Introduction

The purpose of the Digital Signature Initiative’s (DSig) work is to allow users to decide what information they trust on the Web. Two examples motivate this work: validating downloaded code before running it; and validating the origin of (textual) documents. The DSig Trust Management Architecture provides the framework for building systems that automate parts of the decision making process. It is a simple, extensible system that defines standard interfaces for modules that interact with a variety of sources of information for making trust management decisions. Expressing trust is a complicated issue. Users need to

state their security policies, including for which operations they trust whom

make use of machine-readable assertions, which may or may not be signed

have tools to automate parts of the decision making process

The trust management architecture only knows about named actions, each of which specifies a policy (or program) that can be run to decide whether or not the action should be permitted. These policies, which can be written in many different programming languages, work together by sharing a common interface, and it is this interface which is the core of the Trust Management Architecture. Whenever an application faces a trust decision, it formulates the trust decision with all relevant parameters as a true/false-question and then calls the appropriate policy program with this question. The policy program computes the answer to this trust question and returns this answer together with a justification and some additional information to the calling application. The answer of the trust management system is a recommendation to the calling application, the application need not respect this advice.

In addition to specifying the interfaces of the policy programs, the Trust Management Architecture specifies three architecturally required modules (a URL fetcher, a label fetcher, and an initial policy language) and three modules that are critical to the Digital Signature Initiative (signature validation, certificate validation, and certificate chain reduction). All six of these modules conform to the standard interface specifications.

Design Goals

The DSig project is focused primarily on creating the infrastructure needed to create, validate, and utilize signed documents of various kinds. The Trust Management Architecture work is intended to provide a structure for testing the utility of this infrastructure. It provides a framework for building systems that use the signatures to make trust decisions. In some sense, it is a “test harness” for experiments that use the new infrastructure for real applications.

The design of the architecture was influenced by six primary design goals:

The architecture should be general purpose, not restricted to policies only policies relying on digital signature. Many of the scenarios (below) show trust management policies that make use of information beyond just the digital signature itself.

“Policy controls everything.” A well-designed trust management system should be able to subsume the role traditionally played by an access control system (file system, etc.). But decisions made through a trust management system should be able to include far more information sources and be able to apply more complicated decision criteria. In addition to the normal actions that would be controlled, in a trust management system it is important to make decisions about which externally supplied policies can be used. Thus, policy controls even the decision about what policies can be applied.

Policy descriptions should be transferable between different users and platforms. Standardizing a language for policies allows both early adopters and professional system administrators to create policies for the use of others without having to manually configure individual systems.

Simple policies should be simply described. We are concerned not only with the security of the design of the trust management architecture, but with the ability to ensure that it will be widely deployed and actively used by end users. For easy initial adoption, it is essential that simple trust policies must be easily described. This allows people who are using a trust management system for the first time to create and understand (this is very important) the simple policies that they are likely to initially need. At the same time, the system must support arbitrarily complicated policies so that, after the initial period, much more complex policies can be created and distributed without the need to replace the trust management infrastructure. We don’t expect most users to actually write policies directly; they will either use GUIs or receive policies from others. But early adopters of the technology are likely to create policies directly or want to make significant changes to policies they receive from others.

Easy to implement.. Again, to allow early adoption, it must be easy to implement both the trust management engine and GUIs for creating simple policies. Ease of implementation of the engine (along with publicly available reference implementations) should make it easy to deploy the system. Easy implementation of GUIs will enable a number of interfaces to be created, specialized to platforms or application domains, that should allow early adopters of the technology to quickly experiment with a number of policies – this creates a kind of “genetic diversity” of policies that will allow good policies to be created and identified rapidly through existing market pressures.

Extensible to handle new data formats and new information sources. The work on trust management is in its initial stages, and we must expect evolution to proceed rapidly. This requires the architecture to be flexible in its connections to the outside world, and particularly in the kinds of data formats and the sources of information that can be used to make trust decisions.

Example Scenarios

Sample Policies

For DSig the trust architecture is used to decide whether or not it i
