Engineered Communications for Microbial Robotics

Ron Weiss Tom Knight

MIT Artificial Intelligence Laboratory

Microbial Robotics

Capsule

ell wall

Plasma membrane — Nucleoid region (with DNA

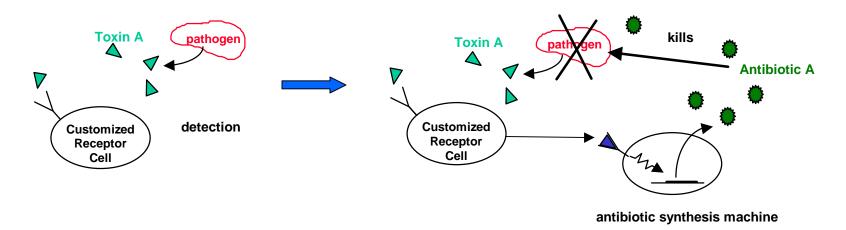
Mesosom

Flagella

 (\mathbf{h})

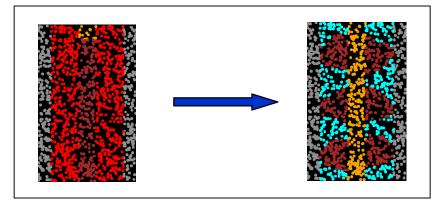
0.5 um

• Goal:


Design and implement cellular computers / robots using engineering principles

- Special features of cells:
 - small, self-replicating, energy-efficient
- Why?
 - Biomedical applications
 - Environmental applications (sensors & effectors)
 - Embedded systems
 - Interface to chemical world
 - Molecular scale engineering

Engineered Behavior


- Potential to engineer behavior into bacterial cells:
 - phototropic or magnetotropic response
 - control of flagellar motors
 - chemical sensing and engineered enzymatic release
 - selective protein expression
 - molecular scale fabrication

- selective binding to membrane sites
- collective behavior
 - autoinducers
 - slime molds
 - pattern formation
- Example: timed drug-delivery in response to toxins

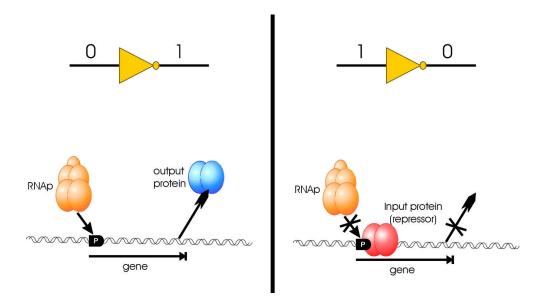
Communications

- Cellular robotics requires
 - Intracellular control circuits
 - Intercellular signaling
- First, characterize communication components
- Engineer coordinated behavior using diffusion-based communications

Example of pattern generation in an amorphous substrate, using only diffusion-based signaling

Demonstrate engineered communications using the lux Operon from Vibrio fischeri

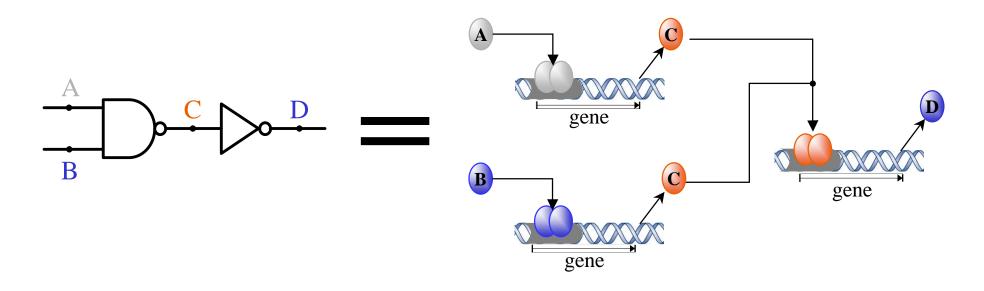
Outline


- Previous Work
- Implementing computation & communications
 - Intracellular regulation of transcription
 - Intercellular regulation of protein activity
- Quorum sensing
- Experimental Results
- Conclusions

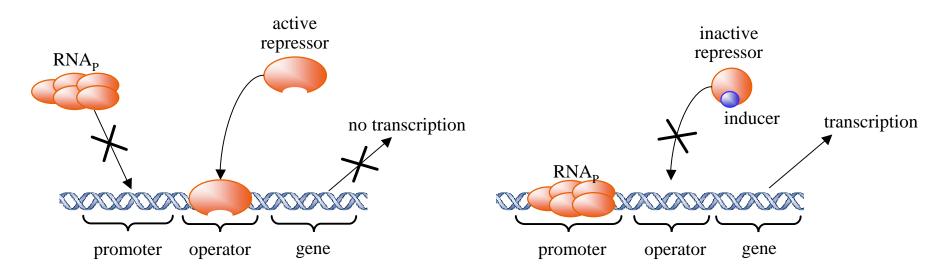
Previous Work

- Cellular gate technology [Knight & Sussman, '98]
- Simulation & characterization of gates and circuits [Weiss, Homsy, Knight, '98, '99]
- Toggle Switch implementation [Gardner & Collins, '00]
- Ring Oscillator implementation [Elowitz & Leibler, '00]

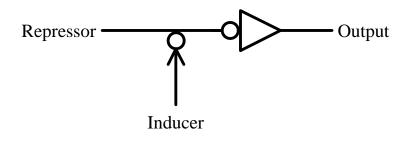
Intracellular Circuits: The Inverter


- *In-vivo* digital circuits:
 - signal = concentration of a specific protein
 - computation = regulated protein synthesis + decay
- The basic computational element is an **inverter**

>Allows building any (complex) digital circuit in individual cells

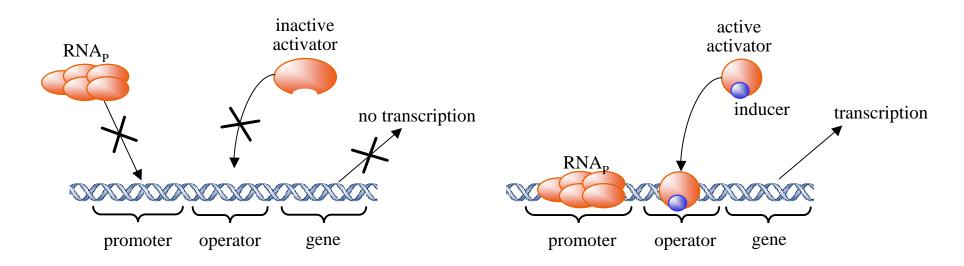

Digital Logic Circuits

• With these inverters, any (finite) digital circuit can be built

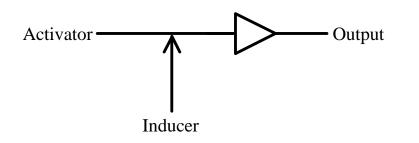


- proteins are the wires, genes are the gates
- NAND gate = "wire-OR" of two genes
- NAND gate is a universal logic element

Repressors & Small Molecules



- Inducers can inactivate repressors:
 - IPTG (Isopropylthio- β -galactoside) \rightarrow Lac repressor
 - aTc (Anhydrotetracycline) \rightarrow Tet repressor
- Use as a logical gate:

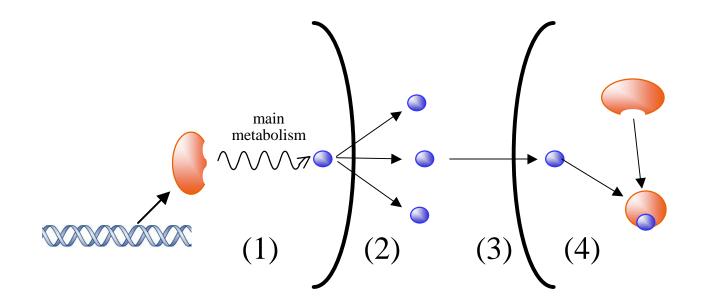


Repressor	Inducer	Output
0	0	1
0	1	1
1	0	0
1	1	1

Activators & Small Molecules

- Inducers can also activate activators:
 - VAI (3-N-oxohexanoyl-L-Homoserine lacton) \rightarrow luxR
- Use as a logical (AND) gate:

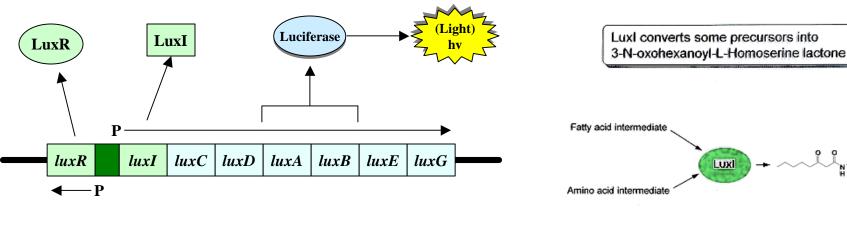
Activator	Inducer	Output	
0	0	0	
0	1	0	
1	0	0	
1	1	1	


Summary of Effectors

		Effector present		Effector not present	
	Protein : Effector	binds DNA	transcription	binds DNA	transcription
inducers {	TetR : aTc	+	-	-	+
	LuxR : VAI	-	-	+	+
co-repressors {	TrpR : tryptophane	+	+	-	-
	?:?	-	+	+	-

- Inducers and Co-repressors are termed effectors
- Reasons to use effectors:
 - faster intracellular interactions
 - intercellular communications

Intercellular Communications


- Certain inducers useful for communications:
 - 1. A cell produces inducer
 - 2. Inducer diffuses outside the cell
 - 3. Inducer enters another cell
 - 4. Inducer interacts with repressor/activator \rightarrow change signal

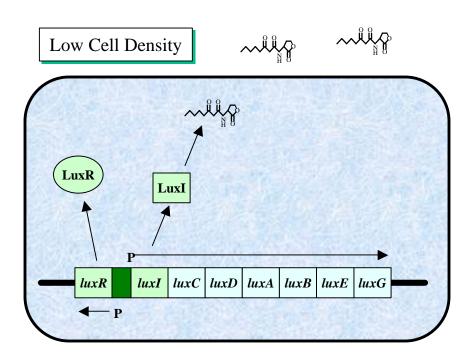
Quorum Sensing

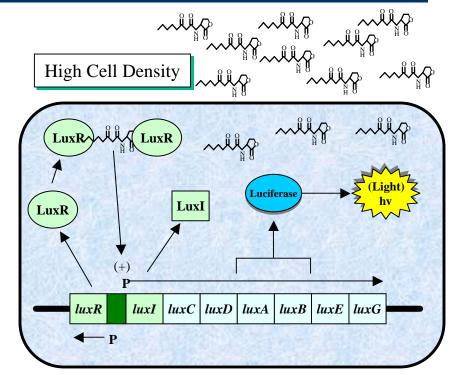
• Cell density dependent gene expression

Example: Vibrio fischeri [density dependent bioluminscence]

Regulatory Genes

Structural Genes


The lux Operon


LuxI metabolism \rightarrow autoinducer (VAI)

LUXI

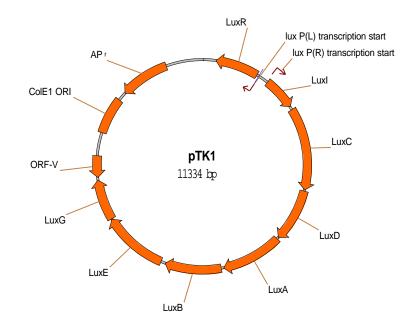
ᡗᡁᢩᢙ

Density Dependent Bioluminescence

free living, 10 cells/liter <0.8 photons/second/cell

symbiotic, 10¹⁰ cells/liter 800 photons/second/cell

A positive feedback circuit



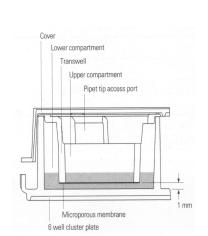
Similar Signalling Systems

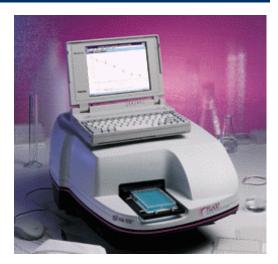
N-acyl-L-Homoserine Lactone Autoinducers in Bacteria

Species	Relation to Host	Regulate Production of	I Gene	R Gene
Vibrio fischeri	marine symbiont	Bioluminescence	luxI	luxR
Vibrio harveyi	marine symbiont	Bioluminescence	luxL,M	luxN,P,Q
Pseudomonas aeruginosa	Human pathogen	Virulence factors	lasI	lasR
		Rhamnolipids	rhlI	rhlR
Yersinia enterocolitica	Human pathogen	?	yenI	yenR
Chromobacterium violaceum	Human pathogen	Violaceum production Hemolysin Exoprotease	cviI	cviR
Enterobacter agglomerans	Human pathogen	?	eagI	?
Agrobacterium tumefaciens	Plant pathogen	Ti plasmid conjugation	traI	traR
Erwinia caratovora	Plant pathogen	Virulence factors Carbapenem production	expI	expR
Erwinia stewartii	Plant pathogen	Extracellular Capsule	esaI	esaR
Rhizobium leguminosarum	Plant symbiont	Rhizome interactions	rhiI	rhiR
Pseudomonas aureofaciens	Plant beneficial	Phenazine production	phzI	phzR

Cloning the lux Operon into E. coli

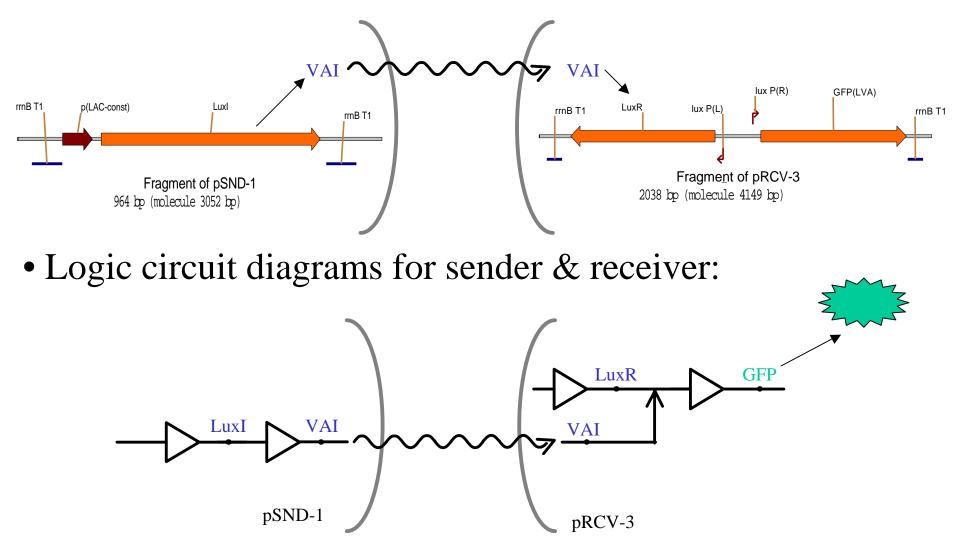
- First, we shotgun cloned the lux Operon from *Vibrio fischeri* to form plasmid pTK1
- Sequenced the operon [Genbank entry AF170104] (thanks to Nick Papadakis)
- Expressed in E. coli DH5a \rightarrow showed bioluminescence

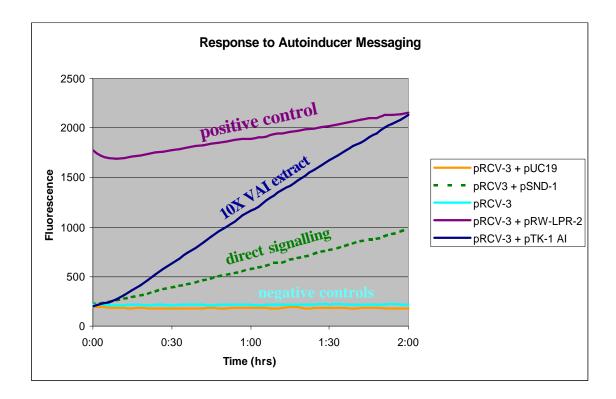

Experimental Setup


• BIO-TEK FL600 Microplate Fluorescence Reader

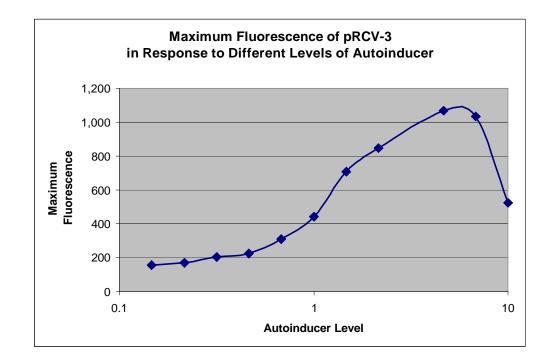
 Costar Transwell microplates and cell culture inserts with permeable membrane (0.1µm pores)

insert

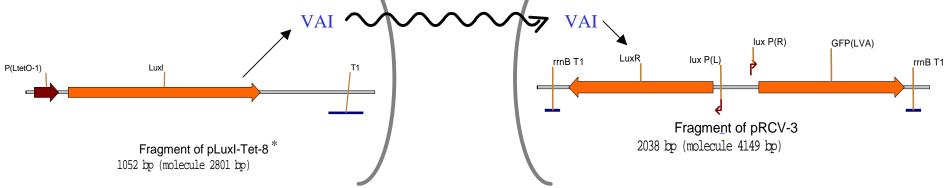

- Cells separated by function:
 - Sender cells in the bottom well
 - Receiver cells in the top well
- Top excitation and emission fluorescence readings


Experiment I: Constant Signaling

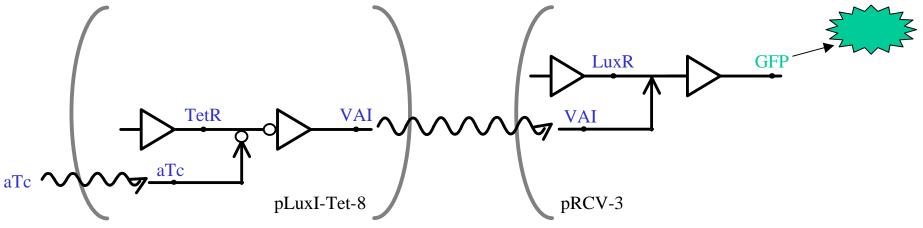
• Genetic networks for sender & receiver:


Experiment I: Constant Signalling

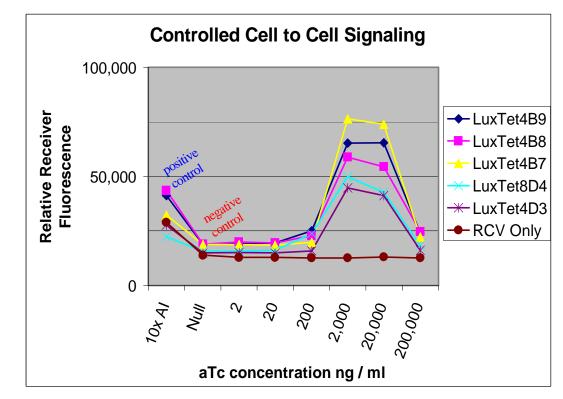
- Figure shows fluorescence response of receiver (pRCV-3)
 - Several cultures grown seperately overnight @37°C
 - Cultures mixed in 5 different ways and incubated in FL600 @37°C
 - Fluorescence readings taken every 5 minutes for 2 hours


Experiment II: Characterizing the Receiver

- Figure shows response of receiver to different levels of VAI
 - VAI extracted from pTK1 culture
 - Receiver cells (pRCV-3) grown @37°C to late log phase
 - Receiver cells incubated in FL600 for 6 hours @37°C with VAI
 - Data shows max fluorescence for each different VAI level


Experiment III: Controlled Sender

• Genetic networks for controlled sender & receiver:


^{*} E. coli strain expresses TetR (not shown)

• Logic circuit diagrams for controlled sender & receiver:

Experiment III: Controlling Sender

- Figure shows ability to induce stronger signals with aTc
 - Non-induced sender (pLux8-Tet-8) & receiver cells grown seperately @37°C to late log phase
 - Cells were combined in FL600, and sender cells were induced with aTc
 - Data shows max fluorescence after 4 hours @37 °C for 5 separate cultures plus control [positive cultures have same DNA → variance due to OD]

Conclusions & Future Work

- This work:
 - Isolated an important intercellular communications mechanism
 - Analyzed its components
 - Engineered its interfaces with standard genetic control and reporter mechanisms
- Future:
 - Additional analysis of lux characteristics
 - Examine and incorporate additional, non-cross reacting, communications systems
 - Integrate communications with more sophisticated invivo circuits
 - Engineer coordinated behavior (e.g. to form patterns)