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Abstract

Slichter modes refer to the translational motion of the inner core with respect to the outer core and the mantle [Slichter, L.,
1961. The fundamental free mode of the Earth’s inner core. [Proc. Natl. Acad. Sci. U.S.A. 47, 186–190]. The polar Slichter
mode is the motion of the inner core along the axis of rotation. Busse [Busse, F.H., 1974. On the free oscillation of the Earth’s
inner core. J. Geophys. Res. 79, 753–757] presented an analysis of the polar mode which yielded an expression for its period.
Busse’s analysis included the assumption that the mantle was stationary. This approximation is valid for planets with small inner
cores, such as the Earth whose inner core is about 1/60 of the total planet mass. On the other hand, many believe that Mercury’s
inner core may be enormous. If so, the motion of the mantle should be expected to produce a significant effect.

We present a formal framework for including the motion of the mantle in the analysis of the translational motion of the inner
core. We analyze the effect of the motion of the mantle on the Slichter modes for a non-rotating planet with an inner core of
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rbitrary size. We omit the effects of viscosity in the outer core, magnetic effects, and solid tides. Our approach is pe
nd is based on a linearization of Euler’s equations for the motion of the fluid and Newton’s second law for the moti

nner core. We find an analytical expression for the period of the Slichter mode. Our result agrees with Busse’s in th
ase of a small inner core. We present the unexpected result that even for Mercury the motion of the mantle does not s
hange the period of the oscillation.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The Slichter modes, first studied inSlichter (1961),
efer to the translational motion of the inner core with
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respect to the outer core and the mantle. The first an
ical treatment of the problem was performed byBusse
(1974). In the past 12 years, there has been an e
sion of scientific activity in the research of the norm
modes of the Earth primarily due to the emergenc
superconducting gravimeters capable of detecting
relative motion of the inner core by measuring the v
ations in the Earth’s gravitational field. Some auth
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believe that evidence of Slichter modes can be found in
the existing gravimeter data(Smylie, 1992). However,
a definitive detection has proven to be controversial
(Crossley et al., 1992; Jensen et al., 1995; Hinderer et
al., 1995)and the search for Slichter modes continues
today(Courtier et al., 2000; Rosat et al., 2003), along
with active theoretical research(Smylie and McMillan,
2000; Rogister, 2003).

The upcoming observations of Mercury(Peale et
al., 2002; Spohn et al., 2001)will present an exciting
new opportunity for the study of the Slichter modes.
Many believe that much like the Earth, Mercury too
has a solid inner core in a fluid outer core(Schubert
et al., 1988). However, unlike the Earth’s inner core
whose mass is 1/60 of the total planet, Mercury’s inner
core may be enormous(Siegfried and Solomon, 1974)
with a radius that is nearly 2/3 of the radius of the planet
and mass that is about 60% of the total planet. A simple
conservation of linear momentum computation shows
that the amplitude of the mantle’s oscillations equals
about 10% of the amplitude of the inner core, compared
to 0.1% for the Earth. The change in the gravitational
field due to a displacement of the inner core will be
nearly 100 times greater for Mercury than for Earth
making the detection of the modes a less challenging
proposition.

The rotation of the planet leads to a split in the spec-
trum yielding the “Slichter triplet”: a single axial (or
polar) mode and two equatorial modes, retrograde and
prograde. The three eigenperiods are evenly spaced by
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core and the mantle and Euler’s equations for the mo-
tion of the liquid core.

Looking ahead, we find that the motion of the man-
tle will have little effect on the period of the Slichter
modes for the Earth and even for Mercury, for which
it will introduce a correction of only about 0.1%. This
is an unexpected and counter-intuitive result given the
significant amplitude of the mantle’s oscillation. Com-
pare two simple systems, in one a massm is connected
to a stationary wall by a spring of stiffnessk. This sys-
tem is analogous to a stationary mantle and it frequency
of oscillation is

√
k/m. In the other system, the mass

m is connected by the same spring to a mass of 10m

which is free to oscillate. This is analogous to a mov-
ing mantle of a moving mantle and we explain below
why 10m is appropriate. The frequency of oscillation
of the second system is

√
11k/10m which constitutes

an almost 5% difference from the first system. The fact
that we obtain an estimate of 0.1%, rather than 5%,
highlights the effect of the fluid on the dynamics of
the system and demonstrates the necessity for a formal
analytical approach.

2. Model and methodology

Undoubtedly, an advanced model of the Earth is
needed for a thorough analysis of the Slichter oscilla-
tions and accurate prediction of the eigenperiods. In all
likelihood, such models will require the use of numer-
i lves
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r for
bout a quarter of an hour. Of the three modes, the
ar mode is best suited for analytical treatment. A
omplete analytical treatment of the polar mode
resented byBusse (1974). Busse considered a si
le three-layer model of the rotating spherical Earth
hich the outer core was incompressible, inviscid
f constant density. As we show below, Busse’s res
re consistent with the assumption that the outer m

s stationary.
We generalize Busse’s analysis to a planet wh

uter mantle is allowed to move. In the process,
uild a formal analytical framework for analyzing
hree-layer planet, which can be used to incorpo
ore complicated effects, such as ellipticity of the
rs, possible phase transformations at the inner c
uter core boundary, and compressibility of the o
ore. Our analysis will be performed from “first prin
les”: Newton’s second law for the motion of the in
cal methods. We set a more modest goal for ourse
nd that is to study the effect of the motion of the m

le. We therefore choose to study a simple problem
an be carried through analytically.

We consider a three layer model of a pla
Fig. 1) with a rigid inner coreΩ1 of densityρ1 and
adiusR1, a fluid outer coreΩ2 of densityρ2 and ra-
iusR2, and a rigid outer mantleΩ3 of densityρ3 and
adiusR3. We assume that each density is constant
n be the boundary of domainΩn. We study the osci

ations of the inner core under the influence of g
ty and fluid pressure. We assume that the fluid o
ore is incompressible and neglect the effects of vis
ty. We excludefrom consideration therotationof the
lanet which can affect the frequency of even the p
lichter mode since it affects the dynamics of the fl
The fluid plays two important roles. It creates

estoring gravitational force and is also responsible
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Fig. 1. The equilibrium configuration.

the effects of pressure. Our approach treats pressure
in a formal way as governed by the Euler equations.
Slichter and Busse provide an insightful decomposi-
tion of pressure force into a hydrostatic component and
one that is a response to the acceleration of the inner
core. Slichter combined the gravitational force and the
hydrostatic pressure into a single expression that van-
ishes when the densities of the inner and outer cores
match.

The spherically symmetric mantle does not exert any
gravitational forces on the internal bodies. Only its total
mass is relevant and so we expect that the final answer
includesρ3 andR3 only in the combinationρ3(R3

3 −
R3

2). In the absence of the fluid outer core, the inner
core would be in a state of neutral equilibrium (any
deviation from our idealization will cause the inner core
to “fall” onto the mantle). Consequently, our eventual
expression for the oscillation frequency must approach
zero in the limitρ2 = 0.

Our approach is perturbative, in which every con-
figuration of the system is treated as a small devia-
tion from the spherically symmetric stable configura-
tion and all velocities are small. The “unperturbed”
spherically symmetric gravitational potential isψ0 and
its rate of change∂ψ/∂t, determined perturbatively, is
induced by the motion of the system. We solve for the
fluid velocity fieldvR, v
 (v� = 0) and pressurepcon-
sistent with the translational motion of the inner core
and the mantle.

We would like most of our intermediate expressions
to generalize to the case of multilayer fluid planets as
well as to the study of phase transitions. To this end we
describe the motion of the constituents of the system
by specifying the normal velocitiesC of the interfaces
(seeAppendix A) and assuming, for as long as possible,
that C is completely arbitrary. We express the three
normal velocity fields in the vicinity of the equilibrium
configuration as harmonic series

C1(θ, φ) = R1 iω eiωt
∑
l,m

Clm1 Ylm(θ, φ) (1a)

C2(θ, φ) = R2 iω eiωt
∑
l,m

Clm2 Ylm(θ, φ) (1b)

C3(θ, φ) = R3iω eiωt
∑
l,m

Clm3 Ylm(θ, φ) (1c)

where φ is the longitude,θ the colatitude, and
Ylm(θ, φ) are spherical harmonics normalized to
unity:

∫
|r|=1

Yl1m1(θ, φ)Y∗
l2m2

(θ, φ) dS = δl1l2δm1m2,

where∗ means complex conjugation. Here and in all
subsequent expressions involving complex numbers
t

ere
c .
I
i e-
l

C

aking the real part is implied.
The normal boundary velocity of a rigid sph

an be fully represented by thel = 1 harmonics
f the inner core is moving with velocityv =
ωR1 eiωt(AX1 , A

Y
1 , A

Z
1 ) then the resulting normal v

ocity C is given by

1(θ, φ) = v · N
= v1 sinθ cosφ + v2 sinθ sinφ + v3 cosθ

= iωR1 eiωt

(√
2π

3
(AX1 − iAY1 )Y1(−1)(θ, φ)

+
√

4π

3
AZ1Y10(θ, φ)

+
√

2π

3
(AX1 + iAY1 )Y11(θ, φ)

)
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Fig. 2. The velocity of the interface induced by the velocity of the
sphere’s center,C = v3 cosθ.

resulting in

C
1(−1)
1 = (C1,1)∗ =

√
2π

3
(AX1 − iAY1 ) (2a)

C10
1 =

√
4π

3
AZ1 (2b)

Therefore, if the oscillation of the inner core takes place
in the axial direction with amplitudeR1A

Z
1 , Eq. (2b)

represents the relationship between the amplitude and
C10

1 . Fig. 2 illustrates this computation for the axial
motion of the sphere.

3. Overview of the analysis

We consider the “axial” mode in which the inner
core and the mantle oscillates along the planet’s axis
of rotation. Of course, since we ignore the effects of
rotation, the axial direction is in no way preferred
and our oscillation mode is triply degenerate. How-
ever, the degeneracy is not much of an issue since it
is removed from the mathematical analysis by a pri-
ori stating the direction in which the oscillation takes
place.

The oscillation frequencyωwill be determined from
the relationship that states that a homogeneous linear
system of equations has a nonzero solution if and only if

its determinant vanishes. The two equations arise from
conservation of momentum for the planet as a whole
and Newton’s second law for the inner core. The two
unknownsC10

1 andC10
2 are, essentially, the amplitudes

of oscillation of the inner core and the mantle.
We nondimensionalize many of our expressions by

using a length scaleR∗ and a densityρ∗. The partic-
ular choice ofR∗ andρ∗ can be made later. Introduce
the dimensionless densities�n and dimensionless radii
Qn:

�n = ρn

ρ∗
; Qn = Rn

R∗
(3)

and a convenient quantity (G is the gravitational con-
stant)

Ψ∗ = 4π

3
Gρ∗R2

∗ (4)

that has dimensions of gravitational potential.

3.1. Conservation of momentum

Conservation of momentum is particularly easy
to convert to a linear equation. It is equivalent to
stating the center of mass of the system remains at
rest:

4π

3
(ρ1 − ρ2)R3

1iωR1A
Z
1 eiωt

4π

U id
m
m
n t
e

(

T ntle
a∣∣∣∣∣
+
3
ρ2(R3

2 − R3
1)iωR2A

Z
2 eiωt

+ 4π

3
ρ3(R3

3 − R3
2)iωR3A

Z
3 eiωt = 0

tilizing (2b), recognizing the fact that for a rig
antleR2A

Z
2 = R3A

Z
3 (or Q2C

10
2 = Q3C

10
3 ), nondi-

ensionalizing by dividing through byρ∗R4∗ and, fi-
ally, cancelling

√
4π/3iω eiωt , we obtain our firs

quation:

�1 − �2)Q4
1C

10
1 +Q2(�2Q

3
2

+ �3(Q3
3 −Q3

2))C10
2 = 0 (5)

he ratio of the amplitudes of the motions of the ma
nd the inner core is

Q2C
10
2

Q1C
10
1

∣∣∣∣∣ = (�1 − �2)Q3
1

�2Q
3
2 + �3(Q3

3 −Q3
2)

(6)
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This quantity is small for the Earth (0.1%) but may
be quite substantial for Mercury (10%). The fact that
the ratio of amplitudes is about 10% explains why we
chose to attach a mass ofm to a mass of 10m in our
spring example above.

3.2. Newton’s second law for the inner core

The inner core experiences two forces: the gravita-
tional force exerted at every point inside the inner core
and the hydrodynamic force applied at the boundary.
The gravitational force is proportional to the density
of the inner core and the vector gradient of the grav-
itational potentialψ. The hydrostatic force is propor-
tional to the pressurepat the boundary and points along
the boundary normal. Therefore, Newton’s second law
reads

M1a= −
∫
Ω1

ρ1∇ψ dΩ−
∫
S1

pNdS, (7)

where a is the acceleration of the inner core (a =
−ω2R1A

Z eiωt) andN is theoutwardnormal—thus the
minus sign for the pressure contribution.

This equation is nonlinear since the domain of
integration and the integrand are both time depen-
dent. The equation is linearized by taking a time
derivative and keeping first order terms. Differ-
entiation of integrals makes use of the following
formulas for the time dependent volume and surface
i

w e
i e
i ct
t in
A
a

We represent the time-dependent quantitiesψ(t) and
p(t) as

ψ(t) = ψ0 + ψ̄(t) (9a)

p(t) = p0 + p̄(t) (9b)

andψ0 andp0 are time-independent gravitational po-
tential and pressure that correspond to the equilibrium
configuration in which the inner core rests at the center
of mass of the planet and̄ψ(t) andp̄(t) are small time-
dependent corrections. The equilibrium gravitational
potentialψ0 and pressurep0 satisfy the hydrostatic
equation in the outer core:

∇p0 + ρ2∇ψ0 = 0. (10)

An application of Eqs.(8a) and (8b)to Newton’s second
law (7) yields:

M1
da
dt

= −
∫
S1

((
ρ1
∂ψ

∂t
+ ∂p

∂t

)
N

+C1(ρ1∇ψ0 + ∇p0)

)
dS (11)

We make use of the equation of hydrostatic equilibrium
(10) to eliminatep0:

M

∫ (( )

F one
b the
l

M

s
(
( e
ntegrals:

d

dt

∫
Ω

f (t,Ω) dΩ

=
∫
Ω

∂f (t,Ω)

∂t
dΩ+

∫
∂Ω

Cf (t,Ω) dΩ (8a)

d

dt

∫
S

f (t, S) dS

=
∫
S

�f (t, S)

�t
dS −

∫
S

Cκf (t, S) dS, (8b)

here C is the invariant velocity of the interfac
ntroduced above,κ is the mean curvature of th
nterface, and�/�t is the derivative with respe
o the motion of the interface discussed briefly
ppendix A and more thoroughly inGrinfeld (2003)
ndGrinfeld and Wisdom (2005).
1
da
dt

= −
S1

dS ρ1
∂ψ

∂t
+ ∂p

∂t
N

+ C1(ρ1 − ρ2)∇ψ0

)
(12)

inally, we convert the vector equation into a scalar
y projecting it onto the oscillation axis by dotting

ast equation with ˆz:

1
da

dt
= −

∫
S1

dS

(
ρ1
∂ψ

∂t
+ ∂p

∂t
+ C1(ρ1 − ρ2)

∂ψ0

∂r

)

×
√

4π

3
Y10(θ, φ), (13)

ince N · ẑ = cosθ and ∇ψ0 · ẑ = ∂ψ0/∂z =
∂ψ0/∂r)(∂r/∂z) = (∂ψ0/∂r) cosθ and

√
4π/3Y10

θ, φ) was substituted forcosθ. Therefore, the thre
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quantities to be determined are∂ψ0
∂r

, ∂ψ
∂t

and ∂p
∂t

. This
is the task that we are turning to now, starting with the
gravitational potential.

4. Gravitational potential

This section contains an outline of how we compute
the gravitational potential and its evolution. A detailed
description of the method of analysis can be found in
Grinfeld and Wisdom (2005).

The gravitational potentialψ(r, θ, φ) satisfies the
Poisson equation

∇2ψ = 4πGρ, (14)

whereρ is taken to beρ1, ρ2, ρ3 or 0 depending on
the region.ψ is finite at the origin, vanishes at infinity,
and is continuous along with its derivatives across all
interfaces. Using the notation [X]n to indicate the jump
of the quantityX across the interfacen (e.g. [ρ]1 =
ρ1 − ρ2), we write the continuity conditions as

[ψ]1, [ψ]2, [ψ]3 = 0 (15a)

N · [∇ψ]1,N · [∇ψ]2,N · [∇ψ]3 = 0 (15b)

t

ψ

e

,

)

where




A1

A2

A3

B2

B3

B4




=




−3

2
[�]1Q

2
1 − 3

2
[�]2Q

2
2 − 3

2
[�]3Q

2
3

−3

2
[�]2Q

2
2 − 3

2
[�]3Q

2
3

−3

2
[�]3Q

2
3

−[�]1Q3
1

−[�]1Q3
1 − [�]2Q3

2

−[�]1Q3
1 − [�]2Q3

2 − [�]3Q3
3




(17)

The quantity∂ψ0/∂r atS1 is given by

∂ψ0

∂r

∣∣∣∣
S1

= Ψ∗
R∗
�1Q1 (18)

The equations for the potential perturbation∂ψ/∂t
are obtained by differentiating the gravitational system
(14)–(15b)with respect to time. The differentiation of
the bulk Eq.(14)yields

∇2∂ψ

∂t
= 0 (19)

indicating that∂ψ/∂t is harmonic. The boundary con-
ditions(15a) and (15b)are differentiated in the invari-
ant sense discussed inGrinfeld (2003). We obtain that
∂ψ/∂t is continuous across all interfaces, while the nor-
mal derivative of∂ψ/∂t jumps by an amount propor-
t
i po-
t on
c[

N

T
d )
a
d

at
i tion
The equilibrium potentialψ0(r) is straightforward
o compute:

0(r, θ, φ)

= Ψ∗




�1

2

(
r

R∗

)2

+ A1, inner core

�2

2

(
r

R∗

)2

+ A2 + B2

(
r

R∗

)−1

, outer cor

�3

2

(
r

R∗

)2

+ A3 + B3

(
r

R∗

)−1

, mantle

B4

(
r

R∗

)−1

, outside

(16
ional to the velocity of the interfaceC and the jump
n the second normal derivative of the unperturbed
entialψ0. We use indicial notation with summati
onvention:

∂ψ

∂t

]
1,2,3

= 0 (20a)

i

[
∇i ∂ψ
∂t

]
1,2,3

= −C1,2,3N
iNj[∇i∇jψ0]1,2,3

(20b)

hese equations are obtained by applying the�/�t-
erivative to the boundary conditons(15a) and (15b
nd utilizing the algebraic properties of the�/�t-
erivative outlined in theAppendix A.

Finally, ∂ψ/∂t is finite at the origin and vanishes
nfinity. The resulting system is solved by separa
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of variables:

∂ψ

∂t
(r, θ, φ)

= Ψ∗
∑
l,m




Alm1

(
r
R∗

)l
, inner

Alm2

(
r
R∗

)l + Blm2 ( r
R∗

)−l−1
, outer

Alm3

(
r
R∗

)l + Blm3 ( r
R∗

)−l−1
, mantle

Blm4

(
r
R∗

)−l−1
, outside

|Ylm(θ, φ)iω eiωt, (21)

The remaining sets of six coefficients are determined
by satisfying the six boundary conditions(20a) and
(20b). Since both sides are expressed as series in spher-
ical harmonics, the boundary conditions are met by
satisfying the identities for each of the spherical har-
monics. This leads to a 6× 6 linear system whose
solution is


Alm1

Alm2

Alm3

Blm2

Blm3

Blm4




= − 3

2l+ 1




Q−l+1
1 Q−l+1

2 Q−l+1
3

0 Q−l+1
2 Q−l+1

3

0 0 Q−l+1
3

Ql+2
1 0 0

Ql+2
1 Ql+2

2 0

Ql+2
1 Ql+2

2 Ql+2
3




W ten-
t he
i the
a
T orate
t ore–
o pli-
c tity
t eter
d o
c tial
f
( der

counterpart, to compute the potential inside a slightly
ellipsoidal cavity.

For simple translational motion, the sole present har-
monic is thel = 1, m = 0 term and the expressions
reduce to




A10
1

A10
2

A10
3

B10
2

B10
3

B10
4




= −




1 1 1

0 1 1

0 0 1

Q3
1 0 0

Q3
1 Q

3
2 0

Q3
1 Q

3
2 Q

3
3







[�]1Q1C
10
1

[�]2Q2C
10
2

[�]3Q3C
10
3


 (23)

As discussed above, the scalarsC10
1 , C10

2 , andC10
3 are

essentially the nondimensionalized amplitudes of os-
cillations (save for a multiplier of

√
4π/3). Of particu-

lar interest below are the values of∂ψ/∂t in the domain
Ω2 −Ω1 occupied by the outer core where the fliud
equations are solved and the contributions to Newton’s
second law are made. For future reference, we present
the expression for∂ψ/∂t (once again using the fact that
Q2C

10
2 = Q3C

10
3 )

∂ψ

∂t
(r, θ, φ)

∣∣∣∣
Ω2−Ω1( ( )

A

an-
t
o

×




[�]1Q1C
lm
1

[�]2Q2C
lm
2

[�]3Q3C
lm
3


 (22)

e would like to note that the rate of change of po
ial (21 and 22)applies to arbitrary perturbations of t
nterfaces, with simple translational motion along
xis being a special case for whichl = 1 andm = 0.
he presented expressions can be used to incorp

he effect of phase transformations at the inner c
uter core boundary, which may result in a very com
ated evolution of the interface. Further, if the quan
is not interpreted as time, but simply as a param
escribing the perturbation,(21 and 22)can be used t
ompute the corrections to the gravitational poten
or near-spherical geometries.Grinfeld and Wisdom
2005) use this formula, along with its second-or
= −Ψ∗ ([�]2 + [�]3)Q2C
10
2

r

R∗

+[�]1Q
4
1C

10
1

(
r

R∗

)−2
)
Y10(θ, φ)iω eiωt

(24)

t the inner core boundary, we have

∂ψ

∂t
(θ, φ)

∣∣∣∣
S1

= −Ψ∗Q1(([�]2 + [�]3)Q2C
10
2

+ [�]1Q1C
10
1 )Y10(θ, φ)iω eiωt

We have computed two of the three unknown qu
ities in the linearized Newton’s law(13)and now turn
ur attention to the hydrodynamic pressurep.
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5. Motion of the fluid

We assume that the outer core is inviscid and in-
compressible of constant densityρ2. The velocity and
pressure fieldsv andpare governed by Euler equations

∂v
∂t

+ v · ∇v = − 1

ρ2
∇p− ∇ψ (25a)

∇ · v = 0, (25b)

We allow slippage at the boundaries—the normal com-
ponent of the velocity of the fluid matches normal ve-
locity of the rigid interface.

The linearization procedure starts by introducing the
small perturbations̄v and p̄ to the velocities and the
pressure:

v(t; r, θ, φ) = v0(r, θ, φ) + v̄(t, r, θ, φ) (26a)

p(t; r, θ, φ) = p0(r, θ, φ) + p̄(t, r, θ, φ) (26b)

The equilibrium velocitiesv0 vanish and, if we take a
time derivative of the Euler equations, the unperturbed
pressurep0 will drop out as well. Therefore, away from
the boundaries the motion of the fluid is governed by

∂2v̄
∂t2

+ ∂v̄
∂t

· ∇v̄+ v̄ · ∇ ∂v̄
∂t

= −1

ρ
∇ ∂p̄
∂t

− ∇ ∂ψ
∂t

(27a)

∇
S atic
t

∇
A ions
(

S
h .
T ed
h , we
k

able to make this guess saves us the trouble of solving
a system of ODE’s.

We arrive at the following solution for the pressure
correctionp̄ and velocities̄v:

p̄(t, r, θ, φ) = ρ2R
2
∗ω

2Plm(r)Ylm(θ, φ) eiωt (30a)

v̄R(t, r, θ, φ) = R∗ωFlm(r)Ylm(θ, φ) eiωt (30b)

v̄
(t, r, θ, φ) = R2∗ω
r2
Glm(r)

∂Ylm(θ, φ)

∂θ
eiωt (30c)

v̄�(t, r, θ, φ) = 0 (30d)

where

Plm(r) = dlm+
(
r

R∗

)l
+ dlm−

(
r

R∗

)−l−1

(31)

Flm(r) = iR∗
dPlm(r)

dr
(32)

Glm(r) = Plm(r) (33)

and the coefficientsdlm+ anddlm− are determined by the
slippage boundary conditions which lead to the follow-
ing system:[
dlm+
dlm−

]
=
[

l −(l+ 1)

lQl−1
2 −(l+ 1)Q−l−2

2

]−1[
Clm1

Clm2

]

nd-
he

o-
· v̄ = 0 (27b)

incev̄ is considered small, we neglect the quadr
erms

∂2v̄
∂t2

= − 1

ρ2
∇ ∂p̄
∂t

− ∇ ∂ψ
∂t

(28a)

· v̄ = 0. (28b)

pply the divergence operator to the Euler equat
28a)

∂2∇ · v̄
∂t2

= −1

ρ
∇2∂p̄

∂t
− ∇2∂ψ

∂t
(29a)

ince the fluid is incompressible(28b) and ∂ψ/∂t is
armonic (19) we observe that∂p̄/∂t is harmonic
herefore, in attempting to solve the lineariz
ydrodynamic system by separation of variables
now to use form(31) for the radial part of ¯p. Being
− Ψ∗
ω2R2

1

[
Alm2

Blm2

]
(34)

The expression for pressure(30a)may be multiplied
by the normal and integrated over the outer core bou
ary to yield the total hydrodynamic force acting on t
inner core.

We now substitute Eqs.(17), (22) and (34)and
Q2C

10
2 = Q3C

10
3 (the mantle’s boundaries move t

gether) into Newton’s second law(13) to obtain the
second algebraic equations forC10

1 andC10
2 :(

2(Q3
2 −Q3

1)(�1 − �2)Ψ∗
R2∗ω2 Q1�2

− (3�2Q
3
2 + 2(Q3

2 −Q3
1)(�1 − �2))Q1

)
C10

1
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+
(

3�2Q
4
2 − 2(Q3

2 −Q3
1)(�1 − �2).∗
R2∗ω2 Q2�2

)
C10

2

= 0 (35)

As stated above, the frequency of oscillationω is ob-
tained by equating to zero the determinant of the system
(5 and 35). If the mantle were treated as stationary as
was done by Busse, Eq.(35) alone would yieldω by
settingC10

2 = 0 and equating the coefficient ofC10
1 to

zero. This simple computation would lead directly to
Busse’s formula.

6. Expression for the frequency and analysis of
results

Equating the determinant of the linear system(5),
(35) to zero, we can easily solve forω2. The answer is
most easily presented by introducing the total mass of
the systemM:

M = 4π

3
(ρ1R

3
1 + ρ2(R3

2 − R3
1) + ρ3(R3

3 − R3
2)) (36)

Also introduce three more mass-like quantities

m = 4π

3
(ρ1 − ρ2)R3

1 (37)

D = 4π

3
(ρ1 − ρ2)(R3

2 − R3
1) (38)

E

T y

ω

I
w

ω

7

rth
a

Earth Mercury

R1 (106m) 1.2 1.7

R2 (106m) 3.5 1.8

R3 (106m) 6.3 2.4

ρ1 (103 kg m−3) 13.0 9.5

ρ2 (103 kg m−3) 12.0 8.0

ρ3 (103 kg m−3) 4.5 3.0

Using these values, we compute the intermediate
quantities:

Earth Mercury

M (kg) 6.07× 1024 3.27× 1023

m (1022 kg) 7.24× 1021 3.09× 1022

D (1022 kg) 1.72× 1023 5.77× 1021

E (1022 kg) 2.16× 1024 1.95× 1023

And finally use the formulas(40) and (41)to arrive
at the following estimates for the eigenperiod,T,

Earth Mercury

T (h) 4.2361 8.3983

Tm
M (h) 4.2359 8.3906

We find that the motion of the mantle introduces
a correction for the Earth that is less than one hun-
dredth of 1Mercury is about 0.1%. This correction is
unexpectedly small given the assumed massiveness of
M ble
t this
c

8

ana-
l the
r is
n ner
c to-
t ed
a uid
o ntle
a des
t ury,
t m-
= 4π

3
ρ2R

3
2 (39)

hen the natural frequency of oscillation is given b

2 = 4π

3
Gρ2

D
3
2E +D(1 −m/M)

(40)

f we consider a planet with a small inner core,m
 M,
e arrive at Busse’s expression:

2
m
M = 4π

3
Gρ2

D
3
2E +D (41)

. Implications for the Earth and Mercury

We make the following assumptions for the Ea
nd Mercury (Siegfried and Solomon, 1974):
ercury’s inner core. In fact, we have not been a
o find a simple explanation for the smallness of
orrection.

. Conclusions

We have presented a general framework for
yzing the free modes of the Earth that include
igid motion of the planet’s mantle. This motion
egligible for the Earth, but for Mercury, whose in
ore may constitute more than half of the planet’s
al weight, the motion would be significant. We solv

linearized system of Euler’s equation for the fl
uter core. The motions of the inner core and ma
re governed by Newton’s second law which inclu

he gravitational and hydrostatic effects. For Merc
he oscillation of the mantle is significant as its a
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plitude is about 10% of that of the inner core. We
applied our analysis to compute an analytical expres-
sion for the period of the Slichter mode for a nonrotat-
ing planet. Our expression reduces to Busse’s for the
case of a small inner core. We showed the surprising
and counter-intuitive result that incorporating the rigid
motion of the mantle has a minimal effect on thepe-
riod of Slichter oscillations for Mercury as well as the
Earth.

If the translational mode is excited and it is pos-
sible to measure the amplitude of the mantle and the
change in gravitational field on the surface of Mercury,
such measurements may allow a direct determination
of the size of the inner core. Suppose that a gravime-
ter is placed at the north pole and that the translational
mode is along the axis of rotation. Then if the mantle
moves up by the amountA then according to Eq.(6)
the mantle moves down byB = A(ρ2R

3
2 + ρ3(R3

3 −
R3

2))((ρ1 − ρ2)R3
1)

−1
. Thus, the gravimeter is closer to

the inner core by

A+ B = A
(

(ρ1 − ρ2)R3
1 + (ρ2 − ρ3)R3

2 + ρ3R
3
3

(ρ1 − ρ2)R3
1

)

(42)

The observed change in the gravitational field is due
to the mass (ρ1 − ρ2)R3

1 moving closer by the amount
B. Therefore, the gravitational field, whose magnitude
is G(ρ1 − ρ2)R3

1/r
2|
r=R3

, will increase by 2G(ρ1 −
ρ l
c f
g ge
t

2

F en
2

1 uld
y

A

ov-
i ap-

pendix briefly introduces the main concepts. An in-
depth discussion of the�/�t-derivative and its proper-
ties can be found inGrinfeld (2003)andGrinfeld and
Wisdom (2005).

Consider a one parameter family of curvesSτ in-
dexed by a time-like parameterτ. The familySτ can
also be thought of as a time evolution of a single curve
S. Let Tτ(Sτ) be a scalar field defined onSτ , soT not
only changes its values with the passing of time but
also sees its domain of definition change as well.

We present a geometric definition of the�/�τ-
derivative at a pointξ on the surfaceSτ at timeτ, illus-
trated inFig. 3. Consider two locations of the surfaceSτ
andSτ∗ at nearby timesτ andτ∗. Draw the straight line
orthogonal toSτ passing through the pointξ mark the
point ξ∗ where this straight line intersectsSτ∗ . Define:

� Tτ

� τ
= lim
τ∗→τ

Tτ∗ (ξ∗) − Tτ(ξ)
τ∗ − τ (44)

Let 2z be the vector connecting the pointξ to the
point ξ∗. Then the velocity of the interfaceC (also
known as thenormalvelocity) is defined as

C = lim
τ∗→τ

2z · N
τ∗ − τ , (45)

whereN is the unit normal to the surfaceSτ . Since by
construction2z is aligned withN, the projection2z
onto the normal is performed largely for the purposes
of determining the sign ofC. If z is the radius vector

f

2)R3

1/r
3(A+ B)|

r=R3
, whereG is the gravitationa

onstant. In other words, ifg is the accelaration o
ravity and2g is amplitude of the observed chan

hen

g = 2G((ρ1 − ρ2)Q3
1 + (ρ2 − ρ3)(R2/R3)3 + ρ3)A

(43)

or Mercury, the coefficient of proportionality betwe
g andA in terms ofR1/R3 is 3× 103G((R1/R3)3 +
5.231) which, if measured experimentally, wo
ield the size of the inner core.

ppendix A. The �/� t-derivative

This paper relies heavily on the calculus of m
ng surfaces, which has an illustrious history. This
with respect to an arbitrary origin then the definition o
C (45) can be rewritten as

C = �z
�τ

· N

Fig. 3. Geometic definition of the�/�t-derivative as applied to a
scalar fieldTτ define at timeτ on the surfaceSτ with surface coor-
dinatesξ.
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The velocity fieldC completely determines the evolu-
tion of the interface much like the velocity field of a
fluid completely determines its flow, with one signifi-
cant difference. In the flow of a fluid, the trajectories of
individual particles are usually of interest and the ve-
locity field allows one to track them. The velocityC, on
the other hand, describes the motion of the surface as
a geometric object without keeping track of individual
points.

The following equations present the key algebraic
properties of the�/�t-derivative that are used to derive
Eqs.(20a) and (15b). The quantitys is the surface shift
tensor,m is the surface metric,B is the curvature ten-
sor,∇S is the surface gradient and2S is the surface
Laplacian.

�s

�τ
= ∇S(CN) (46a)

�m

�τ
= −2CB (46b)

�N

�τ
= −s∇SC (46c)

�B

�τ
= 2SC + CB2 (46d)
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tional potential for near-spherical geometries. Q. Appl. Math., in
press.

Hinderer, J., Crossley, D., Jensen, O., 1995. A search for the Slichter
triplet in superconducting gravimeter data. Phys. Earth Planet.
Int. 90, 183–195.

Jensen, O., Hinderer, J., Crossley, D.J., 1995. Noise limitations in
the core-mode band of superconducting gravimeter data. Phys.
Earth Planet. Int. 90, 169–181.

Peale, S.J., Phillips, R.J., Solomon, S.C., Smith, D.E., Zuber, M.T.,
2002. A procedure for determining the nature of Mercury’s core.
Meteoritics Planet. Sci. 37, 1269–1283.

Rogister, Y., 2003. Splitting of seismic-free oscillations and of
the Slichter triplet using the normal mode theory of a ro-
tating, ellipsoidal earth. Phys. Earth Planet. Int. 140, 169–
182.

Rosat, S., Hinderer, J., Crossley, D.J., Rivera, L., 2003. The search for
the Slichter mode: comparison of noise levels of superconductin
gravimeters and investigation of a stacking method. Phys. Earth
Planet. Int. 140, 183–202.

Schubert, G., Ross, M.N., Stevenson, D.J., Spohn, T., 1988. Mer-
cury’s Thermal History and the Generation of Its Magnetic Field.
Mercury. UAriz Press, pp. 429–460.

Siegfried, R.W., Solomon, S.C., 1974. Mercury: internal structure
and thermal evolution. Icarus 23, 192–205.

Slichter, L., 1961. The fundamental free mode of the Earth’s inner
core. Proc. Natl. Acad. Sci. U.S.A. 47, 186–190.

Smylie, D., 1992. The inner core translational triplet and the density
near Earth’s center. Science 255, 1678–1682.

S mic

S V.,
hat
61–
J. Geophys. Res. 79, 753–757.
ourtier, N., Ducarme, B., Goodkind, J., Hinderer, J., Imanish

Seama, N., Sun, H., Merriam, J., Bengert, B., Smylie, D.E., 2
Global superconducting gravimeter observations and the s
for the translational modes of the inner core. Phys. Earth P
Int. 117, 3–20.
mylie, D.E., McMillan, D.G., 2000. The inner core as a dyna
viscometer. Phys. Earth Planet. Int. 117, 71–79.

pohn, T., Sohla, F., Wieczerkowskib, K., Conzelmanna,
2001. The interior structure of Mercury: what we know, w
we expect from BepiColombo. Plan. Space Sci. 49, 15
1570.


	Motion of the mantle in the translational modes of the Earth and Mercury
	Introduction
	Model and methodology
	3Overview of the analysis
	Conservation of momentum
	Newton's second law for the inner core

	Gravitational potential
	Motion of the fluid
	Expression for the frequency and analysis of results
	Implications for the Earth and Mercury
	Conclusions
	Appendix A The 
mdelta /
mdelta t-derivative
	References


