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Abstract

Slichter modes refer to the translational motion of the inner core with respect to the outer core and the mantle [Slichter, L.,
1961. The fundamental free mode of the Earth’s inner core. [Proc. Natl. Acad. Sci. U.S.A. 47, 186-190]. The polar Slichter
mode is the motion of the inner core along the axis of rotation. Busse [Busse, F.H., 1974. On the free oscillation of the Earth’s
inner core. J. Geophys. Res. 79, 753-757] presented an analysis of the polar mode which yielded an expression for its period.
Busse’s analysis included the assumption that the mantle was stationary. This approximation is valid for planets with small inner
cores, such as the Earth whose inner core is about 1/60 of the total planet mass. On the other hand, many believe that Mercury’s
inner core may be enormous. If so, the motion of the mantle should be expected to produce a significant effect.

We present a formal framework for including the motion of the mantle in the analysis of the translational motion of the inner
core. We analyze the effect of the motion of the mantle on the Slichter modes for a non-rotating planet with an inner core of
arbitrary size. We omit the effects of viscosity in the outer core, magnetic effects, and solid tides. Our approach is perturbative
and is based on a linearization of Euler’s equations for the motion of the fluid and Newton’s second law for the motion of the
inner core. We find an analytical expression for the period of the Slichter mode. Our result agrees with Busse’s in the limiting
case of a small inner core. We present the unexpected result that even for Mercury the motion of the mantle does not significantly
change the period of the oscillation.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction respecttothe outer core and the mantle. The firstanalyt-
ical treatment of the problem was performedBuysse
The Slichter modes, first studied 8tichter (1961) (1974) In the past 12 years, there has been an explo-
refer to the translational motion of the inner core with sion of scientific activity in the research of the normal
modes of the Earth primarily due to the emergence of
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E-mail addressesog@mit.edu (P. Grinfeld): relative motion of the inner core by measuring the vari-
wisdom@poincare.mit.edu (J. Wisdom). ations in the Earth’s gravitational field. Some authors
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believe that evidence of Slichter modes can be found in core and the mantle and Euler’s equations for the mo-

the existing gravimeter dat®mylie, 1992) However,
a definitive detection has proven to be controversial

tion of the liquid core.
Looking ahead, we find that the motion of the man-

(Crossley et al., 1992; Jensen et al., 1995; Hinderer ettle will have little effect on the period of the Slichter

al., 1995)and the search for Slichter modes continues
today(Courtier et al., 2000; Rosat et al., 2008)ong
with active theoretical resear¢B8mylie and McMillan,
2000; Rogister, 2003)

The upcoming observations of Mercufleale et
al., 2002; Spohn et al., 200®)ill present an exciting
new opportunity for the study of the Slichter modes.
Many believe that much like the Earth, Mercury too
has a solid inner core in a fluid outer cqi®@chubert
et al., 1988) However, unlike the Earth’s inner core
whose mass is 1/60 of the total planet, Mercury’s inner
core may be enormoySiegfried and Solomon, 1974)
with aradius thatis nearly 2/3 of the radius of the planet

modes for the Earth and even for Mercury, for which
it will introduce a correction of only about 0.1%. This
is an unexpected and counter-intuitive result given the
significant amplitude of the mantle’s oscillation. Com-
pare two simple systems, in one a mass connected

to a stationary wall by a spring of stiffneksThis sys-
tem is analogous to a stationary mantle and it frequency
of oscillation is\/k/m. In the other system, the mass
m is connected by the same spring to a mass @t 10
which is free to oscillate. This is analogous to a mov-
ing mantle of a moving mantle and we explain below
why 10n is appropriate. The frequency of oscillation
of the second system ig11k/10m which constitutes

and mass that is about 60% of the total planet. A simple an almost 5% difference from the first system. The fact
conservation of linear momentum computation shows that we obtain an estimate of 0.1%, rather than 5%,
that the amplitude of the mantle’s oscillations equals highlights the effect of the fluid on the dynamics of
about 10% of the amplitude of the inner core, compared the system and demonstrates the necessity for a formal
to 0.1% for the Earth. The change in the gravitational analytical approach.

field due to a displacement of the inner core will be

nearly 100 times greater for Mercury than for Earth

making the detection of the modes a less challenging 2. Model and methodology

proposition.

The rotation of the planet leads to a splitinthe spec-  Undoubtedly, an advanced model of the Earth is
trum yielding the “Slichter triplet”: a single axial (or needed for a thorough analysis of the Slichter oscilla-
polar) mode and two equatorial modes, retrograde and tions and accurate prediction of the eigenperiods. In all
prograde. The three eigenperiods are evenly spaced bylikelihood, such models will require the use of numer-
about a quarter of an hour. Of the three modes, the po-ical methods. We set a more modest goal for ourselves
lar mode is best suited for analytical treatment. A first and that is to study the effect of the motion of the man-
complete analytical treatment of the polar mode was tle. We therefore choose to study a simple problem that
presented byBusse (1974)Busse considered a sim- can be carried through analytically.
ple three-layer model of the rotating spherical Earth,in ~ We consider a three layer model of a planet
which the outer core was incompressible, inviscid and (Fig. 1) with a rigid inner core2; of densityp1 and
of constant density. As we show below, Busse’s results radiusR1, a fluid outer core2, of densityp, and ra-
are consistent with the assumption that the outer mantle dius R, and a rigid outer mantl€3 of densityps and
is stationary. radiusR3. We assume that each density is constant. Let

We generalize Busse’s analysis to a planet whose S, be the boundary of domai2,,. We study the oscil-
outer mantle is allowed to move. In the process, we lations of the inner core under the influence of grav-
build a formal analytical framework for analyzing a ity and fluid pressure. We assume that the fluid outer
three-layer planet, which can be used to incorporate core isincompressible and neglect the effects of viscos-
more complicated effects, such as ellipticity of the lay- ity. We excludefrom consideration theotation of the
ers, possible phase transformations at the inner core—planet which can affect the frequency of even the polar
outer core boundary, and compressibility of the outer Slichter mode since it affects the dynamics of the fluid.
core. Our analysis will be performed from “first princi- The fluid plays two important roles. It creates the
ples”: Newton’s second law for the motion of the inner restoring gravitational force and is also responsible for
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We would like most of our intermediate expressions
to generalize to the case of multilayer fluid planets as
well as to the study of phase transitions. To this end we
describe the motion of the constituents of the system
by specifying the normal velocitieS of the interfaces
(seeAppendix A) and assuming, for as long as possible,
that C is completely arbitrary. We express the three
normal velocity fields in the vicinity of the equilibrium

/ configuration as harmonic series

/ C100, ) = R1iw€” 3 CI"Y1 (6. 9) (1a)

l,m

o Ca(6. ¢) = R2iw €Y~ C5"Yim (6, ¢) (1b)
I,m

Fig. 1. The equilibrium configuration. ]
C3(0. ¢) = Raiw e’ >~ C¥' Y1 (0. ¢) (1c)

l,m

the effects of pressure. Our approach treats pressurewhere ¢ is the longitude, the colatitude, and
in a formal way as governed by the Euler equations. y,,, (9, ) are spherical harmonics normalized to
Slichter and Busse provide an insightful decomposi- unity:

tion of pressure force into a hydrostatic component and

one that is a response to the acceleration of the inner

core. Slichter combined the gravitational force and the / Yiymy (0, 9)Y 15,6, 9) AS = 8130,8mymy»

hydrostatic pressure into a single expression that van- /I71=1

ishes when the densities of the inner and outer cores

match. wherex means complex conjugation. Here and in all

The spherically symmetric mantle does notexertany subsequent expressions involving complex numbers
gravitational forces on the internal bodies. Only its total taking the real part is implied.
mass is relevant and so we expect that the final answer  The normal boundary velocity of a rigid sphere
includesps and R3 only in the combinatiorpz(R3 — can be fully represented by the=1 harmonics.
Rg). In the absence of the fluid outer core, the inner If the inner core is moving with velocityv =
core would be in a state of neutral equilibrium (any iwR; €'(Af, A, A?) then the resulting normal ve-
deviation from our idealization will cause the inner core locity C is given by
to “fall” onto the mantle). Consequently, our eventual
expression for the oscillation frequency must approach ¢y(9, ¢) = v-N
zero in the limitpo = 0.

Our approach is perturbative, in which every con-
figuration of the system is treated as a small devia- _ o
tion from the spherically symmetric stable configura- = iwRy ' <\/>(Aif _ iA{)Yl(_l)(Q )
tion and all velocities are small. The “unperturbed” 3
spherically symmetric gravitational potentiakig and
its rate of chang@v/dr, determined perturbatively, is n \/E AZY10(6, $)
induced by the motion of the system. We solve for the 371 ’
fluid velocity fieldv®, v® (v® = 0) and pressungcon-

sistent with the translational motion of the inner core + /*(Af + zA{)Yll(Q, )
and the mantle. 3

= v1 SiNH cOSp + v2 SN sing + v3 cosH
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Fig. 2. The velocity of the interface induced by the velocity of the
sphere’s centel; = v3 cosh.

resulting in

1(=1 2 .

i = (M =\ FAf —iaD) (2a)
4

clo_ gAf (2b)

Therefore, if the oscillation of the inner core takes place
in the axial direction with amplitud®, A7, Eq. (2b)

represents the relationship between the amplitude and

C10 Fig. 2illustrates this computation for the axial
motion of the sphere.

3. Overview of the analysis

We consider the “axial” mode in which the inner
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its determinant vanishes. The two equations arise from
conservation of momentum for the planet as a whole
and Newton’s second law for the inner core. The two
unknownsC1%andC3° are, essentially, the amplitudes
of oscillation of the inner core and the mantle.

We nondimensionalize many of our expressions by
using a length scal®, and a density,. The partic-
ular choice ofR, andp, can be made later. Introduce
the dimensionless densitigs and dimensionless radii
Qn:

_ Pn.

On s
P

and a convenient quantitys(is the gravitational con-

stant)
4 5

that has dimensions of gravitational potential.

R

n
ani

2 ®

“4)

3.1. Conservation of momentum

Conservation of momentum is particularly easy
to convert to a linear equation. It is equivalent to
stating the center of mass of the system remains at
rest:

4 . i
— (01— p2)RiiwR1AT €

A . i
+ gpz(Rg — RY)iwRyA% €

4 _ _
+ g pa(RE — R)iwRzAZ ' = 0

Utilizing (2b), recognizing the fact that for a rigid
mantle R,A% = R3A% (or 02C3° = 0329, nondi-
mensionalizing by dividing through by, R? and, fi-

core and the mantle oscillates along the planet's axis hally, cancelling /4r/3iw €, we obtain our first

of rotation. Of course, since we ignore the effects of
rotation, the axial direction is in no way preferred
and our oscillation mode is triply degenerate. How-

ever, the degeneracy is not much of an issue since it +Q3(Q§ — Q%))C%O =0

is removed from the mathematical analysis by a pri-
ori stating the direction in which the oscillation takes
place.

The oscillation frequency will be determined from

the relationship that states that a homogeneous linear
system of equations has a nonzero solution if and only if

equation:

(01— 02)Q1CT° + 02(0203
(5)

The ratio of the amplitudes of the motions of the mantle
and the inner core is

0,C3° (01— 02)03

— 6
01C10| 0203 + 03(03 — 03) ©)
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This quantity is small for the Earth (0.1%) but may
be quite substantial for Mercury (10%). The fact that
the ratio of amplitudes is about 10% explains why we
chose to attach a mass wfto a mass of 1& in our
spring example above.

3.2. Newton’s second law for the inner core

The inner core experiences two forces: the gravita-
tional force exerted at every point inside the inner core
and the hydrodynamic force applied at the boundary.
The gravitational force is proportional to the density
of the inner core and the vector gradient of the grav-
itational potentiahy. The hydrostatic force is propor-
tional to the pressuneat the boundary and points along
the boundary normal. Therefore, Newton’s second law
reads

pNdS,
$1

Ma = —/ p1Viyrds2 — @)
2

where a is the acceleration of the inner core £

—w?R1A% €)Y andN is theoutwardnormal—thus the

minus sign for the pressure contribution.

This equation is nonlinear since the domain of
integration and the integrand are both time depen-
dent. The equation is linearized by taking a time
derivative and keeping first order terms. Differ-
entiation of integrals makes use of the following
formulas for the time dependent volume and surface
integrals:

d
3 /Q f(t, 2)ds

of (t, £2)
::/Q o d9+1496f@smd9 (8a)
d
E/Sf(t, S)ds
3f(t, S)
_ /S 0 gs - /S Cief (. S)ds, (8b)

where C is the invariant velocity of the interface
introduced abovek is the mean curvature of the
interface, andd/d: is the derivative with respect
to the motion of the interface discussed briefly in
Appendix Aand more thoroughly iGrinfeld (2003)
andGrinfeld and Wisdom (2005)
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We represent the time-dependent quantiti@3and
p(r) as

W(r) = vo + ¥(r) (9a)

p(t) = po+ p(t) (9b)
andg and pg are time-independent gravitational po-
tential and pressure that correspond to the equilibrium
configuration in which the inner core rests at the center
of mass of the planet anii(r) and p(¢) are small time-
dependent corrections. The equilibrium gravitational
potential o and pressurgg satisfy the hydrostatic
equation in the outer core:

Vpo+ p2Vio =0 (10)

An application of Eq98a) and (8bjo Newton’s second
law (7) yields:
) N

+ Ca(p1 Vo + Vpo)> ds

aw
az + ot

(11)

We make use of the equation of hydrostatic equilibrium
(10) to eliminatepo:
0
p) N
ot

o
/&ds(@ o T

+ C1(p1 — pz)V%)

M da
1dt

(12)

Finally, we convert the vector equation into a scalar one
by projecting it onto the oscillation axis by dotting the
last equation withy !

d 0
Ml£ = - /S1 ds (plal// + a— + C1(p1 — ,02)>
4
X\ gylo(e, ), (13)
since N-z=cos® and V-7 =0dp/dz=
(0w0/9r)(3r/3z) = (do/or)cosd  and  /Am/3Y10

(6, ¢) was substituted forcas Therefore, the three
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quantities to be determined af®, % and %. This
is the task that we are turning to now, starting with the
gravitational potential.

4. Gravitational potential

This section contains an outline of how we compute
the gravitational potential and its evolution. A detailed
description of the method of analysis can be found in
Grinfeld and Wisdom (2005)

The gravitational potentials(r, 9, ¢) satisfies the
Poisson equation

VZI// = 4nGp, (14)

where o is taken to beo1, p2, p3 or 0 depending on
the regiony is finite at the origin, vanishes at infinity,
and is continuous along with its derivatives across all
interfaces. Using the notatioX], to indicate the jump

of the quantityX across the interface (e.g. [o]1 =

01 — p2), we write the continuity conditions as

[V]1, [¥]2, [¥]s =0 (15a)
N-[Vy], N-[Vy]2,N-[Vy]s=0 (15b)

The equilibrium potentialjo(r) is straightforward
to compute:

vo(r, 0, ¢)
a1l r ?
= A1, inner core
5 (R*) + Az
2 -1
202 4 ay+B(L) . outercore
2 \R, 2T\ R
= l]/* 2 1 2
o3 r r\
L Az + B — , mantle
> (R*) + Az + B3 R,
N
B4<> , outside
R,
(16)
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where

r 3 3 3 T

- —E[Q]lQ%— E[Q]ZQE— E[Q]sQ%

A 3 2 3 2

Ao —E[Q]ZQz - E[Q]BQs

A3 3 2

B, | = _E[Q]ng’

B3 _[Q]].Qi’

| Bs | —[0]103 - [0]203
—[0]103 — [0]203 — [0]303 |

17)
The quantitydy/or at S is given by
31#0 v,
— == 18
or |5~ R, 0101 (18)

The equations for the potential perturbati@gy oz
are obtained by differentiating the gravitational system
(14)—(15b)with respect to time. The differentiation of
the bulk Eq.(14) yields

v _
o

indicating thatoyr/dt is harmonic. The boundary con-
ditions(15a) and (15bare differentiated in the invari-
ant sense discussed@rinfeld (2003) We obtain that
ay/ ot is continuous across all interfaces, while the nor-
mal derivative ofdy/d¢t jumps by an amount propor-
tional to the velocity of the interfac€ and the jump

in the second normal derivative of the unperturbed po-
tential . We use indicial notation with summation
convention:

0 (19)

0
{q ~0 (20a)
o J123
T 8 o
N' |:Vi81//:| = —C123N'N’[ViV;¥0]1,23
11123
(20b)

These equations are obtained by applying aii&éz-
derivative to the boundary conditoig5a) and (15b)
and utilizing the algebraic properties of thgd:-
derivative outlined in thé\ppendix A

Finally, dyr/ ot is finite at the origin and vanishes at
infinity. The resulting system is solved by separation
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of variables: counterpart, to compute the potential inside a slightly
G ellipsoidal cavity.
E(h 6, ¢) For simple translational motion, the sole present har-
) monic is thel = 1, m = 0 term and the expressions
Al (RL*) ’ inner reduce to
Im( r ! Im ([ r -1 - 101 - .
AG (R—*) + B3 (R—*) , outer A7 1 1 1
=Y Z ! —i-1 10
Lm | Al (RL) + Bl (RL) , mantle Az 011 10
' -1 ’ Alo 0 0 1 [Q]lQlC]_
im( r_ i 3
s (x) outside g0 = g3 0 o[l @
. 2 1
Y1 (6, @i €, (21) [e]3QaCF°
B3’ 0i 03 0
The remaining sets of six coefficients are determined 510 03 03 3
L by~ L¥1 &2 Y3

by satisfying the six boundary conditiorf20a) and
(20b). Since both sides are expressed as series in spher-
ical harmonics, the boundary conditions are met by As discussed above, the scalar?, C1°, andC3P are
satisfying the identities for each of the spherical har- essentially the nondimensionalized amplitudes of os-
monics. This leads to a 6 6 linear system whose cillations (save for a multiplier of/4x/3). Of particu-
solution is lar interest below are the valuesdf/dr in the domain

- Alm 7 -Q_,+1 Q‘”l Q‘”l' 22 — £21 occupied by the outer core where the fliud
1 1 2 3 equations are solved and the contributions to Newton’s
Alm 0 0, o3t second law are made. For future reference, we present
_ the expression fady/ ot (once again using the fact that
Alm +1
3| _ 3 0 0 0O 02C10 = 03¢19)
Blz’" 2+1 Q11+2 0 0
BY' 0% 05% o0 %w(r, 0, ¢)
! 20—
i Bﬁn ] i Qll+2 Q12+2 Ql3+2 ] 2 1
,
[o], 01CY" =-v, (([Q]z +[0]3) 02€3° (R)
*
x | [elo02CY" (22) ol P\ |
(& — Y10(6, ¢)iw €'
[Q]3Q3Cém +[Q]1Q1 1 (R*) ) 10( ¢) [0)
We would like to note that the rate of change of poten- (24)

tial (21 and 22ppplies to arbitrary perturbations of the
interfaces, with simple translational motion along the
axis being a special case for whith= 1 andm = 0.
The presented expressions can be used to incorporate

the effect of phase transformations at the inner core— %(9 )
outer core boundary, which may resultin avery compli- 9 *
cated evolution of the interface. Further, if the quantity 10 i
t is not interpreted as time, but simply as a parameter +[0]101C1°)Y10(6, d)iw €

describing the perturbatio(@1 and 22an be used to

compute the corrections to the gravitational potential ~ We have computed two of the three unknown quan-
for near-spherical geometrie&rinfeld and Wisdom tities in the linearized Newton’s la{d3) and now turn
(2005) use this formula, along with its second-order our attention to the hydrodynamic presspre

At the inner core boundary, we have

=0z + [0]2) 0230
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5. Motion of the fluid able to make this guess saves us the trouble of solving

We assume that the outer core is inviscid and in-
compressible of constant densjty. The velocity and
pressure fieldg andp are governed by Euler equations

d 1
—V—i-v-Vv:——Vp—Vw (25a)
ot 02
V.-v=0, (25b)

We allow slippage at the boundaries—the normal com-
ponent of the velocity of the fluid matches normal ve-
locity of the rigid interface.

The linearization procedure starts by introducing the
small perturbations and p to the velocities and the
pressure:

v(t;r, 0, ) = vo(r, 6, ¢) + V(t, 1,06, p)
p(t;r, 0, 9) = po(r, 6, §) + p(t, 1, 0, ¢)

The equilibrium velocitiesg vanish and, if we take a
time derivative of the Euler equations, the unperturbed
pressurgg will drop out as well. Therefore, away from
the boundaries the motion of the fluid is governed by

(26a)
(26b)

9%V _ v 1_0dp B
4 — - VW+Vv.V—=—-——V— -V~
a2 ot ot p ot ot

(27a)
V.v=0 (27b)

Sincev is considered small, we neglect the quadratic
terms

92V 1_adp 9

LR L 44 (28a)
ot p2 Ot ot

V.v=0. (28b)

Apply the divergence operator to the Euler equations
(28a)

M — _}Vziﬁ _ Vz%
o2 p ot ot

Since the fluid is incompressibl@8b) and dv//0t is
harmonic (19) we observe thabp/dt is harmonic.
Therefore, in attempting to solve the linearized
hydrodynamic system by separation of variables, we
know to use form(31) for the radial part ofp. Being

(29a)

a system of ODE's.
We arrive at the following solution for the pressure
correctionp and velocities:

Pt 7.0, ¢) = p2R2a® P ()Y (6. ) € (30a)

vR(1. 1.0, ¢) = RuwF™ (1) Y1 (0. ¢) € (30b)
2 .

WO, 1.60, ) = R*z“’ Gy HmO.9) gor (30
r a0

v (t,r,60,¢) =0 (30d)

where
r 1 r —1-1

P"(r) =dl (R> +d™ <R*> (31)
Im

Fi™(r) = iR*M (32)
dr

G"(r) = P"™(r) (33)

and the coefficients’” andd™ are determined by the
slippage boundary conditions which lead to the follow-
ing system:

dim I —(+1) ]7'[cm
am] o light —a+ 10,2 |y
im
v, A2
- lm] (34)
1 Bz

The expression for pressu@a)may be multiplied
by the normal and integrated over the outer core bound-
ary to yield the total hydrodynamic force acting on the
inner core.

We now substitute Eq917), (22) and (34)and
0,C30 = 0310 (the mantle’s boundaries move to-
gether) into Newton’s second laft3) to obtain the
second algebraic equations 6t° and C°:

(2(Q§ — 03)(01 — 02)%-

0102

2,2
Riw

— (30203 +2(03 — 0})(01 - 92))Q1> ci0
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2(03 — 03)(01 — 02) ¥
+ <3Q2Q§— Q2 Q;%(jzl 02) Q2Q2> c3°

-0 (35)

As stated above, the frequency of oscillations ob-

tained by equating to zero the determinant of the system “*
(5 and 35) If the mantle were treated as stationary as pz (10*kgm~3)

was done by Busse, E(B5) alone would yieldw by
settingC3° = 0 and equating the coefficient 6£° to
zero. This simple computation would lead directly to
Busse’s formula.

6. Expression for the frequency and analysis of
results

Equating the determinant of the linear systé
(35)to zero, we can easily solve fa¥. The answer is

most easily presented by introducing the total mass of

the systenM:
4
M = —=-(p1RS + pa(R3 — RY) + pa(R3 — R3) (36)

Also introduce three more mass-like quantities

47
m = §(p1 — p2)R} (37)
D= ?(Pl — p2)(R; — RY) (38)
4z
Then the natural frequency of oscillation is given by
4 D
=20 (40)

P2
3 SE+D(1—m/M)
If we consider a planet with asmallinner careg M,
we arrive at Busse’s expression:

47

2
DM = ?G'OZTE D (41)
7

7. Implications for the Earth and Mercury

We make the following assumptions for the Earth
and Mercury Siegfried and Solomon, 19Y4

Earth Mercury
R1 (10°m) 12 1.7
R (10°m) 35 1.8
R3 (10°m) 63 2.4
(1P kg m3) 130 9.5
12.0 8.0
03 (10° kg m—3) 45 3.0

Using these values, we compute the intermediate
guantities:
Earth Mercury
M (kg) 6.07 x 107 3.27 x 107
m (10?%kg) 7.24 x 107! 3.09 x 1072
D (10?2kg) 172 x 1073 577 x 104
E (10?%kg) 216 x 107 1.95x 1073

And finally use the formula&0) and (41Yo arrive
at the following estimates for the eigenperidd,

Earth Mercury
T (h) 4.2361 8.3983
Tnem () 4.2359 8.3906

We find that the motion of the mantle introduces
a correction for the Earth that is less than one hun-
dredth of 1Mercury is about 0.1%. This correction is
unexpectedly small given the assumed massiveness of
Mercury’s inner core. In fact, we have not been able
to find a simple explanation for the smallness of this
correction.

8. Conclusions

We have presented a general framework for ana-
lyzing the free modes of the Earth that include the
rigid motion of the planet's mantle. This motion is
negligible for the Earth, but for Mercury, whose inner
core may constitute more than half of the planet’s to-
tal weight, the motion would be significant. We solved
a linearized system of Euler's equation for the fluid
outer core. The motions of the inner core and mantle
are governed by Newton’s second law which includes
the gravitational and hydrostatic effects. For Mercury,
the oscillation of the mantle is significant as its am-
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plitude is about 10% of that of the inner core. We pendix briefly introduces the main concepts. An in-
applied our analysis to compute an analytical expres- depth discussion of th&/dz-derivative and its proper-
sion for the period of the Slichter mode for a nonrotat- ties can be found iGrinfeld (2003)andGrinfeld and
ing planet. Our expression reduces to Busse’s for the Wisdom (2005)
case of a small inner core. We showed the surprising  Consider a one parameter family of curvgsin-
and counter-intuitive result that incorporating the rigid dexed by a time-like parameter The family S; can
motion of the mantle has a minimal effect on {he- also be thought of as a time evolution of a single curve
riod of Slichter oscillations for Mercury as well asthe S Let T;(S;) be a scalar field defined o}, soT not
Earth. only changes its values with the passing of time but
If the translational mode is excited and it is pos- also sees its domain of definition change as well.
sible to measure the amplitude of the mantle and the = We present a geometric definition of tRgdz-
change in gravitational field on the surface of Mercury, derivative at a poing on the surface; at timer, illus-
such measurements may allow a direct determination trated inFig. 3. Consider two locations of the surfagge
of the size of the inner core. Suppose that a gravime- andS;+ at nearby times andz*. Draw the straight line
ter is placed at the north pole and that the translational orthogonal taS; passing through the poigtmark the
mode is along the axis of rotation. Then if the mantle point&* where this straight line intersecfs-. Define:

moves up by the amourt then according to E(q6)
the mantle moves down b = A(p2R3 + p3(R3 —

R3)((p1 — ,Oz)R%)_l. Thus, the gravimeter is closer to
the inner core by

At B A ((pl — p2)R3 + (p2 — ps)RngpsR%)

(p1— P2)RS
(42)

T+ (§) — T:(8)

™" —1

o T, .
—L — lim

T T*—>1

(44)

Let Az be the vector connecting the pointo the
point £*. Then the velocity of the interfac€ (also
known as thenormalvelocity) is defined as

. Az-N
C = lim

9
T TF — T

(49)

The observed change in the gravitational field is due whereN is the unit normal to the surfack. Since by

to the massd; — ,oz)Rf moving closer by the amount

constructionAz is aligned withN, the projectionAz

B. Therefore, the gravitational field, whose magnitude onto the normal is performed largely for the purposes

is G(p1 — p2)R3/r?|,_g,» Will increase by 2 (p1 —
p2)R3/r3(A + B)|,_g,, WhereG is the gravitational
constant. In other words, 1 is the accelaration of
gravity andAg is amplitude of the observed change
then

Ag = 2G((p1 — p2) 03 + (p2 — p3)(R2/R3)* + p3)A
(43)

For Mercury, the coefficient of proportionality between
Ag andAin terms ofR1/R3 is 3 x 103G((R1/R3)® +
15.231) which, if measured experimentally, would
yield the size of the inner core.

Appendix A. The 8/3 ¢-derivative

This paper relies heavily on the calculus of mov-
ing surfaces, which has an illustrious history. This ap-

of determining the sign of. If z is the radius vector
with respect to an arbitrary origin then the definition of
C (45) can be rewritten as

Y4
=_".N
ST

C

Fig. 3. Geometic definition of th&/3¢-derivative as applied to a
scalar fieldT, define at timer on the surfaces; with surface coor-
dinatest.
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The velocity fieldC completely determines the evolu-
tion of the interface much like the velocity field of a
fluid completely determines its flow, with one signifi-
cant difference. In the flow of a fluid, the trajectories of
individual particles are usually of interest and the ve-
locity field allows one to track them. The veloci®y on

the other hand, describes the motion of the surface as

a geometric object without keeping track of individual
points.

The following equations present the key algebraic
properties of thé /d¢-derivative that are used to derive
Eqs(20a) and (15h)The quantitysis the surface shift
tensormis the surface metrid is the curvature ten-
sor, Vs is the surface gradient anls is the surface
Laplacian.

65_

Vs(CN) (46a)
S5t
)
M _ocB (46b)
o1
SN
— = —sV5C (46c)
oT
5B
—— = AgC + CB? (46d)
5T
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