including the kinematic acceler-
ations, are

Gmy(R+Q)
1
- P—PXI-M— f )

dR RXI-M+P Lt 6.1.1
¥ + (;1+“m—2), (6.1.1)
d Gm;(RXQ)

2 M=MXI-! f

dtM M M+ |R+Q| dm(Q).

After our discussion of Euler’s equations, the reader
should not be surprised to find out that these equations can
be derived via a Poisson bracket of the various dynamic
variables with the Hamiltonian expressed in the body
frame

2

P2(1 1

Z 1
- m)+ M-I" M- f |R+Q|dm(Q)
(6.1.2)

A formal derivation of the bracket, which uses the differ-
ential structure of the Lie group of Euclidean motions, is
given in Wang et al. (1991). Here, we derive the bracket in
a manner analogous to our derivation of the Lie-Poisson
bracket for the free rigid body. To give an idea of what is
involved, we derive the equations of the angular momen-
tum vector. As argued before, we can express the angular
momentum vector in terms of canonical variables. The ca-
nonical equations governing the evolution of M are

d
¢7tM={M’H}’ (6.1.3)

where the bracket denotes the canonical Poisson bracket.
Applying the chain rule, we expand the Poisson bracket:

3
{M,H} ={M,A} =MXVyH— ; [VRA - {R,M}]e;

(6.1.4)

||Mw

[VPH {P.M}]e;,

where e, e,, and e; are unit vectors along axes 0X, oY, and
0Z, respectively. The M dependence of H gives the term
MXVyH as shown before. Using Eq. (6.0.15), we get

{R,M,-}:RXVMM,:Rxei,

(6.1.5)

{P,Mi}=vaMMi=Pxei, i=1,2,3.

Replacing in Eq. (6.1.4) we get

={MH}= MXVMH+R><VRH+P><VPH
(6.1.6)

dt

The canonical structure, in addition to the reduction cal-
culations, gives us the remaining equations for R and P in
terms of a Poisson bracket

d A
S R=RXVyH+ Vel

d ..
S P=PXVuA— VoA,

(6.1.7)
If A happens to be the épin-orbit coupling Hamiltonian,
expressed in the rigid body frame, we get the expected
equations for the motipn of M, R, and P.

Note that for any H(R,P,M), these equations preserve
the total angular momentum

My =m+rXp, (6.1.8)
as can be seen by taking the time derivative of m,, and
replacing (d/dt)M, (d/dt)R, and (d/dt)P with the Pois-
son brackets just derived.

Finally, we derive the Poisson bracket of two real val-
ued functions, F; and F,, of M, R, and P:
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{F\,F}=VuF {M,F,}+VgF, - {R,F,}+VpF, - {P,F,}
= -—M * [VMF]XVMFZ] +R * [VRFZXVMFI
—VaF 1 XV\F,] +P - [VpFy XV F,

—VpF | XVyF3 ]+ VRF* VpFy—VpF | - VgF).
(6.1.9)

With this, we end our adventure on Poisson manifolds.
We will use the bracket derived in this section in the rest of
the paper.

7. A LIE-POISSON MAPPING FOR A FREE RIGID BODY

We use the Lie-Poisson bracket to derive a scheme that
integrates the motion of a free rigid body, while preserving
the symplectic structure (Poisson bracket) and the magni-
tude of the angular momentum vector. The angular mo-
mentum vector is naturally fixed in space. First, we inte-
grate the Hamiltonians that enter into the construction.
Then, we put the integral curves together to approximate
the actual motion.

7.1 Axisymmetric Body: Exact Solution

We solve for the motion of an axisymmetric body. As-
sume, for definiteness, that the body is symmetric about the
Z axis, i.e., I;=1I,=1. The Hamiltonian is given by

My M2 M

H_T+213 (7.1.1)

Euler’s equations become

4 oL
' 3M2(1 1)

dM —M\M ! 1 7.1.2
E 1 3([ I) (~~)
dM =0.
de T

These equations goverﬁ the precession of the angular mo-
mentum vector around the axis of symmetry. Setting
a=(1/I;—1/I)M,(0), we integrate to get

cos(at) sin(az) O
M(?)=| —sin(at) cos(at) O |M(0)=Cz(at)M(0).
0 0 1
(7.1.3)
Next, we solve for the motion of R:
a —R=RXI"'M(z), (7.1.4)
dt
or, using Eq. (7.1.3)
—‘{R:RXI“CZ(at)M(O). (7.1.5)

dt

It is easy to check that, in the case we are considering,
I=1C,=C_~!. Next, transform to a frame that i is precess-
ing with M: :

R(2) =Cz(at)R,(2).
Replacing in Eq. (7.1.5), we get

(7.1.6.)

( Cz) +Czd ,=CzR,X[CZ~'M(0)]. (7.1.7)

Noting that C,aXCzb=C,(aXb), and that Cz'=CZ, we
can rewrite Eq. (7.1.7) as follows:

d d
d—tR,,=Rp><|-‘M(0)—Cg(d—tCZ)Rp. (7.1.8)
But,
0 a O
ngitCF —a 0 0. (7.1.9)
0 00

So, reducing the right-hand side of Eq. (7.1.8), we end up
with

0 M;(0) M,(0)
1 I
d o _| M0 M,(0)
da |7 T 1 »
M,(0) M (0) 0
1 T
M(0)

X— (7.1.10)
These equations govern the precession of the vector R,
around the vector £(0)=M(0)/I. The solution is given
by the Euler-Rodrigues formula (see Goldstein 1980)

R, () =Ca(BOR,(0), (7.1.11)
where
sin(ft)
Co(Bt)=cos(Bt)1+ B S[Q(0)]
1
+—c;:@82[ﬂ(0)] (7.1.12)

where 1 is the identity matrix, B=— | ©(0) |, and S[©2(0)]
is the skew symmetric matrix corresponding to €2(0).
Thus, we obtain

R(2)=[Cz(at)Cq(Bt) IR(0). (7.1.13)
Finally, we update the configuration of the rigid body via

C(t)=C(0)[Cq'(B1)CZ (at)]. (7.1.14)
7.2 Integrating Quadratic Monomials

The sub-Hamiltonian H,,,;, is of the form
M?

HMi=a,~T', i=1,2,3. (7.2.1)
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We solve H)y, in detail, and solve the others by analogy.
We compute the Poisson bracket using H)y, . The angu-
lar momentum vector evolves according to

d aM,
— M=MXVyHy, =MX( 0 ) (7.2.2)
dt 1 0
or
4 (M 0
2— M2 = a1M1M3 . (723)
g M3 —alMle

These equations govern a rotation about the X axis with
frequency aM,(0):

1 0 0
M()=|0 cos[a;M,(0)¢] sin[a;M,(0)¢]

0 —sin[alMl(O)t] cos[alMl(O)t]
M(0) =Cy[a;M,(0):]M(0).

We obtain a similar equation for R

d alMl
—R=RX| 0 |,
dt ~

0

(7.2.4)

(7.2.5)

and ‘
R(t)=Cy[a;M(0)¢t]R(0).

The configuration matrix evolves according to:
C()=C(0)Cx '[a;M,(0)2]. (7.2.7)

Similarly, the Hamiltonians Hy,, and H),, lead to rotations
about axis Y and Z:

(1) Hy,—»M(#) =Cy[ayM,(0)1]M(0);

(7.2.6)

C(#)=C(0)Cy ' [a,M,(0)¢];
(2) Hp,—~M(#) =Cz[a;M;(0)]M(0);

C(2)=C(0)Cz'[asM;(0)¢],

where Cy and C refer to rotations about axis ¥ and Z,
respectively.

7.3 The Free Rigid Body as We See It

The function H,ysymmetric i$ the Hamiltonian of a body
that is symmetric about Z; it was integrated in Sec. 7.1.
The function H,,,;, is a quadratic monomial of the form
Hyoia = (M3/2), where a;= (1/I;—1/1,); it was inte-
grated in Sec. 7.2. Using the method of WH91, we con-
struct algorithms for the integration of the motion of a free
rigid body, by stringing together the parts we have just
integrated. The order of the algorithms is limited only by
the computational effort that one is willing to spend.

The scheme conserves the magnitude of M: the motion

is a composition of orthogonal transformations. Also, the

scheme preserves the spatial angular momentum vector m:
in every step % and M rotate by equal and opposite

amounts. It is also true that the mapping is symplectic and
area preserving on the angular momentum sphere, since it
was derived from the Lie-Poisson structure, which was
derived by reducing the canonical Poisson bracket from the
six-dimensional phase space to the sphere. The use of Car-
tesian coordinates avoids the singularities of Euler-type an-
gles. Finally, the configuration of the rigid body is recov-
ered naturally as part of the integration.

7.4 Stability Analysis of the Free Rigid Body Algorithm

We are interested in the stability of the rigid body algo-
rithm. By that we mean the conditions under which the
algorithm faithfully renders the actual motion. Since the
algorithm is symplectic, and the angular momentum vector
is restricted to a sphere, we know that, for small enough
step size, the angular momentum vector will not drift on
the sphere. It will either follow a closed curve, or be con-
fined by such curves. However, the motion could still suffer
from resonant interactions between the frequencies of the
system and the step size of the mapping. Such resonances
are best understood via the time-dependent Hamiltonian
which our scheme integrates. In this section, we follow the
work of Wisdom & Holman (1992) on the stability of
symplectic mappings for the gravitational n-body problem.
We study the Hamiltonian that generates the first-order
mapping. We concentrate here on the primary resonances.
The mapping Hamiltonian is

L P VAN A TS YA
map =57, G +3 (13—1—2) —2m8,, (1) 5 (1—2—1—1)

X (G*— L?)sin’(1). (7.4.1)
As in previous sections, 8,,(¢) is a periodic sequence of
Dirac delta functions, with period 27 and € is the mapping
frequency. The step size of the integrator is given by
h=2w/Q. The periodic delta functions admit a Fourier
representation

o0

1
Su(t) =5~ 2 cos(nn),

n=-—oc0

(7.4.2)
which we incorporate into Hy,,,:

1 1/1 1 1/1 1
. | 2__ _ 2_ 2
Hm,p_2126’2+2 (13 IZ)L 4(12 1,)(G L9
11

d 1
X Z cos(th)+—(72- T

n=—c 4

)(GZ—LZ)

X 2 cos(2l—nQt).

n=-—oco

(7.4.3)

Because the total angular momentum G is conserved we
can restrict our attention to the dynamics of the canonical
pair (/,L), and ignore constant terms in the Hamiltonian.
We can further simplify the Hamiltonian by factoring
1/I;—1/1I, out, and rescaling time to get
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2 2_ 12 which we express in terms of the original variables
L Q \ Y (G*—L?) hich i f the original variabl
Hma =T—27621T(; t) 4 Lmax=2pmax+ Lr. (7.4, 12)‘
Y(GP—L?) "T® Q Notice that the maximum width is of the order of Jy.
Y — 2 008(21 —n_t ), (7.44) Next, we look for the condition on Q under which the
n=-—ow

where a=1/I3;—1/1,, and y=(1/I,—1/I,)/a. We will

‘concentrate on the case where <1, i.e., when the problem

differs from an integrable one by a small time-dependent
perturbation.

. A primary resonance occurs whenever the argument of
one of the cosines, in the Fourier expansion of Hm,p, is
stationary: 2(d/dt)]—n(Q/a) =0, for some n€Z. In order
to study the motion near the nth primary resonance, we
extract the resonance Hamiltonian:

_2+‘}’

: (G*—LY
Hiy=— L2+7 7

Q
cos(ZI—n P t), (7.4.5)

and ignore the other terms. The resonance Hamiltonian
contains one linear combination of angles. We can elimi-
nate the time dependence with a canonical transformation,
whose generating function is

1 Q
F(L,¢,t)=—5 (L-L,) (¢+n-&t), (7.4.6)

where (p,¢) is the new canonical pair, and L, is a constant
to be determined. Explicitly, the transformation is given by

L—L,
p_ 2 ’

! 2 7.4.7
—2(¢+nat). (7.4.7)
Replacing in H ., we get a time-independent Hamiltonian:

~ JF 7[G*—(2p+ L,)?]
Hres=Hru+E 4

2+y

Q
Xcos(¢p)—n Py (7.4.8)
Expecting small excursions away from the center of the
resonance, we ignore terms of order yp and yp?. We choose
L, to eliminate linear terms in p

nQ
L=,

a (7.4.9)

The momentum L, gives the angular momentum at the
resonance. Since | L| <G, we must have (2|a|G)/Q>1 for
primary resonances to exist, or A>hy=m/ |&|G. Ignoring
the constant terms in H,., we get

o (GP—LY
H,$=2p2+7/——4——— cos(¢) (7.4.10)
The halfwidth of the libration region of this pendulum-like

Hamiltonian is

V(G —L7)

Pmax= 2 s (7.4.11)

separation between the resonance centers is equal to the
sum of the halfwidth of their respective separatrices. This
condition, known as the resonance overlap criterion, was
used by Chirikov (1979) as a heuristic criterion for the
development of chaos in nonintegrable problems. Since we
are concerned with the numerical reliability of the method,
we will worry about the overlap between the n=0 reso-
nance, which enters the actual motion, and the n=1 reso-
nance, which was introduced by the discretization. The
condition for resonance overlap reads as follows:

280+ 205> | LV, (7.4.13)
or,

r|G \/Gz 2 2 (7.4.14)

r|6+ “\2a >_2(1' o

In terms of the step size, the resonances will overlap when

m(1+7y)
h>hro=—51eG -

The evolution can be affected by step size resonances
even if there is no serious resonance overlap. Thus, a more
conservative limit on the step size of the map is to require
that there are no primary step size resonances in the phase
space: h<hy.

(7.4.15)

7.5 Numerical Tests of the Free Rigid Body Algorithm

The numerical experiments discussed in this section are
intended to illustrate the conservation properties of the
rigid body algorithm, and the spurious resonances intro-
duced by the discretization.

The continuous free rigid body motion conserves the
kinetic energy. For an axisymmetric body, the mapping is
exact, and consequently conserves the energy explicitly.
However, for a triaxial body our free rigid body algorithm
was not designed to explicitly conserve the energy. We
expect that in this case the energy will oscillate with an
amplitude that changes algebraically with the step size, for
small enough step size. To illustrate this, we explored the
dependence of the energy error on step size, with a first-
order implementation of the algorithm. The behavior of
the energy error as a function of time is shown in Fig. 1 for
a rigid body which is close to axisymmetric: 7;=0.5,
I,=0.51, I,=1.0. The initial conditions for this trajectory
are: M,=0.0, and M;=0.999, with M =1.0. The step size
is h=0‘01Tpm, where Tp,ec=21r/(aM3(0)), and
a=1/I,—1/I;. As expected, the error oscillates and over
the displayed time interval does not appear to grow secu-
larly. As can be seen in the mapping Hamiltonian of the
previous section, the smaller the triaxiality of the rigid
body, the smaller the energy error at a given step size.

Of course, the amplitude of the energy error varies with
the step size. For this first-order version of the algorithm,
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310° T T T T

110 ’ . : . y / 3 . i
AE/E

S0

310 L L 1 L
010° 210 410 610 810" 110

time(T_ )

prec’

FIG. 1. The energy error in the free rigid body algorithm is plotted against
time. The step size was set at 1/100 of the axisymmetric precession fre-
quency, T

the energy error is linear with step size for small step size.
At large step sizes, step size resonances are encountered
which give large energy errors. This behavior is illustrated
in Fig. 2 for the same physical parameters and initial con-
ditions as in the previous example. The maximum energy
error over 5X10° iterations is plotted vs step size. The
peaks in the energy error occur at step size resonances. Our
stability analysis predicts primary resonances at step sizes
h/ T e =nM3(0) /2. Figure 2 confirms the prediction.
Next we look at the conservation of the spatial angular
momentum vector. Using the same rigid body but a

1198

1- M*(107%] o

-5

-10 L L ! !
4

6
time[10°T,,r..]

FI1G. 3. A free rigid body was followed with a second-order algorithm.
The error in the magnitude of the angular momentum vector is plotted
against time.

second-order version of the algorithm, we consider a tra-
jectory with M,(0)=0, M,(0)=0.6, M;(0)=0.8, and an
initial configuration which coincides with the inertial
frame. The free body algorithm is designed to conserve the
spatial angular momentum vector, m, and a fortiori, the
magnitude of that vector. However, in practice, roundoff
errors creep up on the integrals. As shown in Fig. 3, the
magnitude of m differed from unity by O(10™!!) after a
period of 107 Tprec- As far as the spatial components .of m

10!

Max(IAEVE,)

10° |

10¢ b

10”7
10"

10° 10

WT
prec

FIG. 2. The maximum energy error realized in 5X 10° iterations, in a first-order algorithm, is plotted against the step size. Energy jumps occur at step

sizes close to nT,../2, where 7 is the order of the primary resonance.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994AJ....107.1189T&amp;db_key=AST

rT992AT.- - CI07- 11891

1199 J. TOUMA AND J. WISDOM: LIE-POISSON INTEGRATORS 1199

1071 o

-10 L L L L

f 6
time [10% 7),,.]

FI1G. 4. The angular momentum of a free rigid body is fixed in space.
Here, we plot the error in m,, the y spatial component of the angular
momentum vector, against time. In this experiment, the configuration is
represented in terms of quaternions which are normalized every 100 steps.

are concerned, they are affected both by roundoff errors in
M and in the configuration. The configuration could be
followed either in terms of the standard rotation matrices
‘or in terms of the quaternions equivalent to them [see, e.g.,
Goldstein (1980)]. It is questionable whether quaternions
alone can help cut down on the roundoff errors, since one
pays the price for carrying four scalars (instead of the nine
required for matrices) in terms of more involved algebraic
operations. However, since our quaternions are of unit
“magnitude, we can enforce the special orthogonality of our
transformations by normalizing at regular intervals. Typi-
cally, we find that by normalizing the quaternions, Fig. 4,
we can cut roundoff errors by one order of magnitude be-
low the maximum errors accrued when we used standard
rotation matrices, Fig. 5. Thus, using normalized quater-
nions does cut down on roundoff error, but we suspect
more improvement can still be made.
~ In summary, the energy integral is conserved to the
order of the algorithm, as long as the chosen step size, for
a given trajectory, avoids the artificial resonances. The an-
gular momentum integrals suffer only from roundoff er-
rors, and care must be taken to reduce them. Writing the
evolution of the configuration in terms of quaternions is
useful in the struggle against roundoff errors.

8. LIE-POISSON INTEGRATOR FOR A RIGID BODY IN THE
FIELD OF A MASS POINT

Having developed algorithms for the free rigid body, we
now turn to the solution of the interaction Hamiltonian

H, interaction

A

1 3Gm,
Higieraction= _ﬁf tr(|)+ETS_R‘|R (8.0.1)

to complete the full spin-orbit map.

Am —
S22 (1071 0

-10 L L I L

4 6
time [108Tprcc]

FIG. 5. The same experiment as in Fig. 4 was carried out except that in
this case the configuration is represented in terms of standard rotations.

Using the spin-orbit Lie-Poisson bracket, the equations
of motion are

dR 0

dt—

4t =27 TOR—Z R+—pr (R-IR)R,
(8.0.2)

d 3Gm|

Ft M=—R5— RX |R,
where tr(l) stands for the trace of the inertia tensor.

Since, (d/dt)R=0, we trivially integrate the differential
equations

R(1) =R(0),
P(2) =P(0) + [ VeHinteraction] t
M(#) =M(0) + [R(0) X Ve Hinteraction]

The forces and the torques are evaluated at R(0), the rel-
ative position vector in the body frame % . Since the con-
figuration is not affected by the evolution generated by
Hieraction» We can assume that the configuration matrix at
time ¢ is given, and invert to get R(#) =C7(£)r(s). It is
natural to compute the Keplerian evolution in an inertial
frame, so the change in the linear momentum in the inertial
frame must be monitored

p(8)=p(0) +C(») [P() —P(0)]. (8.0.4)

Having integrated all the components of the spin-orbit
Hamiltonian, we are in a position to construct algorithms
for the motion of a rigid body gravitationally interacting
with a mass point. The simplest algorithm is first order in
time and consists of a step of Kepler and Euler and a step
of potential interactions. One can construct an algorithm

(8.0.3)
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which is second order in time by taking a half-step of Eul-
erian and Keplerian motion, followed by a full step of
potential interactions, and ending with a half-step of Eul-
erian and Keplerian motion. An Euler step updates the
configuration of the rigid body which can then be used to
compute the interactions in the rigid body frame.

If one is interested in a situation where the effect of the
rigid body on the orbit of the mass point is negligible, then
all that one has to do is to neglect the part of the interac-
tion that affects the linear momenta. Of course, in that
case, the total angular momentum is no longer conserved,
but the orbital angular momentum is. Such a situation
arises in the study of spin-orbit coupling in the solar sys-
tem. It has been investigated in detail in Wisdom et al.
(1984) and Wisdom (1987). Our algorithm presents an
efficient tool for dealing with this problem.

As an algorithm for Lie-Poisson dynamics, ours echoes
the generalizations of the ideas of Forest & Ruth (1990)
given in Channell & Scovel (1991, hereafter referred to as
CS91). These ideas are equivalent to the operator splitting
approach given in WH91 with a different motivation.
However, CS91 limit themselves, with Forest & Ruth
(1990), to Hamiltonians which can be written as the sum
of a kinetic and a potential energy. The approach of WH91
and our generalization to Lie-Poisson dynamics are not
limited to such Hamiltonians. Also, CS91 do not consider
the splitting of integrable problems into efficiently integra-
ble subproblems, a step we exploit in our derivation. Fur-
ther, the approach of WH91 has the added advantage of
giving us a handle on the time-dependent Hamiltonian that
is exactly integrated by the algorithm. This Hamiltonian
can in turn be used to analyze the structure of the spurious
resonances introduced by the algorithm as was done in
Wisdom & Holman (1992) and carried out for the rigid
body map in Sec. 7.4. Finally, CS91 presented efficient
implementations of the approach of Ge & Marsden (1988)
which involves an approximation of the dynamics via gen-
erating functions. However, as pointed out by CS91 the
explicit algorithms which use the operator splitting route
are, in general, faster than algorithms that use the gener-
ating functions approach.

As an algorithm for rigid body dynamics, ours differs
from the one presented in Austin efal (1991) on the
ground that our algorithm is Lie-Poisson while theirs,
which is based on the midpoint rule, only preserves the
Lie—Poisson structure to second order in the step size. The
midpoint rule provides second-order algorithms which
conserve integrals of motion which are linear or quadratic
in the coordinates. In that sense, the algorithm of Austin
etal. (1991) preserves both the energy and the angular
momentum of the free rigid body. However, while it traces
the trajectories on the sphere, it suffers from a systematic
lag in the configuration space. Since our applications have
an. energy which is not quadratic in the coordinates, the
m‘idpdint rule will not preserve the energy anyway, and
then it becomes advantageous to have the Lie-Poisson
structure preserved. Further, Austin e al. (1991) do not
provide higher-order generalizations of their algorithms.
To our knowledge none of these rigid body algorithms

2E(1079)

~16 L L L

2 3
time [10%T 4]

FI1G. 6. The error in the Jacobi integral of a Moon-like body moving on a
fixed circular orbit is plotted against time.

have been generalized to spin-orbit problems as considered
in this paper.

8.1 Energy Conservation in the Spin-Orbit Integrator

We explore the energy conservation properties of the
spin-orbit coupling algorithm. In most solar system appli-
cations, the rotational energy is negligible when compared
to the orbital energy. To get a handle on the rigid body
contribution to the energy, we look at a rigid body moving
on a fixed Keplerian orbit. Of course, in this case, neither
the total energy nor the total angular momentum vector
are conserved. However, by choosing the orbit to be circu-
lar, and moving to a frame that is rotating at the orbital
rate, we get rid of the periodic time dependence, and obtain
a “Jacobi”-like integral which captures the contribution of
rigid body interactions to the energy [see Wisdom (1987)].
As an example we considered a body with the Moon’s
moments of inertia which is moving on a fixed circular
orbit and used a second-order version of the algorithm. We
started the body spinning at the orbital frequency about the
axis with largest principal moment, and tipped that axis 0.1
radians with respect to the orbit normal. We monitored the
variation in the integral of the motion over a time span of
5000 orbits, with a step size of 1/100 of the orbital period.
The result is shown in Fig. 6. The error in energy oscillates
and shows no signs of secular growth, a commonly ob-
served feature of symplectic integrators. We carried out a
similar experiment with an axisymmetric Mars-like body
spinning about the axis with largest principal moment at
Mars’ current rotational period and attitude. With a step
size of 1/100 of the orbital period, the energy oscillates
with an amplitude of order 10™!! as can be seen in Fig. 7.
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~
T

-8 L L L L
6

4
time (10* Torpir)

FIG. 7. The error in the Jacobi integral of a Mars-like body moving on a
fixed circular orbit is plotted against time.

9. GENERALIZATIONS: THE DYNAMICS OF RIGID BODIES
IN THE SOLAR SYSTEM

Now that we have derived a mapping for following the
motion of a rigid body gravitationally interacting with a
mass point, it is a simple matter to generalize to more
complicated situations.

9.1 One Rigid Body in the Gravitational n-Body Problem

The step from one mass point and a rigid body to # mass
points and a rigid body increases the computational effort,
but leaves the conceptual framework practically un-
changed. The Hamiltonian of this problem is given by

1 "oop? o Gmm;
H=-M-I"'M+ X —— Y —
2 o 2m; ol LT

n

Gm
B z fB |’u+CQ| am(Q),
t;él

where, in this case, the massive central body has index 0
and the rigid body has the index 1. We carry out the fol-
lowing operations on the Hamiltonian.

(9.1.1)

(1) Transform the Hamiltonian to heliocentric (or Ja-
cobi) coordinates to eliminate the center of mass motion.

(2) Further transform the Hamiltonian by moving to a
frame rotating with the rigid body.

(3) Expand the potential interaction between the rigid
body and the mass points in terms of Legendre polynomi-
als and keep, as before, three terms of the expansion.

(4) Group into two separate Hamiltonians the terms
governing the free motion (Keplerian and Eulerian), and
the interactions (translational and rotational).

We work in a heliocentric framework since it is natural for
computing the rigid body interactions. We carry out the

steps outlined above and end up with the following Hamil-
tonian:

ﬁ = I& Kepler + IA{ Euler T fi interactions + }AI indirect » ( 9. 1 . 2)
where '
- & (P Gmgm,
Hyeper= 2, 52— ,
Kepler igl (2#1' Ro: )
fo M M M
EBuer =1, " 21, " 215’
A " Gm,mj
Higyeractions= — 0 <2<. —R_
i<j ij
Gm; 3Gm
E (ﬁrtr(l) zfs—Ru Ry |,
xqél
(9.1.3)
I‘-'\Iindirect 2 zlp Pj’
0 ij
JFE

where 1/u;=1/m;+1/my.

We note that the Lie—Poisson bracket that we derived
for the case of a rigid body interacting with one mass point
generalizes naturally to the case of » mass points. The
reduction was made possible by moving to the rigid body
frame, a step we can still take in this problem. All we have
to do is to account for the additional torques on the body
and the reaction forces on the mass points

d A N N
7 Ro= (RA}=Ro XVl + Vo A,

d . R .
— P={P,A}=P XV Vg A, i=1,..n,

7 (9.14)

M ={M,H}=MXVyH+ Z Ro;XVg,, )i 8

The Keplerian motion is found by using a Kepler solver
like the one discussed in WH91. The Eulerian free body
motion is solved using the Lie-Poisson algorithm we pre-
sented above. The Hamiltonian H,g; . results from the
transformation to the noninertial heliocentric frame. Since
it only depends on the linear momenta, it will only affect
the position vectors

Roi(1) = Ro:(0)+ EP,, =1, (9.1.5)

1#1

The interaction Hamiltonian depends on the relative
distances between the various objects. Thus, as before, this
Hamiltonian affects the momenta only, leaving the position
vectors and the configuration of the rigid body unchanged.
We integrate it to get
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Roi(2) =Rg(0),

P,(1) =P;(0) — [VR Hinveraction]ts i=1,n,  (9.1.6)

n
M(#)=M(0) + '20 le(o)vaﬂf{interaction Z
J=
J#1

where the forces and torques are evaluated at Ry;(0),
i=1,..,n.

This completes the integration of the parts. Finally, we
construct a mapping that approximates solutions to the full
Hamiltonian by following the method of WH91. A second-
order mapping will consist of: a half-step along Hjeractions
which modifies the momenta; a half-step along Hgicect
which modifies the position vectors; a full step of Keplerian
and Eulerian motion; a half-step H4;re.; With the current
momenta, and a final half-step of Hieractions -

9.2 Two or More Rigid Bodies in the Gravitational
n-Body Problem

This case generalizes the previous one. We will be in-
terested in cases where the first three Legendre polynomi-
als in the potential expansion are sufficient. This allows us
to ignore rigid-rigid interactions, or equivalently, to as-
sume that each rigid body sees all the other bodies in the
system as mass points. Thus, the problem reduces to the

previous one, except that we have to follow two or more
angular momentum vectors and configurations instead
of one.

10. SUMMARY

We derived a symplectic integrator for a free rigid body,
which conserves the magnitude of the angular momentum
vector and its orientation in space. Two equivalent versions
were discussed: one made use of a canonical Poisson struc-
ture, the other of the Lie-Poisson structure of a free rigid
body. Numerical experiments explored the conservation
properties of the algorithm. Roundoff errors were reduced
by using a quaternion formulation, with timely normaliza-
tion. The energy error was bounded, and suffered from
large increases at resonant step sizes. The time-dependent
Hamiltonian, which generates the algorithm, was used to
analyze the primary resonances introduced by the discret-
ization. The free rigid body integrator was incorporated in
the n-body integrator of WH91, to provide a mapping for
the dynamics of one or more rigid bodies interacting grav-
itationally with mass points. This mapping is Lie-Poisson
in the sense that it preserves the Poisson structure and the
symmetries generated by the Lie group of Euclidean trans-
formations.

We thank M. Holman for his invaluable support during
all the stages of the project, and A. Toomre and S.
Tremaine for helpful discussions. We thank J. Marsden,
J. C. Simo, and S. Wiggins for discussions on symplectic
integrators.
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