
Improving 802.11 Range with Forward Error Correction

Reina E. Riemann, Keith J. Winstein

{riemann,keithw}@mit.edu

Computer Science and Artificial Intelligence Laboratory, Massachussets Institute of Technology

Abstract

The ISO/IEC 8802-11:1999(E) specification1 uses a
32-bit CRC for error detection and whole-packet re-
transmissions for recovery. In long-distance or high-
interference links where the probability of a bit error
is high, this strategy results in excessive losses, be-
cause any erroneous bit causes an entire packet to be
discarded. By ignoring the CRC and adding redun-
dancy to 802.11 payloads in software, we achieved
substantially reduced loss rates on indoor and out-
door long-distance links and extended line-of-sight
range outdoors by 70 percent.

1 Introduction

Bit errors are a rare phenomenon in most wired local
area networks. Wired Ethernet2 rarely operates close
to the noise threshold — link distances are limited
by restrictions on delay, not by signal power. See
Figure 1. As such, the cause of misbehavior in wired
Ethernet is typically congestion, not noise, and the
type of error usually manifested is the loss of an entire
packet, not a flipped bit.

Wireless networks are different. The range of a 32
mW 802.11 base station indoors is only a few tens
of feet before bit errors begin to appear. Outdoors,
there is much interest in stretching 802.11 links as far
as possible, including MIT’s own Roofnet project3 to
build a citywide 802.11 mesh network in Cambridge,
Massachusetts.

1ANSI/IEEE Std 802.11, 1999 edition.
2Formally, ISO/IEC 8802-3:2000(E) or IEEE Std 802.3,

2000 edition.
3http://www.pdos.lcs.mit.edu/roofnet/

zero zero zero zeroone one one one
1 2 4 8 16 32 12864

4 16 64 128+ + + = 212
−1.5

−1

−0.5

 0

 0.5

 1

 347  348  349  350  351  352  353  354  355  356  357

V
ol

ts

Bit

ICMP Ping Sequence Number 212 via 802.3 Ethernet

Figure 1: An example 802.3 waveform at 10 Mbit/sec
(the sequence number “212” in an ICMP ping
packet). Up-transitions in the middle of bit inter-
vals indicate ones, down-transitions zeros. Note the
almost complete lack of noise.

Figure 2: An example 802.11 packet at 1 Mbit/sec,
received over a 0.55-mile outdoor line-of-sight link.
This packet has 90 octets received incorrectly (indi-
cated with *) out of 1,392.

1



The causes of misbehavior on an 802.11 link thus
include, in addition to congestion, low signal-to-noise
ratio and interference. These latter two produce in-
correctly received bits, causing a failed CRC, a lack
of acknowledgement, and the sender’s retransmitting
the entire packet. (Low signal-to-noise and interfer-
ence can also cause a receiver not to hear the sender’s
preamble and miss the packet entirely.)

Figure 2 shows an example 802.11 payload after
transmission 2,900 feet along an outdoor line-of-sight
link. The payload was 1,392 octets, of which 1,301
were received correctly and 90 incorrectly (indicated
with *). At this error rate, most 802.11 senders will
give up on retransmissions before the receiver is able
to receive an entire packet correctly.

With some fraction of each packet devoted to for-
ward error correction, the receiver can recover from
bit errors. By adding redundancy to each packet in
software — essentially, increasing the noise margin of
the transmission path by reducing throughput — we
were able to extend the outdoor range of 802.11 by
up to 70 percent, from 0.5 miles to 0.85 miles.

2 Related Work

Many papers have presented strategies to improve
the performance of reliable transports, such as TCP,
over wireless networks. In [1], Balakrishnan et al.
compare and analyze several techniques for improv-
ing TCP throughput over a precursor to 802.11, in-
cluding modifications to TCP endpoints such as se-
lective acknowledgements, and making the link-layer
protocol reliable and “TCP-aware,” with immediate
retransmission of lost packets. The authors were not
able to obtain the contents of errored frames4 and did
not analyze forward error correction in this context.

Khayam at al. ([2]) measured the error character-
istics of two indoor one-way 802.11 links across a hall-
way at 2, 5.5, and 11 Mbits/sec. Because their links
were one-way (for multicast video broadcast), they
used forward error correction to recover from dropped
packets as well as bit errors.5 The authors found that,

4Balakrishnan, personal communication, November 2003.
5When a two-way connection is available and latency is

not important, forward error correction is not useful for deal-

for these two links operating at 5.5 Mbits/sec, giving
the application layer access to frames received with
bit errors reduced by about 40 percent the amount of
redundant information necessary to achieve perfect
transmission. At 11 Mbits/sec, there was no advan-
tage to looking at frames received with bit errors,
because the vast majority of errors were long strings
of dropped packets, not frames received with bit er-
rors. Their two links had almost no dropped packets
or errored octets at 2 Mbits/sec. The Khayam au-
thors did not try to extend 802.11’s range or discuss
two-way connections.

3 Measurements

In order to design a reasonable error-correction strat-
egy for 802.11 packets with bit errors, we sought
to observe the error characteristics of several indoor
and outdoor environments. Unfortunately, most con-
sumer 802.11 implementations do not advertise an
interface that allows the host to receive frames with
failed CRC. To our knowledge, only cards based on
the Intersil6 Prism 2/2.5/3 chipset have a publicly
known method to access errored frames.

We modified the GNU/Linux Host AP
driver7 for these cards to ignore the card’s
report of a failed CRC and put the card in
“HFA384X RID PROMISCUOUSMODE.” These two
changes were necessary to receive errored frames
outside of the card’s “monitor mode.”

Because our goal is to improve 802.11’s range,
we conducted all measurements at 1 Mbit/sec, the
slowest and most noise-resilient 802.11 modulation.
We set up a laptop with a 32 mW Lucent Orinoco
card on top of MIT’s Green Building, about 310 feet
above ground level. The laptop transmitted 1,400-
byte ICMP ping packets to the Ethernet broadcast
address. We wanted there to be no link-layer retrans-
missions, because they don’t make sense when we are
trying to salvage errored frames: the sender will keep

ing with dropped packets. The ideal strategy is acknowledge-
ment and retransmission of the dropped packet, because the
redundantly-transmitted information is exactly what was lost.

6Now sold by GlobespanVirata, Inc.
7By Jouni Malinen. http://hostap.epitest.fi/.

2



Figure 3: The 0.55-mile marginal link across the
Charles River. Courtesy MassGIS and the MIT De-
partment of Urban Studies and Planning.

trying to retransmit until the receiver gets the frame
perfectly. This is not what we want.

We attempted to receive the pings at various dis-
tances with a Prism 2 card in another laptop, using
a Global Positioning System receiver to mark our lo-
cation. The links we tested were line-of-sight over
the Charles River, which separates Boston and Cam-
bridge.

We made three measurements: (1) How far is a
line-of-sight outdoor link functional without receiving
bit errors? (2) How far out can a line-of-sight out-
door link consistently receive packets, with or without
bit errors? and (3) What is the distribution of bit
errors per packet on an example long-distance link? 8

The difference between (2) and (1) is essentially
the “marginal zone”: the increase in range we expect
to receive by using forward error correction.

We made measurement (3) by taking just over
three minutes of data on the Boston bank of the river,
0.55 miles away from the transmitter. See Figure 3.

8We acknowledge that these definitions are subjective, and
should not substitute for rigorous link-quality statistics. How
many successful transmissions must a link receive to be “func-
tional”? What percentage of packets must be received before
we can say our link does so “consistently”?

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
0.6

0.65
0.7

6 12 24 48 96 192 384 768

Lo
ss

 R
at

e

Octet Error Tolerance (out of 1,392)

Figure 4: Fraction of packets lost versus error tol-
erance on the 0.55-mile one-way link. Note log-log
scale.

4 Results

The distance in measurement (1) — the maximum
distance for zero-error reception — was 0.50 miles.9

The distance in measurement (2) — the maximum
distance at which we could get packets at all — was
0.87 miles.

The “marginal zone” is about 0.37 miles, or a 70
percent increase in distance if we can recover from
received bit errors.

The measurements on the 0.55-mile link were as
follows:

1. 195 pings were transmitted, each with a 1,392-
byte known payload.

2. 23 packets, or 12 percent of those sent, were lost
entirely.

3. 63 received packets, or 32 percent of those sent,
were received perfectly.

9More rigorous measurements are needed here, along with
signal strength. The zone of perfect reception dropped out
conclusively at 0.50 miles, but seemed to reappear briefly at
one spot 0.70 miles away. Was this the result of a coherence
of lucky bounces, a low-noise spot, or what? Unfortunately,
the Prism 2 card does not produce any measurement of signal
strength at these long distances.

3



4. 10 received packets, or 5 percent of those sent,
had 192 or more octets incorrect.

5. The remaining 99 packets, or 51 percent of those
sent, had between 0 and 192 octets incorrect.

Figure 4 presents these data in graphical form: the
fraction of packets with more than a given number
of octets incorrect. Normal 802.11, which can only
make use of perfectly-received packets, is at the left-
hand side of the graph — a loss rate of 100 - 32 = 68
percent.10 If we can salvage packets with up to 192
incorrect octets, we would instead have a loss rate of
100 - (32 + 51) = 17 percent.11

These results — a 70 percent increase in distance,
a 75 percent decrease in packet loss rate — convince
us that adding redundancy so that the receiver can
salvage errored packets can be a useful software-only
addition to 802.11.

5 Implementation

Under GNU/Linux, we implemented an “RSenc” de-
vice that encodes outgoing packets by adding re-
dundancy, and corrects errors in incoming packets.
The implementation in user space, with the Linux
TUN/TAP (user space network devices) module.

We use Reed-Solomon error correction at the byte
level, with a transmitted codeword of 255 bytes. Of
these, some are the “message bytes” (the input to the
coder) and the rest are “redundancy bytes.” Every
two redundancy bytes we add decreases our message
capacity by two bytes, but it adds one byte of error
tolerance. That is, with two redundancy bytes and
253 message bytes, any one byte in the entire 255-
byte received codeword may be corrupted arbitrarily

10Note that most 802.11 implementations retransmit four
times, so for non-broadcast traffic the loss rate that normal
802.11 users would experience in practice is closer to 0.684 =
0.21.

11Why all the talk of incorrect octets, instead of bit errors?
802.11 at 1 Mbit/sec uses differential binary phase shift keying
(DBPSK), where each bit gets its own modulated symbol, so
there does not seem to be a theoretical reason to expect errors
to come in octets. Nevertheless, the errors we observe in prac-
tice generally corrupt a whole octet or a string of octets, not
just scattered bits. See Figure 2.

fec0 (TUN)

rs-link

223       223

255 255

191   1916 X

wlan0 wlan0

255 255

191   191

rs-link

fec0

 �

Error feedback

(not yet implemented)

Figure 5: Structure of rs-link implementation, includ-
ing a planned addition: feedback as to the appropri-
ate amount of redundancy to add.

in flight, and the decoder will still be able to recover
the original message bytes.

Based on our measurements of the 0.55-mile link,
we chose a code that has 191 message bytes, and 64
redundancy bytes, in each 255-byte codeword (known
as an RS(255, 191) code).

The RSenc device accepts packets of up to 1,146
bytes (= 6 · 191). It splits them into blocks of 191
bytes and appends the 64-byte redundancy informa-
tion to each block, making a codeword of 255 bytes,
for a total of 6 · 255 = 1,530 bytes in each output
packet.12

Our measurements also indicated that errors tend
to occur in bursts of several bytes. We must drop a
packet if any one of its Reed-Solomon codewords has
more than 32 bytes wrong, so it is to our advantage
to try to spread those errors out. So before transmis-
sion, we scramble the message by interleaving each
codeword in a round-robin manner.13 We then send
each 1,530-byte encoded packet to the 802.11 card.

On receipt, we reverse the procedure: unscramble,
then rectify each 255-byte Reed-Solomon codeword,
extract the 191 message bytes from each, and deliver

12We have to increase the MTU of the wireless card to this
number, from the default of 1,500 bytes.

13We leave the Ethernet header unscrambled so the card
knows we are sending to the broadcast address and turns off
link-layer retransmissions.

4



the resulting packet to the operating system.
The 802.11 card itself must be in “ad hoc” mode

and can only communicate with other “ad hoc”
802.11 stations. (When the card is in “managed”
mode, it disassociates from its access point when it
starts to receive errors.)

6 Tests

We tested the rs-link software indoors, on a link
through several walls, between two laptops with
Prism 2 cards. The link distance was picked to be
in the “marginal zone” where each station could re-
ceive packets from the other, but with errors.14

Unlike the measurements in Figure 4, this was
a two-way test over our error-corrected link. One
laptop sent 105 ICMP ping queries to the Ethernet
broadcast address and tallied the responses.

The measurements were as follows:

1. 105 pings were transmitted, each with a 1,146
known contents.

2. 31 pings, or 30 percent of those transmitted, did
not receive a response.

3. 8 pings, or 8 percent of those transmitted, re-
ceived a perfect response.

4. 10 pings, or 10 percent of those sent, received a
response that the rs-link decoder could not sal-
vage (i.e., more than 192 octets incorrect).

5. The remaining 66 pings, or 63 percent of those
sent, received a an errored response that the rs-
link decoder was able to salvage.

These data are presented graphically in Figure 6.
Our two-way loss rate is at the right-hand side of
the figure — 192 errored octets permitted. The two-
way loss rate for normal 802.11 (without link-layer
retransmissions) is at the left-hand side of the figure
– no errored octets permitted.

14Most transmission problems were in one direction, because
one card, the “access point,” was operating at 200 mW and
the other at 32 mW.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8
 0.85

 0.9
 0.95

 1

 6  12  24  48  96  192

P
er

ce
nt

 o
f P

ac
ke

ts

Octet Errors in 1,530-byte Ping Response

Figure 6: Fraction of two-way pings lost as a function
of octet error tolerance, in a 1,530-byte ping response.
Note log-log scale.

The CPU load is tolerable on modern PCs. A
200 MHz Pentium Pro is just able to saturate a 1
Mbit/sec link using all its processing power. A 2
GHz Pentium 4 has no trouble.

7 Conclusions and Extensions

By adding redundancy to transmitted 802.11 frames
in software, we were able to extend the range of an
outdoor line-of-sight link by 70 percent, or 0.37 miles,
and reduce losses significantly on marginal indoor and
outdoor links. But without link retransmissions for
packets that fail error correction, users will still have
difficulty making productive use of a marginal link,
even with error coding. To be more usable, we will
need to examine:

Retransmissions after error correction. To be able
to use TCP over a marginal link, users of rs-link
will have to duplicate the functionality of link-layer
retransmissions at a higher level, after error correc-
tion. A loss rate of 17 percent, while certainly better
than 68 percent, is still not good enough to run TCP.
One way to add link-layer retransmissions above the
error-correction layer is by using the LL-SMART-
TCP-AWARE protocol described in [1]. Under LL-
SMART-TCP-AWARE (or the simpler “snoop” pro-

5



tocol also discussed), link endpoints cache TCP seg-
ments as they cross the link, suppress duplicate ac-
knowledgements, and retransmit segments that ap-
pear to have failed.

Error feedback. As implemented, rs-link uses 34
percent of the 802.11 link bandwidth for redundancy
information. This is worth it if the result is a 75 per-
cent reduction in loss rate, as in the case of our 0.55-
mile link. But it’s not worth it for a less-marginal
link. rs-link should receive feedback on the amount
of observed errors from the receiver and adjust the
level of added redundancy as appropriate.

Why are Roofnet’s results different? Preliminary
efforts by the Roofnet group to record and salvage
errored frames at 1 Mbit/sec have given disappoint-
ing results — errored frames end up completely cor-
rupted. Why are their results so different from ours?
Are urban links with multipath fundamentally differ-
ent from the line-of-sight outdoor and through-walls
indoor links we have examined?

8 Acknowledgments

The authors are deeply indebted to Austin Roach and
Sanjit Biswas for lending equipment and much time
to help us throughout this project. Phil Karn’s free-
software Reed Solomon library was very helpful, and
we appreciate the assistance of Professor Hari Balakr-
ishnan, Daniel Aguayo, John Barnett, Waseem Da-
her, Allie Brownell, Marissa Cheng, John Hawkinson,
and the MIT Radio Society.

References

[1] Hari Balakrishnan, Venkata N. Padmanabhan,
Srinivasan Seshan, and Randy H. Katz. A com-
parison of mechanisms for improving TCP perfor-
mance over wireless links. IEEE/ACM Transac-
tions on Networking, 5(6):756–769, 1997.

[2] S.A. Khayam, S.S. Karande, H. Radha, and
D. Loguinov. Performance analysis and modeling
of errors and losses over 802.11b lans for high-
bitrate real-time multimedia. Signal Processing:
Image Communication, 18(7), 2003.

6


