Content-Based Access to Algebraic Video
by
Ron Weiss
B.A. Brandeis University (1992)
Submitted to the Department of Electrical

Engineering and Computer Science in Partial
Fulfillment of the Requirements for the Degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1994

(© Massachusetts Institute of Technology 1994
All rights reserved

Signature of Author

Department of Electrical Engineering and Computer Science

May 17, 1994

Certified by

David K. Gifford
Associate Professor of Computer Science
Thesis Supervisor

Accepted by

F. R. Morgenthaler

Chairman, Departmental Committee on Graduate Studies

Content-Based Access to Algebraic Video
by
Ron Weiss

Submitted to the Department of Electrical
Engineering and Computer Science on May 13, 1994
in partial fulfillment of the requirements for the
degree of Master of Science in Electrical
Engineering and Computer Science

Abstract

Algebraic video integrates fundamental access methods for digital video: compo-
sition, search, navigation and playback. Video presentations are composed using
a video algebra that consists of a set of basic operations on video segments to
produce a desired video stream. The video algebra contains operations for tem-
porally and spatially combining video segments as well as for attaching attributes
to these segments. Algebraic video access methods also include query and naviga-
tion operations. Query and navigation allow users to discover video presentations
of interest by describing desired attributes and exploring a presentation’s con-
text. Unlike previous approaches, algebraic video permits video expressions to be
nested in arbitrarily deep hierarchies. It also permits video segments to inherit
attributes by context. Experience with a prototype algebraic video system sug-
gests that algebraic video offers a complete, integrated framework to access and
manage video, is easy to use, and that satisfactory performance is obtainable. The
prototype system is used to discover video segments of interest from existing col-
lections and create new video presentations with algebraic combinations of these
segments.

Thesis Supervisor: David K. Gifford

Title: Associate Professor of Computer Science

Acknowledgments

[would like to thank my advisor, David K. Gifford, for his advice, encouragement,
and support. He has been extremely helpful in guiding me, helping focus my
thoughts, and comprehend the important issues.

[would like to acknowledge Dr. Andrzej Duda for his many contributions and
important insights.

I would like to thank my group members, Brian Reistad, Mark Sheldon, and
James O’toole for their many insightful comments.

[would like to thank my father, Dr. Zvi Weiss, for introducing me to the world
of computers, and for my entire family for their encouragement and support.

I wish to acknowledge Professor Gerald Winer who provided me with helpful
comments about my writing style.

I would like to thank my roommate Mike Ashburn whose endless hours of work
and encouragements when the going got tough have motivated me to continue on.

And finally I'd like to thank my fiancee Kim Winer, that was always there for
me, and although physically far away, [was never closer to.

Contents

34.1

1 Introduction
1.1 Possible Applications
1.2 Design Overview
1.3 Algebraic Video Contribution L.
2 Related Work
2.1 Video Authoring and Annotation o0
2.2 Systems with Content-Based Access to Video
2.3 Modeling of unstructured video for content-based retrieval
2.4 Modeling the temporal component of information
3 Design
3.1 Editing and Composing Using Video Algebra Operations
3.1.1 Composition
3.1.2 Output Characteristics
3.1.3 Associating Descriptions with Video Presentations
3.2 Interface Operations
3.2.1 Content-Based Access
3.2.2 Browsing and Navigation
3.3 Nested Stratification Permits Multiple Coexisting Hierarchical Descriptions
3.4 Video algebra as a programming language

Video Algebra as an Extension to Existing Programming Languages . . .

10
12
13
14

16
16
21
23
24

25
27
29
32
34
37
37
41
42
43
44

3.4.2 Abstraction Using Video Templates

4 Implementation
4.1 Content-Based Access e
4.2 Playback e e

4.2.1 Playback of Union, Intersection, Difference

5 User Interface
5.1 SFS Interface for Content-Bases Access
5.2 AV Graphical Query Interfaceo
5.3 HTML Info Interface for Editing, Navigation, and Query
5.3.1 Create and Edit Algebraic Video Nodes
5.3.2 Query Access using the HTML Info module
5.3.3 Navigation using Video Node Ancestral Relationships
5.4 Algebraic Video Player oo

6 Experience and Conclusions
6.1 Experimental Results and Performance
6.1.1 Experience with Content Based Access
6.1.2 Playback Performance
6.2 Evaluation.
6.2.1 Limitations
6.2.2 Key Results
6.3 Future Work

6.4 Summary

A Algebraic Video File Syntax

47
49
51
35

61
61
62
64
64
66
67
68

70
70
71
71
75
76
78
80
82

83

List of Figures

1-1

2-1
2-2
2-3
2-4
2-5

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14

Video Expressions Denote Video Presentations 13
Annotation of Video Footage using Stratification 17
Timeline Editor L o 18
The MHEG Object Inheritance Tree 20
Timed Petri Nets o 22
Relationships Between Temporal Intervals 24
Interface and Facilities of Algebraic Video 26
Union Operation in an Algebraic Video Node 30
Graphical Representation of Union 30
An example of the Conditional Operator 31
An Algebraic Video Node with Parallel and Concatenation Operations 33
Playback of the Algebraic Video Node 33
An Example of Nested Windows L. 34
A Playback Snapshot of the Node with Nested Windows 35
Example of Nested Overlap 36
An Example of Nested Window Priorities 36
A Hierarchy of Nodes with Descriptions and Hide-Content 38
Nested stratification with algebraic video 42
Eleven O’clock News Template Node 45
Customized Newscast for May 17th 45

4-2
4-3
4-4
4-5

5-1
5-2
5-3
9-4
5-5

6-1
6-2

Algebraic Video System Implementation 48
Browser Snapshots 50
A TCL schedule file 53
Graphical Hllustration of menus 57
Graphical Illustration of intersect 58
Algebraic Video Query Interface L. 63
Create and Edit Algebraic Video Files 65
Mosaic Query Interface 66
Navigation of the Video Collection using Mosaic 67
Algebraic Video Node Player 69
Playback speed versus number of windows 73
Video Player Startup Time 74

List of Tables

3.1 Video Algebra Operations o 28
3.2 Interface Operations 37
3.3 Example Queries on Node Hierarchy 39
3.4 Video Templates 44

Chapter 1

Introduction

The video and audio capabilities of current computer systems are advancing rapidly. As digital
video becomes ubiquitous and as more video sources become available, applications will need to
deal with digital video as a new data type. However, since video has both temporal and spatial
dimensions, it places different requirements on applications than existing data types such as
text. Moreover, the volume and unstructured format of digital video data make it difficult to
manage, access and compose video segments into video presentations. When creating new video
presentations, it is essential to reuse existing video segments and presentations, because the
sheer volume of the data makes copying prohibitive. It is therefore necessary to provide a new
digital video data type with content-based access that will alleviate these problems and facilitate
broader use of video resources.

Many existing digital video abstractions rely on the traditional view of video as a linear
temporal medium. They do not take full advantage of either the logical structure of the video or
of hierarchical relationships between video segments. Moreover, flexible associative access based
on the structure and the hierarchy is not supported. For these reasons, algebraic video allows

the user to:
e create video presentations that

— model nested video structures such as shot, scene and sequence,

— express temporal compositions of video segments,

10

Content-Based Access to Algebraic Video 11

— define output characteristics of video segments,

— specify multi-stream viewing.
¢ integrate content-based access to video:

— associate content information with logical video segments,
— provide multiple coexisting views and annotations of the same data,

— provide associative access based on the content, structure and temporal information.

e playback video presentations

The goal of algebraic video to help users efficiently access and manage digital video. To test
this goal, a prototype system that implements algebraic video has been built. Algebraic video

and a system that implements this model must meet the following criteria:

1. Complete, Integrated Framework: The model must support the fundamental access
methods to video in an integrated fashion. Users should be able to efficiently find relevant
video presentations, playback these presentations, and compose new presentations of their
own. In supporting the creation of new video presentations, the data model must be
sufficiently flexible and powerful to model many diverse types of video presentations, and
also allow the association of content with video presentations for subsequent content-based

access.

2. Ease of use: The data model and the system that implements the data model must be
easy to use in the creation of algebraic video, during the search process, and during the

playback of video presentations.

3. Performance: Query and video playback should provide satisfactory performance. Al-
though absolute performance is not a goal of this thesis, the system must provide acceptable

video viewing and support interactive query access.

The rest of this chapter describes motivating examples and the requirements they place
on algebraic video (Section 1.1), provides a design overview of the algebraic video data model

(section 1.2), and summarizes the contributions of this research (Section 1.3).

Content-Based Access to Algebraic Video 12

1.1 Possible Applications

The algebraic video data model can provide the foundation for a digital video system where
users efficiently access and manage video information. For example, consider a user that wants
to compose a digital video presentation about the latest developments with economic reforms.
First, the user searches a large collection of TV broadcasts for all video segments reporting on
economic reforms and Smith, who is a notable economist. Then, the user may want to examine
the context in which the segments have appeared: in the headline news or in a talk show.
Finally, the user chooses some segments and combines them such that they form a new video
presentation that can be played out, stored, or exchanged.

Another example is a user who wants to automate the daily task of composing and viewing
a short video presentation that includes the day’s interesting events. The user encodes his or
her preferences once, and then allows the computer to automatically construct a relevant video
presentation on a daily basis. A system that supports this scenario must allow the user to easily
express certain desired characteristics of the video presentation. First, the user encodes the
preferred content of the video footage, such as economic news, latest basketball scores, speeches
by the president, and the current weather forecast. Second, the user must be able to express
temporal constraints on the duration of the entire video presentation or any of its subsegments.
Third, the user must be able to express the spatial and temporal composition of the relevant
video segments, possibly in a multi-window configuration that includes several concurrent video
streams. For instance, more important footage such as the economic news will be placed in
larger windows and closer to the beginning of the presentation. Fourth, the user will not want
to view the same video footage again if it occurs earlier in the video presentation. Finally, a
system supporting this interaction must be easy to use by anyone, including non-programmers.

The above examples require a new video data type that integrates both the content attributes
and the semantic structure of the video data. For content-based access, the video data type
may need to describe the people in a scene, the associated verbal communication for each
video segment, and the relationships between segments. Automatic content extraction, such as
image and speech recognition should be used when possible. Because these methods are not
vet generally feasible, other forms of information extraction can be employed. Text captions or

image features such as color, texture, and shape, may be associated with the video footage. The

Content-Based Access to Algebraic Video 13

user can also associate personalized descriptions with any component of the video presentation.
Finally, the data model allows users to express temporal and structural relationships between
video segments. Along with content information, these semantic structure attributes are also
indexed for content-based access.

video
presentation

video expressio

video expressiog video expressio video expressio

P raw vi deo } 4 raw vi deo P

Figure 1-1: Video Expressions Denote Video Presentations

1.2 Design Overview

The algebraic video data model allows users to create video presentations using hierarchical
compositions of video expressions with high-level semantic descriptions. A video expression de-
notes a wvideo presentation, which is multi-window, concurrent spatial and temporal combination
of video segments (see Figure 1-1). The video expressions are constructed using video algebra
operations. A video algebra is introduced as a means for combining and expressing tempo-
ral relations, for defining the output characteristics of video expressions, and for associating
descriptive information with these expressions. The algebraic video abstraction provides an ef-
ficient means of organizing and manipulating video data by assigning logical representations to
the underlying video streams and their contents. The model also defines operations for flexible
associative access to the video information. The algebraic video preserves the correspondence
between video segments so that all relevant segments and their neighbors can be efficiently found.

Video expressions define media-independent output characteristics, and therefore the rendering

Content-Based Access to Algebraic Video 14

can adjust to the available resources.

Users access algebraic video via query, navigation, and playback of video presentations. These
access methods to an algebraic video collection are grouped together as the interface operations.
Users can search for relevant presentations with queries that describe desired attributes of video
expressions. The invocation of a query results in a set of video expressions that can be played
back, reused or manipulated by a user. In addition to content-based access, the interface oper-
ations allow users to browse and explore the structure of the video expressions. These activities
help users understand the surrounding organization and context. For example, the user can find
an interesting expression and then examine the encompassing video segments. Furthermore,
users can create their individual interpretations of existing video footage by composing new

video expressions from the existing video components.

1.3 Algebraic Video Contribution

The algebraic video data model allows users to compose concurrent video presentations by struc-
turing raw data into logical video segments and then describing the temporal relations between
these segments. Hierarchical relations between the video expressions allow nested stratification
— overlapping segments are used to provide multiple coexisting views and annotations of the
same data and enable the user to assign multiple meanings to the same footage. Segments can
be organized hierarchically so that their relationships are preserved and can be exploited by the
user. In addition to simple stratification, the algebraic video model preserves nested relation-
ships between strata and allows the user to explore the context in which a stratum appears (see
discussion in Section 2.1).

The algebraic video data model offers the following important advances over previous digital

video representations:

e It provides the fundamental functions required to deal with digital video: composition,

reuse, organization, searching, and browsing.

o It models complex, nested logical structure of video using video algebra. The video algebra
is a useful metaphor for expressing temporal interdependencies between video segments,

as well as associating descriptions and output characteristics with video segments.

Content-Based Access to Algebraic Video 15

e The model allows associative access based on the content of the video, its logical structure

and temporal composition.

The Algebraic Video System is a prototype implementation of the algebraic video model and
its associated operations. It facilitates experimentation with the algebraic video data model, and
helps evaluate the feasibility of the design goals in the construction of a real production system.
The system allows users to compose and playback algebraic video presentations. It extracts
video attribute information and supports content-based access, as well as video playback. The
system offers an integrated environment that includes a text based video expression editor, query
based interface for searching, methods for browsing, and an algebraic video player for playback
of relevant video presentations. The algebraic video player uses the logical representation of the
video data to provide viewing methods based on the ascribed temporal characteristics of the
video.

The remainder of this thesis discusses related work (Chapter 2), the design of the algebraic
video data model (Chapter 3), the prototype implementation (Chapter 4), the user interface to
the system (Chapter 5), and experience with the system and conclusions from the work (Chapter

6).

Chapter 2

Related Work

This chapter describes related work that includes video authoring and annotation tools (Section
2.1), systems that provide content-based access to video (Section 2.2), modeling of unstructured
video for content-based retrieval (Section 2.3) and modeling the temporal component of infor-
mation (Section 2.4). The author is not aware of any system that currently supports a complete,

integrated framework for managing and accessing digital video as offered by algebraic video.

2.1 Video Authoring and Annotation

Video authoring and annotation tools provide facilities for composing and annotating complex
video presentations. Davenport et al. [4, 3] implemented a video annotation system that uses
the concept of stratification to assign descriptions to video footage, where each stratum refers to
a sequence of video frames. The strata may overlap or totally encompass each other. They are
stored in files and can be accessed using simple keyword search. Figure 2-1 shows an example
of video footage annotated by strata. In the stratification system, a user can find a sequence of
interest, but cannot easily determine the context in which the video sequence appears. due to
the absence of relationships between the strata. The algebraic video data model provides a full
hierarchical organization of video footage that permits flexible browsing. A user creates strata
with video nodes that reference portions of video segments. In addition to modeling simple

stratification, algebraic video preserves the nested relationships between strata and allows the

16

Content-Based Access to Algebraic Video 17

1989 San Franci sco Earthquake

medi ¢cs
victim
@
@ > o
<
< & &
- & 3
& < S
&
S 2) Iy
N < S
Q N N
siren ambul ance

B —

frames/time

Figure 2-1: Annotation of Video Footage using Stratification

exploration of the context in which a stratum appears. Furthermore, the algebraic video data
model allows the association of arbitrary, possibly non-textual, attributes with the video data.
Section 3.3 discusses in detail the advantages of algebraic video over linear stratification.
Adobe Premiere [2], DiVA VideoShop [11], and MacroMind Director [25] that are built
upon the QuickTime [12] video support system, and Avid Media Composer [6] that relies on
a proprietary video system, are commercially available video authoring tools. They allow the
user to create movies using audio and video tracks, and also enable the user to specify special
effects during video segment transitions. These commercial systems are based on two distinct
paradigms: timelines and scripts. In the timeline approach, video and audio objects are placed
on a line representing time flow. Video objects are normally a sequence of frames that may
have an associated audio stream. Prerecorded audio streams can also be independently placed
in the timeline. Normally, a direct manipulation graphical editor similar to the one illustrated
in Figure 2-2 (artificially created for the purposes of this discussion), presents the video author
with video and audio tracks, and a special effects track for combining the two video tracks.
Synchronization between any two objects is achieved by carefully placing the video and audio
objects on tracks that are marked by time indices. The indices reflect the elapsed time since
the beginning of the video presentation. Any presentation created on a timeline can be easily

mapped into an algebraic video presentation. However, some algebraic video presentations, such

Content-Based Access to Algebraic Video 18

as ones that include choices, cannot be modeled using a simple timeline metaphor.

Construction Window

[2—ocr

Figure 2-2: Timeline Editor

The script (or flowchart) approach requires the video author to explicitly program timing
and placement information. The toolkits allow the user to edit video data in essentially the
same manner as film makers edit analog movies. They arrange shots on a temporal linear axis
by cutting, pasting and making transitions. The computer merely simplifies the previously
mundane task of searching for a sequence of frames from a video source such as a video tape,
and then copying the frames onto the video target. Digital video is unique because it is not
restricted by the linearity of traditional media. It possesses a dynamic element, where the video
display may be determined during runtime and may not follow a strictly linear progression
determined a-priori. The toolkits do not take advantage of this distinctive feature. Moreover,
the toolkits lack methods for specifying the elaborate logical structure of video data and do
not address content-based access. Because perusing through a large video collection in search
of some footage is inherently time-consuming, content-based access should be incorporated as
an integral part of the video creation and access process. The algebraic video approach allows

structured, multi-stream composition using video algebra operations and content-based access.

Content-Based Access to Algebraic Video 19

Multimedia authoring systems such as CMIFed [36, 19] propose structuring primitives for
multimedia documents. They define an atomic multimedia presentation in terms of events, where
an event is usually a small fragment of video, audio or text. Then, composite presentations
contain other, possibly nested presentations. Events are mapped into channels, which are a
media specific abstraction for a group of events. Synchronization is achieved using parallel and
sequential composition, as well as synchronization arcs that specify constraints between two
events in the same presentation. The model fails to address the structure of the video data itself
because video is still treated as an unstructured linear stream. Although the model contains a
structuring mechanism for the multimedia presentation that can be examined with the hierarchy
view, it does not allow multiple coexisting views of the data that enables flexible annotation
and content-based access.

Hamakawa and Rekimoto [18] propose a multimedia authoring system that supports editing
and reuse of multimedia data. Their system is based on a hierarchical and compositional model
of multimedia objects. It allows the user to mark objects with a title at a certain point in time.
However, it does not support a fully functional free form annotation mechanism that enables
subsequent content-based access. Similar to the CMIFed system, it does not allow multiple
coexisting views of the same data.

Media Streams is an iconic visual language that enables users to create multi-layered, iconic
annotations of video content [10]. Icons denoting objects and actions are organized into cascading
hierarchies from levels of generality to levels of increasing specificity. Additionally, icons are
organized across multiple axes of descriptions such as objects, characters, relative positions,
time or transitions. The icons are used to annotate video streams represented in a Media Time
Line. An icon that is placed on the timeline annotates the video segment from its insertion point
to a specified end point, that could be a scene break or the end of the video stream. Currently,
around 2200 iconic primitives can be browsed. However, this user-friendly visual approach to
annotation is limited by a fixed vocabulary. For instance, textual data such as close-captioned
text can not be readily associated with the video stream. Moreover, the approach suffers from
the same limitations of the timeline approach discussed above. It is still restricted to a linear
medium, rather than exploiting the non-linearity that characterizes digital video. While the

iconic primitives can be combined to produce compound annotations, the annotations themselves

Content-Based Access to Algebraic Video 20

do not reveal the logical structuring of the hierarchical and possibly nested video presentation.

VideoScheme [26] is a programmable video editing system that combines the metaphor of
direct manipulation video editing and a programming language. The system can be used to
automate mundane editing tasks, as well as easily programmed to perform more complex tasks
such as object and media recognition by efficient prototyping of novel algorithms. At the core of
the system is a simple direct manipulation video editor that includes video and audio tracks. The
Scheme programming environment that is embedded in the interactive editor allows users to type
and evaluate expressions, which in turn affect the editor. However, rather then incorporating
video as a fundamental data type within a programming language, VideoScheme chooses to
provide a library of procedures that manipulate a timeline based video editor. The system
does not directly support the logical structuring of video, and ultimately suffers from the same

disadvantages of other timeline representations.

MH-OBJECT
NULL SCRIPT COMPONENT LINK MACRO DESCRIPTOR
CONTENT COMPOSITE INTERACTION

VISUAL TEMPORAL AUDIBLE NUMERICAL

TEXT GRAPHICS STILL VIDEO AUDIO

AUDIOVISUAL

Figure 2-3: The MHEG Object Inheritance Tree

The MHEG [29] standard is intended for “coded representation of final form multimedia
and hypermedia objects that will be interchanged across service and applications”. At the core

of the standard are the MHEG objects (represented in Figure 2-3) that play a federated role

Content-Based Access to Algebraic Video 21

between interacting applications. MHEG defines the formats used at the interchange point
between applications that want to exchange multimedia data. The objects are synchronized and
composed to form complex presentations using four mechanisms: script, conditional activation,
spatio-temporal, and close system synchronization.

The HyTime [31] hypermedia standard provides a mechanism to specify hyperlinks and
schedule multimedia information in time and space. It is based on the Standard Generalized
Markup Language (SGML), using “architectural forms” to express rules for hypermedia struc-
turing information. These architectural forms and attributes of information objects are grouped
into six modules: Base module, Measurement module, Location address module, Hyperlinks
module, Scheduling module and a Rendition module. The scheduling module allows events,
which are occurrences of information objects, to be scheduled in “finite coordinate spaces” (fcs).
The user expresses spatial and temporal positions of objects in fcs’s using coordinate axes or
relationships. The rendition module maps the fcs representation to its “real-world” counterpart
to achieve playback of the multimedia information. As stated in their description, both MHEG
and HyTime are intended for final formatted documents, and lack mechanisms for content-based
access, editing and annotation of the multimedia data. Koegel et al. implemented HyOctane
[20], a multimedia information system based on the HyTime standard. They provide a sample

HyTime document type definition to model multimedia slideshow presentations.

2.2 Systems with Content-Based Access to Video

Content-based access systems provide facilities to discover video segments of interest. These
systems normally define a data schema to represent a video presentation, and support user
queries formulated against information associated with elements of this data schema. Little
et al. [23] implemented a system that supports content-based retrieval and playback of video
footage. They defined a specific data schema composed of movie, scene and actor relations with
a fixed set of attributes. The system requires manual feature extraction, and then fits these
features into the data schema. Queries are permitted on the attributes of movie, scene and
actor. Once a movie or a scene is selected, a user can scan from scene to scene beginning with

the initial selection.

Content-Based Access to Algebraic Video 22

e T4 T6

T2 T9
T7

T ——()—» T11

T3 T5

T8 T10

Figure 2-4: Timed Petri Nets

The system implemented by Little et al. defines a fixed temporal schema for representing
the logical structure of a motion picture. The schema includes a hierarchical organization of
shots that combine to form scenes, where several scenes are arranged to form a mowvie. This
data schema is used to construct a Timed Petri Net (TPN) representation of the movie, such
as the one in Figure 2-4. The system uses the TPN for synchronization of the video and audio
objects during playback. The TPN representation itself does not include any logical structuring
of the presentation. In addition, it does not support multiple coexisting views of the same data,
and is therefore not sufficiently expressive for annotation and subsequent content based access.
In addition, the data model and the system’s Virtual Video Browser are limited for several
reasons. First, descriptions cannot be assigned to overlapping or nested video sequences as is
accomplished in the stratification model. Second, the system is focused on retrieving previously
stored information and is not suitable for users that need to create, edit and annotate a personally
customized view of the video footage. For example, users cannot create a new movie from the
collection of scenes that are returned as a result of a query. Moreover, the browser does not
support queries based on the temporal ordering of scenes.

Electronic Scrapbook is a system for home-video video annotation and editing [9], where
the annotations can later be used for content-based access. The user can attach descriptions to
video clips and use a modified form of case-based reasoning to edit and create personalized video
stories. The user can query a database of video clips and also filter, sort, or remove overlapping
segments from the results. The system uses a small, special-purpose taxonomy that can be used
in descriptions, but does not exploit the logical structure of video. For example, the user cannot

describe hierarchical relationships where video segments are nested.

Content-Based Access to Algebraic Video 23

Gibbs et al. [14] propose an object-oriented approach to video databases. An audio/video
database can be viewed as a collection of values (audio and video data) and activities (intercon-
nectable components used to process values). The temporal and flow composition mechanisms
allow aggregation of values and activities. The model supports a flow composition of a video
presentations using queries against the database to specify the audio and video values. The
system evaluates a query, and selects to play back the video results of the queries. Since these
database values are linear sequences of data elements, their logical structure is not represented.

Also, the temporal composition mechanism is essentially equivalent to the timeline paradigm.

2.3 Modeling of unstructured video for content-based re-
trieval

When video is captured into digital format from an analog source, it initially exists as an un-
structured sequence of video frames and audio segments. Several proposed systems extract
information from these unstructured streams and then provide a data model that is used for
content-based access. Swanberg et al. [32, 33] defines such an architecture for parsing data
semantics from the video stream. The system manages a fixed data schema for representing in-
formation about the video stream, where a shot is defined as a sequence of frames without a scene
change, and an episode is a sequence of shots that are somehow related. The system provides
tools and models to aid in the analysis of a video stream, including support for identification
of shots and episodes. A knowledge module maintains the information about the segmentation
of the video footage, information about the objects and features in the video, and information
to facilitate query optimization. The data schema used for this system is not sufficiently flex-
ible and therefore not suitable for free form modeling of the complex relations between video
segments.

Nagasaka [27] implemented a system that automatically indexes video by detecting cuts and
associating a small icon of a representative frame with each subpart. The list of icons is used as
an index of the video. Additionally, the system supports full-video searches for frames in which

a specified object appears. Queries are accomplished using an image of the reference objects.

Content-Based Access to Algebraic Video 24

2.4 Modeling the temporal component of information

The consideration of the temporal aspect of information is not restricted to the field of multi-
media. Earlier work examined the problem of representing temporal knowledge with sufficient
expressive power, while still allowing efficient deductive performance. Allen [5] introduced an
interval-based temporal logic that supported an efficient reasoning algorithm. The primitive el-
ement in the knowledge representation is the temporal interval. The representation then defines
a method for expressing relationships between temporal intervals in a hierarchical fashion. Ef-
ficient reasoning and deduction are based on constraint-propagation techniques. As illustrated
in Figure 2-5, the work also defines the possible relationships between two primitive temporal
intervals. Including the inverses of each relationship described in this figure (where equal is its
own inverse), there is a total of thirteen possible mutually exclusive relationships between any

two temporal intervals.

T before S = T during S
T equal S

s
T meets S

T finishes S
T overlaps S

Figure 2-5: Relationships Between Temporal Intervals

Fiume et al. [13] defines a temporal scripting language for object-oriented animation. A user
of their system begins with a library of animated objects that have autonomous spatio-temporal
behavior. When constructing an animation, the user globally coordinates the activities of these
objects using the proposed temporal scripting language. The approach allows abstraction over
animated objects, reuse of objects, as well as extensibility to other media types. The language
defines an object protocol consisting of two messages that enables the expression of a binary

general synchronization operator between objects, as well as other forms of temporal scheduling.

Chapter 3

Design

The design goal of algebraic video is to provide a high-level abstraction that models complex
structuring and content information associated with digital video data and supports content-
based access. Motion video is more that just a sequence of frames randomly pieced together.
Video is created from a collection of raw footage through editing and logical structuring to
convey some message to the viewer. To achieve this narrative goal, video is generally arranged
into different story units such as shots, scenes and sequences according to some logical structure
[24]. A shot, which is the basic organizational entity, is a collection of video frames recorded
sequentially. One or more related shots are combined in a scene and a series of related scenes
forms a sequence. The screenplay defines the logical structure of the video by organizing the
different story units. It provides additional content and structural information through detailed
descriptions of the scenes and sequences.

The video footage itself also contains complex content information that can be extracted
and associated with the video story units. For example, attributes such as close-captioned text
and key frames that characterize a shot can be associated with video. Other attributes that can
be extracted from the footage and provide information about the video include dominant color
in a shot, estimation of motion, and the audio stream. Thus, video has two components that
define it: the logical structure of the video entities, such as shots, and the actual content of the

footage.

25

Content-Based Access to Algebraic Video 26

To obtain the design goal, the data type must be able to:

e model nested video structures such as shot, scene and sequence,

e express temporal relationships between video segments,

e agsociate content information with logical video segments,

e provide multiple coexisting views and annotations of the same data,
e define output characteristics of video segments.

e provide associative access based on the content, structure and temporal information.

Play Edit video
Query Navigate Browse Compose acquisition
Algebraic
Video

e

indexes algebraic unstructured
video video

Figure 3-1: Interface and Facilities of Algebraic Video

Interaction with algebraic video is accomplished via four activities as illustrated in Figure 3-
1: edit and compose video presentations, play and browse existing algebraic video presentations,
navigate the video hierarchy and gquery to find relevant video. The operations that support
playback, navigation and content based access are grouped together as the interface operations.
The storage subsystem includes raw, unstructured video, a representation of algebraic video,
and indexes to support content based access. The process of video acquisition that involves
digitizing video or acquiring digital video from other sources is not specified by the algebraic

video data model.

Content-Based Access to Algebraic Video 27

The fundamental entity of the algebraic video model is a presentation. A presentation is
a multi-window spatial, temporal, and content combination of video segments. Presentations
are described by wideo expressions. The most primitive video expression involves the creation
of a single-window presentation from a raw video segment. These segments are specified by
identifying the raw video and a range within the raw video. Compound video expressions are
constructed from simpler ones using video algebra operations. Video expressions can be named
by variables, composed to reflect the complex logical structure of the presentations, and share
the same video data. A video expression may contain composition information, descriptive
information about the contents, and output characteristics that describe the playback behavior
of the presentation. Video expressions can be played back, searched and browsed. An algebraic
video node provides a means of abstraction by which video expressions can be named, stored
and manipulated as units. An algebraic video node contains a single video expression that may
refer to children nodes or raw video segments (see Figure 1-1).

The remainder of this chapter introduces the algebraic video operations for editing and
composition (Section 3.1), presents the interface operations for managing and accessing video
presentations (Section 3.2), describes nested stratification as an effective means for content-
based access (Section 3.3 and concludes by considering the model as a programming language

(Section 3.4).

3.1 Editing and Composing Using Video Algebra Oper-
ations

The video algebra operations for editing and composing video presentations are classified into

the following categories:
e Creation: defines the construction of video expressions from raw video.
e Composition: defines temporal relationships between component video expressions.
¢ Output: defines spatial layout and audio output for component video expressions.

e Description: associates content attributes with a video expression.

Content-Based Access to Algebraic Video 28

Creation

create create name begin end
creates a presentation from the range within the identified raw video segment

delay delay time
creates a presentation with empty footage for duration ¢ime

Composition

concatenation | Fqo Es
defines the presentation where Fy follows Ey

union FiUE,
defines the presentation where E5 follows E; and common footage is not repeated

intersection EiNE,
defines the presentation where only common footage of F1 and £ is played

difference E, - E,
defines the presentation where only footage of E; that is not in E5 is played
parallel Eq || Eq

defines the presentation where £ and E5 are played concurrently and start simultaneously

parallel-end Ey0E,
defines the presentation where F; and FE5 are played concurrently and terminate

simultaneously
conditional (test)? Ey: Eq:...: By

defines the presentation where F; is played if test evaluates to ¢
loop loop E; reps

defines reps repetitions of the video expression E; (can be forever)
stretch stretch Fy factor

the duration of the presentation is equal to factor times duration of E;. This is achieved
by changing the playback speed of the video expression.

limit limit Fy time
the duration of the presentation is equal to the minimum of time and the duration of F1,
but the playback speed is not changed.

transition transition E) E type time
defines type transition effect between expressions F; and Fs; time defines the duration of
the transition effect

contains contains Fy query
defines the presentation that contains component expressions of E/; that match query
Output
window window Fy (z1,y1) — (%2, y2) priority

specifies that F; will be displayed with priority in the window defined by (z1,y1) as the
bottom-left corner, and (z2, y2) as the right-top corner such that z; €[0,1] and y; € [0, 1]

audio audio F channel force priority
specifies that the audio of F; will be output to channel with priority. If force is true,
override audio specifications of the component expressions.

Description

description description £ content
specifies that F; is described by content

hide-content hide-content £
defines a presentation that hides the content of E;

Table 3.1: Video Algebra Operations

Content-Based Access to Algebraic Video 29

Table 3.1 presents the video algebra operations. The arguments denoted by E1, Es, ..., Eg
are video expressions. The result of a video expression is a presentation. A video expression
defines the temporal and spatial composition of its presentation arguments using the operators
defined in the table. For the examples given in this chapter, expressions of the form:
(E10E20 E30 ...E,), where © is any specific binary operation, denote an expression of the
form: (...((E1 ® E2) ® E3) ® ... E,). Also note that the binary video algebra operations are

inherently not associative because they include a temporal component.

3.1.1 Composition

Complex scheduling definitions and constraints can be expressed using the composition opera-
tors. Concatenation is the simplest temporal combination of presentations. The video expression
FE o E5 defines the compound video presentation where the presentation E5 follows the presen-
tation F1. The union operation is similar to concatenation in the sense that it also creates a
compound video presentation by sequentially ordering the argument video presentations. How-
ever, the resulting presentation is not merely a temporal ordering of the arguments. Rather, the
union operator eliminates some redundancy between the arguments in a manner similar to the
mathematical union set operation (and unlike the the multi-set union operation). The resulting
video presentation is a combination of the video presentation arguments where common footage
is not repeated. Section 4.2.1 offers a precise definition of one possible interpretation of the
common footage elimination process as implemented in the algebraic video system. The union
operation allows the user to easily construct a non-repetitive video stream from overlapping
segments. It preserves the temporal ordering of the component presentations. Note that if these
expressions do not contain overlapping segments, then union is equivalent to concatenation.
Figures 3-2 and 3-3 present an example of an algebraic video node that uses the union operation
in the composition of a video expression. In this example, one raw video file is annotated by
three overlapping nodes. The union of the three overlapping nodes yields one video stream with
no redundancy in the playback.

The intersection operation defines a new video presentation that includes only footage that
is contained in both of the arguments. Thus, it enables the user to easily construct video

presentations that incorporate only the footage that is the overlap of multiple video segments

Content-Based Access to Algebraic Video 30

C7 = create Cnn.HeadlineNews.rv 10 30
(s = create Cnn.HeadlineNews.rv 20 40
(3 = create Cnn.HeadlineNews.rv 32 65

(description
(C1UCUCs)
(title = “CNN Headline News”
text = “Smith proposes economic reform ...”))

Figure 3-2: Union Operation in an Algebraic Video Node

(description (1u2u3)... ‘

3
lanchor speaki ng |
‘ Prof essor Smith
[econoni ¢ reform | X

Figure 3-3: Graphical Representation of Union

or presentations. For example, the intersection operation can be used to efficiently determine
whether a video presentation contains any portion of a particular video segment. The difference
operation defines a video presentation that is similar to its first argument, except that any video
footage contained in its second argument is not included. The wunion, intersection and differ-
ence operators do not only determine scheduling constraints for combining video presentations.
Rather, they also examine the contents of these component presentations, and produce new
presentations whose contents and scheduling depends on the contents of the video presentation
arguments. These operations are different from the normal mathematical set operations because
they also have a temporal component and are therefore not associative.

The parallel and parallel-end operations allow the user to compose multi-window, concurrent
video presentations. The parallel operation defines a compound video presentation where the
argument presentations are scheduled to start concurrently. The parallel-end operation allows

an alternate synchronization mechanism for composing compound video presentations where the

Content-Based Access to Algebraic Video 31

C1 = create Hoffa.uv 0:10 3:50

Cs = create ScentOfAWoman.uv 0:00 5:40
C3 = create ScoobyDoo.uv 20:12 40:00
Cy = create Alladin.uv 12:00 17:25
(concat

Cy

(conditional

% Beginning of test expression written in TCL

puts stdout “Please select movie ending”

puts stdout “ (1 = sad, 2 = happy, 3 = Scooby-Doo):
set ¢ [read stdin 2]

”

return “$¢”
%
Cy Cy C3)

Figure 3-4: An example of the Conditional Operator

video presentation arguments are scheduled to terminate simultaneously. The video algebra can
be extended to include a generalized synchronization operator that allows the specification of
temporal relationship constraints based on intermediate time points between the start and end
of a video expression.

The conditional operation defines a video presentation where the choice of what to display
is made at runtime. Thus, the same video presentation can result in completely different video
streams depending on dynamic expression evaluation. The test expression in the conditional
operation must evaluate to an integer. However, it is easy to map non-integer test expressions,
such as a user’s environment variable, time-of-day, weather patterns, and user interaction, to
valid integers. The conditional operation can be used in the domain of interactive movies where
a user creates her own story by choosing to explore different possible plot threads. This can be
accomplished by logically structuring the video and allowing the user to choose segments based
on interaction or an a priori specification. Figure 3-4 illustrates how the conditional operation
can be used for personalized viewing or other viewing that can be affected by external sources.
In this example, the user chooses the ending of the presentation. The conditional operation can
also introduce non-determinism into the playback of video presentations by instructing the test

expression to return the result of a random number generator.

Content-Based Access to Algebraic Video 32

The loop operation creates a compound video expression that repeats the video presentation
argument a specified number of times. The stretch operation changes the playback speed of
the video presentation, but does not alter the playback speed of other presentations. The limit
operation creates a video presentation whose duration does not exceed the minimum value of
the teme argument and the duration of the video presentation argument. An author of a video
presentation can easily constrain the playback duration of video presentations with the limit
operation to fit some prespecified temporal constraint, such as a thirty second time slot for a
news clip. The transition operation combines two video expressions using a transition effect of
duration time. The transition type is one of a set of transition effects, such as dissolve, fade,
and wipe. Note that concatenation is a simple transition with time = 0.

The contains operation permits the user to define a video presentation based on the results
of a query on a video expression argument. The operation combines the subexpressions that
match the query into one video expression, while preserving the hierarchical relations of the
video expression argument. The syntax and semantics of the guery argument in a contains
operation is explained in section 3.2.1. The following video expression is an example of the
usage of the contains operator:

(contains “text:mafia” (JimmyHoffa.av o FleshAndBone.av o BusinessSense.av))

In this example, the resulting presentation includes only those video subexpressions which have
the “mafia” text attribute. This could include the entire JimmyHoffa.av video node, as well as

selected portions of BusinessSense.av.

3.1.2 Output Characteristics

Because multiple video streams can be scheduled to play at any specific time within one video
presentation, the playback may require multiple screen displays and audio outputs. Therefore,
video expressions include output characteristics that specify the screen layout and audio output
for playing back children streams.

All video expressions are associated with some rectangular screen region in which they are
displayed. A video expression constrains the spatial layout of its components. As expressions
can be nested, the spatial layout of any particular video expression is defined relative to the

parent rectangle. The parent rectangle is the screen region associated with the encompassing

Content-Based Access to Algebraic Video 33

(7 = create Cnn.HN.127.Intro.rv 35 70
Cs = Cnn.HN.3.14.Anchor.av
C3 = Bosnia-7-14-93.av

P, = window C; (0,0) - (.7,1) 10

P; = window C> (0,0) - (1,1) 20
P; = window Cj3 (.7,0) - (1,1) 30
(P1 || Pg) [e] PZ

Figure 3-5: An Algebraic Video Node with Parallel and Concatenation Operations

X

Figure 3-6: Playback of the Algebraic Video Node

expression. The window operator defines a rectangular region within the parent rectangle where
the given video expression is displayed. The rectangular region is specified by two points in
a relative coordinate system, the top-left (z1,y:1) and bottom-right (22, y2) corners, such that
z; €[0,1] and y; € [0,1]. By default, a video expression is associated with a square that fits
in the parent rectangle. Figures 3-5 and 3-6 give a simple example of an algebraic video node
and illustrate the playback characteristics of this node using spatial and temporal coordinates.
Figures 3-7 and 3-8 give a more elaborate example of an algebraic video node with nested window
specifications and a snapshot captured during playback.

Window priorities are used to resolve overlap conflicts of screen display. The window opera-
tion establishes the video priority of the associated window region with the priority parameter.
The window with the higher priority overlaps the window with the lower priority. For example,

assume that the two windows W,; and W, are children of the same parent window region. If

Content-Based Access to Algebraic Video 34

(7 = create hoffa.rv 30:0 50:0

P, = window C; (0,0) - (0.5,0.5) 10
P; = window C; (0,0.5) - (0.5,1) 20
P3 = window C; (0.5,0.5) - (1,1) 30
P, = window C; (0.5,0) - (1,0.5) 40

Ps = (P1|| Py || Pa)
Ps = (P1| Pyl Pl Pa)
(P ||

(window

(Ps || (window Ps (0.5,0.5) - (1,1) 60))
(0.5,0.5) - (1,1) 50))

Figure 3-7: An Example of Nested Windows

the priority of W, is greater than the priority of W,s, then W,; and all its video subexpressions
will overlap W, and all its video subexpressions. Figures 3-9 and 3-10 give an example of a
video presentation with nested window specifications that uses video priorities to resolve overlap
conflicts.

The audio operation directs the audio output of the video expression to channel, which can
be any logical audio device. If the force argument is true, then the audio operation overrides any
channel specifications of the component video expressions. The priority parameter is defined in

a manner analogous to the priority parameter of the window operation.

3.1.3 Associating Descriptions with Video Presentations

The model permits the association of arbitrary descriptions with a given video algebra expres-
sion. It allows textual, as well as non-textual descriptions such as key frames, icons, salient stills
[35], and image features like color, texture, and shape. The description operation associates
content information with a video expression.

The content description of an expression is not fixed by the model. However, for the purposes
of this thesis and the prototype implementation, a content is a boolean combination of attributes,
where each attribute consists of a field name and a value. An example of an attribute is title

= "CNN Headline News". Some field names have predefined semantics, e.g. title, and other

Content-Based Access to Algebraic Video 35

Figure 3-8: A Playback Snapshot of the Node with Nested Windows

fields can be defined by the user. Values can assume a variety of types, including strings
and algebraic video node names. Field names or values do not have to be unique within a
description. Therefore, a description can have multiple titles, text summaries, and actor names
that are associated with a video expression. For example, a description may contain recorded
close-captioned text. The user may add other attributes, such as actor, characters, and the scene
summary. The components of a video expression inherit descriptions by context. This implies
that all the content attributes associated with some parent video node are also associated with
all its descendant nodes.

The hide-content operation defines a video expression F that does not contain any descrip-
tions. The contains and search operations (described in section 3.2.1) on E do not recursively
examine the components of E. The hide-content operation provides a method for creating ab-
straction barriers for content-based access. Thus, an author of a video node can provide a
pointer to the node (i.e. it’s name), while disallowing content-based access that examines the
node’s components. The node acts as a “black box” that can be combined and played together
with other video expressions (including operations that examine it’s footage contents, such as

union, intersection, and difference). However, it does not allow the contains operation to select

Content-Based Access to Algebraic Video 36

(7 = create Cnn.HeadlineNews.rv 10 50

(5 = create Cnn.Entertainment.rv 25 55
(3 = create Cnn.Sports.rv 12 27
Cy = create Nightline.rv 5 15

C5 = create LateNight.rv 60 65

Wy window Cy4 (0.5,0) - (1,0.5) 5
W, = Window Cs (0,0) - (0.6,0.6) 10
W3 = window ((Cs || Wa) o C5) (.4,0) - (1,0.6) 20)

(Co || Wa || W3)

Figure 3-9: Example of Nested Overlap

Figure 3-10: An Example of Nested Window Priorities

certain subcomponents solely based on their content description. For example, the hide-content
operation allows the author of a presentation to include personal annotations that may not be
used by others, unless they manually examine the node and reconstruct it. It also allows the
video author to mark certain video subpresentations using the hide-content operator to disallow
content-based access after the author has determined that the description information associ-
ated the presentation is not suitable for further consideration. This operation is not intended as

a fool-proof security mechanism, but rather as a convenience feature when editing or searching

for video.

Content-Based Access to Algebraic Video 37

Content-Based Access

search search query
searches a collection of nodes for video expressions that match query
Browsing
playback playback video-expression
playback the video expression
display display video-expression

display the video expression

Navigation
get-parents | get—parents video-erpression
returns the set of nodes that directly point to video-expression

get-children | get—children video-expression
returns the set of nodes that video-expression directly points to

Table 3.2: Interface Operations

3.2 Interface Operations

The interface operations on video expressions fall into three main categories: content-based
access, browsing and navigation. Table 3.2 defines these operations. They are also discussed in

the following subsections.

3.2.1 Content-Based Access

Associative access to video expressions is accomplished with the search operation, in which the
user specifies desired properties of the expressions. A search is performed within the context
of a persistent collection of algebraic video nodes. For querying within the collection, a simple
predicate query language is used. A gquery is a boolean combination of attributes. When a query
is applied to the collection in the search operation, the hierarchy of every node in the collection
is searched recursively and the operation returns the gquery result set of nodes that satisfy the
query. A node that can be revealed in more than one way is not searched more than once.

A description of a video expression is implicitly inherited by its subexpressions (which can
be descendant nodes). The scope of a given algebraic video node description is the subgraph
that originates from the node. Matching a query to the attributes of an expression must take

into account all of the attributes of that expression, including the attributes of its encompassing

Content-Based Access to Algebraic Video 38

expressions. In the case where the expression is an algebraic video node, this also includes the
attributes of the ancestors. However, if a node’s ancestor is in the result set, the descendant
node is removed from the result set. This is done to ensure that complete sub-hierarchies
of algebraic nodes are not returned in the result set of a query that matches some ancestor
node. For example, consider the query text:smith and text:question applied to a collection
that contains the node described in Figure 3-12. The result of the query is the node with
the description text:'"question from audience", because this node implicitly contains the
description text:smith. The node with the description text:question is not returned because
it is a descendant of a node already in the result set.

Once a query result set is generated, the user can then playback any of the expressions in
the set or browse and explore the video context and composition using the operations described
in the previous section. For example, the user can inspect the encompassing video segment by

examining the parent nodes.

A

Figure 3-11: A Hierarchy of Nodes with Descriptions and Hide-Content

Note that the search operation does not examine sub-hierarchies of the components of ex-

Content-Based Access to Algebraic Video 39

Query Result Set
pred : h null
pred : b null
pred : h & pred : ¢ null
pred : ¢ & pred : e E
pred : e & pred : b null
pred : f F
pred : f & pred : e null
pred : e & pred : d G

Table 3.3: Example Queries on Node Hierarchy

pressions constructed by the hide-content operation. If any ancestor node A specifies that the
descendant node D’s content is hidden, then this node is excluded from examination by the
search operation regardless of whether other nodes also include node D as their child. This
behavior respects the decision of some author of a video presentation that deemed the contents
of node D as unsuitable for associative access. Figure 3-11 is a schematic representation of
a hierarchy of algebraic video nodes that depicts only the ancestral relationships between the
nodes, and does not include the temporal composition. Assume that pred : x represents a pred-
icate that is true for node z. Assume that the descriptions specified in each node are mutually
exclusive, but the node’s attributes are still inherited according to ancestral relationships. Node
B uses a hide-content in its video expression. Table 3.3 gives some example queries and their
respective result sets.

A contains operation may examine the attribute contents of node D if it does not use node
A in its video subexpression that includes D. Thus, a handle on a video node guarantees that

you can still use the content-based composition features of the data model with the given node.

Temporal Queries

Temporal queries are handled using temporal predicates defined similarly to the definitions by
Snodgrass [30]. He defined a temporal predicate operator that takes time intervals as arguments
and returns a Boolean value. The three temporal predicate operators are: precede, overlap and
equal. A temporal predicate is an expression containing the temporal operators. For example,

if interval I precedes interval I5, then predicate I; precede I5 is true.

Content-Based Access to Algebraic Video 40

These operators are adapted for the attribute based query language. The following temporal
attribute field names are defined: precede, follow, overlap and equal. The user can include

names of algebraic video nodes in these attributes.

e precede: if there is an expression where E; follows Ep, F1 has attribute precede: E5.
e follow: if there is an expression where E5 follows E7, E5 has attribute follow: F;.

e overlap: if there is an expression where Fs overlaps Ep, E7 has attribute overlap: E'; and

E5 has attribute overlap: E;.

o equal: if F1 completely overlaps 5 and 5 completely overlaps Fq, then, E; has attribute
equal: £y and E has attribute equal: ;.

For example, if Fjo0 E5, then F; has attribute precede: Fs and E; has attribute follow: F1.
A query follow: Anchor-talk.av will return the node that comes after the node with the anchor
talking. For simple video expressions, it is straightforward to determine the temporal predicates.
Now consider the expression Ao ((BoD) || (CoE)). Inspection of the video expression by itself
is not sufficient to determine the temporal ordering between D and E. Whether they overlap,
or one precedes the other, depends on the actual durations of B and C, as well as the durations
of D and E. The following four cases depict how each of the temporal predicates could be true

for D with respect to F for the above video expression.

e Case 1: duration(B) = 5, duration(C) = 6, duration(D) = 4, duration(E) = 1.
Then, D has the attribute overlap : E.

e Case 2: duration(B) = 2, duration(C) = 10, duration(D) = 4, duration(E) = 7.
Then, D has the attribute precede : E.

e Case 3: duration(B) = 10, duration(C) = 2, duration(D) = 6, duration(E) = 5.
Then, D has the attribute follow : E.

e Case 4: duration(B) = 5, duration(C) = 5, duration(D) = 5, duration(E) = 5.
Then, D has the attribute equal : F.

Content-Based Access to Algebraic Video 41

For the above example and other simple cases, an inspection of the durations of the video
subexpressions can help determine the temporal relationships between these subexpression. Note
that with the loop operation, an expression E; can have all temporal predicates true with respect
to some other expression E3. The claim is true in the following compound expression, where
the durations of E; and E3 are both 5: ((loop E; 100) || ((delay 10) o E3)).

When the playback of the video expression can be mapped onto a timeline schedule, it is pos-
sible to determine the temporal relationships between any two subexpressions. However, whereas
any timeline representation of video segments can be rewritten using video algebraic operations,
not all video algebra expressions can be rewritten in the timeline metaphor. For example, the
conditional operator requires a runtime evaluation of some test expression, and therefore the
playback schedule of any video expression containing this operation can not be determined a-
priori. In this case, the temporal relationships between two subexpression is not necessarily
known. Assuming that the expression B denotes (conditional (random(3)) Ey E2 E3) in the
video expression A o ((Bo D) || (C o E)) makes it impossible to determine the temporal rela-
tionship between D and FE. Finally, in the video expression E; U Ej3, the subexpressions Fj
and E5 do not have a direct temporal relationship, because the resulting presentation contains

a non-trivial composition of the two expressions.

3.2.2 Browsing and Navigation

The browsing and navigation operations enable the user to inspect the video expression and
to view the presentation as defined by the expression. The user can playback any expression.
The playback operation results in the invocation of an algebraic video browser that supports
some basic presentation flow control, such as play, stop, and goto-beginning. For any given
expression, the user can browse and traverse the organizational hierarchy with the get-parents
and get-children operations. Notice that get-parents of a video expression that is not a node will
yvield an empty result set. Finally, the user can display the expression associated with a video
expression. As discussed above, the expression includes description, composition, and output

characteristics. If the argument is not a node, the operation is simply the identity function.

Content-Based Access to Algebraic Video 42

3.3 Nested Stratification Permits Multiple Coexisting Hi-

erarchical Descriptions

) . Smith on economic reform
Smith on economic reform

Smith
anchor anchor
. . question from
question from audience audience
question
raw video Z ‘ ‘ ‘ \ [raw video \
Strata associated with raw video Nested stratification in algebraic video

Figure 3-12: Nested stratification with algebraic video

Hierarchical relations between the algebraic video nodes allow nested stratification. Davenport
et al. [4, 3] defines a stratification mechanism, where textual descriptions called strata are
associated with possibly overlapping portions of a linear video stream. In the algebraic video
data model, linear strata are just algebraic video nodes. To create a simple strata as in the
Davenport model, a user specifies the raw video file and the sequence of relevant frames with
the create operation.

Nodes that refer to the same video data are used to provide multiple coexisting views and
annotations, and enable the user to assign multiple meanings to the same footage. Moreover,
algebraic video nodes can be organized hierarchically so that their relationships are preserved
and can be exploited by the user. In addition to simple stratification, the algebraic video
model preserves nested relationships between strata and allows the user to explore the context
in which a stratum appears. Figure 3-12 presents an example of algebraic video that utilizes
nested stratification. As illustrated by the example, linear overlapping strata are not sufficient
to model the content complexities and structure found in a video presentation. The nested
algebraic video nodes preserve the structural composition of the presentation, and also allow
coexisting content and structural interpretations for overlapping footage.

The nested stratification is used primarily for annotation and editing purposes, but it can

also be used when browsing, searching or playing back video. An author of a video presentation

Content-Based Access to Algebraic Video 43

can search for a particular attribute and discover the nodes that contain that attribute. The
author can then explore the organization of the encompassing presentation with the nested
stratification, and possibly discover other relevant information. Finally, the author will include
only a selected set of the nodes and footage in the new video presentation. The union operator
can be used for combining overlapping nodes and to guarantee that there will be no repetition

of video footage during playback.

3.4 Video algebra as a programming language

Video algebra contains elements of a programmatic interface for specifying video presentations.
Existing programming languages offer primitives for combining elementary data types, means
of abstraction, control structures and input-output management. The algebraic video model
defines a stand alone system that provides operations for a language for composing and describ-
ing video. The language of video expressions includes variables, operations, and expressions
for combining these operations. It incorporates video presentations as a primitive data type,
whereby all operations and all results of compound operations are video presentations. Thus,
any syntactically valid combination of operations results in some video presentation (which may
be empty). The algebraic video data model presents a programmatic interface that is functional
in nature, and does not include the notion of state. In fact, the variables within a node are
analogous to macro definitions rather than variables with state that support assignment. Also
note that within the context of a node, variables can only be assigned video expressions.

Our Video algebra can be used to examine the characteristics of video as a primitive data
type analogous to numbers and sets. It operates in separation from the syntax or semantics of
any particular programming language, and concentrates on the video presentation data type.
The model is targeted for users who wish to create video presentation and who do not necessarily
possess programming skills. The model must therefore be simple enough to use for those who
only understand the characteristics of video. In addition, the model can be used as a basis for
a direct manipulation graphical video editor.

The rest of this section discusses the merits of incorporating video algebra into existing

programming languages, and illustrates how means of abstraction can be added to video algebra

Content-Based Access to Algebraic Video 44

Video Templates
template | template formal-parameters tmpl-body
creates a video template where tmpl-body is a video-expression that can have
variables specified in the formal-parameters.
apply apply video-template arg-list
defines a video presentation which is the result of evaluating the body of the
video-template where the formal-parameters are bound to the corresponding
values in the arg-list. These values can only be video expressions.

Table 3.4: Video Templates

using video templates.

3.4.1 Video Algebra as an Extension to Existing Programming Lan-
guages

The algebraic video data model described in this thesis can serve as the foundation for an
extension of existing programming languages (such as TCL or Scheme), where the algebraic video
operations are added as new primitive functions that manipulate the video data type. In terms
of expressive power, there are definite advantages of including algebraic video as an extension
library within a production level programming language. The author of video presentation, who
must now possess programming skills, will be able to use variables, assignments and procedural
abstractions. Programming languages support a multitude of other data types, such as numbers,
strings, and possibly time values, that could be included in video expressions and aid in the
construction of complex video presentations. For instance, it becomes possible to create a
presentation with an undetermined and unlimited number of display windows and raw video

segments that would depend on some runtime evaluation of arbitrary conditions.

3.4.2 Abstraction Using Video Templates

The model as presented lacks a good means of abstraction and reuse over existing video pre-
sentations. The video algebra can be extended to include a primitive form of first-class wvideo
templates using the substitution model of procedure application as defined in [1]. Table 3.4 de-

scribes the extensions for incorporating templates into the video algebra. Templates are used for

Content-Based Access to Algebraic Video 45

ElevenNewsTemplate.av
(template (intro date anchor headline followup)
(($intro
| (window $date (0,0) - (.2,.2) 10)
| (window (1limit $headline 0:10) (.6,0) - (1,.4) 20))
o $anchor o $headline o ($followup — $headline)))

Figure 3-13: Eleven O’clock News Template Node

(apply ElevenNewsTemplate.av
Genericlntro.rv Date-Mayl7.rv AnchorMayl7.av
EconomicRecovery.av May17StockMarketRebound.av)

Figure 3-14: Customized Newscast for May 17th

abstraction in a manner analogous to macros, but can also be passed around to other templates
and be returned as a result, i.e. they are first-class. Since the only fundamental data type in
algebraic video is the video presentation, templates only accept video expressions as arguments.
With these extensions, the language provides variables, expressions and “procedure-like” tem-
plates that operate on expressions in the language. Note that these templates can be named
within the context of a node, or a template can have a global name if it it a video node.

The tmpl-body may use names specified in the formal parameters of a template that refer
to the corresponding arguments of the video template. The tmpl-body is a video expression
that results in a presentation upon replacement of the formal parameters of the video template
with the arguments supplied during the template application. Thus, the result of applying a
video template to an argument list is the body of the template where each formal parameter
is replaced by the corresponding argument. This application yields a video presentation. Note
that a video template by itself is a NULL video presentation, because the template body has
not been applied to yield a result. Also note that it is an error to apply a non video-template to
an argument list. The model does not allow for mutable data as part of the template definition.

Figures 3-13 and 3-14, illustrate the usage of templates in simplifying the task of creating
the late night news presentation. Given the template node that captures the structure of the

news presentation, one can easily create a new video presentation for that day’s newscast. The

Content-Based Access to Algebraic Video 46

video author merely has to apply the corresponding subpresentations to the template to arrive

at the finalized multi-window presentation.

Chapter 4

Implementation

The Algebraic Video System is a prototype implementation of the algebraic video data model and
its associated operations. The prototype system facilitates experimentation with the algebraic
video data model, and helps evaluate the feasibility of the design goals in the construction of a
real production system. The system provides support for composition and content-based access
to algebraic video. The creation of video expressions involves the specification and combination
of raw video segments. Video expressions also serve as repositories for attribute information
extracted from the video segments. In the prototype, the units of storage and indexing are
the algebraic video nodes. These nodes are textually represented by human-readable, semi-
structured, algebraic video files. The system has a graphical interface for managing a collection
of raw video segments and algebraic video nodes, and includes query and browsing tools. Figure
4-1 presents the architecture of the implementation. This chapter describes the system level
components that support query processing and video playback. Chapter 5 introduces the user
interface components of the Algebraic Video System.

The algebraic video system provides the following functions:

e acquisition of video data from external sources (such as TV broadcasts, or other video

collections),

e parsing the raw unstructured video to algebraic video files,

47

Content-Based Access to Algebraic Video 48

Edit Play
Compose

indexes algebraic unstructured
video files video

Figure 4-1: Algebraic Video System Implementation

e indexing of algebraic video nodes,
e content-based access to the data,
e playback and browsing of the video expressions,

e user composition, reuse and editing of more complex video expressions.

The implementation is built on top of three existing subsystems: the VuSystem [34], the Se-
mantic File System (SFS) [15], and the World-Wide-Web’s HTTPD [7]. The VuSystem provides
an environment for recording, processing and playing video. A set of C++ classes manage basic
functions such as synchronizing video streams, displaying in a window, and processing video
streams. TCL [28] scripts control C++ classes and offer a programmable user interface that can
be customized. The VuSystem is used for managing raw video data and for its support for TCL
programming. The Semantic File System is used as a storage subsystem with content-based
access to data for indexing and retrieving files, which represent algebraic video nodes. The
HTTPD server supports the world-wide-web’s graphical interface to the system that provides
facilities for query, navigation, editing and composing video, and invoking the video player. The

HTML info module that relies on the HTTPD module includes static HIML documents and a

Content-Based Access to Algebraic Video 49

set of TCL scripts that dynamically create HTML documents in response to user interaction.
Currently, the parsing of raw video to algebraic video nodes is carried out manually.

The system implements algebraic video by compiling algebraic video files into TCL scripts.
These files contain semi-structured, textual specifications of the algebraic video nodes. There
is one such file per node. Algebraic video files and raw video files can be named using the
Semantic File System naming conventions, as well as the UNIX pathname conventions. The
system recursively parses such nodes and produces TCL scripts that interpret video algebra
operations. The scripts also offer an extendable, low-level programmatic interface for composing
algebraic video.

The system supports indexing, searching, playback and browsing of algebraic video. All
video algebra operations in Tables 3.1 and 3.2 except delay, limit, parallel-end, transition and
hide-content have been implemented. The temporal attributes have not been implemented yet.
The acquisition of video data, the associated close-captioned text, shot segmentation and parsing
uses the VuSystem support. Figure 4-2 illustrates two different snapshots of the browser playing
the same algebraic video file. The first snapshot contains the main window with a segment
from CNN Headline News which is overlayed with a preview of a basketball game. Below the
main windows are previews of two popular films. The second snapshot is taken some time
later. The original main window has disappeared and the configuration of some of the windows
has changed. However, the basketball preview and an excerpt from the movie “Hoffa” are still
present.

The rest of this chapter discusses the implementation of the search facilities (Section 4.1) and
playback of algebraic video (Section 4.2). This chapter also includes an in-depth discussion of
the playback support for the union, intersection and difference operations. Chapter 5 introduces

the user interface components of the Algebraic Video System.

4.1 Content-Based Access

The system extends and interfaces with SFS to provide content-based access to an algebraic
video collection. The AV Query module, the direct user query mechanism, and the HT'TPD

server all use the pathname interface to invoke queries in the SFS search server. The algebraic

Content-Based Access to Algebraic Video 50

¥ SvPayer

HEW YORK.
KNICKS
INDIANA.
PACERS
Lids

MINNESOTA
TIMBERWOLVES

Pathnane Pathnane

fu/moviesSenanple . av

fu/moviesSenanple . av

|

Control Play Speed ;_ 9 Control Play Speed g: o
EbG] EbG]

Figure 4-2: Browser Snapshots

video transducer extends SFS to manage algebraic video by providing a mechanism to extract
attributes from the descriptions stored in algebraic video files. The system indexes the video files
to create the correspondence between attributes and algebraic video nodes. The transducer is
used in the indexing process to associate attributes and values with the algebraic video files. This
indexing process allows efficient querying and retrieval of relevant video segments. Individual
video nodes that overlap are indexed by the system separately.

The system automatically associates attribute information with the algebraic video files,
and allows the user to manually add more attributes. To support content-based access, close-
captioned text associated with the video stream is extracted if available and entered into segment
descriptions as the text attribute. The user can add more attributes such as title, author,
and actor, and organize nodes into a desired hierarchy using video algebra operators. Since the
algebraic video files are stored in a human-readable, semi-structured text file format, the user
can edit and create algebraic video files using any available text editor. Future work includes

support for the automatic segmentation of raw video footage using the VuSystem shot detection

Content-Based Access to Algebraic Video 51

module and a-priori knowledge of the video stream structure. For example, an half-hour CNN
headline news presentation can be automatically segmented to the headline news, business,
sports and entertainments portions by relying on CNN’s fixed schedule.

The transducer uses a three-phase process to associate all the relevant attributes with the
algebraic video nodes and their descendants in the video collection. As described in Section
3.2.1, a description of a video expression is implicitly inherited by its subexpressions (which
may include descendant nodes). In the first phase of the indexing process, the attributes of all
nodes are stored in temporary files that are associated with each node. Then, the transducer
parses the video expressions of the nodes and recursively examines the descendant nodes. For
each of the descendant nodes, the transducer appends the attributes of the original ancestor node
to the descendant node’s temporary attributes file. In the final phase, the transducer associates
all the attributes found in the temporary attributes file with the corresponding algebraic video
node.

To support navigation of the node hierarchy and pruning of result sets, the transducer also
assoclates ancestral relationship attributes with the video nodes. For example, consider a node
p that has children ¢g, ¢1, ..., ¢, and descendants dg, dy, ..., d,,. Then, all children cq,c1,..., ¢,
have the attribute parent:p. In addition, all descendants dy,dy,...,d, have the attribute
descendant-of:p. A node with attribute parent:p also has the attribute descendant-of:p.
The implementation of the get-parent operation and the query interface relies on the property
that given the above ancestral attributes, the query parent:p will result in ¢g,e1,...,¢pn.

The AV Query and HTTPD modules, as well as the user, communicate with SFS directly
via the pathname query interface. SFS interprets a given file pathname as an attribute query.
It then returns the result in a dynamically created wirtual directory that contains the set of
matching algebraic video nodes. Section 5.1 discusses in more detail the syntax and semantics

of this pathname query protocol.

4.2 Playback

The AV scheduler and AV player playback facilities of the algebraic video system rely on the
VuSystem for the display of digital video on the workstation. The player module is an exten-

Content-Based Access to Algebraic Video 52

sion of the VuSystem that enables multi-window video presentations and synchronizes playback
between the independent windows. It extends the VuSystem with an algebraic video TCL pro-
cedure library and with an AvFileSource C++ module that controls playback of ranges within
raw video files. For each algebraic video node, the scheduler compiles a schedule file that is used
by the player module for playback of the video presentation as defined by the node. The sched-
uler compiles the files in two phases. First, the scheduler expands the node’s video expression
so that it does not include any node names. It performs this task by recursively parsing the
hierarchy of algebraic video nodes rooted at the selected node. Then, the scheduler converts the
expanded video expression into a schedule file that is used independently to control the playback
of the video node. Users invoke the video player module to playback a given algebraic video file.
If the time stamp of the schedule file is earlier than the time stamp of the algebraic video file,

the player module executes the scheduler module to produce an up-to-date schedule file.

Content-Based Access to Algebraic Video

Ftav_schedule

createWindow winl -horizDistance 0 -vertDistance 0 -scale 1
createWindow win2 -horizDistance 0 -vertDistance 0 -scale 1
createWindow win3 -horizDistance 0 -vertDistance 0 -scale 1
createWindow win4 -horizDistance 0 -vertDistance 0 -scale 1

createVidSegment sl “winl Hoffa.uv 4945241 71407307
createVidSegment s2 “win2 ScentOfAWoman.uv 81288 1181096
createVidSegment s3 “win3 ScoobyDoo.uv 80252 2119652”
createVidSegment s4 “win4 Alladin.uv 8394752 16788274”

audioPriorities s4 s3 s2 sl
videoPriorities s4 s3 s2 sl
initAlgebraicVideo

eval \

{ avNode conditional.av \

{ avConcat { avPlayRaw sl } \

{ avConditional { \

puts stdout “Please select movie ending” \
puts stdout “ (1 = sad, 2 = happy, 3 = Scooby-Doo):” \
set ¢ [read stdin 2] \

return “$c” \

} { avPlayRaw s2 } \

{ avPlayRaw s3 } \

{ avPlayRaw s4 } \

[N
-~

Figure 4-3: A TCL schedule file

53

Content-Based Access to Algebraic Video 54

The schedule file is a TCL script that consists of window and audio output declarations
and a segment activation script. Figure 4-3 shows the schedule file that corresponds to the
video node of Figure 3-4. The #av_schedule identifies this TCL script as one compiled from
an algebraic video expression. The scheduler creates a display window for every video segment
produced with the create operation. These window declarations consist of spatial position and
dimension parameters. The scheduler also associates all video segments with their corresponding
display windows. A video segment declaration consists of identifying the raw video file and the
byte-offsets for the begin-segment and end-segment markers. These bytes offsets are calculated
using the time values provided with the create operation. Currently, the format of these time
values is sec : pusec from the start of the raw video file. The scheduler consults an index file
associated with every raw video file to determine the mapping from time values to file byte-
offsets. The audioPriorities and videoPriorities are determined globally for all the video
segments within a presentation using the algorithm described in Section 3.1.2. Finally, the
scheduler converts the algebraic video expression into TCL syntax that includes the proper calls
to routines that handle the various video algebra operations. Note that the schedule file is not
intended to be human-readable.

The player module implements playback by dynamically interpreting the schedule files to
produce streams of digital video. The streams are transmitted to the VuSystem, which then
displays the digital video on the client workstation. For each video segment, the algebraic video
system creates an instance of a special module (avFileSource) to manage the playback of
the video segment into a display window. The module accepts parameters that name the raw
video file and specify the begin and end points within that file. Normally, a video expression
defines the scheduling constraints between the video segments included in the expression. The
TCL library routines, such as avConcat and avParallel, manage the avFileSource modules
by invoking the playback of the video segments at the appropriate times as defined by the
scheduling constraints. The library routines also communicate to the modules a TCL expression
to evaluate once the playback of the video segment is complete. For example, assuming S; and
S are simple video segments, for the video expression S; o S5 the avConcat routine initiates
the playback of the module responsible for S;. In addition, avConcat notifies S;’s module that

it must initiate the playback of S5 once it has finished playing S;.

Content-Based Access to Algebraic Video bY)

Some of the playback information can be determined offline. For example, the concatenation
and parallel operations on raw video segments will always result in the same video stream.
However, other composition alternatives, such as conditional or a live video feed coupled with
the union operation, require the system to modify the playback characteristics dynamically. The

prototype implementation interprets all video expressions dynamically.

Parallel Playback

The parallel operation requires keeping track of termination events and invoking other operations
once the playback of certain video segments has terminated. The video expression (F; || E2)oE3)
defines a video presentation where Fs3 is not played back until both 1 and E5 are finished. The
algebraic video system uses simple counting semaphores to determine when all the termination
events have occurred. Let s; be the semaphore associated with the termination of F; and FE.
When the playback of these two expression is initiated, the value of s; is initialized to 2. The
algebraic video system decrements the value of s; upon termination of the playback of each of
Fy and F5. The system initiates the playback of F3 only when the value of s; is equal to zero.
Since the VuSystem is single threaded and non-preemptive, critical sections are not necessary

to access and modify the values of these semaphores.

4.2.1 Playback of Union, Intersection, Difference

The union and difference operations define video presentations where common footage is not
repeated, and the intersection operation defines video presentations where only common footage
is played back. The implementation of these operation in the algebraic video system prototype
preserves the structural composition and the output characteristics of the component video ex-
pressions. For each segment in the original video arguments, the operations modify the video
footage that is actually played back. Because the video expressions also have a temporal com-
ponent, these operations are not associative or commutative. Note that this is only one possible
interpretation of the union, intersection and difference operations. Other interpretations that
modify window placements or that attempt to provide commutative or associative properties are
also possible. This section offers a more precise definition of the above operations as implemented

in the prototype of the algebraic video system. This section uses the following conventions:

Content-Based Access to Algebraic Video 26

Let E, and FEj be fully expanded video expressions that do not include any node names,

where E, and Ej contain the sets of video segments {41, As,..., A,} and {By,Bs,...,Bn}

end)

respectively. A video expression of the form (create X;"*"¢ X;***" X; is used to define

each video segment X;. The range of video footage that is associated with this video segment
is denoted by [X;*1%"", X;°"%]. A video expression Ej is syntactically similar to Es if and only if

FE5 can be transformed to E; by a series of substitutions. All these substitutions must replace

start end)

a (create seg-name range range subexpression in Ey with the subexpression ((create

start start

seg-name range; T'angelmd) o (create seg-name ranges rangege"d) o ...0 (create

seg-name range,*'*! range,®"?)) in E;. Furthermore, the sequence of ranges substituted into

start

E; must be a sequence of non-overlapping subranges of [range ,range®™?], such that

Vi, 1 <i<n= (range;"'""" < range;™?) A (range;™? < range;41°'%")

3

excluding the boundary condition range,1*'%".

The minus operation is used in the specification of the union and difference algebraic video
operations. C' minus A, where the video expression C' is the concatenation of video segments

((create Cmame Cptert C’oend) o...0 (create Cname (,stert Cne"d)), and the expression A,

is a specific video segment, is defined as:

Cif grame £ A
¢! if grame = A, e

C minus A, =

where

end
C/ _ ((create gname Costart Coend) 6 ... 0 (create cname Cistart Cz/) o ... o0

(create CT9™¢ C]’»smrt C'jmd) o ... o (create C™™¢ (" C’nend)).
In determining C}, the following conditions must hold:
1. choose i such that C;**"* < A, 19" < Cyyy %t
2. CI" = maz{p: p < At}
Clearly, C’Z{end > ;1" Similarly, for Cj, the following conditions must hold:

1. choose j such that C'j_le”d < A< Cjend

Content-Based Access to Algebraic Video a7

@) (b)

Figure 4-4: Graphical Illustration of minus

2. CI = min{p :p > A}

Clearly, ;"4 > C]’»St‘m. Note that the segments C}, such that i < k < j, are not in C".
Figure 4-4 illustrates two cases of the minus operation on video segments, assuming that the
shown ranges represent time intervals within a single raw video file. The shaded areas denote the
overlapping subranges. Only the non-shaded time intervals of C' are played back in C' minus A;.
The intersect operation is used in the specification of the intersection algebraic video oper-
ation. C intersect {A1, As, ..., A,}, where the video expression C' is a concatenation of video

segments as above and each expression A; is a specific video segment, is defined as:
C' = C intersect {A1, A, ..., Ay} =

where

1.C"=Cl o ... 0 C!,

2. CZI — (create Ciname Cl(nstart CZI end) o ... o (create Ciname Cl(qstart CZI end)
.. . . ; start ; end 7 start 7 end
3.Vi,j, 0<i<q,0<j<m, Cp, <Ch, <Chi <Chp

4. Vi, 5, 0<i<q,0<35<m, [C;jsm”,q(jend] € ranges of {A1, Ay, ... A}

5. let (po, p1) denote the range [pg, p1] excluding the end frames pg and py, then
Vi,j, 0<i<q0<j<m—1, (CL™CL. ") ¢ ranges of {A1, As, ... An}.

i i1

Note that any C}% can be null.
Figure 4-5 illustrates a case of the intersect operation on a set of ranges, that the shown

ranges represent time intervals within a single raw video file. The shaded areas denote the

Content-Based Access to Algebraic Video 58

oot © 0 O I B | [T
{A 1
A T
A [
A} 1
O/ /O

Figure 4-5: Graphical Illustration of intersect

overlapping subranges. Only the shaded time intervals of C' are played back in C' intersect
{Ala AQ; AS; A4}

Difference

FE, — Ey defines a video presentation that plays back E., where F. is syntactically similar to
E,. Let the video segment C; occur in E, where the video segment A; occurs in E,. Then, C;
is defined as a concatenation of video subsegments of A; according to the above substitution
rule. Specifically, C; is defined as A; minus all video ranges in {By, By, ..., B,}, ie. C; =

(... ((C; minus By) minus Bg) minus ... By).

Union

E, U Ey defines a video presentation where E, is played, followed by the video presentation
E., where E. is syntactically similar to Fj. Let the video expression C; occur in E,. where the
video segment B; occurs in Ej. Then, C; is defined as a concatenation of video subsegments
of B; according to the above substitution rule. Specifically, C; is defined as B; minus all video
segments in {41, Ag, ..., Ap}, ie. C; = (... ((B; minus A1) minus Az) minus ... A,). Note
that union can also be defined in terms of difference, i.e. E,U Ey = Eq 0 (Ey — Ey).

Intersection

E,NEy defines a video presentation that plays back E., where E. is syntactically similar to £,.

Let the video segment C; occur in F, where the video segment A; occurs in E,. Then, C; is

Content-Based Access to Algebraic Video 99

defined as a concatenation of video subsegments of A; according to the above substitution rule.
Specifically, C; is defined as the intersection of the video segment A; with any video segment

from {B1, Bs,...,B,}, i.e. C; = A; intersect {B1,Bs, ..., B,}.

The implementation of the above operations requires that the modules responsible for man-
aging video segments be able to playback selected subranges of the original video range as
defined by the segment creation operation. For example, the video segment S; = (create
CNN.HeadlineNews.rv 10:00 17:00) managed by module M7, and video segment Sy = (create
CNN.HeadlineNews.rv 15:00 20:00) managed by module Ms, contain some common footage.
The video expression S U Sy defines a presentation that plays back the continuous range
[10 : 00,20 : 00] from the CNN.HeadlineNews.rv raw video file. It therefore involves more than
just scheduling the segments independently. In this case, module M; must notify module M5
that it has already played back the time interval [10 : 00,17 : 00] of the CNN.HeadlineNews.rv
video segment, so that Ms does not repeat this footage.

To solve this problem, the TCL algebraic video library routines communicate with each other
and with avFileSource modules using a message protocol. The communication is carried out
using procedure invocation, where the invocation of a module or a library routine is identical
for the caller. Recall that each module instance is responsible for the management of a specific
video segment, whereas routines represent an algebraic video operation. For the implementation
of the union, intersection, and difference operations, the communications protocol includes the
following two messages from a library routine to another library routine or to an avFileSource

module instance:

e Message 1: return the video ranges you would play
e Message 2: initiate playback.
— do not play video ranges {range,,ranges, ..., range,}

— when finished playback, invoke the routine p with args {a1,as,...,n}

The following simplified communications pattern illustrates the interactions that take place

during the playback of the above example (S; U S3):

Content-Based Access to Algebraic Video 60

e avUnion asks Sy for result of message 1.

e avUnion sends message 2 to Sy. It notifies S; that S; must invoke S; and tell S5 not to

play <result of message 1 to S; >.

e After playback is complete, S; sends message 2 to S; and tells it not to play any video
range in <result of message 1 to S1 >.

Chapter 5

User Interface

Users interact with the Algebraic Video System by creating and editing algebraic video nodes, in-
voking queries, navigating through a node hierarchy, and playing back the algebraic video nodes.
The system can be accessed directly through the Semantic File System interface, through a TCL
based graphical query interface, through the WWW [8] and Mosaic [17] using the HTML info
module, and by invoking the AV player. This chapter introduces the user interface components
of the algebraic video system. Section 5.1 discusses the SFS interface for content-based access,
Section 5.2 introduces the AV Query graphical interface for content-based access, Section 5.3
discusses the HT ML info interface that supports search, navigation, editing and composing, and

finally Section 5.4 introduces the algebraic video player.

5.1 SFS Interface for Content-Bases Access

A user can discover relevant nodes by invoking queries within an algebraic video node collection
directly through the Semantic File System interface. A user selects a virtual directory pathname
that describes desired attributes of the relevant video nodes. This query pathname consists of an
SFS server name that identifies the video collection, concatenated with a list of attribute-value
pairs. A virtual directory that is created dynamically in response to the user query contains the
set of video nodes that match the conjunction of the query terms. For example, consider the

following query and response:

61

Content-Based Access to Algebraic Video 62

% 1ls /sfs/av/text:/smith/title:/economy
CNN.HeadlinelNews.5.17.av
EconomicLectureSeries.10.19.av

WorldNewsReport—-SmithEconomicForecast.av

In this example, the user learns that there are three video nodes in the /sfs/av video collection
that match the query “text:smith & title:economy”.

The Semantic File System also supports a form of query completion. Through the wvirtual
directory interaction, a user can determine which video node attribute values are present in a

specific collection. For example:

% 1ls /sfs/av/title:

2 clinton headline news world
alladin cnn health reform young
and disney healthcare walt

care from hillary wayne’s

% 1ls /sfs/av/title:/world

waynes_world_2.av

In this example, the user requests a list of all the title attribute values that are present in this
video collection. The user then queries the system to discover the algebraic video nodes that

contaln the attribute title:world.

5.2 AV Graphical Query Interface

The algebraic video system includes a graphical interface that enables users to formulate queries
and perform query completion without directly interacting with the SFS pathname interface.
Figure 5-1 illustrates a query based interface that allows searching, browsing, and playback of
algebraic video nodes. The user creates a query by combining one or several attribute-value

query terms. The Search button is used to invoke the specified query. The system responds by

Content-Based Access to Algebraic Video 63

" IxBrowser

‘ File Questons Optons Filter Help
Root:
Search: |text 3 connercial |tgpe 3 novie ||ext 8 agJ

‘Search| Clear &ll| Clear Entrs..'| Delete Entrs..'| .ﬂ.ppend| Insert”

Attributes Values Video Results
dsv altest
duda all
eaa alpes i
EnEr alt
ant.i
file apgrfs
fron app cheerios
frp atn 27 d
Frinpl M seconds
gdt ave
gifford awk
£roo backup
frnnn had
Results |cheerios.av cheeseburger
cheeseburger.,av
View | 13 seconds
. cortizone,av
DEtalll detergent., av
dizney_afternoon,av
dunkin_donuts, av
ficher_price.av
fruit_by_the_fook , av —
nax_factor,av
nc_donald, av
nondo_, av
rush,av
suave,av
trix,av
cortizone
Iten info:l-ru-r--r-- rueiss 12078747 bytes How 12 17:57 26 seconds

Status: IFound 228 possible attribute values

Figure 5-1: Algebraic Video Query Interface

enumerating all the algebraic video nodes that match the query in the Results list. The user
can then select to View any of the nodes in the result set.

This graphical user interface supports several operations that facilitate the query formulation
process. The attribute names found in the selected video collection are always enumerated in
the Attributes scrollable list. Once a name is selected from the Attributes list, the query
interface enumerates the possible attribute values that coincide with this name in the Values
scrollable list. Other actions that are provided to aid in the manipulation of the query terms

include: Clear All, Clear Entry, Delete Entry, Append and Insert. The Video Results

Content-Based Access to Algebraic Video 64

list provides an iconic view of the first frames of video footage that matches the specified query.

This interface currently only supports this iconic view for raw video segments.

5.3 HTML Info Interface for Editing, Navigation, and

Query

The HTML Info module provide access facilities for creating and editing algebraic video nodes,
for navigating and browsing a video collection hierarchy, and for performing searches with a
video collection. The Mosaic interface to the algebraic video system consists of a set of related
HTML [7] documents that include forms to support interactive access. Some of these documents,
such as the ones that enumerate the result set for a particular query, are created dynamically

to reflect the interaction with the user.

5.3.1 Create and Edit Algebraic Video Nodes

As described in chapter 4, algebraic video nodes are represented by semi-structured files in the
algebraic video system. The user can create and edit algebraic video files using any text editor.
To facilitate this process, the system also provides an HI'ML page accessible through Mosaic
as shown in Figure 5-2. This forms-based HI'ML document enables users to create and edit
algebraic video files. The user creates new files by typing in a new node name and then saving
the node. The multi-line text entry field is used to create new video node expressions and edit
existing ones. The Undo action reverts the text entry field and the node name to their original
content. In addition, the following actions are available by selecting the corresponding menu

option and pressing the Perform button:

Save Node: save the current algebraic video node.

Preview This Node: preview the video presentation defined by the current node, but

do not save this node.

Clear: erase the current video expression.

Edit AV Node: edit the selected algebraic video file from the available video nodes list.

Content-Based Access to Algebraic Video 65

X NC3SA Mosaic: Document View

Back| vz Home| Reload| Open. | Save As..| Clone| New Window] Close Window|

Figure 5-2: Create and Edit Algebraic Video Files

e Play AV Node: play the algebraic video file selected from the available video nodes list
without affecting the current video expression. This option enables the user to browse and

preview an algebraic video file that can then be included in the current video expression.

¢ Play Video Segment: play the raw video file selected from the available video segments
list. This option enables the user to browse the existing raw video collection, and then

create new algebraic video expressions from specified ranges within a raw video segment.

Content-Based Access to Algebraic Video 66

¥ MNC3A Mosaic: Document View

Back| Fsn] Home| Reload| Open. | Save As..| Clone| New Window] Close Windou|

Figure 5-3: Mosaic Query Interface

5.3.2 Query Access using the HTML Info module

In addition to the direct SFS interface and the AV Query interface module, the algebraic video
system provides a simpler query interface through Mosaic as shown in Figure 5-3. The user
enters a query that consists of attribute-value pairs and submits that query to the system by
pressing the Search button. The system responds by creating another HTML page that contains
a list of all video nodes that match the specified query. The user may then playback any of
these nodes, or return to the search page and formulate another query. This interface does not
currently support query completion as provided by the AV Query interface described above. An
advantage of this interface is that nodes whose ancestors are also in the result set are removed

from the final result set.

Content-Based Access to Algebraic Video 67

X NC3SA Mosaic: Document View

Back| vz Home| Reload| Open. | Save As..| Clone| New Window] Close Window|

Figure 5-4: Navigation of the Video Collection using Mosaic

5.3.3 Navigation using Video Node Ancestral Relationships

Users can navigate the video collection hierarchy by following links between algebraic video
nodes that have ancestral relationships with other video nodes in their collection. A node p is
a parent of nodes cq,c1,...,c, if the video expression of node p includes the names of nodes
€o,C1,---,Cn. Likewise, nodes cg,cq, ..., ¢, are children of node p. A user navigates through
a video collection by following ancestral links from one video node to another. The operations
get-parents and get-children are available through the file system interface. Given a node a,

invoking “get-parents a” from the command line results in a list of the names of the parent

Content-Based Access to Algebraic Video 68

nodes of a in the video collection. Similarly, invoking “get-children a” from the command
line results in a list of the names of the children nodes of a in the video collection.

The system also supports navigation using the Mosaic interface of the HTML info module.
Figure 5-4 illustrates the HTML page as seen by the user once a node has been selected. This
selection is achieved either through query access or by browsing the list of nodes in the video
collection. This page displays a snapshot of the playback of the algebraic video node, provides
the video expression of the node, and lists other nodes with ancestral relationships. The user
visits related algebraic video nodes by selecting either a parent or a child of the current node.
Figure 5-4 shows that the node unrelated.av has no parents in the video collection, but does

have three children.

5.4 Algebraic Video Player

The algebraic video system provides a player (shown in Figure 5-5) that allows users to view the
video presentation defined by the selected video node. Users control the presentation’s temporal
flow by initiating the playback, stopping the playback, rewinding the video presentation to the
beginning, and modifying the playback speed. In addition, users may resize the root display

window, which causes the system to proportionally resize all the subwindows.

Content-Based Access to Algebraic Video

¥ SvPlayer

Pathnane

inovies_preview,av

|Detail||Ehange||Delete|

Control Play Speed

(<D

|Euntrul Panel||Resize|

Disniss

Figure 5-5: Algebraic Video Node Player

69

Chapter 6

Experience and Conclusions

This chapter reports experience with the content-based access components of the system and
the performance of video playback (Section 6.1), evaluates the results of the thesis (Section 6.2),
describes possible areas for further research (Section 6.3) and summarizes the contribution of

this thesis (Section 6.4).

6.1 Experimental Results and Performance

The algebraic video system prototype provides rapid attribute-based access to the video collec-
tion, allows browsing video result sets, and supports playback of algebraic video presentations.
This section includes representative experiments with the prototype system that help gain insight
into the algebraic video data model, its support for content-based access, and the performance
of the prototype system. For the experimentations, a collection of video segments that included
TV broadcast news, commercials, and movie trailers were acquired and indexed. The experience
reported in this chapter is from running the query client and the video player on a SparcStation
10, the query and file server on an SGI PowerSeries 4D/320S, and the HT'TP server on a different

SparcStation 10. The three machines use an ethernet local area network for communication.

70

Content-Based Access to Algebraic Video 71

6.1.1 Experience with Content Based Access

The prototype system delivers reasonable performance for query access to the video collection.
Users can submit queries and browse video result sets with the TCL-based algebraic video query
interface described in Chapter 5. For a result set of twenty-five video segments, the elapsed
time between query invocation by the user and system response is less than five seconds. The
system response includes enumerating algebraic video segments that match the query, as well
as displaying the first frame of the matching raw video segments. Once the user selects a video
node to play, typically three seconds elapse until the browser begins to play the video stream.
Section 6.1.2 contains more detailed statistics for this elapsed time, which also depends on the
number of independent windows in the video presentation.

The system also offers an HTTP interface that allows content based access to the video col-
lection, browsing of video result sets, navigation through the video node hierarchy, and playback
of relevant video presentations. The prototype configuration includes a Mosaic HTTP client and
a video player on a SparcStation 10, and an HTTP server on a different SparcStation 10 that
is also a client of the SGI query and file server. The response time for this configuration over
an ethernet local area network is similar to the TCL based query interface. For a result set of
twenty-five video segments, the elapsed time between query invocation by the user and system
response is usually between two and five seconds. The system response includes dynamically cre-
ating an HTML document that contains links to the video nodes in the result set. As expected,

network and server load are two important factors that affect the system response time.

6.1.2 Playback Performance

This section illustrates the bandwidth requirements for video playback, and reports performance
measurements for the algebraic video player. The experiments reveal that the system delivers
acceptable video playback performance for a small number of concurrent windows, but improve-
ments in hardware are necessary before the player is able to deliver reasonable performance for

a large number of windows.

Content-Based Access to Algebraic Video 72

Raw Bandwidth Requirements

The transfer of raw, uncompressed digital video requires substantial network and I/O band-
width. The following table illustrates the bandwidth requirements for playing back raw video.
It measures the throughput for several different frame rates (in terms of KBytes per second)
that is required to support one video stream with frames of 320 x 240 pixels (VHS quality), at
8 bits and 24 bits per pixel,

depth \ rate || 5 fps | 10 fps | 15 fps | 30 fps

8 bits 384 768 1152 | 2304
24 bits 1152 | 2304 | 3456 | 6912

These numbers can help deduce the limitations on achievable frame rates, given available
network and disk I/O bandwidth. Current ethernet local area networks operate at a peak of
1.25 Mbytes/sec. When taking into account the network overhead, distributed video application
are likely to sustain playback of around only 10 fps of 8-bit raw video in lightly loaded ethernet
local area networks. Such applications must therefore employ video compression techniques,

such as JPEG [21] and MPEG [22] to overcome the bandwidth limitations of current networks.

Playback Frame Rates

For evaluating the playback performance of a multi-window concurrent algebraic video pre-
sentation, playback speed is measured as the frame rate achieved by each of the concurrently
playing subwindows. Figure 6-1 illustrates the playback speed of several multi-window video
presentations, measured in frames per second per window versus the number of windows. The
video presentations in this experiment play back several concurrent subwindows of the same
30 second, 296 frame, uncompressed video footage. For each measurement, the windows are
arranged in a square grid with a total video display area of approximately 640 x 480 pixels for
all the windows. For example, the video presentation that includes 4 windows arranges them in
a 2 x 2 grid, where each window has a display size of 320 x 240 pixels. Some configurations, such
as 9, 25 and 49 windows, have a total display size of slightly less than 640 x 480 because the

current prototype only allows certain scales for resizing windows. Note that the video footage

Content-Based Access to Algebraic Video 73

Playback frame rates

=
o

L . 640x480 total display-* |

fps /window

SO P N W A~ 01 O N O ©
T
*
L

0 5 10 15 20 25 30 35 40 45 50

of windows

Figure 6-1: Playback speed versus number of windows

is stored in a 320 x 240 pixel resolution, with 8 bits per pixel. The video player on the client
machine scales the video source resolution to fit within the video window.

Because current ethernet networks cannot transmit more than approximately 10 fps of raw
uncompressed video, in this experiment each subwindow plays the same video segment. Users of
the system will probably want to view several concurrent windows that contain different footage,
but the current network configuration limits the total frame rate for all concurrent windows to
10 fps. Because the experiment considers a configuration where all the windows are playing
the same video footage, as a benefit of client side caching the video player application needs
to retrieve the same video frame from the file server only once for each subwindow. Therefore,
when playing the same video footage, it is possible to sustain 50 windows at 1 fps each, for a
total of 50 frames per second, while it is possible to sustain 4 windows at 9 fps, for a total of
only 36 frames per second. Up to some reasonable limit, the window display is not a bottleneck
in achieving higher frame rates. For example, a similar video presentation of 50 windows, where
each window was 4 times the original area (i.e. a total display of 1280x720) achieved almost the
exact frame rate as the 50 window video presentation with a total display of 640x480.

The author’s subjective qualitative assessments of frame rates is that a rate of 10 frames per

Content-Based Access to Algebraic Video 74

second is sufficient for viewing video, 5 frames per second is acceptable only for a short duration,
and rates that are significantly lower are not pleasant to watch. On the existing hardware
platform, the current prototype fails to achieve satisfactory viewing performance when more
than 10 windows are playing concurrently. However, with the rapid advancements in computer
hardware and video compression technology, acceptable frame rates are within reach.

Finally, note that the frame rate for one 640 x 480 window is slower than 4 windows each
of 320 x 240 pixel resolution. Because the video source uses a resolution of 320 x 240, in order
to display at 640 x 480 the system must extrapolate pixels from the original resolution. This
results in a slower frame rate than a configuration where the system does not perform such pixel

extrapolation.

Video Player Application Startup Time

Total Startup Time Startup Time Per Window
40 5
35+ 2
30| 3 47
(2] =
'8 25 e E 3t
% 20 b
& 15t s 20
o o
10 x % 16
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
of windows # of windows

Figure 6-2: Video Player Startup Time

The startup time of the video player application increases linearly with the number of windows
in the video presentation. Figure 6-2 shows the amount of time required to start up the al-
gebraic video player application as a function of the number of windows in the presentation.
The reported time measurements do not include an initial duration that varies between two and
seven seconds of invoking the application and starting up the X window. The times quoted in
the graph mostly include the initialization of all the VuSystem modules and the X Windows
graphics context. The measurements usually vary by no more than 5-10% between each invo-

cation of the video player. Note that the amount of time spent per window remains relatively

Content-Based Access to Algebraic Video 75

constant as the total number of windows in the video presentation increases. Because the win-
dow creation process is time consuming, dynamically creating the windows during playback on
an as-needed basis will result in noticeable delays during transitions between video streams in
different windows. Therefore, the prototype implementation creates all the windows that are
used in the video presentation by instantiating all the appropriate modules in the VuSystem

before the user is allowed to interact with the player.

Compiling a Schedule File

For playing back an algebraic video node, the system compiles a TCL schedule file from the
algebraic video file specification. The scheduler module, written using Lex and Yacc, is in charge
of this task. The schedule compilation process is not very time consuming, even for reasonably
large files. For example, the system compiles an algebraic video file of size 2.8 KBytes, that
contains declarations for 50 windows as well as other algebraic operations, in approximately 1.3
seconds processing time (1.9 seconds real time). These numbers do not change noticeably for
the same 2.8KByte video expression when stored in 50 different files, rather than one file. In

this case, the processing time is approximately 1.5 seconds (2.1 seconds real time).

6.2 Evaluation

As stated in Chapter 1, the algebraic video model and a system that implements this model

must meet the following criteria:

1. Complete, Integrated Framework: The model must support the fundamental access

methods to video in an integrated fashion.

2. Ease of use: The data model and the system that implements the data model must be

easy to use.
3. Performance: Query and video playback should provide satisfactory performance.

The rest of this section first considers some limitations of the algebraic video data model
and the prototype implementation, and then evaluates how algebraic video meets the criteria

for success and points out the advantages of this model.

Content-Based Access to Algebraic Video 76

6.2.1 Limitations
Prototype Limitations

The current system prototype suffers from two limitations. First, the user interface to the
implementation consists of several components, namely the direct SFS interface, AV Query
module, the HTML info, and the video player. While the combination of these components
supports all the facilities offered by the system, no one such module is complete. The HTML
info module is the most comprehensive, but it lacks the query completion capability and because
of network access security considerations, the module does not allow users to store video nodes
in arbitrary locations on the file system.

Second, to overcome the frame rate limitations imposed by current networks and I/O band-
widths, the prototype should incorporate video compression technology. At least in the near
future, as network bandwidth increases, user demands on acceptable frame rates and the num-
ber of concurrent windows will also increase. However, since the human eye perceives 30 fps as
continuous motion, at some point in the future the bandwidth requirements will mostly depend
on the number of concurrent windows. Once network and workstation I/O bandwidth are suffi-
ciently large, video compression will no longer be necessary for transmission purposes (but may

still be required to reduce storage).

No Random Access

The current video algebra framework does not allow random access to a video presentation.
It is inherently impossible to provide fully generalized random access because some of video
operations, such as conditional and contains, introduce non-determinism in resolving which video
footage needs to be played out. Therefore, a user cannot always “jump to” a specified location
in the video presentation, such as 30 seconds into the presentation, without first resolving
the conditionals in the video expression. In a situation where random access is considered
more important than the conditionals, a practical solution would be to generate another video
presentation, where conditionals have been resolved, and use this new presentation instead.
This process can also generate an index file that contains a mapping between video presentation

temporal indices and the window display configuration of the presentation. When a user wishes

Content-Based Access to Algebraic Video 77

to access some particular time index, the system consults the index file, and generates the
corresponding video display.

A digital video system should also provide random access based on the logical structure of
the video presentation. For instance, based on the logical description of the video presentation,
the user may select to view a video presentation starting from a particular scene. Again, because
of the non-determinism inherent in algebraic video, any non-determinism must first be resolved.
The system can employ a similar solution to the one proposed above. Note that the current
navigation facilities allow the user to have a primitive form of this type of random access. A
user can independently view a component of a video presentation, but cannot “jump to” the

start of a particular component within the context of an encompassing presentation.

Dynamic Evaluation Requires Improved System Performance

The non-deterministic nature of algebraic video requires that the system dynamically evaluate
the video expression for displaying the appropriate video footage. This requires more system
resources than a configuration where the video stream is determined a-priory. For instance, the
system can determine the cropping of obscured portions of video windows, and not transmit the
corresponding video data. In the current prototype, all video data is transferred to the player
application, and the player application crops the video frames accordingly. It is also possible
to prefetch data if the video player client notifies the server of what data will be required in
the near future. To alleviate some of these problems, the system should attempt to precompile
portions of the video presentation, such that standard performance enhancement techniques can

be employed.

Progamming Language Interface is Needed

As discussed in Section 3.4, extending an existing programming languages to include algebraic
video will benefit the data model. Users that create video presentation will be able to employ
means of abstractions, flow control, and utilize variables with state for more expressive power.
Also, while algebraic video is well-suited for users, it does not currently address interaction
with other applications. The model needs to be extended so that applications may interface to

algebraic video and be able to integrate facilities such as search and playback into their own.

Content-Based Access to Algebraic Video 78

No Specified Framework for Automatically Associating Content with Video

The current model of algebraic video does not specify a framework for automatically associating
content with video segments. However, algebraic video can incorporate systems that perform
this task as such systems materialize. While this is still an active area of research, it is unclear

whether associating content with video can ever be fully automated.

6.2.2 Key Results

The algebraic video data model successfully meets the criteria goals mentioned above. Section
6.1 illustrated that the system offers acceptable performance, both in query access and for video
playback. The prototype system helps demonstrate that the goals set forth in this thesis have

been met. The following discussion evaluates the key results of algebraic video.

Complete, Integrated Framework

The motivating examples in the introductory chapter reveal that users who access and manage
digital video must be able to search, create, and playback video presentations. Algebraic video
offers a complete, integrated framework for accessing and managing digital video through the
search, navigate, compose and playback operations. Users find relevant video footage and pre-
sentations using the query and navigation mechanisms. Users can then browse and view the
result sets using the video player. Finally, they can compose new video presentation using the

results of the searches.

Video Algebra is a Powerful Metaphor for Composition

The video algebra presents a powerful metaphor for composing video presentation by allowing
the user to temporally and spatially combine video segments. Users also describe the logical
structure of the video by specifying the hierarchical relations between the video nodes. In
addition, any video presentation that is expressed using the timeline metaphor can be expressed
using the video algebra operations. Users employ Video algebra to compose and edit many diverse
types of video presentations. The examples of algebraic video node in Chapter 3 illustrate a

variety of video presentations that can be constructed using the algebraic operations.

Content-Based Access to Algebraic Video 79

Assigning Content Attributes is Orthogonal in the Video Algebra

The support of content-based access is an integral factor in the design of the video algebra. The
description algebraic video operation allows content attributes to be associated with video pre-
sentations in an orthogonal manner. To fully benefit from content-based access, the association
of attributes with portions of a video presentation must be incorporated as part of creating a
presentation. The user is able to assign attributes to any video subexpression used in defining

the presentation, and therefore to any logical entity in the presentation.

The Model Supports Multiple Coexisting Views that Preserve Hierarchical Rela-

tions

The ability to support multiple coexisting views of the same video footage is essential in describ-
ing video. Multiple coexisting views are associated with the same video footage using nested
stratification. A video data model must accommodate the coexistence of many different, over-
lapping interpretations of the same video footage. Video cannot be sufficiently described by a
simple, linear textual annotation, nor can it be appropriately described by multiple, unrelated
and possibly overlapping linear annotations. The content annotation of video must preserve
the logical structuring of the video presentation, and possibly supply additional logical struc-
turing as new interpretations of the same video footage are added. The hierarchical relations
between the nodes signify this logical structuring. The attribute association must be orthogonal
to creating presentations, and therefore it is incorporated into the algebra. Moreover, multiple
interpretations of the same footage can coexist by using the video algebra operations and the

algebraic video data model.

Users can Efficiently Find Video Footage of Interest

Users can efficiently find video presentations of interest using the query and navigation facilities.
The process of finding relevant video footage initially involves specifying the desired attributes
using the search mechanism of algebraic video. This is accomplished either using the AV Query
interface module or with the HTML info module. The AV Query module can further aid in
formulating and selecting queries with the query completion mechanism. The performance

measurements of Section 6.1 reveal that the system response time is adequate for an interactive

Content-Based Access to Algebraic Video 80

query session. Once the user finds relevant footage, he or she can also explore the surrounding
context with the navigation mechanism. The navigation mechanism can efficiently reveal related

video footage that the user may not have come across using only content-based access.

Model is Easy to Use

Interaction and experimentation with the algebraic video system reveals that the model is easy
to use. The creation and editing of video presentation is simple using the intuitive video algebra
operations. Furthermore, the ability to modularize a video presentation by considering and
modifying the component video subexpressions separately simplifies the task of creating complex
presentations because it allows the user to concentrate on a single independent aspect of the
presentation. This modularization also simplifies the construction of the logical structure of
the video presentation. Algebraic video enables rapid prototyping through reuse of existing
component presentations. The user can easily construct a video presentation from elements of
video result sets by combining them with the video algebra operations. Video composition and
editing may be simplified with a graphical editor, but this editor must incorporate all the ideas
of algebraic video.

Because the model requires no progamming skills, the system can be used by non-programmers.
This is essential to the wide spread use of systems based on the algebraic video data model,
since many video presentation authors are film makers rather than programmers. Users can
easily search for video footage by enumerating the desired attributes. The system also provides
query completion to aid in the query formulation process. Finally, with the HTML info module,

navigation simply involves traversing links in the World-Wide-Web.

6.3 Future Work

The work described in this thesis can be extended in several interesting ways:

o Internet Video Server: The current HT'TP server support, bundled with the VuSystem and
the Semantic File System, can form the basis for an internet video server with content-

based access to video collections. Users will be able to set up video collections that may

Content-Based Access to Algebraic Video 81

cover a specific topic or an array of topics, and then allow other users on the internet to

access their algebraic video system through the World-Wide-Web.

o Hypermedia links: The model can be extended to include hypermedia links that are instan-
tiated in video expressions. A user may traverse these links to related video nodes that

exist 1n different collections.

e QObject-Oriented Databases: The system may benefit from using an OO database for al-
gebraic video storage. Possible benefits include support for transactions and modeling of

object relationships that allow richer content based access.

o Interactive Movies: Results from this research can be applied to implement a system for

creating full featured interactive movies.

o Automatic Video Information Filter: A practical application of the system is a video
information filter that provides users with up-to-date daily video presentations that match
the users’ interests. For example, the system could regularly digitize close-captioned news
(such as CNN), and automatically create a short multi-window video presentation using
the close-captioned text to filter the relevant video segments. This application will extend
the text based information filtering capabilities of currently available systems, such as the

Boston Community Information System [16].

e Graphical Video Editor: Algebraic video would greatly enhance the flexibility and ease
of use of a direct manipulation graphical video editor. The editor should combine direct

manipulation with scripting capabilities.

o Algebraic Multimedia Documents: The algebraic model can be extended to multimedia
documents that temporally and spatially combine text, pictures, audio and video. The
multimedia document algebra must also model asynchronous user actions that can affect

the playback of the user presentation.

e Video Algebra into a Programming Language: Finally, another area of future research is
incorporating algebraic video into an existing interpreted programming language, such as
TCL or Scheme. Authors of video presentations will then be able to utilize abstraction,

control, and variables with state in composing video presentations.

Content-Based Access to Algebraic Video 82

6.4 Summary

The video algebra expresses unique compositions of temporal relationships between component
video expressions, defines output characteristics of the video streams, and associates content de-
scriptions with the video. With the algebra, semantic information about video can be structured
and used for content-based access. The semantically rich model of algebraic video provides an
efficient means of organizing and manipulating video data by assigning logical representations to
the underlying video streams and their contents. It supports nested stratification for powerful
descriptions of video footage.

The algebraic video system is a prototype implementation of the algebraic video data model.
It has been used to retrieve video segments and to browse a video collection. Experience suggests
that algebraic video enables efficient access and management of video collections in interesting
and diverse ways. From the experience thus far, the algebraic video data model appears to be
an adequate abstraction for representing digital video and supporting content-based access.

The algebraic video data model offers the following contributions for accessing and managing

digital video:

e It provides the fundamental functions required to deal with digital video: composition,

reuse, organization, searching, and browsing.

e It models complex, nested logical structure of video using video algebra. The video algebra
is a useful metaphor for expressing temporal interdependencies between video segments,

as well as associating descriptions and output characteristics with video segments.

e The model allows associative access based on the content of the video, its logical structure

and temporal composition.

The algebraic video system prototype demonstrates that it is feasible to implement a real
production system based on the ideas of algebraic video. This thesis offers a video data model
that facilitates the access and management of digital video, and thus enhances its usability. The
ideas in this thesis can help ensure that as digital video becomes ubiquitous, it is implemented on
top of a solid foundation that will help users extract and benefit the most from this immensely

expressive form of communication.

Appendix A

Algebraic Video File Syntax

av_file
| declarations
OPEN_PAREN AV_NODE video_expression CLOSE_PAREN 5
declarations
| declaration declarations ;
declaration : NAME ASSIGN video_expression ;

video_expression : OPEN_PAREN video_expression CLOSE_PAREN
| CREATE NAME NUMBER COLON NUMBER NUMBER COLON NUMBER
| DELAY NUMBER
| CONCAT video_expression video_expression
| INTERSECT video_expression video_expression
| DIFFERENCE video_expression video_expression
| PARALLEL video_expression video_expression

| UNION video_expression video_expression

83

Content-Based Access to Algebraic Video 84

| CONDITIONAL TCL_EXP video_expression_list

| LOOP NUMBER video_expression

| LOOP FOREVER video_expression

| STRETCH video_expression NUMBER

| TRANSITION video_expression video_expression NAME NUMBER

| CONTAINS TXT_VALUE video_expression

| WINDOW NUMBER NUMBER NUMBER COMMA NUMBER NUMBER NUMBER
video_expression

| AUDIO NAME NUMBER video_expression

| LIMIT NUMBER video_expression

| DESCRIPTION video_expression content

| HIDE_CONTENT video_expression

| NAME ;

video_expression_list :

| video_expression video_expression_list

’

content : OPEN_PAREN attribute_list CLOSE_PAREN

attribute_list

| attribute_element attribute_list

attribute_element : NAME ASSIGN TXT_VALUE

Bibliography

[1] Harold Abelson, Gerald Sussman, and Julie Sussman. Structure and Interpretation of

Computer Programs. The MIT Press, McGraw-Hill Book Company, 1985.

[2] Adobe Systems Incorporated, Mountain View, CA. Adobe Premiere User Guide, first edi-
tion, 1991.

[3] T.G. Aguierre Smith and G. Davenport. The stratification system: A design environment
for random access video. In Proc. 3rd International Workshop on Network and Operating

System Support for Digital Audio and Video., La Jolla, CA, November 1992.

[4] T.G. Aguierre Smith and N.C. Pincever. Parsing movies in context. In Proc Summer 1991

Useniz Conference., pages 157-168, Nashville, Tennessee, June 1991.

[5] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11), November 1983.

[6] Avid Media Composer. Avid technology, inc. Metropolitan Technology Park, One Park
West, Tewksbury, MA 01867, 1994.

[7] Tim Berners-Lee. Hypertext mark-up language, internet draft: Rfc 1341.
http://info.cern.ch/hypertext/ WWW /MarkUp/MarkUp.html, 1993.

[8] Tim Berners-Lee et al. World-wide web: The information universe. Electronic Networking:

Research, Applications, and Policy, 1(2), 1992.

[9] A. S. Bruckman. Electronic scrapbook: Towards an intelligent home-video editing system.

Master’s thesis, Massachusetts Institute of Technology, September 1991.

85

Content-Based Access to Algebraic Video 86

[10]

[17]

[18]

[19]

[20]

M. Davis. Media Streams: An iconic visual language for video annotation. In Proc. IEEE

Symposium on Visual Languages, pages 196-202, Bergen, Norway, 1993.
DiVA Corporation, Cambridge, MA. DiVA VideoShop User’s Guide, 1991.
David L. Drucker and Michael D. Murie. Quickttme Handbook. Hayden, 1992.

E. Fiume, D. Tsichritzis, and L. Dami. A temporal scripting language for object-oriented
animation. In Proc. Eurographics 1987, pages 283-294, Amsterdam, Netherlands, August
1987.

S. Gibbs, C. Breiteneder, and D. Tsichritzis. Audio/Video databases: An object-oriented
approach. In Proc. 9th IEEE Int. Data Engineering Conference, pages 381-390, 1993.

D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole. Semantic file systems.
In Thirteenth ACM Symposium on Operating Systems Principles. ACM, October 1991.

Available as Operating Systems Review Volume 25, Number 5.

David K. Gifford, John M. Lucassen, and Stephen T. Berlin. An architecture for large scale
information systems. In 10th Symposium on Operating System Principles, pages 161-170.
ACM, December 1985.

Software Development Group. Ncsa mosaic for the x window system. National Center for
Supercomputing Applications, University of Illinois at Urbana-Champaign, 605 E. Spring-
field, Champaign IL 61820, mosaic@ncsa.uiuc.edu.

R. Hamakawa and J. Rekimoto. Object composition and playback models for handling
multimedia data. In Proc. First ACM International Conference on Multimedia., pages

273-281, Anaheim, CA, August 1993.

Lynda Hardman, Guido van Rossum, and Dick C A Bulterman. Structured multimedia
authoring. In Proc. First ACM International Conference on Multimedia., pages 283-289,
Anaheim, CA, August 1993.

J.F. Koegel et al. Hyoctane: A hytime engine for an mmis. In Proc. First ACM International
Conference on Multimedia., pages 129-136, Anaheim, CA, August 1993.

Content-Based Access to Algebraic Video 87

[21]

[22]

[23]

[28]

[29]

T. Lane. Jpeg software. Independent JPEG Group, December 1992.

D. Legall. Mpeg - a video compression standard for multimedia applications. Communica-

tions of the ACM, 34(4):46-58, April 1991.

T.D.C Little et al. A digital on-demand video service supporting content-based queries.
In Proc. First ACM International Conference on Multimedia., pages 427-436, Anaheim,
California, August 1993.

W. E. Mackay and G. Davenport. Virtual video editing in interactive multimedia applica-

tions. Communications of the ACM, 32(7), July 1989.
MacroMind. Director Version 2.0, 1990.

James Matthews, Peter Gloor, and Filiia Makedon. Video scheme: A programmable video
editing system for automation and media recognition. In Proc. First ACM International

Conference on Multimedia., pages 419-426, Anaheim, CA, August 1993.

Akio Nagasaka and Yuzuru Tanaka. Automatic video indexing and full-video search for
object appearances. In Visual Database Systems, I, pages 113-127. Elsevier Science Pub-
lishers, 1992.

J.K. Ousterhout. An X11 toolkit based on the Tcl language. In USENIX Association 1991
Winter Conference Proceedings, pages 105-115, Dallas, TX, January 1991.

Roger Price. Mheg: An introduction to the future international standard for hypermedia
object interchange. In Proc. First ACM International Conference on Multimedia., pages
121-128, Anaheim, CA, August 1993.

R. Snodgrass. The temporal query language TQuel. ACM Transactions on Database Sys-
tems, 12(2):247-298, June 1987.

International Standard. Information technology hypermedia/time-based structuring lan-

guage (hytime). ISO/IEC 10743, November 1992.

Content-Based Access to Algebraic Video 88

[32]

[36]

D. Swanberg, C.F. Chu, and R. Jain. Architecture of a multimedia information system for
content-based retrieval. In Proc. 3rd International Workshop on Network and Operating

System Support for Digital Audio and Video., La Jolla, CA, November 1992.

D. Swanberg, C.F. Chu, and R. Jain. Knowledge guided parsing in video datbases. In
IS&/SPIE’s Symposium on Electronic Imaging: Science & Technology, San Jose, CA, Jan-
uary 1993.

D. K. Tennenhouse et al. A software-oriented approach to the design of media processing
environments. In Proc. IEEE International Conference on Multimedia Computing and

Systems., Boston, MA, May 1994.

L. Teodosio and W. Bender. Salient video stills: Content and context preserved. In Proc.
First ACM International Conference on Multimedia., pages 39-46, Anaheim, CA, August
1993.

G. van Rossum et al. CMIFed: A presentation environment for portable hypermedia
documents. In Proc. First ACM International Conference on Multimedia., pages 183188,
Anaheim, CA, August 1993.

