
Revised Report on the Propagator Model

Alexey Radul and Gerald Jay Sussman

Abstract
In the past year we have made serious progress on elaborating the propagator

programming model [2, 3]. Things have gotten serious enough to build a system that
can be used for real experiments.

The most important problem facing a programmer is the revision of an existing program
to extend it for some new situation. Unfortunately, the traditional models of programming
provide little support for this activity. The programmer often finds that commitments made
in the existing code impede the extension, but the costs of reversing those commitments
are excessive.

Such commitments tend to take the form of choices of strategy. In the design of any
significant system there are many implementation plans proposed for every component at
every level of detail. However, in the system that is finally delivered this diversity of plans
is lost and usually only one unified plan is adopted and implemented. As in an ecological
system, the loss of diversity in the traditional engineering process has serious consequences.

The Propagator Programming Model is an attempt to mitigate this problem. It is a
model that supports the expression and integration of multiple viewpoints on a design. It
incorporates explicit structure to support the integration of redundant pieces and subsys-
tems that solve problems in several different ways. It will help us integrate the diversity
that was inherent in the design process into the delivered operational product.

The Propagator Programming Model is built on the idea that the basic computational
elements are autonomous machines interconnected by shared cells through which they
communicate. Each machine continuously examines the cells it is interested in, and adds
information to some based on computations it can make from information from the others.
Cells accumulate information from the propagators that produce that information. The
key idea here is additivity. New ways to make contributions can be added just by adding
new propagators; if an approach to a problem doesn’t turn out to work well, it can be
identified by its premises and ignored, dynamically and without disruption.

This work was supported in part by the MIT Mind Machine Project.

Contents

1 Propagator System 3

1

2 Getting Started 4
2.1 Examples . 5

3 The Details 5

4 Making Propagator Networks 5
4.1 Attaching Basic Propagators: d@ . 6
4.2 Propagator Expressions: e@ . 6
4.3 Late Binding of Application . 8
4.4 Provided Primitives: p:foo and e:foo . 8
4.5 Cells are Data Too . 9
4.6 Compound Data . 10
4.7 Propagator Constraints: c:foo and ce:foo 11
4.8 Constants and Literal Values . 12
4.9 Constant Conversion . 13
4.10 Making Cells . 13
4.11 Conditional Network Construction . 15

5 Making New Compound Propagators 16
5.1 Lexical Scope . 17
5.2 Recursion . 18

6 Using Partial Information 19

7 Built-in Partial Information Structures 20
7.1 Nothing . 21
7.2 Just a Value . 21
7.3 Numerical Intervals . 21
7.4 Propagator Cells as Partial Information . 22
7.5 Compound Data . 22
7.6 Closures . 23
7.7 Truth Maintenance Systems . 24
7.8 Contradiction . 25
7.9 Implicit Dependency-Directed Search . 26

8 Making New Kinds of Partial Information 27
8.1 An Example: Adding Interval Arithmetic 28
8.2 Generic Coercions . 29
8.3 The Partial Information Generics . 30

8.3.1 The Full Story on Merge . 31
8.4 Individual Propagator Generics . 34
8.5 Uniform Applicative Extension of Propagators 34
8.6 Interoperation with Existing Partial Information Types 35

2

9 Making New Primitive Propagators 37
9.1 Direct Construction from Functions . 37

9.1.1 Expression Style Variants . 38
9.2 Propagatify . 38
9.3 Compound Cell Carrier Construction . 39
9.4 Fully-manual Low-level Propagator Construction 39

10 Debugging 39

11 Miscellany 41
11.1 Macrology . 41
11.2 Reboots . 41
11.3 Compiling . 42
11.4 Scmutils . 42
11.5 Editing . 42
11.6 Hacking . 42
11.7 Arbitrary Choices . 43

11.7.1 Default Application and Definition Style 43
11.7.2 Locus of Delayed Construction . 43
11.7.3 Strategy for Compound Data . 44

12 How this supports the goal 46

1 Propagator System

Although most of this document introduces you to the Scheme-Propagator system that
we have developed in MIT Scheme, the Propagator Model is really independent of the
language. You should be able to write propagators in any language you choose, and others
should be able to write subsystems in their favorite language that cooperate with your
subsystems. What is necessary is that all users agree on the protocol by which propagators
communicate with the cells that are shared among subsystems. These rules are very simple
and we can enumerate them right here:

Cells must support three operations:

• add some content

• collect the content currently accumulated

• register a propagator to be notified when the accumulated content changes

When new content is added to a cell, the cell must merge the addition with the content
already present. When a propagator asks for the content of a cell, the cell must deliver a
complete summary of the information that has been added to it.

3

The merging of content must be commutative, associative, and idempotent. The be-
havior of propagators must be monotonic with respect to the lattice induced by the merge
operation.

2 Getting Started

Scheme-Propagators is implemented in MIT/GNU Scheme, which you will need in order to
use it. You will also need Scheme-Propagators itself, which you can download from Once
you have it, go to the propagator/ directory, start up your Scheme and load the main
entry file with (load "load"). This gives you a read-eval-print loop (traditionally called
a REPL for short) for both the Scheme-Propagators system and the underlying Scheme
implementation. Check out the README for more on this.

Once you’ve got your REPL, you can start typing away at it to create propagator
networks, give them inputs, ask them to do computations, and look at the results.

Here’s a little propagator example that adds two and three to get five:

(define-cell a)

(define-cell b)

(add-content a 3)

(add-content b 2)

(define-cell answer (e:+ a b))

(run)

(content answer) ==> 5

Each of the parenthesized phrases above are things to type into the REPL, and the ==>

5 at the end is the result that Scheme will print. The results of all the other expressions
are not interesting.

Let’s have a closer look at what’s going on in this example, to serve as a guide for
more in-depth discussion later. define-cell is a Scheme macro for making and naming
propagator cells:

(define-cell a)

creates a new cell and binds it to the Scheme variable a.

(define-cell b)

makes another one. Then add-content is the Scheme procedure that directly zaps some
information into a propagator cell (all the propagators use it to talk to the cells, and you
can too). So:

(add-content a 3)

puts a 3 into the cell named a, and:

4

http://www.gnu.org/software/mit-scheme/
http://groups.csail.mit.edu/mac/users/gjs/propagators/propagator.tar

(add-content b 2)

puts a 2 into the cell named b. Now e:+ (the naming convention will be explained later)
is a Scheme procedure that creates a propagator that adds, attaches it to the given cells
as inputs, and makes a cell to hold the adder’s output and returns it. So:

(define-cell answer (e:+ a b))

creates an adding propagator, and also creates a cell, now called answer, to hold the result
of the addition. Be careful! No computation has happened yet. You’ve just made up a
network, but it hasn’t done its work yet. That’s what the Scheme procedure run is for:

(run)

actually executes the network, and only when the network is done computing does it give
you back the REPL to interact with. Finally content is a Scheme procedure that gets the
content of cells:

(content answer)

looks at what the cell named answer has now, which is 5 because the addition propagator
created by e:+ has had a chance to do its job. If you had forgotten to type (run) before
typing (content answer), it would have printed out #(*the-nothing*), which means
that cell has no information about the value it is meant to have.

2.1 Examples

There are some basic examples of Scheme-Propagators programs in core/example-networks.scm;
more elaborate examples are available in examples/.

3 The Details

Now that you know how to play around with our propagators we have to tell you what
we actually provide. In every coherent system for building stuff there are primitive parts,
the means by which they can be combined, and means by which combinations can be
abstracted so that they can be named and treated as if they are primitive.

4 Making Propagator Networks

The ingredients of a propagator network are cells and propagators. The cells’ job is to
remember things; the propagators’ job is to compute. The analogy is that propagators are
like the procedures of a traditional programming language, and cells are like the memory

5

locations; the big difference is that cells accumulate partial information (which may in-
volve arbitrary internal computations), and can therefore have many propagators reading
information from them and writing information to them.

The two basic operations when making a propagator network are making cells and
attaching propagators to cells. You already met one way to make cells in the form of
define-cell; we will talk about more later, but let’s talk about propagators first.

4.1 Attaching Basic Propagators: d@

The Scheme procedure d@ attaches propagators to cells. The name d@ is mnemonic for
“diagram apply”. For example, p:+ makes adder propagators:

(d@ p:+ foo bar baz)

means attach a propagator that will add the contents of the cells named foo and bar and
write the sum into the cell named baz. Once attached, whenever either the foo cell or
the bar cell gets any new interesting information, the adding propagator will eventually
compute the appropriate sum and give it to baz as an update.

(d@ propagator boundary-cell ...) Attaches a propagator to the given boundary cells.
By convention, cells used as outputs go last. As a Scheme procedure, d@ does not
return a useful value.

As in Scheme, p:+ is actually the name of a cell that contains a propagator construc-
tor for attaching propagators that do addition. The first argument to d@ can be any cell
that contains any desired partial information (see Section 6) about a propagator construc-
tor. Actual attachment of propagators will occur as the propagator constructor becomes
sufficiently well constrained.

4.2 Propagator Expressions: e@

The d@ style is the right underlying way to think about the construction of propagator
networks. However, it has the unfortunate feature that it requires the naming of cells for
holding all intermediate values in a computation, and in that sense programming with d@

feels a lot like writing assembly language.
It is pretty common to have expressions: one’s propagator networks will have some

intermediate values that are produced by only one propagator, and consumed by only one
propagator. In this case it is a drag to have to define and name a cell for that value, if one
would just name it “the output of foo”. Scheme-Propagators provides a syntactic sugar for
writing cases like this in an expression style, like a traditional programming language.

The Scheme procedure e@ attaches propagators in expression style. The name e@ is
mnemonic for “expression apply”. The e@ procedure is just like d@, except it synthesizes
an extra cell to serve as the last argument to d@, and returns it from the e@ expression
(whereas the return value of d@ is unspecified).

6

(e@ propagator boundary-cell ...) Attaches the given propagator to a boundary con-
sisting of the given boundary cells augmented with an additional, synthesized cell.
The synthesized cell goes last, because that is the conventional position for an output
cell. Returns the synthesized cell as the Scheme return value of e@.

For example, here are two ways to do the same thing:

(define-cell x)

(define-cell y)

(define-cell z)

(d@ p:* x y z)

and:

(define-cell x)

(define-cell y)

(define-cell z (e@ p:* x y))

Generally the e@ style is convenient because it chains in the familiar way

(e@ p:- w (e@ p:* (e@ p:+ x y) z))

Because of the convention that output cells are listed last, expressions in e@ style build
propagator networks that compute corresponding Lisp expressions.

On the other hand, the d@ style is necessary when a propagator needs to be attached to
a full set of cells that are already there. For example, if one wanted to be able to go back
from z and one of x or y to the other, rather than just from x and y to z, one could write:

(define-cell x)

(define-cell y)

(define-cell z (e@ p:* x y))

(d@ p:/ z x y)

(d@ p:/ z y x)

and get a multidirectional constraint:

(add-content z 6)

(add-content x 3)

(run)

(content y) ==> 2

To save typing when the propagator being attached is known at network construction
time, the p:foo objects are also themselves applicable in Scheme, defaulting to applying
themselves in the d@ style. Each also has an e:foo variant that defaults to the e@ style.
So the following also works:

7

(define-cell x)

(define-cell y)

(define-cell z (e:* x y))

(p:/ z x y)

(p:/ z y x)

4.3 Late Binding of Application

The preceding discusses attaching propagators to cells when the propagators being attached
are known at network construction time. That will not always be the case. For example:

(define-cell operation)

(define-cell answer)

(d@ operation 3 4 answer)

(run)

(content answer) ==> nothing

We didn’t say what operation to perform. This is not an error, but since nothing is
known about what to do with the 3 and the 4, nothing is known about the answer. Now
if we supply an operation, the computation will proceed:

(p:id p:* operation)

(run)

(content answer) ==> 12

In fact, in this case, d@ (or e@) will build an apply propagator that will wait until an
operation appears in the operation cell, and then apply it.

What would have happened if we had left off the d@ and just written (operation 3

4 answer)? If you put into operator position a cell that does not have a fully-known
propagator at network construction time, it will be applied in diagram style by default. If
you put into operator position a cell that contains a fully-known propagator at network
construction time, it will be applied either in diagram style or expression style, as dependent
on that propagator’s default preference. d@ and e@ override these defaults.

4.4 Provided Primitives: p:foo and e:foo

Many propagator primitives directly expose procedures from the underlying Scheme, with
the naming conventions that p:foo, and e:foo does the job foo to the contents of an
appropriate pile of input cells and gives the result to an output cell (which is passed in as
the last argument to p:foo and synthesized and returned by e:foo). p: is mnemonic for
“propagator” and e: is mnemonic for “expression”.

(p:foo input ... output) Attaches a propagator that does the foo job to the given
input and output cells. p:abs, p:square, p:sqrt, p:not, p:pair?, and p:null?

8

accept one input cell and one output cell. p:+, p:-, p:*, p:/, p:=, p:<, p:>, p:<=,
p:>=, p:and, p:or, p:eq?, p:eqv?, p:atan2, and p:expt, accept two input cells and
one output cell.

(e:foo input ...) The e:foo equivalents of all the p:foo propagator constructors are
all available and accept the same number of input cells (and make their own output
cell).

(p:id input output), (e:id input) Attaches an identity propagator to the given cells.
The identity propagator will continuously copy the contents of the input cell to the
output cell.

(p:== input ... output), (e:== input ...) These are variadic versions of p:id. The
result is a star topology, with every input feeding into the one output.

(p:switch control input output), (e:switch control input) Conditional propaga-
tion. The propagator made by switch copies its input to its output if and only if
its control is “true”. The presence of partial information (see Section 6) makes this
interesting. For example, a #t contingent on some premise will cause switch to
propagate, but the result written to the output will be contingent on that premise
(in addition to any other premises the input may already be contingent on).

(p:conditional control consequent alternate output),

(e:conditional control consequent alternate) Two-armed conditional propagation.
May be defined by use of two switch propagators and a not propagator.

(p:conditional-router control input consequent alternate),

(e:conditional-router control input consequent) Two-output-armed conditional prop-
agation. This is symmetric with conditional; the consequent and alternate are
possible output destinations.

4.5 Cells are Data Too

Cells, and structures thereof, are perfectly good partial information (see Section 6) and are
therefore perfectly legitimate contents of other cells. The event that two different cells A
and B find themselves held in the same third cell C means that A and B are now known to
contain information about the same thing. The two cells are therefore merged by attaching
c:id propagators to them so as to keep their contents in sync in the future.

(p:deposit cell place-cell), (e:deposit cell) Grabs the given cell and deposits
it into place-cell. The rule for merging cells has the effect that the given cell will
be identified with any other cells that place-cell may come to hold.

9

(p:examine place-cell cell), (e:examine place-cell) Grabs the given cell and de-
posits it into place-cell. The rule for merging cells has the effect that the given
cell will be identified with any other cells that place-cell may come to hold.

In fact, p:deposit and p:examine are the same operation, except with the arguments
reversed.

The e:examine variant includes an optimization: if the place-cell already contains
a cell, e:examine will just Scheme-return that cell instead of synthesizing a new one
and identifying it with the cell present.

4.6 Compound Data

Propagator compound data structures are made out of Scheme compound data structures
that carry around cells collected as with deposit. The corresponding accessors take those
cells out as with examine.

(p:cons car-cell cdr-cell output), (e:cons car-cell cdr-cell) Constructs a prop-
agator that collects the car-cell and the cdr-cell, makes a pair of them, and writes
that pair into the output cell. This is like a binary p:deposit.

(p:pair? input output), (e:pair? input) Attaches a propaagtor that tests whether
input cell contains a pair.

(p:null? input output), (e:null? input) Attaches a propaagtor that tests whether
input cell contains the empty list.

(p:car input output), (e:car input) Makes a propagator that identifies the given out-

put with the cell in the car of the pair in the given input. This is like a p:examine

of that field. Note that using p:car on an input implies the expectation that said
input contains a pair. That wish is treated as a command, and a pair appears. If
fact, (p:car input output) is equivalent to (p:cons output nothing input).

The e: variant includes the same optimization that e:examine does: if the input

already contains a pair with a cell in the car, e:car will just Scheme-return that cell
instead of synthesizing a new one and identifying it with the cell present.

(p:cdr input output), (e:cdr input) Same as p:car and e:car, except the other field
of the pair.

Note that the identification of cells that merge is bidirectional, so information written
into the output of a p:car will flow into the cell in the car of the pair in the input (and
therefore into any other cells identified with it by other uses of p:car on the same pair).
For example, in a program like:

10

(let-cell frob

(let-cell (quux (e:car frob))

... quux ...)

(let-cell (quux2 (e:car frob))

... quux2 ...))

the two cells named quux and quux2 will end up identified, and the cell named frob will
end up containing a pair whose car field will contain one of them.

Scheme pairs created by p:cons and company are partial information structures, and
they merge by recursively merging their corresponding fields. Together with the rule for
merging cells, the emergent behavior is unification (with a merge delay instead of the occurs
check).

4.7 Propagator Constraints: c:foo and ce:foo

Although the primitive propagators are like functions in that they compute only from
inputs to outputs, we can also define constraints, which may also derive information about
the arguments of a function from information about the value. Constraints are so useful
that many are predefined, and they have their own naming convention. c: stands for
“constraining”. A thing named c:foo is the constraining analogue of p:foo, in that in
addition to attaching a propagator that does foo to its cells, it also attaches foo-inverse
propagators that deduce“inputs” from“outputs”. For example, the product constraint that
we built in a previous section is available as c:*:

(define-cell x)

(define-cell y)

(define-cell z)

(d@ c:* x y z)

(add-content z 12)

(add-content y 4)

(run)

(content x) ==> 3

The c:foo objects, like the p:foo objects, are also self-applicable, and also default to
applying themselves in diagram style:

(c:* x y z) == (d@ c:* x y z)

The c:foo objects also have ce:foo analogues, that apply themselves in expression
style:

(ce:* x y) == (e@ c:* x y)

11

Of course, not every operation has a useful inverse, so there are fewer c: procedures
defined than p::

(c:foo constrainee ...) Attaches propagators to the given boundary cells that collec-
tively constrain them to be in the foo relationship with each other. c:+ and c:*

accept three cells to constrain. c:square, c:not, and c:id accept two cells to con-
strain. c:== accepts any number of cells.

(ce:foo constrainee ...) Synthesizes one additional constrainee cell and attaches prop-
agators that constrain the given cells to be in the foo relationship with the new one.
Since the position of the synthesized cell in the argument list is fixed, some diagram
style constraints have multiple expression style variants:

c:+ ce:+ ce:-

c:* ce:* ce:/

c:square ce:square ce:sqrt

c:not ce:not

c:and ce:and

c:or ce:or

c:id ce:id

c:== ce:==

c:negate ce:negate

c:invert ce:invert

c:sin ce:sin

c:cos ce:cos

c:tan ce:tan

c:exp ce:exp

c:eq? ce:eq

c:eqv? ce:eqv

4.8 Constants and Literal Values

Programs have embedded constants all the time, and propagator programs are no different
(except that constant values, like all other values, can be partial). We’ve already seen one
way to put a Scheme value into a propagator program: the add-content procedure zaps
a value straight into a cell. This is generally encouraged at the REPL, but frowned upon
in actual programs. It is much nicer to use constant or p:constant (they’re the same) to
make a propagator that will zap your value into your cell for you:

(define-cell thing)

((constant 5) thing)

(content thing) ==> #(*the-nothing*)

(run)

(content thing) ==> 5

12

There is also an expression-oriented version, called, naturally, e:constant:

(define-cell thing (e:constant 5))

(run)

(content thing) ==> 5

4.9 Constant Conversion

In fact, inserting constants is so important, that there is one more nicification of this:
whenever possible, the system will convert a raw constant (i.e. a non-cell Scheme object)
into a cell, using e:constant.

Some examples:

(e:+ x 2) == (e:+ x (e:constant 2))

(define-cell x 4) == (define-cell x (e:constant 4))

(c:+ x y 0) == (c:+ x y (e:constant 0))

4.10 Making Cells

Cells are the memory locations of the Scheme-Propagators language: Scheme variables
whose bindings are cells correspond to Scheme-Propagators variables (Scheme variables
whose bindings are other things look like syntax to Scheme-Propagators). We’ve already
met one way to make cells:

(define-cell x)

creates a Scheme variable named x and binds a cell to it. The underlying mechanism
underneath this is the procedure make-cell, which creates a cell and lets you do whatever
you want with it. So you could write:

(define x (make-cell))

which would also make a Scheme variable named x and bind a cell to it. In fact, that is
almost exactly what define-cell does, except that define-cell attaches some metadata
to the cell it creates to make it easier to debug the network (see Section 10) and also does
constant conversion (so (define-cell x 5) makes x a cell that will get a 5 put into it,
whereas (define x 5) would just bind x to 5).

Just as Scheme has several mechanisms of making variables, so Scheme-Propagators has
corresponding ones. Corresponding to Scheme’s let, Scheme-Propagators has let-cells:

(let-cells ((foo (e:+ x y))

(bar (e:* x y)))

...)

13

will create the Scheme bindings foo and bar, and bind them to the cells made by (e:+ x

y) and (e:* x y), respectively (this code is only sensible if x and y are already bound to
cells (or subject to constant conversion)). The new bindings will only be visible inside the
scope of the let-cells, just like in Scheme; but if you attach propagators to them, the
cells themselves will continue to exist and function as part of your propagator network.

One notable difference from Scheme: a cell in a propagator network, unlike a variable in
Scheme, has a perfectly good “initial state”. Every cell starts life knowing nothing about
its intended contents; where Scheme variables have to start life in a weird “unassigned”
state, nothing is a perfectly good partial information structure. This means that it’s
perfectly reasonable for let-cells to make cells with no initialization forms:

(let-cells (x y (foo (some thing))) ...)

creates cells named x and y, which are empty and have no propagators attached to them
initially, and also a cell named foo like above. let-cells also recognizes the usage:

(let-cells ((x) (y) (foo (some thing))) ...)

by analogy with Scheme let.
Corresponding to Scheme’s let*, Scheme-Propagators has let-cells*. let-cells*

is to let-cells what let* is to let:

(let-cells* ((x)

(y (e:+ x x)))

...)

will make a cell named x and a cell named y with an adder both of whose inputs are x and
whose output is y.

Corresponding to Scheme’s letrec, Scheme-Propagators has let-cells-rec. let-

cells-rec has the same scoping rules as Scheme’s letrec, namely that all the names it
defines are available to all the defining forms. Moreover, since an“uninitialized”propagator
cell can still start life in a perfectly sensible state, namely the state of containing nothing,
let-cells-rec removes a restriction that Scheme’s letrec enforced; namely, you may use
the names defined by a given let-cells-rec directly in the defining forms, without any
explicit intermediate delay in evaluation. For example:

(let-cells-rec ((z (e:+ x y))

(x (e:- z y))

(y (e:- z x)))

...)

is a perfectly reasonable bit of Scheme-Propagators code, and binds the names x, y and z

to cells that are interconnected with the three propagators indicated.
Now, let-cells, let-cells*, and let-cells-rec are, like define-cell, basically

a convenience over doing the same thing in Scheme with let, let*, letrec and make-

cell. Also like define-cell, let-cells, let-cells*, and let-cells-rec do constant

14

conversion (so in (let-cells ((x 3)) ...), x becomes a cell, not a Scheme object), and
attach debugging information to the cells they bind.

Since let-cells is plural (where let was number-neutral), Scheme-Propagators also
define let-cell and let-cell-rec (let-cell* being useless) for the case when you just
want to make one cell:

(let-cell x ...) == (let-cells (x) ...)

(let-cell (x (e:+ y z)) ...) == (let-cells ((x (e:+ y z))) ...)

(let-cell-rec (ones (e:cons 1 ones)) ...) ==

(let-cells-rec ((ones (e:cons 1 ones))) ...)

Scheme-Propagators currently has no analogue of Scheme’s named let syntax.
Finally, there is one more, somewhat sneaky way to make cells. The e@ procedure makes

and returns a cell to hold the “output” of the propagator being applied. These implicit cells
are just like the implicit memory locations that Scheme creates under the hood for holding
the return values of expressions before they get used by the next expression or assigned to
variables.

4.11 Conditional Network Construction

The switch propagator does conditional propagation --- it only forwards its input to its
output if its control is “true”. As such, it serves the purpose of controlling the flow of
data through an existing propagator network. However, it is also appropriate to control
the construction of more network, for example to design recursive networks that expand
themselves no further than needed. The basic idea here is to delay the construction of some
chunk of network until some information appears on its boundary, and control whether
said information appears by judicious use of switch propagators. The low-level tools
for accomplishing this effect are delayed-propagator-constructor and switch. The
supported user interface is:

(p:when internal-cells condition-cell body ...) Delays the construction of the body
until sufficiently “true” (in the sense of switch) partial information appears in the
condition-cell. The condition-cell argument is an expression to evaluate to
produce the cell controlling whether construction of the body takes place. The body

is an arbitrary collection of code, defining some amount of propagator network that
will not be built until the controlling cell indicates that it should. The internal-

cells argument is a list of the free variables in body. This is the same kind of kludge
as the import clause in define-propagator (see Section 5.1).

(e:when internal-cells condition-cell body ...) Expression-style variant of p:when.
Augments its boundary with a fresh cell, which is then synchronized with the cell
returned from the last expression in body when body is constructed.

(p:unless internal-cells condition-cell body ...)

15

(e:unless internal-cells condition-cell body ...) Same as p:when and e:when,
but reversing the sense of the control cell.

(p:if internal-cells condition-cell consequent alternate) Two-armed conditional
construction. Just like a p:when and a p:unless: constructs the network indicated
by the consequent form when the condition-cell becomes sufficiently “true”, and
constructs the network indicated by the alternate form when the condition-cell

becomes sufficiently “false”. Note that both can occur for the same p:if over the life
of a single computation, for example if the condition-cell comes to have a TMS
that includes a #t contingent on some premises and later a #f contingent on others.

(e:if internal-cells condition-cell consequent alternate) Expression-style vari-
ant of p:if.

5 Making New Compound Propagators

So, you know the primitives (the supplied propagators) and the means of combination (how
to make cells and wire bunches of propagators up into networks). Now for the means of
abstraction. A propagator constructor such as p:+ is like a wiring diagram with a few
holes where it can be attached to other structures. Supply p:+ with cells, and it makes
an actual propagator for addition whose inputs and outputs are those cells. How do you
make compound propagator constructors?

The main way to abstract propagator construction is with the define-d:propagator

and define-e:propagator Scheme macros. define-d:propagator defines a compound
propagator in diagram style, that is, with explicit named parameters for the entire boundary
of the compound:

(define-d:propagator (my-sum-constraint x y z)

(p:+ x y z)

(p:- z y x)

(p:- z x y))

define-e:propagator defines a compound propagator in expression style, that is, ex-
pecting the body of the propagator to return one additional cell to add to the boundary
at the end:

(define-e:propagator (double x)

(e:+ x x))

Both defining forms will make variants with names beginning in p: and e:, that default
to being applied in diagram and expression style, respectively. Note that this definition
does not bind the Scheme variable double.

With these definitions we can use those pieces to build more complex structures:

16

(p:my-sum-constraint x (e:double x) z)

which can themselves be abstracted so that they can be used as if they were primitive:

(define-d:propagator (foo x z)

(p:my-sum-constraint x (e:double x) z))

define-propagator is an alias for define-d:propagator because that’s the most com-
mon use case.

Just as in Scheme, the definition syntaxes have a corresponding syntax for anonymous
compound propagators, lambda-d:propagator and lambda-e:propagator.

Compound propagator constructors perform constant conversion:

(p:my-sum-constraint x 3 z) == (p:my-sum-constraint x (e:constant 3) z)

define-propagator and define-e:propagator respect the c: and ce: naming con-
vention, in that if the name supplied for definition begins with c: or ce:, that pair of
prefixes will be used in the names actually defined instead of p: and e:. So:

(define-propagator (foo ...) ...) defines p:foo and e:foo

(define-propagator (p:foo ...) ...) defines p:foo and e:foo

(define-propagator (e:foo ...) ...) defines p:foo and e:foo

(define-propagator (c:foo ...) ...) defines c:foo and ce:foo

(define-propagator (ce:foo ...) ...) defines c:foo and ce:foo

5.1 Lexical Scope

Compound propagator definitions can be closed over cells available in their lexical environ-
ment:

(define-e:propagator (addn n)

(define-e:propagator (the-adder x)

(import n)

(e:+ n x))

e:the-adder)

import is a kludge, which is a consequence of the embedding of Scheme-Propagators
into Scheme. Without enough access to the Scheme interpreter, or enough macrological
wizardry, we cannot detect the free variables in an expression, so they must be listed
explicitly by the user. Globally bound objects like e:+ (and p:addn and e:addn if the
above were evaluated at the top level) need not be mentioned.

17

5.2 Recursion

Propagator abstractions defined by define-propagator are expanded immediately when
applied to cells. Therefore, magic is needed to build recursive networks, because otherwise
the structure would be expanded infinitely far. As in Scheme, this magic is in if. The
Scheme-Propagators construct p:if (which is implemented as a Scheme macro) delays
the construction of the diagrams in its branches until sufficient information is available
about the predicate. Specifically, the consequent is constructed only when the predicate is
sufficiently “true”, and the alternate is constructed only when the predicate is sufficiently
“false”. Note that, unlike in Scheme, these can both occur to the same p:if.

In Scheme-Propagators, the one-armed conditional construction construct p:when is
more fundamental than the two-armed construct p:if. This is because, where Scheme’s
if is about selecting values, and so has to have two options to select from, p:when and
p:if are about building machinery, and there is no particular reason why choosing among
two pieces of machinery to construct is any more basic than choosing whether or not to
construct one particular piece.

For example, here is the familiar recursive factorial, rendered in propagators with
p:if:

(define-propagator (p:factorial n n!)

(p:if (n n!) (e:= 0 n)

(p:== 1 n!)

(p:== (e:* n (e:factorial (e:- n 1))) n!)))

The only syntactic difference between this and what one would write in Scheme for this
same job is that this is written in diagram style, with an explicit name for the cell that
holds the answer, and that p:if needs to be told the names of the non-global variables
that are free in its branches, just like the import clause of a propagator definition (and for
the same kludgerous reason). p:when is the one-armed version. p:unless is also provided;
it reverses the sense of the predicate.

Like everything else whose name begins with p:, p:if and co have expression-style
variants. The difference is that the tail positions of the branches are expected to return
cells, which are wired together and returned to the caller of the e:if. Here is factorial

again, in expression style:

(define-e:propagator (e:factorial n)

(e:if (n) (e:= 0 n)

1

(e:* n (e:factorial (e:- n 1)))))

Looks familiar, doesn’t it?

18

6 Using Partial Information

Partial, cumulative information is essential to multidirectional, non-sequential program-
ming. Each “memory location” of Scheme-Propagators, that is each cell, maintains not “a
value”, but “all the information it has about a value”. Such information may be as little
as “I know absolutely nothing about my value”, as much as “I know everything there is to
know about my value, and it is 42”, and many possible variations in between; and also one
not-in-between variation, which is “Stop the presses! I know there is a contradiction!”

All these various possible states of information are represented (perforce) as Scheme
objects. The Scheme object nothing represents the information “I don’t know anything”.
This requires only a single Scheme object, because not knowing anything is a single state of
knowledge. Most Scheme objects represent “perfect, consistent” information: the Scheme
object 5 represents the information “I know everything there is to know, and the answer is
5.” There are also several Scheme types provided with the system that denote specific other
states of knowledge, and you can make your own. For example, objects of type interval?

contain an upper bound and a lower bound, and represent information of the form “I know
my value is between this real number and that one.”

The way to get partial knowledge into the network is to put it into cells with add-

content or constant propagators. For example:

(define-cell x (make-interval 3 5))

produces a cell named x that now holds the partial information (make-interval 3 5),
which means that its value is between 3 and 5.

Partial information structures are generally built to be contagious, so that once you’ve
inserted a structure of a certain type into the network, the normal propagators will generally
produce answers in kind, and, if needed, coerce their inputs into the right form to co-
operate. For example, if x has an interval like above,

(define-cell y (e:+ x 2))

will make an adder that will eventually need to add 2 to the interval between 3 and 5.
This is a perfectly reasonable thing to ask, because both 2 and (make-interval 3 5) are
states of knowledge about the inputs to that adder, so it ought to produce the best possible
representation of the knowledge it can deduce about the result of the addition. In this case,
that would be the interval between 5 and 7:

(run)

(content y) ==> #(interval 5 7)

The key thing about partial information is that it’s cumulative. So if you also added
some other knowledge to the y cell, it would need to merge with the interval that’s there
to represent the complete knowledge available as a result:

19

(add-content y (make-interval 4 6))

(content y) ==> #(interval 5 6)

If incoming knowledge hopelessly contradicts the knowledge a cell already has, it will
complain:

(add-content y 15) ==> An error

stop the network mid-stride, and give you a chance to examine the situation so you can
debug the program that led to it, using the standard MIT Scheme debugging facilities.

The partial information types are defined by a suite of Scheme procedures. The ones
defining the actual partial information types are equivalent?, merge, and contradic-

tory?, which test whether two information structures represent the same information,
merge given information structures, and test whether a given information structure rep-
resents an impossible state, respectively. Each partial information structure also defines
the way various propagators treat it. The behavior in the control position of a switch

propagator and in the operator position of an apply propagator are particularly important.

7 Built-in Partial Information Structures

The following partial information structures are provided with Scheme-Propagators:

• nothing

• just a value

• intervals

• propagator cells

• compound data

• closures

• supported values

• truth maintenance systems

• contradiction

20

7.1 Nothing

nothing A single Scheme object that represents the complete absence of information.

(nothing? thing) A predicate that tests whether a given Scheme object is the nothing

object.

nothing is equivalent? only to itself.
nothing never contributes anything to a merge --- the merge of anything with nothing

is the anything.
nothing is not contradictory?.
Strict propagators, such as ones made by p:+, output nothing if any of their inputs

are nothing.
A switch whose control cell contains nothing will emit nothing.
An apply propagator whose operator cell contains nothing will not do anything.

7.2 Just a Value

A Scheme object that is not otherwise defined as a partial information structure indicates
that the content of the cell is completely known, and is exactly (by eqv?) that object.
Note: floating point numbers are compared by approximate numerical equality; this is
guaranteed to screw you eventually, but we don’t know how to do better.

Raw Scheme objects are equivalent? if they are eqv? (or are approximately equal
floating point numbers).

Non-equivalent? raw Scheme objects merge into the contradiction object.
A raw Scheme object is never contradictory?.
A switch interprets any non-#f raw Scheme object in its control cell as true and

forwards its input cell to its output cell unmodified. A switch whose control cell is #f

emits nothing to its output cell.
An apply propagator whose operator cell contains a raw Scheme procedure will apply

it to the boundary cells. It is an error for a raw Scheme object which is not a Scheme
procedure to flow into the operator cell of an apply propagator.

7.3 Numerical Intervals

An object of type interval? has fields for a lower bound and an upper bound. Such an
object represents the information “This value is between these bounds.”

(make-interval low high) Creates an interval with the given lower and upper bounds

(interval-low interval) Extracts the lower bound of an interval

(interval-high interval) Extracts the upper bound of an interval

21

(interval? thing) Tests whether the given object is an interval

Two interval objects are equivalent? if they are the same interval. An interval is
equivalent? to a number if both the upper and lower bounds are that number.

Arithmetic can be performed on intervals. They can be compared, and the compari-
son predicates will have a truth value only when no future shrinkage of the intervals can
change that value. For example, (e:< int1 int2) will be true only if (e:< (interval-

high int1) (interval-low int2)); it will be false only if (e:>= (interval-low int1)

(interval-high int2)); otherwise the result of the comparison is nothing.
Interval objects merge with each other by intersection. Interval object merge with num-

bers by treating the number as a degenerate interval and performing intersection (whose
result will either be that number or an empty interval). Interval objects merge with other
raw Scheme objects into the contradiction object.

An interval object is contradictory? if and only if it represents a strictly empty
interval (that is, if the upper bound is strictly less than the lower bound).

The arithmetic propagators react to interval objects by performing interval arithmetic.
A switch propagator treats any interval object in its control as a non-#f object and

forwards its input to its output.
It is an error for an interval object to appear in the operator position of an apply

propagator.
As an interval arithmetic facility, this one is very primitive. It cannot extract new

information from division by an interval that contains zero, because that would require
intervals around the point at infinity. The main purpose of including intervals is to have
a partial information structure with an intuitive meaning, and that requires nontrivial
operations on the information it is over.

7.4 Propagator Cells as Partial Information

A propagator cell interpreted as partial information is an indirection: it means “I contain
the structure that describes this value”. Cells can appear as the contents of cells or other
structures via the deposit and examine propagators (see Section 4.5).

Propagator cells are equivalent? if they are known to contain information about
the same subject. This occurs only if they are identically the same cell, or if they have
previously been unconditionally identified (by merging).

Propagator cells merge with each other by attaching bidirectional identity propagators
that keep the contents of the cells in sync. These identity propagators will cause the
contents of the cells to merge, both now and in the future.

A propagator cell is never contradictory?.

7.5 Compound Data

A Scheme pair is partial information that means “This object is a pair. My car and cdr
contain cells that describe the car and cdr of this object.” A Scheme empty list means

22

“This object is the empty list”.
The propagators p:cons, e:cons, p:car, e:cdr, p:pair?, e:pair?, p:null?, and

e:null? (see Section 4.6) introduce and examine pairs and empty lists.
Two pairs are equivalent? if their cars and cdrs are both equivalent?. A pair is not

equivalent? to any non-pair. The empty list is only ‘equivalent? to itself.
Pairs merge by recursively merging the car and cdr fields. Given the behavior of

propagator cells as mergeable data, the effect will be unification (with a delay instead of
the occurs check). A pair merged with a Scheme object of a different type will produce a
contradiction. An empty list merged with anything that is not the empty list will produce
a contradiction.

Neither a pair nor the empty list is ever contradictory?.
A switch propagator treats any pair or empty list in its control as a non-#f object and

forwards its input to its output.
It is an error for a pair or the empty list to appear in the operator position of an apply

propagator.
Other compound data structures can be made partial information that behaves like

pairs using define-propagator-structure.

(define-propagator-structure type constructor accessor ...) Declares that ad-
ditional Scheme data structures are partial information like pairs, and defines appro-
priate propagators that handle them. For example:

(define-propagator-structure pair? cons car cdr)

is the declaration that causes Scheme pairs to merge, be equivalent?, and be con-

tradictory? the way they are, and defines the propagators p:pair?, e:pair?,
p:cons, e:cons, p:car, and e:cdr.

7.6 Closures

Propagator closures as mergeable data behave like a compound data structure. A closure is
a code pointer together with an environment. The code pointer is a Scheme procedure; the
environment is a map from names to cells, and as such is a compound structure containing
cells. Code pointers merge by testing that they point to the same code (merging closures
with different code produces a contradiction), and environments merge by merging all the
cells they contain in corresponding places.

lambda-d:propagator, lambda-e:propagator Scheme-Propagators syntax for anonymous
compound propagator constructors (which are implemented as closures).

define-propagator Internally produces lambda-d:propagator or lambda-e:propagator and
puts the results into appropriately named cells.

23

7.7 Truth Maintenance Systems

A Truth Maintenance System (TMS) is a set of contingent values. A contingent value is
any partial information object that describes the “value” in the cell, together with a set
of premises. The premises are Scheme objects that have no interesting properties except
identity (by eq?). A worldview defines which premises are believed.

The meaning of a TMS as information is the logical and of the meanings of all of its
contingent values. The meaning of each contingent value is an implication: The conjunction
of the premises implies the contingent information. Therefore, given a worldview, some of
the contingent information is believed and some is not. If the TMS is queried, it produces
the best summary it can of the believed information, together with the full set of premises
that information is contingent upon.

In this system, there is a single current global worldview, which starts out believing all
premises. The worldview may be changed to exclude (or re-include) individual premises,
allowing the user to examine the consequences of different consistent subsets of premises.

(kick-out! premise) Remove the given premise from the current worldview.

(bring-in! premise) Return the given premise to the current worldview.

(premise-in? premise) Is the given premise believed in the current worldview?

(contingent info premises) Constructs a contingency object representing the informa-
tion that the given info is contingent on the given list of premises.

(contingent-info contingency-object) The information that is contingent.

(contingent-premises contingency-object) The list of premises on which that infor-
mation is contingent.

(contingency-object-believed? contingency-object) Whether the given contingency
object is believed.

(make-tms contingency-object-list) Constructs a TMS with the given contingency
objects as its initial set.

(tms-query tms) Returns a contingency object representing the strongest deduction the
given TMS can make in the current worldview. tms-query gives the contingency
with the strongest contingent information that is believed in the current worldview.
Given that desideratum, tms-query tries to minimize the premises that information
is contingent upon.

Calling initialize-scheduler resets the worldview to believing all premises.
TMSes are equivalent? if they contain equivalent contingent objects. Contingent

objects are equivalent if they have equivalent info and the same set of premises.

24

TMSes merge by appending their lists of known contingencies (and sweeping out re-
dundant ones).

Strict propagators react to TMSes by querying them to obtain ingredients for compu-
tation. The result of a computation is contingent on the premises of the ingredients that
contribute to that result.

If a TMS appears in the control of a switch, the switch will first query the TMS
to extract a contingent object. The switch will choose whether to forward its input or
not based on the info that is contingent, but if it does forward, it will additionally make
the result contingent upon the premises on which that info was contingent (as well as any
premises on which the input may have been contingent). If the input itself is a TMS,
switch queries it and (possibly) forwards the result of the query, rather than forwarding
the entire TMS. For example:

(define-cell frob (make-tms (contingent 4 ’(bill))))

(define-cell maybe-frob (e:switch (make-

tms (contingent #t ’(fred))) frob))

(run)

(tms-query (content maybe-frob)) ==> #(contingent 4 (bill fred))

If a TMS appears in the operator cell of an apply propagator, the apply propagator will
query the TMS. If the result of the query is a contingent propagator constructor, the apply
propagator will execute that constructor in a sandbox that ensures that the premises on
which the constructor was contingent are both forwarded to the constructed propagator’s
inputs and attached to the constructed propagator’s outputs. For example, suppose Bill
wanted us to add 3 to 4:

(define-cell operation)

(define-cell answer)

(p:switch (make-tms (contingent #t ’(bill))) p:+ operation)

(d@ operation 3 4 answer)

(run)

(tms-query (content answer)) ==> #(contingent 7 (bill))

The answer cell contains a 7 contingent on the Bill premise. This is the right thing,
because that answer depends not only on the inputs to the operation being performed, but
also on the identity of the operation itself.

7.8 Contradiction

The Scheme object the-contradiction represents a completely contradictory state of
information. If a cell ever finds itself in such a contradictory state, it will signal an error.
The explicit the-contradiction object is useful, however, for representing contradictory
information in recursive contexts. For example, a truth maintenance system may discover

25

that some collection of premises leads to a contradiction --- this is represented by a the-

contradiction object contingent on those premises.

the-contradiction A Scheme object representing a contradictory state of information
with no further structure.

the-contradiction is equivalent? only to itself.
Any information state merges with the-contradiction to produce the-contradiction.
the-contradiction is contradictory?.
Propagators cannot operate on the-contradiction because any cell containing it will

signal an error before any such propagator might run.

7.9 Implicit Dependency-Directed Search

If a cell discovers that it contains a TMS that harbors a contingent contradiction, the cell
will signal that the premises of that contradiction form a nogood set, and that nogood set
will be recorded. For the worldview to be consistent, at least one of those premises must
be removed. The system maintains the invariant that the current worldview never has a
subset which is a known nogood.

If a nogood set consists entirely of user-introduced premises, the computation will be
suspended, a description of the nogood set will be printed, and the user will have the
opportunity to remove an offending premise (with kick-out!) and, if desired, resume the
computation (with run).

There is also a facility for introducing hypothetical premises that the system is free
to manipulate automatically. If a nogood set contains at least one hypothetical, some
hypothetical from that nogood set will be retracted, and the computation will proceed.

(p:amb cell), (e:amb) A propagator that emits a TMS consisting of a pair of contingen-
cies. One contains the information #t contingent on one fresh hypothetical premise,
and the other contains the information #f contingent on anther. amb also tries to
maintain the invariant that exactly one of those premises is believed. If doing so
does not cause the current worldview to believe a known nogood set, amb can just
bring-in! one premise or the other. If the current worldview is such that bringing
either premise in will cause a known nogood set to be believed, then, by performing
a cut, the amb discovers and signals a new nogood set that does not include either
of them. Together with the reaction of the system to nogood sets, this induces an
emergent satisfiability solver by the resolution principle.

(p:require cell), (e:require) A propagator that requires its given cell to be true (to
wit, signals contradictions if it is not).

(p:forbid cell), (e:forbid) A propagator that forbids its given cell from being true
(to wit, signals contradictions if it is).

26

(p:one-of input ... output), (e:one-of input ...) An n-ary version of amb. Picks
one of the objects in the given input cells using an appropriate collection of amb and
switch propagators and puts it into its output cell.

(require-distinct cells) Requires all of the objects in its list of input cells to be
distinct (in the sense of eqv?)

8 Making New Kinds of Partial Information

The procedures defining the behavior of partial information are generic, and therefore
extensible. The ones that define the actual partial information types are equivalent?,
merge, and contradictory?, which test whether two information structures represent the
same information, merge given information structures, and test whether a given infor-
mation structure represents an impossible state, respectively. In addition, the primitive
propagators are equipped with generic operations for giving them custom behaviors on the
various information structures. The generic operation binary-map is very useful for the
circumstance when all the strict propagators should handle a particular information type
uniformly.

To create your own partial information structure, you should create an appropriate
Scheme data structure to represent it, and then add handlers to the operations equiv-

alent?, merge, and contradictory? to define that data structure’s interpretation as
information. In order to do anything useful with your new information structure, you will
also need to make sure that the propagators you intend to use with it can deal with it
appropriately. You can of course create custom propagators that handle your partial infor-
mation structure. Standard generic operations are also provided for extending the built-in
primitive propagators to handle new partial information types. Compound propagators are
a non-issue because they will just pass the relevant structures around to the appropriate
primitives.

It is also important to make sure that your new partial information structure intermixes
and interoperates properly with the existing ones (see Section 7).

Method addition in the generic operation system used in Scheme-Propagators is done
with the defhandler procedure:

(defhandler operation handler arg-predicate ...)

The generic operations system is a predicate dispatch system. Every handler is keyed
by a bunch of predicates that must accept the arguments to the generic procedure in turn;
if they do, that handler is invoked. For example, merging two intervals with each other
can be defined as:

(defhandler merge intersect-intervals interval? interval?)

You can also define your own generic operations, but that is not relevant here.

27

8.1 An Example: Adding Interval Arithmetic

The first step is to define a data structure to represent an interval. Intervals have upper
and lower bounds, so a Scheme record structure with constructor make-interval, accessors
interval-low and interval-high, and predicate interval? will do.

The second step is to define handlers for the generic operations that every partial
information structure must implement. Assuming appropriate procedures for intersecting
intervals and for testing them for equality and emptiness, those handlers would be:

(defhandler equivalent? interval-equal? interval? interval?)

(defhandler merge intersect-intervals interval? interval?)

(defhandler contradictory? empty-interval? interval?)

To make intervals interoperate with numbers in the same network, we can add a few
more handlers:

(define (number=interval? number interval)

(= number (interval-low interval) (interval-high interval)))

(defhandler equivalent? number=interval? number? interval?)

(defhandler equivalent? (binary-

flip number=interval?) interval? number?)

(define (number-in-interval number interval)

(if (<= (interval-low interval) number (interval-

high interval))

number

the-contradiction))

(defhandler merge number-in-interval number? interval?)

(defhandler merge (binary-flip number-in-interval) interval? number?)

The third step is to teach the arithmetic propagators to handle intervals. Interval
arithmetic does not fit into the binary-map worldview (see Section 8.5) so the only way
to do intervals is to individually add the appropriate handlers to the generic procedures
underlying the primitive propagators:

(defhandler generic-+ add-interval interval? interval?)

(defhandler generic-- sub-interval interval? interval?)

(defhandler generic-* mul-interval interval? interval?)

(defhandler generic-/ div-interval interval? interval?)

(defhandler generic-sqrt sqrt-interval interval?)

;; ...

In order for the binary propagators to handle the situation where that propagator has
an interval on one input and a number on the other, further handlers need to be added
that tell it what to do in those circumstances. The generic procedure system has been
extended with support for automatic coercions for this purpose.

28

8.2 Generic Coercions

Every number can be seen as an interval (whose lower and upper bounds are equal). The
definition of arithmetic on mixed intervals and numbers can be deduced from the definitions
of arithmetic on just intervals, arithmetic on just numbers, and this procedure for viewing
numbers as intervals. The generic operations system provided with Scheme-Propagators
has explicit support for this idea.

(declare-coercion-target type [default-coercion]) This is a Scheme macro that
expands into the definitions needed to declare type as something that other objects
may be coerced into. If supplied, it also registers a default coercion from anything
declared coercible to type.

declare-coercion-target defines the procedure type-able?, which tests whether
a given object has been declared to be coercible to type, and the procedure ->type,
which does that coercion. These rely on the type-tester for type already being defined
and named type?. For example:

(declare-coercion-target interval)

relies on the procedure interval? and defines the procedures ->interval and
interval-able?. This call does not declare a default means of coercing arbitrary
objects into intervals.

(declare-coercion from-type to-coercer [mechanism]) Declares that the given from-

type is coercible by the given coercer operation, either by the given mechanism if
supplied or by the default mechanism declared in the definition of the given coercer.
For example:

(declare-coercion number? ->interval (lambda (x) (make-interval x x)))

declares that Scheme number objects may be coerced to intervals whose lower and
upper bounds are equal to that number. After this declaration, interval-able? will
return true on numbers, and ->interval will make intervals out of numbers.

(defhandler-coercing operation handler coercer) The given generic operation must
be binary. Defines handlers for the given generic operation that have two effects: han-
dler is invoked if that operation is given two arguments of the type corresponding
to coercer; and if one argument is of that type and the other has been declared
coercable to that type it will be so coerced, and then handler will be invoked. For
example:

(defhandler-coercing generic-+ add-interval ->interval)

declares that intervals should be added by add-interval, and that anything interval-

able? can be added to an interval by first coercing it into an interval with -

>interval and then doing add-interval. This subsumes

29

(defhandler generic-+ add-interval interval? interval?)

defhandler-coercing may only be called after a call to declare-coercion-target

defining the appropriate coercer and coercability tester procedures (but the various
specific coercions may be declared later).

8.3 The Partial Information Generics

(equivalent? info1 info2) ==> #t or #f

The equivalent? procedure is used by cells to determine whether their content has
actually changed after an update. Its job is to ascertain, for any two partial information
structures, whether they represent the same information. As a fast path, any two eqv?

objects are assumed to represent equivalent information structures. The default operation
on equivalent? returns false for any two non-eqv? objects.

A handler for equivalent? is expected to accept two partial information structures
and return #t if they represent semantically the same information, and #f if they do not.

The built-in equivalent? determines an equivalence relation. Extensions to it must
maintain this invariant.

(merge info1 info2) ==> new-info

The merge procedure is the key to the propagation idea. Its job is to take any two partial
information structures, and produce a new one that represents all the information present
in both of the input structures. This happens every time a propagator gives a cell some
new information. Any two equivalent? information structures merge to identically the
first of them. The default operation for merge on a pair of non-equivalent? structures
that the handlers for merge do not recognize is to assume that they cannot be usefully
merged, and return the-contradiction.

A handler for merge is expected to accept two partial information structures and return
another partial information structure that semantically includes all the information present
in both input structures. The handler may return the-contradiction to indicate that
the two given partial information structures are completely mutually exclusive.

merge is expected to determine a (semi-)lattice (up to equivalence by equivalent?).
That is

• associativity:

(merge X (merge Y Z)) ~ (merge (merge X Y) Z)

(equivalent? (merge X (merge Y Z)) (merge (merge X Y) Z)) ==> #t

• commutativity:

(merge X Y) ~ (merge Y X)

(equivalent? (merge X Y) (merge Y X)) ==> #t

• idempotence:

30

(X ~ Y) implies (X ~ (merge X Y))

(or (not (equivalent? X Y)) (equivalent? X (merge X Y))) ==> #t

(contradictory? info) ==> #t or #f

The contradictory? procedure tests whether a given information structure represents
an impossible situation. contradictory? states of information may arise in the com-
putation without causing errors. For example, a TMS (see Section 7.7) may contain a
contradiction in a contingent context, without itself being contradictory?. But if a con-

tradictory? object gets to the top level, that is if a cell discovers that it directly contains
a contradictory? state of information, it will signal an error and stop the computation.

A handler for contradictory? is expected to accept a partial information structure,
and to return #t if it represents an impossible situation (such as an empty interval) or #f
if it does not.

8.3.1 The Full Story on Merge

The description of merge as always returning a new partial information structure is an
approximation. Sometimes, merge may return a new partial information structure together
with instructions for an additional effect that needs to be carried out. For example, when
merging two propagator cells (see Section 7.4), the new information is just one of those
cells, but the two cells also need to be connected with propagators that will synchronize
their contents. For another example, in Scheme-Propagators, if a merge produces a TMS
(see Section 7.7) that contains a contingent contradiction, the premises that contradiction
depends upon must be signalled as a nogood set (that this requires signalling and is not
just another partial information structure is a consequence of an implementation decision
of TMSes in Scheme-Propagators).

The fully nuanced question that merge answers is

“What do I need to do to the network in order to make it reflect the discovery
that these two information structures are about the same object?”

In the common case, the answer to this question is going to be “Record: that object is
best described by this information structure”. This answer is represented by returning the
relevant information structure directly. Another possible answer is “These two information
structures cannot describe the same object.” This answer is represented by returning the-

contradiction. Other answers, such as “Record this information structure and connect
these two cells with synchronizing propagators”, are represented by the effectful data
structure, which has one field for a new partial information structure to record, and one
field for a list of other effects to carry out. These instructions are represented as explicit
objects returned from merge rather than being carried out directly because this allows
recursive calls to merge to modify the effects to account for the context in which that
merge occurs. For example, if a merge of two cells occurs in a contingent context inside a
merge of two TMSes, then the instructions to connect those two cells must be adjusted to
make the connection also contingent on the appropriate premises.

31

(make-effectful info effects) Constructs a new effectful result of merge, with the
given new partial information structure and the given list of effects to carry out.
If the resulting effectful object reaches the top level in a cell, those effects will be
executed in the order they appear in the list.

(effectful-info effectful) Returns the new information content carried in the given
effectful object.

(effectful-effects effectful) Returns the list of effects that this effectful object car-
ries.

(effectful? thing) Tells whether the given object is an effectful object.

(->effectful thing) Coerces a possibly-effectless information structure into an effectful
object. If the thing was already effectful, returns it, otherwise wraps it into an
effectful object with an empty list of effects.

(effectful-> effectful) Attempts to coerce an effectful object into an explicitly effect-
less one. If the given effectful object was not carrying any effects that would have
any effect when executed, returns just the information structure it was carrying.
Otherwise, returns the given effectful object.

(effectful-bind effectful func) Runs the given func on the information content in
the given effectful object, and reattaches any effects. The effectful object may
actually be a partial information structure without explicit effects. The func may
return a new partial information structure or a new effectful object. The overall
result of effectful-bind is the information returned by the call to func, together
with all the effects in the original effectful object, and any effects in the return value
of the func. The former effects are listed first.

(effectful-list-bind effectfuls func) Like effectful-bind, but accepts a list of
effectful objects, and calls the func on the list of their information contents.

There are two reasons why this matters to a user of the system. First, callers of
merge (for example recursive ones in contexts where a new partial information structure is
defined that may contain arbitrary other ones) must be aware that merge may return an
effectful object. In this case, it is the responsibility of the caller to merge to shepherd
the effects appropriately, adjusting them if necessary. For example, the merge handler for
two pairs recursively merges the cars and cdrs of the pairs. If either of those recursive
merges produces effects, the pair merge forwards all of them. Here is the code that does
that:

(define (pair-merge pair1 pair2)

(effectful-bind (merge (car pair1) (car pair2))

(lambda (car-answer)

32

(effectful-bind (merge (cdr pair1) (cdr pair2))

(lambda (cdr-answer)

(cons car-answer cdr-answer))))))

(defhandler merge pair-merge pair? pair?)

N.B.: The car merge and the cdr merge may both produce effects. If so, these effects
will be executed in FIFO order, that is, car effects first, then cdr effects. This order is
an arbitrary decision that we as the designers of Scheme-Propagators are not committed
to. All effects built into Scheme-Propagators are independent, in that their executions
commute.

Scheme-Propagators has two built-in effect types: cell-join-effect, defined in core/cells.scm,
instructs the system to make sure two cells are joined by synchronizing propagators;
nogood-effect, defined in core/contradictions.scm, instructs the system to record
that a list of premises constitutes a nogood set. (The error that the system signals when
discovering a toplevel contradiction is not an effect in this sense).

Second, a new partial information structure may want to have some side-effect when
merged. This must be accomplished through returning an appropriate effectful object
containing appropriate instructions. New types of effects can be defined for that purpose.
For example, the built-in TMSes are added to the system through this mechanism.

The handling of effects is extensible through two generic procedures.

(execute-effect effect) The execute-effect procedure is used by cells to actually
execute any effects that reach the top level. A handler for execute-effect should
execute the effect specified by the given effect object. The return value of execute-
effect is not used.

(redundant-effect? effect) ==> #t or #f The redundant-effect? procedure is
used to determine which effects will predictably have no effect if executed, so they
may be removed. For example, synchronizing a cell to itself, or synchronizing two cells
that are already synchronized, are redundant effects. Detecting redundant effects is
important for testing network quiescence.

The default operation of redundant-effect? is to return #f for all effects, which
is conservative but could lead to excess computation in the network. A handler for
redundant-effect? is expected to return #t if the effect will provably have no
consequence on any values to be computed in the future, or #f if the effect may have
consequences.

If an effect is generated by a merge that occurs in a contingent context in a TMS,
the TMS will modify the effect to incorporate the contingency. This mechanism is also
extensible. To teach TMSes about making new effects contingent, add handlers to the
generic operation generic-attach-premises.

33

((generic-attach-premises effect) premises) ==> new-effect The generic-attach-
premises procedure is used by the TMS machinery to modify effects produced by
merges of contingent information. A handler for generic-attach-premises must
return a procedure that will accept a list of premises and return a new effect, which
represents the same action but appropriately contingent on those premises. In par-
ticular, the consequences of the action must be properly undone or made irrelevant
if any premises supporting that action are retracted. For example, the instruction
to join two cells by synchronizing propagators is made contingent on premises by
causing those synchronizing propagators to synchronize contingently.

8.4 Individual Propagator Generics

Most primitive propagators are actually built from generic Scheme functions. Those prop-
agators can therefore be extended to new partial information types just by adding appro-
priate methods to their Scheme generic operations. This is what we did in the interval
example.

(generic-foo argument ...) ==> result A generic procedure for carrying out the
foo job over any desired partial information inputs, producing an appropriately par-
tial result. generic-abs, generic-square, generic-sqrt, generic-not, generic-
pair?, and generic-null? accept one input. generic-+, generic--, generic-*,
generic-/, generic-=, generic-<, generic->, generic-<=, generic->=, generic-
and, generic-or, generic-eq?, generic-eqv?, generic-expt, and generic-switch

accept two inputs.

Don’t forget to teach the propagators what to do if they encounter a partial informa-
tion structure on one input and a different one on another --- if both represent states of
knowledge about compatible ultimate values, it should be possible to produce a state of
knowledge about the results of the computation (though in extreme cases that state of
knowledge might be nothing, implying no new information produced by the propagator).

8.5 Uniform Applicative Extension of Propagators

Also, almost all primitive propagators are wrapped with the nary-mapping wrapper func-
tion around their underlying generic operation. This wrapper function is an implementa-
tion of the idea of applicative functors [1], so if your partial information structure is an
applicative functor, you can use this to teach most propagators how to handle it.

The propagators wrapped in nary-mapping are exactly the strict propagators. This
includes all the built-in propagators except :deposit, :examine, :cons, :car, and :cdr

because those operate on cells rather than their contents, and :amb because it essentially
has no inputs.

((binary-map info1 info2) f) ==> new-info The generic procedure binary-map

encodes how to apply a strict function to partial information arguments. binary-map itself

34

is generic over the two information arguments, and is expected to return a handler that
will accept the desired function f and properly apply it. For example, consider contingent
information. A strict operation on the underlying information that is actually contingent
should be applied by collecting the premises that both inputs are contingent on, applying
the function, and wrapping the result up in a new contingency object that contains the
result of the function contingent upon the set-union of the premises from both inputs:

(define (contingency-binary-map c1 c2)

(lambda (f)

(contingent

(f (contingent-info c1) (contingent-info c2))

(set-union (contingent-premises c1) (contingent-

premises c2)))))

(defhandler binary-map contingency-binary-map contingency? contin-

gency?)

Note that the information inside a contingency object may itself be partial, and so
perhaps necessitate a recursive call to binary-map. This recursion is handled by the given
function f, and need not the invoked explicitly in handlers for binary-map.

A handler for binary-map is expected to accept two partial information structures
and return a procedure of one argument that will accept a binary function. It is free to
apply that function as many or as few times as necessary, and is expected to produce the
appropriate result of “mapping” that function over the information in the input partial
information structures to produce a new partial information structure, encoding all the
appropriate uncertainty from both inputs. The given function f, for example as a result of
(nary-mapping generic-switch), may return nothing even when both of its inputs are
non-nothing.

The nary-mapping wrapper works by repeated use of binary-map on arguments of arity
greater than two. For unary arguments, nary-mapping invokes binary-map with a bogus
second argument. Therefore, handlers for binary-map must handle applications thereof
that have your new partial information structure as one argument, and a raw Scheme
object as the other (this is a good idea anyway, and saves the trouble of writing handlers
for an explicit unary-map operation).

8.6 Interoperation with Existing Partial Information Types

A new partial information structure may interact with an existing one in two ways:

• as arguments to merge or to binary propagators

• by containment (of and by)

35

The first is in general handled by making sure that merge, binary-map, and all appro-
priate individual propagator generic operations have methods that can handle any combi-
nations that may arise. Often, the way to deal with two information structures of different
but compatible types is to realize that one of them can be seen as an instance of the other
type. The coercion machinery (see Section 8.2) allows one to declare when this situation
obtains so that defhandler-coercing does the right thing. The specific touch points for
this are the type testers and coercers of the existing partial information types:

| Type | Predicate | Coercer |

|---------------------+----------------+--------------|

| Nothing | nothing? | -- |

| Raw Scheme object | various | -- |

| Numerical interval | interval? | ->interval |

| Propagator cells | cell? | -- |

| Scheme pairs | pair? | -- |

| Propagator closures | closure? | -- |

| Contingency object | contingent? | ->contingent |

| TMS | tms? | ->tms |

| Contradiction | contradictory? | -- |

|---------------------+----------------+--------------|

Notes:

• The nothing information structure defines methods on merge and the propagators
that do the right thing for any other object, so does not require any additional effort.

• TMSes automatically coerce to TMS any object that is declared coercible to a raw
contingency object.

For example:

(declare-coercion interval? ->contingent)

allows raw intervals to be seen as TMSes. This has the effect that if a binary operation
(either merge or a primitive propagator subject to nary-mapping) encounter a TMS on
one input and an interval on the other, it will coerce the interval to a TMS containing
exactly that interval contingent on the empty set of premises, and then operate on those
two structures as on TMSes.

The second kind of interoperation is handled by correctly dealing with merge effects
(see Section 8.3.1). If you make a new partial information structure that contains others,
you must make sure to handle any merge effects that may arise when recursively merging
the partial information your structure contains. If you make a new partial information
structure that may need to have effects performed on merge, you should return those
as appropriate merge effects in an effectful structure, and, if you need to create new
kinds of effects in addition to the built-in ones, you should extend the generic operations
execute-effect, redundant-effect?, and generic-attach-premises (Section 8.3.1).

36

9 Making New Primitive Propagators

Almost all definition of new primitive propagators can be handled correctly either by
propagatify or by define-propagator-structure (see Section 7.5). We discuss the
lower-level tools first, however.

9.1 Direct Construction from Functions

The fundamental way to make your own primitive propagators is the procedure function-
>propagator-constructor. It takes a Scheme function, and makes a propagator construc-
tion procedure out of it that makes a propagator that does the job implemented by that
Scheme function. The propagator constructor in question takes one more argument than
the original function, the extra argument being the cell into which to write the output.
So the result of function->propagator-constructor is a diagram-style procedure (com-
plete with (most of) the debugging information, and the constant conversion). The return
value of function->propagator-constructor can be put into a cell, just same way that
a Scheme procedure can be the value of a Scheme variable. For example, you might define:

(define-cell p:my-primitive (function->propagator-constructor do-it))

where do-it is the appropriate Scheme function.
Something important to pay attention to: function->propagator-constructor wraps

the given function up into a propagator directly, and it is up to the function itself to handle
any interesting partial information type that might come out of its argument cells. Notably,
nothing might show up in the arguments of that function when it is called. Therefore, it
may be appropriate the make the function itself generic, and/or wrap it in nary-mapping.

For example, let us walk through the implementation of the provided primitive p:and

in core/standard-propagators.scm. First, we make a generic version of the Scheme
procedure boolean/and to serve as a point of future extension:

(define generic-and (make-generic-operator 2 ’and boolean/and))

Then we wrap that generic procedure with nary-mapping to make it process all partial
information types that have declared applicative functor behavior, and then we give the
result to function->propagator-constructor to make a propagator constructor:

(define-cell p:and

(function->propagator-constructor (nary-mapping generic-and)))

Another detail to think about is metadata. function->propagator-constructor can
supply all the metadata that the debugger uses except the name of your function. If your
function is generic, the generic machinery already expects a name; otherwise, you need to
supply the name yourself, with (name! your-function ’some-name).

37

9.1.1 Expression Style Variants

Once you’ve made a diagram-style propagator constructor, you can make a variant that
likes to be applied in expression style with expression-style-variant. For example,
e:and is actually defined as:

(define-cell e:and (expression-style-variant p:and))

9.2 Propagatify

All that wrapping in nary-mapping, and naming your propagator functions with name!,
and calling expression-style-variant to convert them to expression-style versions can
get tedious. This whole shebang is automated by the propagatify macro:

(propagatify +)

turns into

(define generic-+ (make-generic-operator 2 ’+ +))

(define-cell p:+

(function->propagator-constructor (nary-mapping generic-+)))

(define-cell e:+ (expression-style-variant p:+))

The easy syntax covers the common case. You can also specify an explicit arity for
the generic operation to construct (because sometimes propagatify will guess wrong).
The above is also equivalent to (propagatify + 2). Sometimes you may want to avoid
constructing the generic operation. That can be done also:

(propagatify + ’no-generic)

becomes

(define-cell p:+

(function->propagator-constructor (nary-mapping +)))

(define-cell e:+ (expression-style-variant p:+))

Finally, in the case where you want completely custom handling of partial information,
even the nary-mapping can be avoided with

(propagatify-raw +)

which becomes

(define-cell p:+ (function->propagator-constructor +))

(define-cell e:+ (expression-style-variant p:+))

Note that propagatify follows the naming convention that the Scheme procedure foo

becomes a generic procedure named generic-foo and then turns into propagators p:foo

and e:foo.

38

9.3 Compound Cell Carrier Construction

p:cons is an interesting propagator, because while it performs the job of a Scheme pro-
cedure (to wit, cons), it operates directly on the cells that are its arguments, rather than
on their contents. Other compound data structures can be made partial information that
behaves like pairs using define-propagator-structure.

(define-propagator-structure type constructor accessor ...) Declares that ad-
ditional Scheme data structures are partial information like pairs, and defines appro-
priate propagators that handle them. For example:

(define-propagator-structure pair? cons car cdr)

defines the propagators p:pair?, e:pair?, p:cons, e:cons, p:car, and e:cdr (and
also makes pairs a partial information structure).

Defining p:cons to operate on its argument cells constitutes a decision to follow the
“carrying cells” rather than the “copying data” strategy from the propagator thesis.

9.4 Fully-manual Low-level Propagator Construction

Finally, when the thing you want your propagator to do is so low-level and interesting that
it doesn’t even correspond to a Scheme function, there’s always the propagator procedure.
This is the lowest level interface to asking cells to notify a propagator when they change.
propagator expects a list of cells that your propagator is interested in, and a thunk that
implements the job that propagator is supposed to do. The scheduler will execute your
thunk from time to time --- the only promise is that it will run at least once after the last
time any cell in the supplied neighbor list gains any new information. For example:

(define (my-hairy-thing cell1 cell2)

(propagator (list cell1 cell2)

(lambda ()

do-something-presumably-with-cell1-and-cell2)))

The propagator procedure being the lowest possible level, it has no access to any use-
ful sources of metadata, so you will need to provide yourself any metadata you want to
be able to access later. For an example of how this facility is used, see the implemen-
tations of function->propagator-constructor and delayed-propagator-constructor

in core/propagators.scm.

10 Debugging

There is no stand-alone “propagator debugger”; if something goes wrong, the underlying
Scheme debugger is your friend. Some effort has, however, been expended on making your
life easier.

39

In normal operation, Scheme-Propagators keeps track of some metadata about the net-
work that is running. This metadata can be invaluable for debugging propagator networks.
The specific data it tries to track is:

• The names (non-unique but semantic) of all the cells and propagators. This is in con-
trast with the unique but non-semantic object hashes of all the cells and propagators
that MIT Scheme tracks anyway.

• Which propagators are connected to which cells.

• Whether the connections are input, output, or both.

To make sure that your network tracks this metadata well, you should use the high
level interfaces to making cells, propagators, and propagator constructors when possible
(define-cell, let-cells, define-propagator, propagatify, etc). Any gaps not filled
by use of these interfaces must either be accepted as gaps or be filled by hand.

In order to use the metadata for debugging, you must be able to read it. Inspection
procedures using the metadata are provided:

name the name of an object, or the object itself if it is not named

cell? whether something is a cell or not

content the information content of a cell

propagator? whether something is a propagator or not

propagator-inputs the inputs of a propagator (a list of cells)

propagator-outputs the outputs of a propagator (a list of cells)

neighbors the readers of a cell (a list of propagators)

cell-non-readers other propagators somehow associated with a cell (presumably ones
that write to it)

cell-connections all propagators around a cell (the append of the neighbors and the
non-readers)

You can use these at least somewhat to wander around a network you are debugging.
Be advised that cells are represented as Scheme entities and propagators are represented
as Scheme procedures, so neither print very nicely at the REPL.

If you find yourself doing something strange that circumvents the usual metadata track-
ing mechanisms, you can add the desired metadata yourself. All the metadata collec-
tion procedures are defined in core/metadata.scm; they generally use the eq-properties

mechanism in support/eq-properties.scm to track the metadata, so you can use it to
add more. In particular, see the definition of, say, function->propagator-constructor
or define-propagator for examples of how this is done.

40

11 Miscellany

11.1 Macrology

Sometimes you will need to make something that looks like a macro to Scheme-Propagators.
The macro language of Scheme-Propagators is Scheme. For example:

(define (my-diagram x y z)

(p:+ x y z)

(p:- z y x)

(p:- z x y))

my-diagram is a Scheme-Propagators macro that, when given three cells, wires up three
arithmetic propagators to them. This simple example of course gains nothing from being a
macro rather than a normal compound propagator, but using Scheme as a macro language
lets you do more interesting things:

(define (require-distinct cells)

(for-each-distinct-pair

(lambda (c1 c2)

(forbid (e:= c1 c2)))

cells))

This require-distinct uses a Scheme iterator to perform a repetitive task over a
bunch of Scheme-Propagators cells.

This is quite convenient, but sometimes one wants the debugging data provided by
define-propagator. This is what define-propagator-syntax is for. Just change define
to define-propagator-syntax:

(define-propagator-syntax (require-distinct cells)

(for-each-distinct-pair

(lambda (c1 c2)

(forbid (e:= c1 c2)))

cells))

11.2 Reboots

The procedure initialize-scheduler wipes out an existing propagator network and lets
you start afresh:

build lots of network

...

(initialize-scheduler)

(run) --- nothing happens; no propagators to run!

41

This is the lightest-weight way to restart your Scheme-Propagators session. You can of
course also restart the underlying Scheme or just reload Scheme-Propagators if you need
to blow away your state.

11.3 Compiling

It turns out that make-cell and cell? are also MIT Scheme primitives, so if you want to
compile your Scheme-Propagators code with the MIT-Scheme compiler, be sure to put

(declare (usual-integrations make-cell cell?))

at the top of your source files. Also, of course, you need to be suitably careful to make
sure that the defined macros are available to the syntaxer when it processes your file. See
support/auto-compilation.scm for how I do this, and, say, core/load.scm for how I
use the compiler.

11.4 Scmutils

The Scmutils system built by Gerald Jay Sussman and friends for thinking about physics
can be very useful for many purposes. Among other things, it knows about units and
dimensions, about symbolic algebra, about solving systems of equations, etc. Scheme-
Propagators runs in Scmutils just as well as in MIT Scheme. Some Scheme-Propagators
examples that depend upon the ability to manipulate symbolic expressions and solve sym-
bolic systems of equations are included.

11.5 Editing

We edit code in Emacs. You should edit code in Emacs too. Emacs of course has a Scheme
mode; nothing more need be said about that here.

If you are going to edit any parenthesized source code in Emacs, Paredit mode is an
option you should not overlook.

In addition to the above, we find it very useful to have Emacs highlight and indent
some of the Scheme-Propagators macros we have defined the same way as their Scheme
analogues; notably define-propagator and let-cells. Sadly the Emacs Scheme mode
does not do this by default, so you need to tweak the Emacs config to do that. The
file support/scm-propagators.el contains a dump of the relevant portion of my Emacs
configuration.

There is at present no Emacs mode for Scheme-Propagators as distinct from Scheme.

11.6 Hacking

Scheme-Propagators is a work in progress. Be aware that we will continue to hack it.
Likewise, feel free to hack it as well --- let us know if you invent or implement something
interesting. May the Source be with you.

42

http://groups.csail.mit.edu/mac/users/gjs/6946/linux-install.htm
http://www.emacswiki.org/emacs/ParEdit

11.7 Arbitrary Choices

Several language design choices affecting the structure of Scheme-Propagators appeared
arbitrary at the time they were made.

11.7.1 Default Application and Definition Style

Diagram style application was picked as the default over expression style when applying
cells whose contents are not yet known, and for defining compound propagators when the
style is not specified more clearly. The main rationale for this decision was an attempt to
emphasize the interesting property of Scheme-Propagators and the propagator program-
ming model. The unusual expressive power of fan-in that the propagator model offers can
be taken advantage of only if at least some of one’s code actually has fan-in, and writing
code with fan-in requires diagram style.

11.7.2 Locus of Delayed Construction

There was a choice about where to put the delaying of pieces of propagator network that
should be constructed only conditionally. Every recursion traverses an abstraction bound-
ary and a conditional statement every time it goes around. Every recursion must encounter
at least one delay barrier every time it goes around, or the construction of the network
may generate spurious infinite regresses. But where should that barrier go? There were
three plausible alternatives: the first idea was to put the barrier around the application
of recursive compound propagators; the second was to generalize this to put it around
the application of all compound propagators; and the third was to capture the bodies
of conditional expressions like p:if and delay only their construction. During most of
the development of Scheme-Propagators, we were using option 1, on the grounds that it
sufficed and was easy to implement. Doing this had the effect that in order to actually
make a proper recursive propagator, one had to manually “guard”, using a hand-crafted
pile of switch propagators, all the i/o of a recursive call to prevent it from being expanded
prematurely. For example, a recursive factorial network written in that style would have
looked something like:

(define-propagator (p:factorial n n!)

(let-cells ((done? (e:= n 0)) n-again n!-again)

(p:conditional-wire (e:not done?) n n-again)

(p:conditional-wire (e:not done?) n! n!-again)

(p:* (e:factorial (e:- n-again 1)) n-again n!-again)

(p:conditional-wire done? 1 n!)))

with the added caveat that it would need to be marked as being recursive, so the expansion
of the internal factorial would be delayed until it got some information on its boundary
(which would be prevented from happening in the base case by the conditional-wire

propagators). As the system matured, we decided to write a series of macros (p:when,

43

p:unless, p:if, and their expression-style variants) that automated the process of con-
structing those conditional-wire propagators. On making these macros work, we realized
that adjusting p:when and company to delay their interior would be just as easy as delaying
the opening of abstractions. At that point we decided to switch to doing it that way, on
the grounds that, since if is special in all other computer languages, so it might as well be
special here too, and we will leave the operation of abstractions relatively simple. (Partial
information makes abstractions complicated enough as it is!) This has the further nice
feature that it sidesteps a possible bug with delayed abstractions: if one wanted to create
a nullary abstraction, automatic delay of its expansion would presumably not be what one
wanted.

11.7.3 Strategy for Compound Data

The decision to go with the carrying cells strategy for compound data felt, while not really
arbitrary, at least enough not forced by the rest of the design to be worth some mention.
The topic is discussed at length elsewhere, and the available options detailed; so here we
will just note why we ended up choosing carrying cells. For a long time, copying data
seemed like the right choice, because it avoided spooky “action at a distance”; and merges
did not require changing the structure of the network. The downside of copying data,
namely the cost of the copying, seemed small enough to ignore. Then we tried to write a
program for thinking about electrical circuits.

The specific killer part of the electrical circuits program was that we tried to equip it
with observers that built a data structure for every circuit element containing its various
parameters and state variables, and for every subcircuit a data structure containing its
circuit elements, all the way up. When this program turned out to be horribly slow, we
realized that copying data actually produces a quadratic amount of work: every time any
circuit variable is updated, the whole chain of communication all the way from resistor
to complete breadboard is activated, and they repeat merges of all the compounds that
they had accumulated, just to push that one little piece of information all the way to the
toplevel observer. In addition, these summary structures turned out to be less useful for
debugging than we had hoped, because the updates of the summary structures would be
propagator operations just like the main computation, so when the latter would stop for
some strange reason, we always had to wonder whether the summaries were up to date.

Carrying cells seemed an appealing solution to both problems. If the summaries carried
cells instead of copying data, then updates to those cells would not have to trouble the
whole pipe by which the cells were carried, but would just be transmitted through those
cells. Also, if we played our cards right, we should have been able to arrange for exactly
the cells where the computation was actually happening to be the ones carried all the way
to where we could get them from those summary structures, so that the summaries would
always be up to date with the underlying computation. But what about the pesky fact
that merging structures that carry cells requires side effects on the network? What if that
merge is contingent on some premises because the cell-carriers are in some TMS?

44

That was when merge effects were invented. We realized that merging really should have
legitimate side effects on the network, but should package those effects up in manipulable
objects that it returns, instead of trying to just execute them. So the question that merge
answers was changed from

What is the least-commitment information structure that captures all the knowl-
edge in these two information structures?

to

What needs to be done to the network in order to make it reflect the discovery
that these two information structures are about the same object?

The latter nicely subsumes the former: a normal merge is just the answer “record in
the appropriate cell that the object of interest is described by this information structure”.
So everything fell into place. The strange set! in the most basic definition of the cell is,
indeed, an effect that needs to be performed on the network to acknowledge the discovery
that two particular information structures are about the same object. The even stranger
error signalled on contradiction is an effect too: the thing that needs to be done to the
network to reflect the discovery that two completely incompatible information structures
describe the same object is to crash. And now both merging cells carried by compound
structures and signalling nogoods by TMSes become perfectly reasonable, respectable cit-
izens of the propagator world; and they can interoperate with being contingent by the
enclosing TMS modifying the effects to reflect the context in which they were generated
before passing them on up out of its own call to merge.

With that change of perspective on merging, a whole chunk of problems suddenly
collapsed. Cells could be merged with a simple “link these two with (conditional) identity
propagators”. Therefore compound data could be merged by recursively merging their
fields, regardless of whether they were carrying cells or other partial information structures.
Closures fell into place --- they were just a particular kind of compound data, and merged
the way compound data merges. Closures had been a conceptual problem for the copying
data view of the world, because closures really felt like they wanted to able to attach
their interior propagators to cells closed over from the enclosing lexical environment; but
for that, it seemed that the lexical environment would need to be a cell-carrying data
structure. But now that carrying cells works, there is no problem. It was on that wave of
euphoria that the carrying cells strategy rode into its current place as the standard way
to make compound structures in the propagator world. Carrying cells certainly still feels
cleaner and nicer than copying data; but it may be that copying data really could still
be made to work in all the scenarios where carrying cells is currently winning. We just
decided not to pursue that path.

And on the note of copying data being preferable because it preserves locality, maybe
cons really should be the locality-breaking object.

45

12 How this supports the goal

We started with the goal of making it easier for people to build systems that are additive.
A system should not become so interdependent that it is difficult to extend its behavior to
accommodate new requirements. Small changes to the behavior should entail only small
changes to the implementation. These are tough goals to achieve.

Systems built on the Propagator Model of computation can approach some of these
goals.

A key idea is to allow fan-in, merging partial results. A result may be computed in
multiple ways, by complementary processes. There may be multiple ways to partially
contribute to a result; these contributions are merged to make better approximations to
the desired result. Partial results can be used as a base for further computations, which
may further refine known values or partially determine new ones. So we can make effective
use of methods that give only part of an answer, depending on other methods to fill in
missing details. This ability to absorb redundant and partial computations contributes to
additivity: it is easy to add new propagators that implement additional ways to compute
any part of the information about a value in a cell.

The Propagator Model is intrinsically parallel. Each component may be thought of as
continually polling its neighbor cells and doing what it can to improve the state of knowl-
edge. Any parallel system will have race conditions, but the paradigm of monotonically
accumulating information makes them irrelevant to the final results of a computation.

A propagator network can incorporate redundant ways to compute each result. These
can contribute to integrity and resiliency: computations can proceed along multiple variant
paths and invariants can be cross-checked to assure integrity.

Dependency tracking and truth maintenance contribute to additivity in a different way.
If you want to add a new pile of stuff, you don’t need to worry too much about whether or
not it will be compatible with the old: just make it contingent on a fresh premise. If the
addition turns out to conflict with what was already there, it (or the offending old thing)
can be ignored, locally and dynamically, by retracting a premise. Dependency tracking
also decreases the amount each module needs to know about its interlocutors; for example,
instead of having to guess which square root a client wants, the sqrt routine can return
both of them, contingent on different premises, and let the eventual users decide which
ones they wanted.

Dependency tracking is natural in the propagator model. By contrast with a traditional
computational model, the propagator model has no defined order of computation, except
as dictated by the data flow. Thus, no spurious dependencies arise from the ordering of
operations, making the real dependencies easier to track.

A propagator program is analogous to an electrical circuit diagram, whereas a pro-
gram written for a more traditional model is more like a system diagram: the intellectual
viewpoint of the Propagator Model of computation is not the composition of functions,
as in traditional models, but is rather the construction of mechanisms. The difference is
profound:

46

1. circuit models are multidirectional; system diagrams compute from
inputs to outputs.

2. circuit models are abstractions of physics; system diagrams are ab-
stractions of process.

The circuit diagram viewpoint gives us powerful ways to think. We can modify a circuit
diagram by clipping out a part, or by installing a different version. We can temporarily
carry information from one place to another using a clip lead. We have lots of places to
connect various kinds of meters for monitoring and debugging.

Now for something completely different! Scheme-Propagators is built with dynamically-
extensible generic operations. The pervasive merge operation, as well as all the primitive
propagators, are generic, and this makes it easier for us to add new forms of partial in-
formation. Adding new forms of partial information is a way to extend the capabilities
of the propagation infrastructure to novel circumstances. With appropriate foresight, new
partial information structures can interoperate with old, and additively extend the capa-
bilities of existing systems --- a way to teach old dogs new tricks. Of course, such power
is dangerous: if a network that depends on commutativity of multiplication of numbers
meets an extension to square matrices, we will get wrong answers. But then, cross-checking
across complementary methods, together with dependency tracking, simplifies the task of
debugging such errors.

References

[1] Conor McBride and Ross Paterson. Applicative programming with effects. Journal of
Functional Programming, 18(1):1–13, 2008.

[2] Alexey Radul. Propagation Networks: A Flexible and Expressive Substrate for Compu-
tation. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, September
2009. http://hdl.handle.net/1721.1/49525.

[3] Alexey Radul and Gerald Jay Sussman. The Art of the Propagator. CSAIL Tech
Report MIT-CSAIL-TR-2009-002, MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, 2009. http://hdl.handle.net/1721.1/44215.

47

http://hdl.handle.net/1721.1/49525
http://hdl.handle.net/1721.1/44215

	Propagator System
	Getting Started
	Examples

	The Details
	Making Propagator Networks
	Attaching Basic Propagators: d@
	Propagator Expressions: e@
	Late Binding of Application
	Provided Primitives: p:foo and e:foo
	Cells are Data Too
	Compound Data
	Propagator Constraints: c:foo and ce:foo
	Constants and Literal Values
	Constant Conversion
	Making Cells
	Conditional Network Construction

	Making New Compound Propagators
	Lexical Scope
	Recursion

	Using Partial Information
	Built-in Partial Information Structures
	Nothing
	Just a Value
	Numerical Intervals
	Propagator Cells as Partial Information
	Compound Data
	Closures
	Truth Maintenance Systems
	Contradiction
	Implicit Dependency-Directed Search

	Making New Kinds of Partial Information
	An Example: Adding Interval Arithmetic
	Generic Coercions
	The Partial Information Generics
	The Full Story on Merge

	Individual Propagator Generics
	Uniform Applicative Extension of Propagators
	Interoperation with Existing Partial Information Types

	Making New Primitive Propagators
	Direct Construction from Functions
	Expression Style Variants

	Propagatify
	Compound Cell Carrier Construction
	Fully-manual Low-level Propagator Construction

	Debugging
	Miscellany
	Macrology
	Reboots
	Compiling
	Scmutils
	Editing
	Hacking
	Arbitrary Choices
	Default Application and Definition Style
	Locus of Delayed Construction
	Strategy for Compound Data

	How this supports the goal

