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Abstract. Symplectic integration algorithms typically yield trajecto-
ries that exhibit spurious oscillation in energy and state variables. In
the delta function formulation of symplectic integration these oscilla-
tions have a clear origin, and canonical transformations can be made to
remove them. The accuracy of symplectic integrators is substantially im-
proved when combined with these symplectic correctors. The methods
developed here are generally applicable to the integration of perturbed
dynamical systems, but illustrated here by applications to the planetary
n-body problem.

1 Introduction

And so I turn to the abyss
Of necromancy, try if art
Can voice or power of spirits start,
To do me service and reveal
The things of Nature’s secret seal,
And save me from the weary dance,
Of holding forth in ignorance.
Then shall I see, with vision clear,
How secret elements cohere,
And what the universe engirds.

— Goethe’s Faust

In the delta function formulation of symplectic integration (Chirikov [1979),
Wisdom [1982] [1983], Wisdom [1988], Wisdom and Holman [1991] [1992]), the
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mapping approximation is derived by adding high frequency terms to the Hamil-
tonian in such a way that periodic Dirac delta functions are formed; the evolution
of the resulting mapping Hamiltonian is a composition of the evolutions governed
by the separately integrable pieces of the original Hamiltonian. The added high-
frequency terms are argued to be unimportant to the long-term evolution by the
averaging principle, provided stepsize resonances do not overlap and are avoided.
The delta function formulation leads to the same algorithms as the Lie series compo-
sition formulation, but the motivation is different. In the delta function formalism
the mapping is explicitly derived from a mapping Hamiltonian, which is motivated
by the averaging principle. The Lie series composition formulation is motivated
by the desire to have symplectic algorithms with a high order match of the Taylor
series of the solutions. Recent reviews of the symplectic integration literature are
given by Sanz-Serna [1992] and McLachlan [1995a).

Analysis of the mapping Hamiltonian with techniques from non-linear dynamics
(most notably the resonance overlap criteria) allow stability criteria to be developed
for the integration algorithms (Wisdom and Holman [1992]). It is not at all appar-
ent how a similar discussion of the non-linear stability of the integration algorithms
could be carried out in the pure Lie series composition formulation. Stepsize reso-
nances are clearly exhibited by the algorithms, but they have no clear origin within
the Lie series formulation. On the other hand, stepsize resonances have a clear ori-
gin in the delta function formalism, and furthermore the delta function formalism
gives a quantitatively correct description of the stepsize resonances (Wisdom and
Holman [1992]).

Trajectories computed with symplectic integration algorithms typically display
spurious oscillations in energy and state variables. These oscillations cloud the
issue of determining the accuracy of the computed trajectories. The averaging
principle and the oscillatory nature of the errors suggests that the mapping method
is more accurate than a naive view of the apparent errors suggests. The Lie series
formulation gives no clear insight into the origin of the oscillations nor provides
any means of removing them except through going to higher order and /or smaller
stepsize. The mapping Hamiltonian in the delta function formalism gives a clear
understanding of the origin of the spurious oscillations in energy and state variables.
In this paper, we show that the evolution of the mapping and the real evolution
are more closely related than is suggested by the agreement of the Taylor series.
We show that it is a mistake to identify the mapping variables and the actual state
variables. In fact, we show how to relate the mapping variables to the real variables
and consequently remove the spurious oscillations, and in many cases dramatically
improve the accuracy of the integrations without going to higher order or smaller
stepsize. A preliminary sketch of some of these ideas was presented in Wisdom
[1988], and they have already been used to some extent in Tittemore and Wisdom
[1988] [1989] [1990]. The results presented here are deeper and the methods are
generally applicable.

2 Perturbation Theory of Symplectic Maps

Consider a general Hamiltonian of the form

H=Ho(Jl,Jz)+€H1(J17J2,91,92)7 (2.1)

< e AR
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where, for convenience, we have chosen canonical coordinates (J:,6;) for which the
unperturbed problem governed by Hy is cyclic in the coordinates. We shall focus on
problems with moderately small e. Two degrees of freedom are enough to exhibit
the problems and our solutions to those problems. In the end our formulation is not
only independent of the number of degrees of freedom, but coordinate independent
as well.

A simple mapping Hamiltonian is generated from H by adding high-frequency
terms so that the Hamiltonian becomes

HMap = H()(Jl,.]z) + 6H1(J1, J2, 91, 92)27!'6277 (Qt), (22)
where
Son(t) = D 6(t—2mn), (2.3)

is a periodic sequence of Dirac delta functions with period 2r (Wisdom [1982]).
Central to understanding the averaging motivation for the mapping method is the
Fourier representation
1 oo
ban(t) = o > cos(nt). (2.4)
n=—oo

Across each delta function the evolution is governed solely by H;, and between the
delta functions the evolution is governed solely by Hy. The mapping provides an
approximation to the evolution of H by a composition of the evolutions governed by
the pieces. If the component Hamiltonians are integrable and efficiently solvable,
then the mapping provides an efficiently computable approximation to the evolution
generated by the full Hamiltonian. As a conventional integration algorithm, the
map presented above is only accurate to first order if the state of the system is
recorded at integer multiples of the mapping period ¢t = nAt = n27/Q. However
if the state of the system is recorded halfway between the delta functions, the
mapping is accurate to second order in the mapping stepsize. Construction of higher
order mappings through the delta function formulation is discussed by Wisdom and
Holman [1991].

To prepare for perturbation theory, we first express the perturbation as a mul-
tiply periodic Poisson series

H = Ho(Jl,Jz) +€Zaij(J1,J2)COS(i01 +j02) (25)
1J
where, for convenience, we assume only cosine terms appear in the expansion of

H,. Using the Fourier representation of the periodic sequence of delta functions,
the Poisson series for the mapping can be written

H = Hy(J1,J2) + EZaij(Jl, J2) cos(i6y + jOo + nQit). (2.6)

iyn
In this form it is apparent that the mapping Hamiltonian differs from the true
Hamiltonian by the terms with n # 0. Now, we use ordinary perturbation theory

to formally eliminate these terms and thus provide the connection between the
mapping phase space variables and the real phase space variables.
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We use Lie series in the extended phase space to facilitate the manipulations
of canonical perturbation theory. Define the Lie derivative Lw by

OW of oW af
Lwf = {W,f}=2{a*qiég ‘Tma—m}

(2.7)
where, as indicated, the curly brackets denote the usual Poisson bracket. The op-
erator e‘W generates canonical transformations. This is easy to see by replacing ¢
by t and W by —H, then the exponential generates the Taylor series in time of any
dynamical variable, and time evolution is canonical. A function of the phase space
coordinates evolves only as a result of the evolution of the coordinates; thus the Lie
transform of a function is the function of the Lie transformed coordinates. Alter-
nately stated, the inverse Lie transform of a function evaluated at the transformed
coordinates gives the original function of the original coordinates. Thus if a canoni-
cal transformation is carried out by a Lie transform, the Hamiltonian governing the
evolution of the transformed coordinates is the inverse Lie transform of the original
Hamiltonian. Keep in mind that the manipulations are formal and the resulting
series may not converge. To use Lie series with time dependent Hamiltonians it is
convenient to go to the extended phase space, we promote the time ¢ to canonical
coordinate status, with associated canonical momentum 7, and introduce a new
time 7. The Hamiltonian in the extended phase space is obtained by adding T to
H: H' = H +T. The equation of motion for ¢ is dt/dr = OH' /0T = 1, confirm-
ing that the original dynamics is preserved. For an introduction to Lie series see
Steinberg [1985).

We ask: What generator W can be used to eliminate the n # 0 terms from the
mapping Hamiltonian? Applying e~¢Iw to H' we find, to first order in €, that W
must satisfy the equation

or
oW oW oW o
w1'671 + wg—% + 5 ij%g a;j cos(i6 + jf, + nft) =0, (2.9)

where we have introduced the notation
aHO (Jl ) J2)
aJ; ’

and represented the terms that must be added to H; to make the delta functions
by Hy = H, (2762, () — 1). The solution of this equation is

wi(J1, Jo) = (2.10)

J1, J2) sin(i0; + j6, + nt)
w) + jwy + nf '

Q;;
W(J1, J2,6:,6,) = Z i
17,n#0

(2.11)

Notice what has been accomplished. Formally, this transformation eliminates
all terms that differ between the real Hamiltonian and the mapping Hamiltonian
up to order €2. Contrast this with the Taylor series expansion for the generalized
leap frog which contains error terms of order ¢, the largest of which is generated
by {Ho, {Ho, H,}}. Even without further consideration of the perturbation theory,
this is consistent with our suggestion that most of the error in the generalized leap



Symplectic Correctors 221

frog is of an oscillatory nature and can be removed by a canonical transformation.
However, we need a more practical representation of the generating function.

Note that n only appears in the sine function and in the denominator. This
fact allows the sums over n to be carried out. By expanding the sine of the sum,
we find

W= "ay; [sin(i6l + j62) F(iw; + juws, 2, t) + cos(ify + 762)G(iwy + jwa, Q,1))(2.12)

i

where we have introduced the functions

Q 2
Fwt) =Y Sos{niit) é) - Q_“; Lsg”m) (2.13)
n#0 L n>0 (%) = i
and
G2 =3 *_S‘n(”ﬂé) _ _% nsin(nQ) (2.14)
n#0 w+n n>0 (%) - n?

These sums converge provided w + n # 0, for any n. The functions F(w,Q,t)
and G(w,,t) are both periodic in time with period 27/Q, the mapping stepsize.
Explicitly:

meos(wt — %) 1

F(w,,t) = A wmE o (2.15)
for 0 < Ot < 27, and
n(wf — T
G(w,Q,t) = —fin(‘f’”‘wﬂ), (2.16)
Q  sin =

for 0 < Qt < 27, with G = 0 for Ot equal to integral multiples of 2. The periodic
extension of F' is continuous but has discontinuous derivative for Qf = 27n. The
periodic extension of G is discontinuous at Qt = 2mn, and the sum converges to the
midpoint of the discontinuity: G(w,Q,27n/Q) = 0. We have the limiting values
G(w,9,0) =0, G(w,Q,0%) =7/Q, G(w,0,07) = —7/Q2, where 0" and 0~ indicate
limits from above and below, respectively.

We note some further properties of F and G. First, both F and G have zero
time average, as is evident from the original Fourier representation. We also note
that

Gw,,t) = %%F(w,n,t). (2.17)

This fact can be used to deduce the summed form of G from the form for F without
explicitly performing the sum. The maximum value of F occurs at Qf = 7

1 1

s
S A - 2.1
Fw,2,m/9) Qsin¥ W’ (2.18)
which, for small w/Q, is approximately
2
Flw,Q,m/Q) ~ =Y (2.19)

602"
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The minimum value of F occurs at wt = 0; for small w/§ it has the approximate
value:

2w

F(w,Q,7/Q) ~om2 (2.20)
Note that the magnitude of the function F is larger at t = 0 than at t = 7/Q. The
extreme values of G are given by the limiting values around ¢ = 0. Recall that the
stepsize of the mapping is At = 27/, and note that the extreme values of F are
proportional to At?, whereas the extreme values of G are proportional to At. Both
F and G have two zeros. G(w,Q,0) = G(w,Q,m/) = 0. The zeros of F satisfy a
transcendental equation.

The first lesson we haved learned by performing the sum over n is that, for
small step size, the correction from map coordinates to dynamical coordinates is
minimized at the midpoint of the interval between the delta functions, when the
larger correction proportional to G is zero by virtue of the vanishing of G. Recording
the state of the system midway between the delta functions minimizes the error of
the mapping if the distinction between mapping variables and real state variables is
ignored. Thus, from yet another point of view (see Wisdom and Holman (1991}, for
two others) we have discovered the generalized leap frog. The real lesson, though,
is that the mapping variables and the actual variables are not the same, and that in
fact they differ in an explicit calculable way. The leap frog is only the best solution
if the distinction between these variables is ignored, and then the error is of order
€. Maintaining and accounting for the distinction between mapping variables and
actual variables, the error of the mapping method is of order €2, and this is true at
any time, not just at the time midway between the delta functions.

3 Illustration

A natural test application is to the pendulum. Consider the Hamiltonian
1,
HZEJ + ecos. (3.1)
We make a simple mapping approximation by introducing the delta functions:
1
Hyap = §J2 + 2mor ()€ cos b. (3.2)

The equations of motion are just Hamilton’s equations. Crossing a delta function
changes the momentum:

J' = J+ Atesin6, (3.3)

where At = 27/Q), the mapping stepsize, and between delta functions the angle
rotates uniformly

0 =0+ AtJ'. (3.4)

At intermediate times between the delta functions the angle is rotated appropri-
ately to that time. Of course, with a simple change of notation this is just the
standard map (Chirikov [1979]), but without the usually assumed periodicity in
the momentum variable. The usual standard map parameter is given by K = At2e.



Symplectic Correctors 223

In this case, since the perturbation has a trivial Fourier expansion, the generator
for the corrector can be given in closed form:

W = [sin(8) F(w, 2, t) + cos()G(w, 2, 1)), (3.5)

with frequency w(J) = 8Hy/8J = J. The transformation from the mapping vari-
ables to the real variables is

ow

_ ~€Lw s
J=e I =~ Iy + € ) Ny (36)
and
oW
_ ~€Lw o~ _
9—8 0M 0M 6‘6‘] M. (3.7)

The subscript M indicates mapping variables. Using this Euler approximation to
the evolution generated by W gives a corrector that at order ¢ is correct to all
orders in At. The Euler formula is not symplectic, but this can hardly matter since
the corrector is applied only to the output points and the corrected output points
are not used further in the integration.

The maximum of the energy error for several methods is displayed in Figure 1.
We compare the uncorrected first order map, the generalized leap frog, the corrected
leap frog, and the fourth order method of Candy and Rozmus [1990], Yoshida [1990],
and Forest and Ruth [1990]. Since the problem is artificial nothing guides the choice
of parameters, so the parameters have been chosen to get the attention of the reader.
Whether the idea of using correctors is useful will depend on application to problems
of interest with appropriate parameters. On the principle that we should compare
error of different methods for similar work, the stepsize used for the fourth order
method is three times the stepsize for the leap frog, since three force evaluations
are required for each fourth order step. Note the especially poor performance of
the fourth order method. For this choice of parameters, the corrected map does
substantially better than the other methods. Note also that the output time of the
corrected map is not limited to the midpoint between the delta functions. That is,
the corrected map is as accurate at any output phase.

4 Development of F and G

In general the perturbation will not have a simple Poisson series, so the prac-
tical use of the transformation to and from mapping coordinates will rest on the
development of more practical expressions for the generating function. To this end,
expand F' and G as power series in the ratio w/$ (which we presume here to be
less than 1). We find

2w cos(nQdt) 2w , w\%
F(w, Q,t) = h—2 — m = _W ;ng_{_z(ﬂt) (§> (41)

and

2 in(nQt) 2. W 28
G(w,ﬂ,t):-ﬁz%=5;52i+1(m) (5) , (4.2)

n>0 \Q
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o 2 3

Figure 1 The maximum energy error for various methods is plotted as a

function of the initial momentum. The dotted line is the uncorrected map.

The dot-dashed line is the generalized leap-frog. The dashed line is the fourth

order composition method. The solid line is corrected map. The performance

of the corrected map is substantially better than that of the other methods.

The parameters are: € = 0.001 with At = 1. The initial angle in all cases is
= m. The error plotted is the maximum over 10000 iterations.

where

Cifr) = 3 Sstor) (4.3)

n>0

and

s =% fﬁgﬂ (4.4)

n>0

Both C; and S; are 27 periodic in 7, and they have zero average. The functions C;
and S; have the important properties: Si(1) = —=dCiy1/dr and Cy(7) = dS;y1/dr.
Note that in F and G the index of C is always even and the index of S is always odd.
We introduce the function E; such that Ey; = (=1)*2Cy; and Eg;y; = (=1)*28941,
then the E; are a set of 27 periodic functions with zero average possessing the
interesting property that E;(1) = dE;.;/dr. These properties determine all of
the E; given F;. The sum for F; is recognized as the Fourier series for a line:
Eyr) =m—-7for0 <7 < 2n, and Ei1(0) = 0. Thus the E, are in fact all
polynomials. It turns out that the E, can be written in terms of the Bernoulli
polynomials

En(r) = - (QZ!)an(T/zw). (4.5)

[ R R —



Symplectic Correctors 225

The generating relation for the Bernoulli polynomials is

it tn—l

ef_ r= nzzo By (x)— (4.6)
The first few are:
o = e
B§E§§ o :§$ W (4.7)
By(z) = z*—22%+ 22— %.

The representation of E; in terms of Bernoulli polynomials is only valid in the
interval 0 < ¢t < At, and is otherwise periodically extended. For consistency, we
must add

Eo(1) = 2mban (1) — 1. (4.8)

We return now to the development of the generator W. Substituting for F' and
G their expansions in terms of the C' and S polynomials, we find

W = Z [ {sin(i&l + ]62) [—é—c;)Czk+2(Qt) <%)2kJ
1j,k>0
+ cos(iy + j6y) [%S%H(Qt) (%)Zk] } . (4.9)

Notice that each term can be written as a multiple Poisson bracket of H, with
terms of H;. Performing the sum over i and J first, the terms can be regrouped
into H;. We have then
Ek(Qt) k—1 1 t k—1rk-1
W=> —or L H = —At =B a7 ) ATILETHL (4.10)
k>0 k>0

This is a practical relation, as desired. The generator is written as a Taylor series
in the stepsize the terms of which involve successively higher order Poisson brackets
of Hy with H; with rapidly decreasing coefficients. Notice that the expression is
independent of the number of degrees of freedom, and coordinate free as well. The
derivation is easily extended to n-degrees of freedom, with the same result.

5 Lie Series Correspondence

Lie series simplify the formulation of higher order composition methods (Forest
and Ruth [1990], Yoshida [1990] and Wisdom and Holman [1991]). In this section
we present the Lie series correspondence of the correctors introduced in the last
section.

Let A = AtLy, and B = AtLy,. Taylor series for the evolution of the actual
system for one timestep are generated by the operator eA*t5. The generalized leap
frog approximation to the evolution for one timestep is generated by e4/2¢BeA/2,
The error is third order in the timestep; the generalized leap frog is, in this sense,
a second order integrator. More formally,

e?/2eBeA/2 _ oA+B _ —2—14[,4, [A, B]] + %[B, (B, A]] + o(At?). (5.1)
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A gazillion such higher order integrators are known (see, for example, Koseleff
(1993]). Note that even though the error is of order At3 it is first order in ¢. In
fact, there are error terms which are first order in € at all orders in At.

In the previous sections we found, however, that the mapping method, including
the generalized leap frog as a special case, is actually better than the error in
the Taylor series suggests. That is, the evolution generated by the mapping has
calculable and removable high frequency oscillations. It is a mistake to identify
the mapping variables and the actual variables. More properly, we must not only
derive the mapping approximation to the evolution, but we must also derive the
relationship of the mapping variables to the actual variables.

In the Lie series formulation, the operator that corresponds to the mapping
evolution to a time after a delta function of t = alAt, where 0 < < 1is

gli—ajigBgod (5.2)

Of course, this approximates the true evolution only to first order in the stepsize,
the local truncation error is proportional to €At?, unless the output point is midway
between the delta functions (a = 1/2) and then the local truncation error is of order
eAt3. We now realize though that the mapping variables do not correspond to the
true variables and before evolving with the mapping we must transform to mapping
variables and after the mapping step we must transform back to the real variables.
The generator W of the Lie transformation that transforms to mapping variables
has been derived in previous sections. Let C(a) = Lw(a) be the Lie derivative
corresponding to the generator W, then

e—C(a)e(l—a)AeBeaAec(a)’ (5.3)

generates an evolution which is correct at order € to all orders in At. The fact that
the corrector depends on the phase of the output « illustrates the high-frequency
nature of the corrections. If only a single output phase is considered, as, for example,
in the leap frog, the high-frequency oscillatory character of the error is not apparent.
It is “strobed” away. We introduce a notation for the commutator with respect
to the operator A: L4B = [A,B] = AB — BA. To carry out the corresponding
canonical transformation we need the operator Ly . The Lie derivative with respect
to the Poisson bracket of two generating functions is the commutator of two Lie
derivatives with respect to the individual generating functions. Thus the expression
for Ly, can be immediately written down in terms of 4 and B:

Bk « e
Ca) = Lw(e) = - 3 2 pi1g (5.4
k>0 '
For the special case of a = 1/2 this is
1 7T 22n—1 _ 1 S
C = ﬁLAB—%z:ABjL...(QTL)W__IBQnLA B, (5.5)

where B, are the Bernoulli numbers. This corrector eliminates the error terms that
are first order in € to all orders in At. Use of the corrector does not affect substan-
tially the efficiency of the mapping if output is uncommon, because successive steps
can be combined: the effect of the e~ is reversed by the following eC, and the
two factors of e®* and e =4 may be combined into a single factor of e. Only
when output is desired do we actually have to carry out the e step. McLachlan

e AN
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(personal communication (1994]) has pointed out that Butcher [1969] developed a
similar idea to extend the order of explicit Runge-Kutta methods.

Though, no doubt, the complete expression for C' could be derived entirely with
the commutator algebra of A and B, the delta function formalism has provided
the motivation for the approach as well as given us the complete expression to
all orders in At by simple analysis. Independent of o the third order error term
is —(1/24)L% A, which is second order in €. At this point, this is the real error
of the method, the other errors were only apparent errors because the mapping
coordinates were being mistaken for the actual coordinates.

6 Lie Series Implementation

The generator for the transformation from mapping coordinates to real coordi-
nates has been written in terms of successive Poisson brackets of Hy and H 1- Since
this transformation need be done only at the output points, the efficiency of the
implementation of the corrector is unimportant. The most direct implementation
is to numerically integrate Hamilton’s equations corresponding to the generator.
A more convenient approach is to represent the corrector as a composition of the
readily computable evolutions governed by Hy and H;. In this section, we present
a representation of the corrector as such a composition. We optimize efficiency of
derivation rather than attempting to find the most efficient composition. That can
be done later.

We note a key formula for manipulating Lie series involving correctors, the
effect of a corrector on a kernel:

eCefeC = oK+LoK+3LEK+ _ e CK (6.1)
This formula is used repeatedly in the following development. With the knowledge
that there is only one independent nt* order bracket involving a single factor of
K, it is easy to prove this relation by matching the coefficients of the O™ K terms
in the expansion (see, for example, Belinfante and Kolman [1989]). The corrector
formula provides a convenient base form from which to generate Lie series products
because of the simplicity with which higher order terms are determined.

We here assume output of the mapping has been taken midway between the
delta functions. Thus we shall derive a product corrector for the leap frog. For
this case, we recall that the corrector has only brackets involving an even number
of factors of Hy and H,. A convenient form that has this property is the product
of two corrector forms. Let

eX(al,bl) = e‘“Aeb‘Be_a‘A. (62)

All terms in X are proportional to B. Now let
eZ = eX(al,bl)eX(—lI],—ln). (63)
Constructed in this way, Z has only terms with an even number of factors of A and

B, at order €. Composition of such forms maintains this property.
We write the corrector as a product of factors of Z:

eC = eZ(aubl)eZ(aquz) . ,eZ(anybn). (6.4)

e A

R e Towe—
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Let ¢, be the coefficients of L7} B in the corrector. The constraint equations are
easily written down using the corrector formula:

n.o.m
a,; bl
Cm =2 g =, (6.5)
i=1

m:

As a set of linear equations for the bi, the coefficients form a Vandermonde matrix,
which has a simple explicit inverse. Given a set of a; all of the L7 B constraint
equations can be satisfied by choosing the b; to be solutions of these linear equations.
We do not want the corrector to introduce error terms of order €2, because this
same corrector will be used subsequently with higher order methods. If we select
a; = —any1-; for 0 < ¢ < n, then b, = —bn+1-i, then the coefficient of the L'zBA
term is automagically zero as required. The coefficient of the L5L%B term is also
zero. This form then satisfies all of the constraints for arbitrary a;. Calculation
of the inverse Vandermonde matrix is carried out with rational arithmetic to avoid
any possible numerical difficulties. A sample solution is:

45815578591785473 ,3

a=la ; b= 24519298961757600

_ . _ —104807478104929387
az=2a ; by= 80063017017984000 1

_ . __ 422207952838709
a3 =3 | by = gttt 3

_ . _ —27170077124018711
a4 =4 by = Forgmasaerriaa B

_ _ _ 102433989269
as =5a ; bs= 1539673404103 0

_ . _ —33737961615779
a6 =6 | bs = 31500089 45000

_ . __ 26880679644439
a7 =Ta ;b= FsTsi0roeaio0s B

a8 =8a ; bs = 7icirscorroassseon

with a; = —aj7_;, and b; = —by7_;, for 8 < 3 < 16, and o = ,/7/40 and
B = 1/(48a). The scaling of a; and b; by o and 8 was made to reduce the
first two non-zero ¢; (c; and c3) to unit magnitude. Introduction of these scal-
ings was convenient, but not necessary. This corrector has an error term of order
LY B. TIts performance for the pendulum for the parameters used above is nearly
indistinguishable from that of the closed form expression for the corrector on the
logarithmic scale. Correctors of lower order do not perform as well. We should
keep in mind that different order correctors may be suitable for different problems.
This implementation of the corrector is suitable for testing our ideas; optimal im-
plementation of this and the other correctors derived below can be addressed in
subsequent investigations.

7 Application to the N-Body Problem

The mapping method has been developed for the n-body problem by Wisdom
and Holman [1991]. They tested the method with billion year integrations of the
system of the outer planets (Jupiter to Pluto). Subsequently, Wisdom and Suss-
man [1992] used the mapping method to carry out 100 million year integrations

e S,



Symplectic Correctors 229

of the whole solar system. These integrations confirmed the chaotic character of
the evolution of the solar system (Laskar [1989]). Integrations of the whole solar
system are extremely time-consuming and, practically speaking, would not have
been possible without the speed of the mapping method. Unfortunately, the inte-
grations were plagued by the high-frequency components. We now have a general
prescription for removing them.

First consider the energy error. Most of the energy of the system is contributed
by the massive planets, yet the small inner planets have the largest coordinate er-
rors because for them the stepsize is a relatively larger fraction of the orbital period
than for the outer planets. So the energy error is not a fair measure of the accu-
racy of an integration of the whole solar system. Nevertheless, it is interesting to
examine it. Figure 2 shows the relative energy error (energy minus initial energy
divided by initial energy) in the 100 million year integration of the whole solar
system (Wisdom and Sussman [1992]). Early in the integration the energy error is
of order a few parts in a billion, and there is no apparent increase in the magnitude
of the error for the duration of the integration. Output was taken about every
20,000 years, and successive points are connected by lines for easy visibility. This
presentation gives the false impression that the error varies on timescales of tens
of thousands of years. The data are intact, and the corrector can be applied to the
output even years after the integration was carried out. Figure 3 shows the energy
error after the corrector has been applied to the output. Here the energy of the
corrected output is compared to the energy of the corrected initial condition. Note
that the scale has to be expanded by a factor of a hundred to see the variations in
the energy after correction. The high frequency oscillation, which we have argued
all along to be unimportant (Wisdom [1982] [1983], Wisdom [1988], Wisdom and
Holman [1991] [1992], Sussman and Wisdom [1992]), has almost completely been
removed. The remaining energy error shows a secular linear drift, and is probably
real integration error. The slope of the relative energy drift is of order 2 x 10~!1
per 100 million years, or about 4 x 10~2! per integration step. For comparison, the
relative energy error in the Digital Orrery integration of the outer planets using
a specially chosen “magic” stepsize was about 2 x 1019 per integration step, and
that was about a thousand times smaller than the error achieved in all previous
long term integrations of the solar system (Sussman and Wisdom (1989]). The
mapping achieves better energy conservation without the use of magic stepsizes.
Both of these integrations use pseudo quadruple precision (compensated summa-
tion) in a small select subset of the calculation, but most operations were carried
out in ordinary IEEE double precision with about 16 digits. On the average, in
the mapping integration of the whole solar system it took about 40,000 integration
steps to accumulate one bit of relative energy error! Of course, it is not completely
fair to compare the errors achieved in the integration of different systems. The
only other long-term direct integration of the whole solar system is the 3 million
year integration of Quinn, Tremaine, and Duncan [1991] who used a high order
symmetric integrator (Quinlan and Tremaine [1990]). These integrations also used
select pseudo quadruple precision. The symmetric integrator is also subject to
large energy oscillations, which may or may not be removable. On a 3 million
year timescale, they estimate the energy error in their integration to already be

6 x 10~11, which is larger than the energy error achieved by the mapping after 100
million years.
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Figure 4 The longitude errors of the planets over 100,000 years using cor-
rected initial conditions. The largest errors are in the inner planets, as ex-
pected. At the largest time displayed, the errors, from largest to smallest, are
for the planets: Mercury, Earth, Venus, Mars, Saturn, Jupiter, Neptune, Pluto,
Uranus.

Unfortunately, we now understand that the transformation from real coordi-
nates to mapping coordinates should be carried out before the integration is begun.
The adjustment of the initial conditions is small and does not substantially affect
the conclusions of that study, since satisfactory agreement with other integrations
was already observed, but the integration could have been better. The error in
the initial conditions is most clearly manifest in the growth of the error of the
longitudes of the planets, since small errors in the orbital frequencies produce sec-
ularly increasing longitude errors. Keep in mind that errors in longitude are not
believed to be important to the long-term evolution of the solar system; indeed,
Laskar removes the longitudes entirely through averaging. To examine the growth
of longitude errors we compared a reference run with integrations with and without
the corrector. In these runs we used a stepsize of 7.2 days, the same as the stepsize
used in the 100 million year integrations, and no extended precision calculations
were used. The reference run used the corrector, partial quadruple precision, and a
stepsize reduced by a factor of 10 (from 7.2 days to 0.72 days). We found that the
longitude errors grew linearly, both in the run with the corrector and in the run
without the corrector. The errors in the run without the corrector are primarily due
to using uncorrected initial conditions. The longitude errors in the corrected run
are dominated by truncation error. The longitude errors in the corrected run are
displayed in Figure 4. As expected, the largest longitude error is in the motion of
Mercury. The longitude errors of the other planets are much smaller. The growth
of the longitude error is linear on this timescale. Since the energy is experiencing
a very small linear growth, we can expect that the growth of the longitude error

!
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is actually quadratic, but apparently the coefficient is too small to substantially
affect the behavior. The effective relative error in the mean motion of Mercury
using uncorrected initial conditions is 7 x 10~8. With corrected initial conditions
the effective mean motion error is 5 x 1079, For comparison, in the integration of
Quinn, Tremaine, and Duncan, the longitude error of Mercury also grows linearly,
with an effective mean motion error of about 4 x 107°. Keep in mind that the
mapping integration took much larger steps: 7.2 day steps for the mapping, versus
0.75 day steps for the symmetric method. If the mapping step were reduced by
this factor of 10 we could expect a factor of at least 100 improvement in the errors,
assuming roundoff errors do not limit the improvement. The mapping calculations
used for illustration here were carried out without extended precision, but the sym-
metric method used partial extended precision. Honestly, though this application
of the corrector was very successful, we were surprised that the corrector did not
reduce the longitude error of Mercury more than it did. Order arguments suggest
there should have been much better improvement. We return to this issue in later
sections.

We are speaking here of integration error. It should be noted that Sussman
and Wisdom [1992] used a model for the general relativistic effects that repre-
sented the relativistic precession correctly, but made a small error in the mean
motions. Though the model could have been improved (see the appendix in Saha
and Tremaine [1992]), it was not considered important because the detailed longi-
tudes are believed to be unimportant, and at the time it appeared that the mapping
did not get the longitudes right anyway. Since the correctors have fixed the lon-
gitude errors, the modelling error is now larger than the integration error, though
still probably unimportant physically.

The mapping method was derived as an efficient approximation to the evolution
of the planets that might be only qualitatively correct because of the presence of the
high-frequency terms. It turns out that the mapping is not only efficient, but, when
used in conjunction with appropriate correctors, the mapping method surpasses the
accuracy of competing integration schemes.

8 Extension to Higher Order

In this section we consider the problem of extending the method to higher order
in e.

Deriving mappings accurate to higher order in € is facilitated by reinterpreting
the transformation from mapping variables to real variables derived above. We
shall call this the mapping transformation. Rather than asserting the Hamiltonian
for the mapping and then deriving the correction that to some extent converts the
mapping Hamiltonian back into the original Hamiltonian, we can use the inverse
of the mapping transformation to go directly from the true Hamiltonian to the
mapping Hamiltonian plus some error terms. We would like to keep track of the
error terms and extend this process to higher order in .

We apply the transformation to mapping coordinates but now keep track of
second order terms in e. At this stage the mapping Hamiltonian is

Hvap = eW(Hy+T + eH,)
= H0+T+€{VV,H0+T}+%62{VV,{VV,HO+T}}
+eH, + 62{I/V, H]} + 0(63)
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The generating function W has been designed to insert high frequency terms so
that perturbations become multiplied by delta functions to give local integrability.
Let H, again denote the terms that must be added to H; to make 2762, () Hy .
By construction we have {W, Hy + T} = H, and

1 .
Huap = Ho + T + 2162, (Qt)eH, + €2{W, H; + 5Hl}. (8.1)
We shall denote the terms proportional to €2 by Hy; these terms need to be

brought into a more useful form. To facilitate this, introduce the notation F,, and
G, for the Fourier coefficients of F' and G-

F(w,9,t) = > Fn(w, Q) cos(nt) (8.2)
n>0
G(w,92,t) = > Gn(w, Q) sin(nft) (8.3)
n>0
We have:
Hy, = {Ziwoaij [sin(i6; + j65)F, cos(nft)

+  cos(if + j62)G,, sin(nt))], H; (1 +1 > om0 cos(mQt)) } .

Using the bilinearity of the Poisson bracket and the fact that T does not occur in
this expression, we find

= 5 W Hi} + S2n6,0(Qt) (Wt = 0), H) (8.4

That is, the €2 terms are naturally written as a sum of oscillatory terms plus another
set of terms multiplied by periodic delta functions.
The mapping Hamiltonian at this point is

HMap =Ho+T + 271'62,.-(Qt) [EHl + 5 2{W(t = 0),H1}}
+ €{W,Hi} + o )

The oscillatory term can be pushed to higher order with a second corrector
transformation. Let W3 be the Lie series generator for thls canonical transforma-
tion. Applying e¢ *Lwy to Hwmap, and requiring that the €2 oscillatory terms are
killed, we find the determining condition for Wo:

{WQ,H0+T}+ E{W,Hl} =0. (85)

This equation has the solution

Epia(
QZ k&,fw )ZL PLy, L% Hi, (8.6)

as mav be verified by substitution. This corrector removes all oscillatory terms of
order €2. Specializing to the case 0t = 7 or t = At/2 the leading term in the second
corrector is

W, = —%At%m L} Hi, (8.7)

where we have used the fact that Ly,Ly, Ly, Hy = Ly, L%o H,.



234 J. Wisdom, M. Holman, and J. Touma

After using the second corrector the mapping Hamiltonian is
1
HMap = HO +T + 271’627|—(Qt) [GHl + 562{W(t = O), HI}J + 0(63) (88)

In general the leading term in the energy error is of order €® and is proportional
to the fourth order bracket L%,IL HoH1. If we specialize to Qt — 7, then the leading
error terms are still of order € but contain the two independent fifth order brackets
Ly,L% Ly, H,, and Ly, LyyLy, Ly, H, = L}’{IL%,OHl that are of order 3.

McLachlan [1995b] introduces a useful notation to describe the order of inte-
gration methods for perturbed problems which distinguishes the order of the error
at each order of e. The order is described by the list of the powers of the highest
matching term in the Taylor series, for successive powers of €. If the order is de-
scribed as (ny,ng,...) the terms ! A¢n are correctly represented. Termination of
the list indicates that all following terms are the same order as the last term. The
methods developed in the previous section are, in this notation, (oo, 2), when the
explicit closed form generator can be used. The particular Lie series composition
formula we have presented for the corrector gives a composition integrator of order
(16,2), but the method described can be used to achieve any desired order to first
order in . When it is straightforward to extend the method to any desired order
we shall continue to speak of the the order as co. In McLachlan’s notation, the
order of the mapping Hamiltonian developed in this section is generally (0o, 00, 3),
but with a = 1/2 the order of the mapping Hamiltonian is extended to (00, 00,4).

9 Lie Series Correspondence

In this section we translate the results of the last section into the Lie series
language introduced earlier. For simplicity we consider only the case of @ = ¢ /At =
1/2.

We have deduced

eA+B — e~Ce—CzeKeCQeC, (91)

where the kernel of the mapping is

oK — eA/2eB’eA/2, (9.2)
where,
1 1
! = Sl B—- —_ 3 e ;
B B+24£B£A 1440£B£AB+ (93)
the corrector C is the same as before,
C=Ly=-_r B— ' LAE &« (9.4)
W T ™A T prgota ‘
and
7 2
=—— B+.... .
Cy 5760£B£A + (9.5)

Recombining terms we can check that the integrator has the declared properties,
and confirm that the error in the Hamiltonian is of order e3A¢5. We find that the

leading error terms in representing Ly = A + B are
11 5 1,

— A+ —L3ZA. 9.6

5760 “ALBA T 7395k (9.6)

L o
LBL5B + 720

360
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In general it will not be possible to evaluate the kernel directly, and we are
naturally led to develop approximations by composing Lie series. Whereas the
efficiency of the corrector is not critical at all, it is particularly important to find
expansions of the kernel with as few steps as possible, so that the mapping will be
efficient. Here, however, we are interested in testing the ideas and leave the optimal
expansion of the kernels for later investigation.

One key constraint on the expansion of the kernel is that B’ must not have any
terms of the form L}'B for any m > 0. One way to guarantee this (but perhaps
not the only way) is to use the corrector formula again

B = e¥eBe Y (9.7)

with all terms in Y containing at least one factor of B. The form of B’ severely
constrains Y. In fact, up to terms of order € we can write Y = B + Lw (t=0)/2,
where (3 is arbitrary and will not enter the final kernel. The task of representing
the kernel is reduced to representing Y:

Be©) prp. (9.8)

Y=p8B+) o

k>0

Now, except for the term involving 3, Y contains only odd powers of £ multiplying
B. One way to obtain this is to represent e¥ as a product of two exponentials with
one exponential argument obtained from the other by reversing the sign of both A
and B, thus preserving only the even terms in the product at order e. The product
will have €2 terms but these become € when wrapped around the central factor of
eB. One way for each of these factors to be represented as exponentials with all

terms in the exponential proportional to B, is to again use the corrector formula.
Using X as defined before

eX(a;,b;) = ea‘AeblBe_‘“A. (99)
All terms in X are proportional to B. In terms of X the simplest expression for Y
satisfying the stated constraints is

eY == eX(a1,b1)eX(_U-17-bl)_ (910)

Combining factors, we find that the coefficients a; and b, must satisfy a1b; = —1/48
to match the k = 2 term, and the k = 1 and k = 3 terms are zero as required, but
the k = 4 term cannot simultaneously be matched. So with this Y the error in the
kernel is of order €2At5. A convenient choice is: a; =1/8 and by = —1/6. The full
kernel is then:

ekzegAe—gB —-3A_ LB 1A B -1A —1B la lp 34 (9.11)
We cannot say if the same order (including the absence of spurious LB terms)
could have been obtained with fewer factors. We consider ours a “trial” solution, to
test the ideas, and leave open the issue of whether there is a better product kernel
at this order.

Consider next the problem of representing the correctors. We are interested in
the problem of determining a corrector that is consistent in order with the kernel
just derived. Thus, we require that the €? terms up to fourth order in At be
correctly represented, so that the error in the integrator remains of order e2A¢5.
The second corrector contributes terms of order €2At5 to the integrator, so it may
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be ignored for the moment. The corrector we have already derived is thus of the
required order.

Though the mapping Hamiltonian is correct to order (00, 00,4), the practical
implementation of this mapping in terms of the composition of Lie series that
we have found is limited to order (00,4). It is a fourth order method with error
proportional to €2. Implementation of the kernel to higher order as a composition is
straightforward, but not pursued here. In this sense the method is still theoretically
(00, 00,4).

10 Special Cases

Some simplifications occur for Hamiltonians of the form Hy = T'(p) + V,(q)
with quadratic T and H, = Vi(g). The n-body problem has this form, where H,
represents the Keplerian motion of each planet with respect to the Sun, and H,
represents the planetary perturbations.

The Hamiltonian that governs the evolution across the delta functions is mod-
ified by a term proportional to {W(t=0),H,}. The leading term of this series is
proportional to {Hy, {H;, Hy}}. For Hamiltonians of the special form just described
this bracket depends only on the coordinates and can thus be integrated along with
H, which also depends only on the coordinates. Unfortunately, the remaining terms
in the expansion of {W, H,} are not zero, and not obviously integrable. Failure to
include these terms results in a fourth order integrator (truncation error propor-
tional to €?At®) with an energy error of order e?At*. Nevertheless, taking the
special form of the first term into account provides a very efficient, very accurate
fourth order integrator. The truncation error is of order €2, and there is only a
single modified force evaluation per step. By comparison, the standard fourth or-
der Runge-Kutta method has four force evaluations per step, and the Forest-Ruth
fourth order symplectic scheme has three force evaluations; both of those methods
have local truncation error that is first order in e.

Explicitly, let

2
_ p;
Hy = % —Qmi +Volqr, ..y qn), (10.1)
and
H, :‘/I(QIV'-',Qn)' (102)

The Hamiltonian governing the evolution across the delta functions has the two
leading terms

1 1 1 /6V;\?

The modified “kick” is

OH oV g1 1 0V, 8%V
N S e , 10.
Ap; At dq; A 9g; At 12 &~ m; Oq; 0q;0q; N

1

For the n-body problem the extra terms are not expensive, since all the required
Square roots and inverses already have been computed to evaluate the original
kick, so the modified kick involves no more than summing products of previously
computed quantities.
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Koseleff [1993] mentions that in the special case of H = T(p) + V(q) there is
a similar possibility of using a modified potential, but apparently, without using
the correctors, order four can only be reached with two modified force evaluations.
Here we reach fourth order with one modified force evaluation.

Wisdom and Holman [1991] raised the question of whether there were higher
order methods that did not take backward steps. Their motivation was to maintain
a Hamiltonian description of the algorithm. With negative steps, the representation
as a delta function Hamiltonian is lost since the time order cannot be encoded in the
scalar Hamiltonian. Yoshida [1993] subsequently answers the question negatively,
by reference to a theorem by Suzuki [1991]. These theorems notwithstanding, we
have here fulfilled both of the original goals we earlier set for ourselves. We have
an accurate fourth order method that has a Hamiltonian representation, and fur-
thermore involves only one force evaluation per step. It is interesting to note that
the kernel involves no backward steps. In the Lie series implementation of the cor-
rector, the backward steps required by the theorem are all hidden in the corrector.
It is worth pointing out, though, that the corrector could also be implemented as a
numerical integration of the generator, and then there would be no backward steps
at all. Of course, in this case the theorems do not apply.

Next, we present an interesting alternate form of the modified kick. We note
that the expression for the kick is the beginning of a multidimensional Taylor series
expansion of the kick at a displaced point. Explicitly, denote the unmodified kick
component functions by

oy
i) = il !
(o) = -ar ) (10.5)
and let
, At
z; :l‘j-l-TTnjkj(x). (106)

Then the modified kick is given simply by
p;/ =p;+ kj(x/), (10.7)

The coordinates are unchanged in this step

The intermediate values z; are discarded. Higher order terms are also generated,
but they are of order €3, and so are ignorable at this stage. Strictly speaking, the
error term lowers the order from fourth order to third order. Whether this matters
depends of the magnitude of the €2 At* error term compared to the e2At5 error term.
By combining three force evaluations we can keep the method fourth order. For
the lazy implementer, this expression gives an approximation of the modified kick
with very little extra programming effort. The cost is that two force evaluations
are required this way. This version of the map is still symplectic since the change
in p is only a function of z, and z is not modified. The two-force-evaluation scheme
is of order (00,4, 3), the three-force-evaluation scheme is of order (00,4,4). We do
not have a direct generalization of this method to higher order.

These schemes look a lot like Runge-Kutta schemes in the sense that forces
are evaluated at intermediate positions which are discarded in the final step. So in
this sense we have an explicit symplectic generalization of the Runge-Kutta method
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that is third or fourth order in stepsize (depending on the form used), with error
terms proportional to 2.

11 Application to the Restricted Three-Body Problem

In this section we illustrate the use of the higher order mapping derived in
the previous three sections. This mapping is a fourth order integrator that has
truncation error proportional to €. We apply the mapping to the integration of
the planar circular restricted three-body problem: an infinitesimal mass moving in
the orbit plane of two massive bodies which themselves move in a circular relative
orbit. In this illustration, the mass of one of the bodies is small: 0.001 times
the total mass of the system. This is a crude model for the motion of asteroids
perturbed by Jupiter. We split the Hamiltonian into two-body Kepler motion with
respect to the “Sun” and perturbations from “Jupiter,” as in the n-body problem
(see Wisdom and Holman (1991]).

In an inertial frame, the circular restricted problem has two degrees of freedom,
with explicit time dependence. In the frame rotating with the massive bodies the

what is traditionally called the “Jacobj” constant. It is natural to test integrators
by the extent to which they preserve this integral.

To be specific, we choose to study an initially circular orbit with semimajor axis
0.63 times the distance between the massive bodies. The test particle is started
on the line between “Jupiter” and the “Syp.” This orbit is close to an orbital
resonance, and consequently develops moderate eccentricity.

The relative error in the Jacobi constant is plotted against the number of steps
per orbit in Figure 5. The integrations spanned 200 orbits. The curve at the
top is the maximum relative error in the Jacobi constant using the uncorrected,
unmodified second order mapping (M2 - for second-order map). The next curve
down is the maximum relative error for the second order map used in conjunction
with a corrector (CM2 - Corrected Map of 274 order). The same corrector was
used here as in the n-body example. The bottom curve is actually. three curves
superimposed. This is the relative error using the modified kick in conjunction
with the corrector (CMM4 - Corrected Modified Map of s order). It is also the
error obtained using the two-force-evaluation Runge-Kutta, implementation of the
modified kick as described in the last section. Finally, the bottom curve is also the

the last three methods are all fourth order, even the two-kick method which could
have have a third order component proportional to 3. Of course, among the higher
order methods, the most efficient is the mapping with the explicitly modified kick,
followed by the two-force-evaluation Runge-Kutta approximation, followed by the
general purpose five kick Lie series product kernel. Note how ineffective it would
be to try to eliminate error by reducing the stepsize alone. Whereas, using the
corrector with some version of the modified kick is very effective at reducing the
error.
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Figure 5 The relative error in the Jacobi constant versus number of steps
per orbit, for several methods. The top curve is the error for the second
order mapping (M2). The middle curve is the error for the second order
mapping used in conjunction with a corrector (CM2). The bottom curve is the
error for the fourth order corrected modified mapping (CMM4), the two-force-
evaluation Runge-Kutta approximation to the modified kick with corrector,
and the product kernel.

The most interesting result is not that the error behaved as expected, but
rather how the observed error differs from that expected. The error of all the
methods seem to be dominated by some “unexpected” error at large step sizes.
This error could have several origins, and we are not sure which is the culprit.
It could be a failure of the corrector to have high enough order. This does not
seem to fit. The corrector we are using is correct to At!7, but the observed falloff
is more like At'®. It could result from the fact that our derivation of the general
purpose corrector formulas used here presumed that the mapping frequency is large
compared to the frequencies present in the motion so that we could expand in the
ratio of these frequencies. Thus we may be seeing what happens when that assumed
condition is not satisfied. Another possibility is that we are seeing error introduced
by stepsize resonances (Wisdom and Holman (1992]), which are most apparent at
large stepsizes. We suspect that this is indeed a stepsize resonance problem.

We note that we have seen a similar high order falloff in a corresponding study
of the energy error in the solar system as a function of stepsize, though the tests
are much more limited. At the adopted stepsize of 7.2 days, the corrector seems to
have less effect on the solar system integration error than we a priori expected (the
corrector only improved the mean motion of Mercury by a factor of 10, and the en-
ergy by a factor of 100), but with a stepsize of 3.6 days the error dramatically drops
and thereafter at smaller stepsizes the error falls off as a fourth order integrator
should. The same phenomenon is seen here, but is more easily demonstrated since



240 J. Wisdom, M. Holman, and J. Touma

M2

SY12

MV S2
CM2

MV S4
-6 F

AM radians]

CMM4

-18 L ! s L
0 1 2 3 4 5

logiot[orbits]

Figure 6 The error in the mean anomaly versus time of a fictitious asteroid
in the three-dimensional circular restricted three-body problem for various
methods.

the integrations take less time. In the case of the solar system we confirmed that
higher order correctors did not solve the problem. Had we used only a factor of
two smaller step in our 100 million year integration of the solar system, we would
have had dramatically smaller errors!

Next, we consider the errors in longitude. Here we investigate the orbit studied
by Saha and Tremaine [1992]. They were also interested in removing the effect of
the spurious oscillations exhibited by the mapping trajectories. By “warming up”
the trajectories they cleverly removed some of the ill effects of these oscillations
without explicitly modelling the oscillations or removing them. By studying the
same orbit we can compare the efficacy of our corrector method to the “warmup”
method. The infinitesimal body orbits the “Sun” with a semimajor axis of about
half the distance between the massive bodies. The orbit has moderate eccentricity
e = 0.25, and moderate inclination i = 0.2 radians with respect to the plane of the
massive bodies. They used roughly 100 force evaluations per orbit.

Figure 6 shows the error in mean anomaly of the test-particle for various meth-
ods as a function of time. In addition to the errors for the mapping methods,
the errors for several other methods are also displayed. These are approximations
to the data displayed in the paper by Saha and Tremaine. The method MVS?2
refers to the second order Wisdom and Holman (1991] mapping with “warmup,”
the method MVS4 is the Forest and Ruth [1990] fourth order method with Wisdom
and Holman [1991] components using “iterated start,” and SY12 is a twelve step
symmetric method (Quinlan and Tremaine [1990]). The performance of the cor-
rector is comparable to that of the warmup procedure in eliminating spurious drift
of the longitudes. Of course, the corrector does more than fix the longitude drift,
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it removes the spurious oscillations from the trajectory itself, so all aspects of the
calculation are improved. Also shown is the error in longitude when the modified
kick is used. Here the modified kick is programmed explicitly. The reduction in
the error is dramatic. The modified kick reduces the error by roughly six orders of
magnitude below the uncorrected second order map. The illustrations by Saha and
Tremaine were all limited by truncation error rather than roundoff error; partial
extended precision was used in this last calculation so that the error would continue
to be dominated by truncation error rather than by roundoff error.

12 Suggestions for Future Research

The delta function formalism has suggested the use of correctors, and previous
sections have directly explored this idea with a perturbative treatment of mapping
Hamiltonians involving delta functions. This formalism leads to a particular set
of integrators and a particular set of correctors. Of course, many other symplectic
integrators are derived purely by matching Taylor series. Unfortunately, with in-
tegrators based solely on Taylor series matching there is no clear identification of
which error terms are high-frequency and which would lead to secular growth of
error. Nevertheless, we can also develop correctors for these integrators. In this
case, since matching the Taylor series is the sole criterion for an integrator we could
develop correctors that compensate for as many terms as possible. We may also
develop composition integrators which are intended from the beginning to be used
with a corrector. Presumably, the latter approach is the most economical path to
high order, since the kernel must satisfy a much reduced set of constraints, only
that the error terms be correctable, not that they be zero. Following this line of
investigation, it would be interesting to determine whether the particular kernels
suggested by the delta function formalism behave better or worse than kernels based
purely on Taylor series order.

Another interesting avenue of investigation, in many ways related to the one
presented here, is to look for composition methods that explicitly take into account
the relative magnitudes of Hy and H;. Koseleff (1993] and McLachlan [1995b] have
already pursued this line of investigation.

13 Summary and Exhortation

The spurious oscillations exhibited by symplectic integration schemes have a
clear origin in the delta function formulation. We have developed canonical trans-
formations that remove the spurious oscillations. For perturbations with simple
Poisson series we give explicit closed form expressions for the generator of these
canonical transformations. For more complicated problems, we have developed
general expressions for the correctors that are coordinate independent and valid for
any number of degrees of freedom.

We have illustrated the use of these correctors with applications to the n-body
problem. Applied to the old data from the 100 million year integration of the solar
system of Sussman and Wisdom [1992] the correctors have allowed us to reduce the
apparent energy error in that integration by two orders of magnitude. Even more
dramatic reduction of error is possible if the correctors are used with forethought.

The mapping method was originally based on first order averaging arguments.
The mapping method is here extended to second order. A very efficient, very accu-
rate fourth order mapping is obtained. Several different forms of the fourth order
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mapping are presented: a general purpose Lie series product formula, an explicit
symplectic Runge-Kutta formula, and a single modified kick formulation. The lat-
ter two are special forms for problems such as the n-body problem. The modified
kick mapping achieves fourth order with a single force evaluation. Application to
the restricted three-body problem illustrates the dramatic decrease in the error in
energy and longitude achieved by this higher order mapping.

The delta function formalism has been uniformly ignored in reviews of the
symplectic integration literature, presumably because it is considered non-rigorous.
Yet, the delta function formalism gives algorithms that are equivalent to the compo-
sition of Lie series approach. Furthermore, the delta function formalism gives clear
insight into problems faced by symplectic integration schemes, and, more impor-
tantly, it provides solutions. Knowledge of their names gives power over demons.
With the delta function formalism we can determine non-linear stability where
other avenues lead only to linear results. With the delta function formalism we
can quantitatively understand the origin of artifacts introduced by the algorithmic
discretization. Practitioners of other methods simply shake their heads in despair.
With the delta function formalism we understand the origin of the spurious oscil-
lations induced by the discretization, and the delta function formalism has here
provided a way to remove the oscillations and dramatically improve the accuracy
of symplectic integrators. However it may appear to some, the delta function for-
malism is not necromancy. You might try whispering “delta functions” three times
over your notes to see if the problems will disappear, but a better idea is to learn
to use delta functions, and appreciate the wisdom they have to offer!
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