
Anomaly Detection Through Explanations
by

Leilani Hendrina Gilpin
B.S., University of California, San Diego (2011)

M.S., Stanford University (2013)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 28, 2020
Certified by. .

Gerald Jay Sussman
Panasonic Professor of Electrical Engineering

Thesis Supervisor
Certified by. .

Lalana Kagal
Principal Research Scientist in CSAIL

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Anomaly Detection Through Explanations

by

Leilani Hendrina Gilpin

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Under most conditions, complex machines are imperfect. When errors occur, as they
inevitably will, these machines need to be able to (1) localize the error and (2) take
appropriate action to mitigate the repercussions of a possible failure. My thesis con-
tributes a system architecture that reconciles local errors and inconsistencies amongst
parts. I represent a complex machine as a hierarchical model of introspective sub-
systems working together towards a common goal. The subsystems communicate in
a common symbolic language. In the process of this investigation, I constructed a
set of reasonableness monitors to diagnose and explain local errors, and a system-
wide architecture, Anomaly Detection through Explanations (ADE), which reconciles
system-wide failures. The ADE architecture contributes an explanation synthesizer
that produces an argument tree, which in turn can be backtracked and queried for
support and counterfactual explanations. I have applied my results to explain incor-
rect labels in semi-autonomous vehicle data. A series of test simulations show the
accuracy and performance of this architecture based on real-world, anomalous driving
scenarios. My work has opened up the new area of explanatory anomaly detection,
towards a vision in which: complex machines will be articulate by design; dynamic,
internal explanations will be part of the design criteria, and system-level explanations
will be able to be challenged in an adversarial proceeding.

Thesis Supervisor: Gerald Jay Sussman
Title: Panasonic Professor of Electrical Engineering

Thesis Supervisor: Lalana Kagal
Title: Principal Research Scientist in CSAIL

3

4

Acknowledgments

“You can do it, only you can do it, you can’t do it alone.”

– Patrick Henry Winston

I would like to thank the many people who helped me to develop, shape, and write

this dissertation.

I am indebted to my advisor, Gerald Jay Sussman, who taught me how to think

slowly and clearly. Jerry reinvigorated my love of programming and organization (in

Emacs, of course)! I am grateful to him for his guidance, support, tea, and direct

feedback these many years. Although we will continue to learn together, I am humbled

to have been a Sussman student.

Many of the implementation choices came from Lalana Kagal, the co-advisor of

this thesis. Lalana provided the strategic ideas to shape this work into conference

papers and reusable artifacts.

Patrick H. Winston taught me how to effectively communicate ideas. He showed

me the power of a good demo. He provided me with encouragement and a research

family: the Genesis group, a research community where everyone helped.

Jacob Andreas, Julie Shah, and Howard Shrobe were my dissertation committee

members. They supported an idea composed of many parts, ideas, and disciplines.

Thank you for the relentless encouragement throughout this process.

Many people shaped my academic journey before coming to MIT. I worked at Palo

Alto Research Center (PARC), where I learned from from Juan (Julia) Liu, Johan de

Kleer, and others in the Intelligent Systems Laboratory (ISL). Karianne Bergen and

Qian Yang from the Stanford ICME 2011 cohort are lifelong colleagues and friends.

The UCSD CSE tutor community sparked my interests in teaching and debugging,

and provided me with a close-knit community.

I worked closely with collaborators in the Internet Policy Research Initiative

(IPRI) at MIT CSAIL. Julius Adebayo, Sam DeLaughter, Natalie Lao, Mike Specter,

and Jessica Van Brummelen read and edited early versions of this thesis. Ben Z. Yuan

encouraged me to “make almost anything.” Cecilia Testart was my office mate, coau-

5

thor, and coffee companion. Cecilia is one of the women in the 2015 EECS cohort; a

remarkable group of women with whom I shared weekly coffees and brunches. With

that, I want to acknowledge the numerous coffee shops around the Kendall Square

area, where I was a regular customer. Thank you for the caffeinated support.

I called MIT CSAIL home for five years, and I spent four of those years in Burton-

Conner as a Graduate Student Advisor (GRA) on Burton 4. My role was to support

undergraduate students, but the students ended up supporting me and giving me a

sense of purpose. Another home was the MIT Rowing Club (MITRC), where I made

some of my closest friends: Elise, Muriel, Ray, and Richard. Rowing on the Charles

in the mornings was where I developed some of my best research ideas.

My family has relentlessly supported my academic pursuits. Thank you to Brian

and Patty Gilpin, my parents who taught me how to be patient, thoughtful, and

resilient. My younger brother, Cory Gilpin, the unofficial copy editor of this thesis,

inspires me to be creative every day.

I moved across the country to pursue my doctorate, leaving a previous life in

California. Graham Lockett and Alex Toschi visited Boston numerous times. Thank

you for bringing California sunshine during the cold, winter months. My boyfriend,

Răzvan Valentin Marinescu, exemplifies what it means to be a supportive partner.

Thank you for being my reasonableness monitor in all things technical, and my anchor

point in life.

And finally, thank you to the sources of funding for this work: Toyota Research

Institute (TRI) and Sloan UCEM. Thank you for seeing the potential in me, this

work, and its impact.

6

Contents

1 Introduction 21

1.1 Definitions . 25

1.2 Thesis Contributions . 25

1.2.1 Local Sanity Checks . 26

1.2.2 System-wide Communication 26

1.2.3 Explanation Feedback . 26

1.3 Thesis Overview . 27

2 Background 29

2.1 Anomaly Detection . 29

2.1.1 Diagnostics . 30

2.1.2 Monitoring . 31

2.2 Knowledge Representation and Reasoning 31

2.2.1 Frame-based Representations 31

2.2.2 Ontology . 32

2.2.3 Commonsense Knowledge and Reasoning 32

2.2.4 Reasoning . 32

2.2.5 Cognitive Architectures . 33

2.2.6 Theory of Mind . 33

2.3 Multi-agent Systems . 33

2.4 Integrating Perception and Reasoning 33

7

3 Ex post facto Explanations 35

3.1 Introduction . 36

3.1.1 Definition of Vehicle Specific Components 36

3.2 Method Overview . 37

3.2.1 Data Generation and Analysis 38

3.2.2 Qualitative Algebras . 42

3.2.3 Models . 42

3.2.4 Vehicle Modeling with the Propagator System 43

3.2.5 Qualitative Mechanical Model 45

3.2.6 Semi-quantitative Physics Model 46

3.2.7 Reasoning . 47

3.3 Experiment Results . 47

3.3.1 Examples from the Mechanical Model 48

3.3.2 Examples from the Physics Model 49

3.4 Applying this Methodology . 51

3.5 Related Work . 51

3.6 Limitations . 52

3.7 Contributions . 53

4 Reasonableness Monitors 55

4.1 Introduction . 56

4.2 Method Overview . 56

4.2.1 Input Parsing . 57

4.2.2 Representation: Conceptual Primitives 57

4.3 Adaptable Implementation . 62

4.3.1 Log Generation and Ontology 62

4.3.2 Rule Input . 64

4.3.3 Reasoning and Explanations 65

4.4 Evaluation . 66

4.4.1 Validation . 66

8

4.4.2 User Study . 67

4.4.3 Example Explanations . 69

4.5 Applying Reasonableness Monitors 70

4.6 Limitations . 70

4.7 Ongoing Work . 71

4.8 Related Work . 72

4.9 Contributions . 74

5 Interpreting Sensor Data 77

5.1 Introduction . 78

5.1.1 LiDAR Sensor Limitations . 79

5.2 LiDAR Sensor Overview . 80

5.2.1 Simulated LiDAR format . 80

5.2.2 LiDAR format in Collected Data Sets 81

5.2.3 Related Work on LiDAR Processing 83

5.3 Method . 86

5.3.1 Edge Detection for Object Detection 86

5.3.2 Angle Estimation . 87

5.3.3 Object Tracking: Describing Movement 90

5.3.4 Parking Rules . 90

5.4 Experiment Results . 92

5.4.1 Simulated LiDAR challenge scenarios 92

5.4.2 Data Set LiDAR Challenge Results 94

5.5 Applying Sensor Interpretation . 98

5.6 Limitations . 98

5.7 Contributions . 99

6 Learning from Explanations 101

6.1 Introduction . 102

6.2 Method . 103

6.2.1 Monitoring Architecture . 103

9

6.2.2 Rule Learning . 104

6.2.3 RACECAR Architecture . 105

6.3 Experiments . 106

6.3.1 Experiment Design . 106

6.3.2 Experiment Results . 108

6.3.3 Challenges . 108

6.4 Applying Rule Learning . 111

6.5 Limitations . 111

6.6 Ongoing Work . 113

6.7 Contributions and Discussion . 113

7 System-wide Anomaly Detection 115

7.1 The Problem . 116

7.2 System Monitoring Architecture . 116

7.2.1 Inspiration from Human Committee Structures 117

7.2.2 Generating Qualitative Descriptions 119

7.2.3 Monitoring for Reasonableness within Each Subsystem 120

7.2.4 Reconcile Inconsistencies with a Synthesizer 121

7.3 Explanation Synthesizer . 121

7.3.1 Priority Hierarchy . 122

7.3.2 Underlying Logic Language 123

7.3.3 Abstract Rules . 124

7.4 Evaluation . 126

7.4.1 Simulation Setup . 127

7.4.2 Uber Accident Scenario . 127

7.4.3 Reasoning . 131

7.4.4 Adding Mistakes to Existing Data 132

7.4.5 Evaluation of Inserted Errors 133

7.5 Challenges and Benchmarks . 136

7.5.1 Other Potential Evaluations 137

10

7.6 Requirements to Apply ADE . 137

7.7 Related Work . 138

7.8 Limitations . 138

7.9 Conclusion and Future Work . 139

8 Philosophy of Explanations: A Review with Recommendations 141

8.1 Background and Foundational Concepts 142

8.1.1 What is an Explanation? . 142

8.1.2 Interpretability vs. Completeness 143

8.1.3 Explainability of Deep Networks 145

8.2 Review . 145

8.2.1 Explanations of Deep Network Processing 145

8.2.2 Explanations of Deep Network Representations 148

8.2.3 Explanation-Producing Systems 150

8.3 Related Work . 153

8.3.1 Interpretability . 153

8.3.2 Explainable AI for HCI . 154

8.3.3 Explanations for Black-Box Models 156

8.3.4 Explainability in Other Technical Domains 157

8.3.5 Explanations for Society . 158

8.4 Taxonomy . 158

8.5 Evaluation . 160

8.5.1 Processing . 161

8.5.2 Representation . 162

8.5.3 Explanation-Producing . 162

8.6 Societal Expectations for Explanations 163

8.6.1 Definitions . 164

8.6.2 Current Limitations . 165

8.7 A Big Problem: Opaque Perception Processes 166

8.7.1 Hallucinating Information . 166

11

8.7.2 Imagining Possible Futures . 167

8.7.3 Commonsense Reasoning . 168

8.8 The Risk of Deploying Opaque Models 169

8.9 Conclusions . 170

9 Contributions and Future Work 171

9.1 Explanations as a Debugging Language 172

9.2 Future Applications . 173

9.2.1 Hybrid Approaches to Intelligent Systems 174

9.2.2 Using Explanations as Internal Narrative 174

9.2.3 Explanations for Society . 175

9.2.4 Security Applications . 175

9.3 Reevaluating Evaluations . 176

9.3.1 Tasks that Require Explanations 176

9.3.2 Challenges for Imagining and Explaining Possible Futures . . 177

9.4 Implications . 179

9.5 A Salute . 180

A Auxiliary Information 183

A.1 Qualitative Algebras . 183

A.2 Conceptual Primitive Descriptions . 185

B Code 189

B.1 Vehicle Specific Artifacts . 189

B.2 Adaptable Code Artifacts . 192

B.2.1 Conceptual Dependency Parsing 192

B.2.2 Commonsense Data Querying 192

B.3 Interpreting LiDAR data . 195

B.4 Synthesizer . 196

B.5 Sample Results . 197

B.5.1 NuScenes Examples . 197

12

B.5.2 Parsing Examples . 197

C Data Samples 201

C.1 LiDAR Data . 201

C.2 Simulations . 210

13

14

List of Figures

3-1 Ex post facto explanation generation process 38

3-2 A difficult driving scenario inspired by the off-ramp of Route 95 in

Massachusetts. The yellow star signifies the starting point, and blue

arrows show the vehicle’s ideal trajectory. 39

3-3 A sample CAN bus data record. Each line has a time stamp, CAN

bus code, and parameter information. The mappings for the CAN bus

codes are in Appendix B-1. 40

3-4 A diagram of the mechanical model that describes the interactions

between the vehicle’s mechanical parts. 45

3-5 The forces that are calculated and used in the semi-quantitative physics

model. Shown from the lateral and top-down view. 46

4-1 The system diagram schematic of a reasonableness monitor as an adapt-

able framework. 63

4-2 Average rating of 40 explanations over 100 user trials. There are 4 sets

of explanations (from left to right): reasonable vehicle plans, unrea-

sonable vehicle plans, reasonable perception descriptions, and unrea-

sonable perception descriptions . 68

5-1 The 4th, 5th, and 8th beams of nuScenes LiDAR data for one sample.

The 4th beam is in blue, the 5th beam is in green, and the 8th beam

is in red. The 8th beam, seen in red, is hitting the ground. 82

15

5-2 The 1st, 10th, and 20th beams of nuScenes LiDAR data. The 1st beam

is blue, the 10th beam is green and the 20th beam is red. The first and

10th beam are reflecting off parts of the vehicle. And the 20th beam

is too scattered. 82

5-3 A top-down view of all the LiDAR beams. 84

5-4 A view of all the LiDAR beams on top of the front-facing camera image. 85

5-5 The geometric definitions for an object detected precisely in front. . . 88

5-6 The geometric definitions for a vehicle detected to the front and to

the side. The precise setup is shown on the left, and the estimated

definitions are shown on the right. 89

5-7 Visual diagram for the variables for the parallel parking scenario. . . 91

5-8 Screenshots of the four stages of parallel parking from the Unity game

engine. 93

5-9 Various sensor outputs for a nuScenes scene snapshot. 94

5-10 The nuScenes metadata for an annotated object. 96

5-11 A visualization of a raw data and bounding box for a traffic cone behind

the vehicle. 96

5-12 A visualization of a raw data and bounding box for a pedestrian. . . . 97

5-13 A visualization of a raw data and bounding box for a vehicle. 97

5-14 LiDAR density between 2015 and 2020. 99

6-1 A flow diagram of the experiment design. The RACECAR system

outputs a log file after a running through a specific sequence of cones.

That log file is then processed by the rule learning system, which either

creates a new rule for the existing monitoring system, or not In the case

of a normal test run no rule is made. 107

6-2 A subset of a repeated error log. 109

6-3 The output of the rule learning system for the repeated error in Figure

6-2 that should be parsed into a new rule. The resulting rule text is

appended to the rule file and updated in the monitoring system. . . . 110

16

6-4 The dynamic reasonableness monitoring architecture. 112

7-1 The ADE architecture model for a simplified self-driving vehicle. It

is composed of reasonableness monitors (dotted borders) around each

subsystem and explanation synthesizer 119

7-2 The conditions for passenger safety as a natural language abstract goal. 123

7-3 A screenshot of the Uber accident simulation (in segmentation mode)

on the Carla Platform. 128

7-4 The qualitative description outputs from my simulation of the Uber

accident in the ADE architecture. 129

7-5 The symbolic reasons that are used in the explanation synthesizer. . . 132

7-6 The “true” annotation of a pedestrian. 135

9-1 My vision for articulate machines that can coherently communicate to

each other and to a human. 172

9-2 A difficult driving scenario for a self-driving vehicle. 178

A-1 An example of qualitative addition for the qualitative direction algebra. 185

B-1 CAN bus mapping code for the vehicle simulation in Chapter 3 . . . 189

B-2 A subset of the edge detection rules for the “intervals of interest” in

Chapter 3. 190

B-3 A labeled data sample from NuScenes. 197

B-4 The parse tree for “A mailbox crossing the street.” 197

B-5 The parse tree for a real image caption from “A man looks at his

cellphone while standing next to a motorcycle.” 198

C-1 A sample of the simulated LiDAR data extracted from a simulated

vehicle log. This corresponds to a subset of a single snapshot (or point

in time). 208

C-2 A screenshot of the Uber accident simulation (with similar lighting to

the report) on the Carla Platform. 210

17

18

List of Tables

3.1 The complete set of the possible relationships among time intervals, as

determined by James F. Allen [6]. 41

3.2 Summary of the “intervals of interest” accumulated during an over-

steering skid. 42

4.1 The Conceptual Dependency (CD) “physical” primitives used, and the

ConceptNet anchor points used to bind them to incoming verbs. . . . 59

4.2 List of ConceptNet anchor points used for actor and object roles in the

CD transframe, and constraints on where a concept may reasonably

serve in the role. 60

4.3 Comparison of explanation descriptions for the four types of expla-

nations tested: reasonable vehicle plans, unreasonable vehicle plans,

reasonable perception descriptions, and unreasonable perception de-

scriptions. 69

4.4 A analysis of the causes of the 18 misclassifications on the 100 test cases. 70

5.1 A raw data table of the LiDAR traces. The LiDAR unit starts at 0

azimuth degrees and emits 11 pulses at 0,-1, ...,-10 degrees elevation

for every two azimuth degrees. 81

19

6.1 A table of the 15 distinct sequences that were tested on the RACE-

CAR platform. The error logs had specified errors, which are deemed

exceptions to the rule and so no new rules are made. Normal tests were

explained to be reasonable, and so no new rules are made. Repeated

errors are explained and so new rules are made, as expected. 106

7.1 A comparison of the ADE results on different synthesizer constraints.

The “no synthesizer” option signifies that all subsystem errors are re-

ported. The “single subystem” option means that one subsystem is

arbitrarily chosen to always be given preference. The “safety” con-

straint is our default, where “threatening” objects are given a higher

priority (to be classified as erroneous.) 134

7.2 A comparison of the ADE system on regular and scrambled outputs.

The regular output is a summary supporting that the judgement or

action is reasonable. The scrambled output (where a different label

than the true label is used) shows that the architecture can correctly

identify judgements or actions that are incorrect. 135

8.1 The classifications of explanation methods by the focus of the expla-

nation. 160

8.2 Strengths, benefits, and challenges of current DNN XAI systems . . . 165

C.1 A full, simulated Lidar trace. 201

C.2 A raw data table of a subset of the NuScenes LiDAR traces. 209

20

Chapter 1

Introduction

Complex machines, like all things, are imperfect. Testing and proving properties

can harden these systems, but they are inadequate–it is impossible to test all failure

modes. Consider a human crossing the street. It is considered “safe”, if you look both

ways and do not detect an oncoming vehicle. But this protocol does not include the

6.25 × 10−7 chance of being struck by a local meteorite, asteroid, or comet impact1.

Instead of building provable test cases, my research is a complementary approach: I

work on the methodologies and underlying technologies of monitoring architectures

that can mitigate underlying system failures.

Society has built reasonably stable structures to minimize the occurrence and the

consequences of bad human behavior. One such mechanism is a human organization:

where each kind of work that is to be done is given to a committee of personnel

who work together on said task. Another mechanism is the legal system. It enforces

the minimal norms of the society, subject to a set of rules. The legal system in-

vestigates reports of bad behavior after-the-fact, or ex post facto, and takes action

to mitigate and to prevent the recurrence of that behavior through an investigation.

This investigation is dependent on evidence: stories recounting the bad behavior and

explanations from the alleged bad actor. Currently, complex machines do not have

the ability to provide this sort of evidence (without substantial effort).

1In 2014, Professor Stephen A. Nelson calculated the lifetime odds of dying from a local mete-
orite, asteroid, or comet impact as 1 in 1,600,000: http://www.tulane.edu/~sanelson/Natural_
Disasters/impacts.htm

21

http://www.tulane.edu/~sanelson/Natural_Disasters/impacts.htm
http://www.tulane.edu/~sanelson/Natural_Disasters/impacts.htm

For complex machines to be robustly intelligent, they must keep internal reports

of their behavior. I decompose a complex machine into an organization of subsystems

working towards a common goal: an architecture, similar to human committees. The

architecture is able to detect and reconcile local failures (within a committee), as well

as inconsistencies amongst subsystems using explanations as a technical language.

An explanation synthesizer produces an argument tree, which can in turn produce

counterfactual explanations for an adversarial proceeding. The synthesizer depends

on the underlying subsystem’s ability to tell its own coherent story about the reasons

for its decisions or actions.

Some subsystems are so opaque (e.g., deep neural networks) that there may be no

way to explain the subsystem’s behavior. Perception is an example. In self-driving

cars, there may be a vision system interpreting images from an optical camera. Com-

puter vision systems are susceptible to be fooled [170] and lack commonsense2. If a

vision system reports that it observes a mailbox walking across the street [79], that is

clearly not possible. If it observes an elephant in the sky, that does not make sense.

Labeling the same object as three very different things at the same time (e.g., a ve-

hicle, an unknown object, a bicycle) is unreasonable3; that is a confused judgement

that should be discounted. To combat these types of nonsensical judgements, I devel-

oped a reasonableness monitor [73], which supplements opaque decision making with

rules, an ontology, and commonsense knowledge. With the addition of a reasoner, the

reasonableness monitor produces a judgement of reasonableness and an explanation

supporting that judgement. I present the technical details of this local commonsense

sanity check in Chapter 4. I extended the end-to-end reasonableness monitor into

an adaptable framework [78] that can impose sanity checks on all subsystems of a

complex machine. This includes sensory LiDAR4, after applying a sensor interpreter,

which I present in Chapter 5.

2The “AI” in a self-driving vehicle mistakes woman on bus for jay-walking: https://slashdot.
org/story/18/11/26/0527259

3This labeling scenario actually happened in the Uber self-driving car accident in 2016 [180].
4LiDAR is the commonly used acronym for Light Detection and Ranging. It is a sensor that uses

light from a pulsed laser to measure distance from the source point. The aggregated detections from
several light pulses form a point cloud.

22

https://slashdot.org/story/18/11/26/0527259
https://slashdot.org/story/18/11/26/0527259

Complex machines also lack internal communication. When the underlying parts

disagree, they cannot justify their behavior. In the Uber self-driving vehicle acci-

dent5, an unresolved disagreement among parts lead to a pedestrian fatality [180].

In summary, the vision system perceived an oscillating label where the pedestrian

was located, although the LiDAR system detected a moving object in that region.

The mechanism for combining this information chose to ignore the object. Instead,

I created a system-wide explanatory monitoring architecture, Anomaly Detection

Through Explanations (ADE). The architecture consists of local reasonableness mon-

itors around subsystems, constructed into a system hierarchy, similar to how human

organizations are structured. An explanation synthesizer reconciles disagreements.

In the Uber example, the synthesizer is able to validate the vision system’s detection

of an object, while discounting the oscillating labels of that object, because they are

inconsistent. The synthesizer constructs a reason why, by examining the explanations

from the underlying subsystems that support the judgement. The ADE architecture

is presented in Chapter 7.

Explainability under uncertainty, which can learn from explained failures in dy-

namic situations, is an unexplored area. Explanatory artificial intelligence (XAI) has

become a popular research agenda under the DARPA XAI program [88] and the EU’s

GDPR on the “right to explanation” [84]. Although, it is not without criticism [193]:

explanatory systems are all explaining different processes, lacking common evaluation

metrics [76] and intervention mechanisms. Instead, the majority of explanatory tools

are after-the-fact analysis tools, like the model-based, qualitative reasoning expla-

nation generation method presented in Chapter 3. This approach is similar to the

sensor-data interpreter in Chapter 5, in which raw sensor data is translated into a

(mostly symbolic) list of descriptions.

I contribute a common language for reconciling system-wide failures. The pieces

of a complex machine report their state at various levels of detail: the vision sub-

system reports high-level labels, and the sensors output low-level log traces. By

5Uber self-driving car ignores objects: https://www.theinformation.com/articles/
uber-finds-deadly-accident-likely-caused-by-software-set-to-ignore-objects-on-road

23

https://www.theinformation.com/articles/uber-finds-deadly-accident-likely-caused-by-software-set-to-ignore-objects-on-road
https://www.theinformation.com/articles/uber-finds-deadly-accident-likely-caused-by-software-set-to-ignore-objects-on-road

producing explanations of their behavior, the subsystems are able to speak the same

language, argue amongst themselves, and use these explanations to support or chal-

lenge high-level decisions. These monitoring pieces may have different conclusions;

they may directly conflict and contradict each other. But since the monitors are con-

stantly inspecting the behavior of their neighboring subsystems (and themselves), the

explanations are dynamic. They can be augmented, changed, and challenged with

alternative context, more evidence, and in different scenarios. For example, with

various weather sensor information, the LiDAR monitor’s explanations can become

stronger or weaker, since LiDAR is unreliable in rain, fog, or snow6. A formerly

strong LiDAR monitor explanation can be weakened by this information, encourag-

ing the other sensors and subsystems to reevaluate their explanations. A series of

test scenarios demonstrating this kind of dynamic behavior are in Section 7.5.

Some of the most compelling applications of this work include people: shared

autonomy, social structures, government structures, and others, which are elaborated

in Chapter 8. But whether humans are involved is irrelevant. My methodologies

monitor every subsystems’ behavior, even if one or more of the subsystems is a human!

I argue that the novel use of explanations is for the machine itself, which is a

novel perspective compared to previous work [88]. My thesis enables complex ma-

chines to reason about new scenarios, even if they have not seen that circumstance

before. The current successes of autonomous vehicles are completely dependent on

their ability to learn through (previously observed) experiences [243]. Instead, I model

an autonomous vehicle as committees of introspective subsystems working together

towards a common goal. This results in a self-explaining architecture, where au-

tonomous vehicles can reason and explain the ever-growing, long tail of failures in

real-world environments7.

6LiDAR is unreliable in certain weather conditions: https://www.draper.com/news-releases/
new-lidar-detector-enables-self-driving-cars-see-sun-rain-fog-and-snow

7Errors and failures are different kinds of bugs. The Hacker’s Dictionary defines a “bug” as “an
unwanted and unintended property of a program or piece of hardware, especially one that causes it
to malfunction.” An error is a technical property. Most errors are harmless, such as an “undesirable”
search query results, or a typo. A failure is an error with consequences. A failure occurs when
there is a difference from the expected result. In self-driving cars, failures can be fatal. I work on
explaining system-wide failures and detecting local errors.

24

https://www.draper.com/news-releases/new-lidar-detector-enables-self-driving-cars-see-sun-rain-fog-and-snow
https://www.draper.com/news-releases/new-lidar-detector-enables-self-driving-cars-see-sun-rain-fog-and-snow

1.1 Definitions

My dissertation contributes a local error detection monitor, and a system-wide failure

detection architecture. The output of the monitor is a justification of unreasonable-

ness, and the output of the architecture is an explanation. I define the following key

terms to be consistent with the IEEE software engineering literature [100], using the

running example of an off-by-one error8.

1. An error produces an incorrect internal state [100]. For example, an off-by-one

error that changes a location outside of memory, where no one cares about that

location, is just an error. I detect and justify local subsystem errors.

2. A failure is an “external, incorrect behavior with respect to the expected behav-

ior (observed)” [100]. A failure has consequences. Consider an off-by-one error

that clobbers a location whose value is essential to a safety-critical process–that

is a failure. I detect and explain system-wide failures.

My thesis contributes methods that explain themselves and justify their behavior.

1. A justification is a description of whether something is right or reasonable (or

not). Reasonableness monitors (in Chapter 4) provide justifications supporting

an unreasonable or reasonable judgement of an intended subsystem behavior.

2. An explanation is a justification that also describes the causes, context, and/or

consequences of an error, failure, or stable system state. An explanation answers

“why questions” (see Section 8.1.1).

1.2 Thesis Contributions

I use symbolic internal subsystem representations, or explanations, to enable complex

machines to introspect, reason, and reconcile their own failures. I contribute to
8An off-by-one error (OBOE, OBO, OB1 and OBOB) is a logic error in computer programming.

It typically occurs when an iterative loop iterates one too many or one too few times. It can also
occur due to an incorrect inequality symbol (< instead of ≤ or > instead of ≥ and vice versa), or
due to array indexing, in which the programmer mistakes that an array starts at 0 instead of 1 (and
vice versa).

25

three technical aspects of an introspective system: local sanity checks, system-wide

communication, and explanation feedback. While my dissertation focuses on the

domain of self-driving cars, the methodologies are applicable to any complex machine

that is composed of multiple parts.

1.2.1 Local Sanity Checks

Complex machines can fail in two distinct ways. One type of failure could be localized

to a specific subsystem. Most local failures are due to flaws that a human would never

make. In order to provide the individual subsystems of this complex machines with

a last-pass “reasonableness” check, I developed a commonsense monitoring system:

reasonableness monitors. Reasonableness monitors process the output of a (possibly

opaque) subsystem and use a set of rules, ontology and commonsense knowledge

leading to a judgement and justification of reasonableness.

1.2.2 System-wide Communication

The second type of complex machine failure is due to flawed communication amongst

subsystems. There is limited internal communication in complex machines: the un-

derlying subsystems perform tasks at different levels of abstraction, therefore report-

ing their decisions, states, and world views in different forms of communication. To

provide a common language for subsystem communication, I implemented a system

architecture: Anomaly Detection Through Explanations (ADE), that can reconcile

subsystem inconsistencies in a common explanation language. A series of test simu-

lations show the accuracy and performance of this architecture based on simulated,

anomalous driving scenarios.

1.2.3 Explanation Feedback

Explanations should make complex machines work better. I show how explanations

can be fed back into a monitoring architecture to improve decision making with a

“rule learning” prototype method. Test simulations on a real robot, in Section 6.3.2,

26

show that explanations can be used to explore new environments and learn reasonable

behaviors.

1.3 Thesis Overview

Chapter 2 positions this thesis in the context of related research in the methodologies

and underlying technologies related to anomaly detection, knowledge representation,

explanation9, and introspection.

• Chapter 3 describes an ex post facto model-based reasoning methodology to

explain and summarize vehicle logs post accident.

• Chapter 4 introduces reasonableness monitors: a local sanity check that sup-

plements decisions with commonsense reasoning and rules.

• Chapter 5 describes a sensor interpreter to produce qualitative descriptions from

LiDAR traces.

• Chapter 6 introduces an algorithm for incorporating feedback into an explana-

tory monitor.

• Chapter 7 describes Anomaly Detection through Explanation (ADE): a system-

wide architecture that can reconcile inconsistencies amongst subsystems.

Chapter 8 reviews and defines the types of machine explanations that important

to society. I also discuss the ethical implications of artificial intelligence, and argue

that explanations can mitigate societal fears of intelligent machines. I conclude in

Chapter 9 by reviewing the contributions of this dissertation, and proposing future

research directions and applications.

9In Chapter 8, I exclusively review the eXplanatory artificial intelligence (XAI) literature, in-
cluding recommendations for societal explanations.

27

28

Chapter 2

Background

“A lot can go wrong when we put blind faith in big data.”

– Cathy O’Neil

In this chapter, I provide a literature review of relevant work in anomaly detection,

diagnostics, knowledge representation and reasoning, and multi-agent systems. I also

review previous work on integrating perception and reasoning, which is a motivating

application of my thesis work.

In subsequent chapters, I review the specific components of self-driving vehicles.

I review research ideas from the philosophy literature in Chapter 8.

2.1 Anomaly Detection

Anomaly detection is a data mining process that finds rare or mysterious instances.

It is used to identify fraud [143], intrusion [130], and event detection in sensor net-

works [4]. In machine learning, when there is a large amount of training data available,

these methods are either “supervised” (the training data has labels of anomalous or

non-anomalous) or “unsupervised” (the training data does not have labels). The ma-

jority of machine learning methods for anomaly detection are unsupervised, so that

methods look for instances outside of the distribution and/or trends in the train-

ing data. The most popular and successful of these unsupervised methods include

29

density-based techniques that detect outliers by clustering together similar points.

This includes k-nearest neighbor [118, 139, 10], local methods [28, 202, 45], cluster-

analysis detection [94, 34] and isolation forests [141, 142].

Similar approaches have been proposed for high-dimensional data [260], where

there are so many dimensions of the data, that it may be unscalable to cluster (or

group) similar data points together. When the data is too large or high-dimensional

to process at once, some methods project the data onto a subspace [121, 108], or use

tensor processing techniques [59], or interpret correlations [123]. Anomaly data may

also be available as a graph, which leads to a multitude of graph-based techniques [5].

Other approaches detect anomalies by creating scores or formulas that can point

to “atypical” data points or events. One score is an “interestingness” score [71], which

is regardless of the kind of patterns being mined. More precise logic-based techniques

can find anomalies that do not satisfy some predicate for typical behavior. In real-

world environments (driving, robotics, network intrusion, etc.) the exact claims may

not be precise. Therefore less precise, approximate reasoning like fuzzy logic [36]

allows inference on less well-defined topics.

And if there is a multitude of data, processing power, and models available, en-

semble techniques combine multiple models for better anomaly detection results [258,

259]. This includes feature bagging [131, 171] to find the features most correlated to

fraud, or score normalization [122, 201].

2.1.1 Diagnostics

In model-based reasoning, anomaly detection is referred to as diagnostics. In diagnos-

tics, it is assumed that there is little or no training data, and so finding errors aligns

with detecting “symptoms” that align with an expert model. This is performed with

either consistency-based diagnosis [188, 52] that finds diagnoses that are consistent

with symptoms. Or detecting novel faults by suspending constraints [48, 70], which

makes no presumption about faulty subsystem behavior.

30

2.1.2 Monitoring

In diagnostics, monitoring is used around plans (or goal states) and components to

anticipate failures. In a multi-step execution plan, causal-link monitoring consistently

checks rules and preconditions once the desired output is established for each step,

where these causal links can be qualitative [51] and input back into qualitative reason-

ing systems. If the monitoring system is examining actions, then action monitoring

can verify preconditions right before specific actions are executed, this is typically

done in RosPlan [35].

Once a symptom is detected, a system may want to repair itself. These types

of self-configuring [236] systems have a flexible representation that needs to uphold

some consistent design choices and principles. A self-configuring system may focus on

reconfiguring components modes [235], or have a meta-process that selects between

program choices [114] .

2.2 Knowledge Representation and Reasoning

A goal of my work is to create self-explaining mechanisms that are flexible and adapt-

able. This relies on using flexible representations of data, inspired by frame-based

representation, a formal ontology to reason about high-level concepts, and various

reasoning approaches that cater to multiple types of data. My research is focused on

representations that cater to uncertainty.

2.2.1 Frame-based Representations

Frames [157] are a typically symbolic representation that enable a system to reason

easily. Frames were derived from semantic networks [183], as a way to represent

memories and knowledge, especially for language. This extended into representing

language as these sorts of trans-frames or scripts [199], which reduced search space and

memory. This type of representation relies on a structure in subsumption hierarchies

like IsA [27] or a structured ontology.

31

2.2.2 Ontology

An ontology an organization of a concept (or domain) into relations: how differ-

ent concepts are related to the target concept. An ontology is a specification of a

shared conceptualization. Domain ontologies are specific to an application or domain,

whereas “upper” ontologies are domain-independent, more prevalent for the seman-

tic web [22] including the Web Ontology Language (OWL) [13], Friend of a Friend

(FOAF) [29], and Yago [216]. Some upper ontologies are the basis for commonsense

knowledge bases [57, 155].

2.2.3 Commonsense Knowledge and Reasoning

Commonsense knowledge is difficult to define. In the simplest terms, common-

sense knowledge consists of facts about the everyday world that are self-evident;

for example “lemons are yellow” or “animals can move.” Commonsense knowledge

bases [135, 212, 62] provide these sorts of intuitive statements. Whereas common-

sense reasoning models the human process of using these statements to solve problems,

like the Winograd Schema challenge [137]. Other more formal approaches [163] use

“event calculus” to reduce commonsense reasoning to first-order logic approaches.

2.2.4 Reasoning

In addition to commonsense reasoning, other types of classical reasoning approaches

cater well to finding anomalies. Hypothetical reasoning [98] is an extension of abduc-

tive reasoning [175], in which a hypothetical is deemed plausible by verifying each of

its logical consequences. Another approach to reasoning about uncertainties is to look

at analogies [72]: an inductive reasoning process that examines similar concepts to

understand new concepts. If we consider that humans understand new circumstances

by examining stories, then story-understanding [240] can be applied to understand

new scenarios in complex machines.

32

2.2.5 Cognitive Architectures

The types of mechanisms that I present in this thesis are complex cognitive architec-

tures. Cognitive architectures, first coined by Allen Newell [167], aim to understand

human intelligence by mimicking the human reasoning process in a computer model.

An implementation of a cognitive architecture is SOAR [125], which is still prevalent

today. Society of Mind [158] is a theoretical framework for a cognitive architecture,

along with its successor, The Emotion Machine [160], which incorporates ideas from

theory of mind.

2.2.6 Theory of Mind

Theory of mind, or using insights from one’s thought-processes to understand that

of others is an important theory for anticipating behavior [7]. This is especially

important to anticipate complex situations [117], which are prevalent in the self-

driving vehicle domain.

2.3 Multi-agent Systems

Multi-agent systems [218] are a complex system, which are composed of multiple in-

teractive agents. This is similar to my organizational approach of a complex system

as being made of multiple subsystems that interact via explanations. Another vari-

ant of multi-agent systems is modeling collective behavior [232], where the observed

environment is used to construct rules for a decentralized system of robots.

2.4 Integrating Perception and Reasoning

The integration of perception, recognition, and higher reasoning capability is a hall-

mark of human intelligence modeling–from Gestalt psychology [153] and early ma-

chine vision systems [190, 228] to cutting-edge standardized models of human cogni-

tion [124]. Human cognition integrates perception and “pure” object recognition with

33

reasoning and symbolic manipulation. Humans are able to process sensory inputs

both “top-down” and “bottom-up”1

Some cognitive theories emphasize the influence of symbolic processes on per-

ception. Scientific evidence supports the view that normal perceptual experiences

may rely more on knowledge than modes of sensation [226]. Winston’s [239] “in-

ner” language hypothesis says that humans construct complex symbolic descriptions

of situations, knowledge, and events; enabling humans to understand the world and

problem solve2. The development of reasonableness monitors is devoted to integrat-

ing subsystems that represent the “inner”, physical, non-linguistic representation and

reasoning domains of mental models [103] and imagery [176] that are theorized to be

distinct from humans’ “outer” language of familiar lexical items and linguistic forms.

1A top-down processing approaches starts from the general and moves to the specific. A bottom-
up processing approach starts from the specific and moves to the general.

2The strong story hypothesis inspired the idea of “story-enabled intelligence”: systems that can
recount their own story “exhibit intelligence of a higher order.” http://logical.ai/story/.

34

http://logical.ai/story/

Chapter 3

Ex post facto Explanations

“...an adequate account that tells us all we want to know about explanations

in general must wait until prior problems have been solved.”

– Sylvain Bromberger in On What We Know We Don’t Know [30].

When autonomous systems malfunction, different stakeholders require a diagnosis

of the failures that led to the malfunction. For example, when autonomous vehicles

get into fatal accidents, as in the Uber self-driving car accident1, it is important to

diagnose why the malfunction occurred quickly and precisely. When an accident hap-

pens in a car that is co-driven by a person and a machine, police officials, insurance

companies, and the people who are harmed will want to know who or what is ac-

countable for the accident. In this chapter, I present a methodology to analyze and

understand vehicle logs after-the-fact.

I present two model-based reasoning systems, which are initialized with measured

data from a simulation environment. The qualitative mechanical model diagnoses spe-

cific mechanical component failures. The semi-qualitative physics model diagnoses

unusual physical forces on the vehicle, which can lead to erratic driving behavior.

The models are able to abstract information from data to produce concise and under-

standable explanations of vehicle actions–a summary that is simple enough for users

1A self-driving Uber test vehicle struck and killed a pedestrian in March 2018 [151]. For more
cases, refer to this dynamic list of self-driving vehicle fatalities: https://en.wikipedia.org/wiki/
List_of_self-driving_car_fatalities

35

https://en.wikipedia.org/wiki/List_of_self-driving_car_fatalities
https://en.wikipedia.org/wiki/List_of_self-driving_car_fatalities

to understand. This chapter was previously published as a conference proceeding [75].

3.1 Introduction

Modern automobiles are highly sophisticated, complex, and interconnected electro-

mechanical systems. However, the existing tools for signaling errors are imprecise.

For example, the “check engine” light indicates the plausible existence of problems

without providing any justification.

As society moves towards semi-autonomous and, ultimately, fully autonomous ve-

hicles, there is a need for vehicles to be capable of producing explanations of their

behavior and internal state. These explanations will help in performing maintenance,

analyzing driver behavior, and determining accountability for problematic actions.

With the addition of sensors and software, pinpointing problems–even simple ones like

low tire pressure, becomes difficult; due to the increased range of potential causes. In

semi-autonomous driving, understanding the relative contributions of humans and/or

mechanisms to an unwanted event, like a car accident, will be important for failure

analysis and determination of accountability. Creating the ability for an autonomous

agent to provide a coherent explanation of its own behavior is an essential prereq-

uisite to building the necessary trust and confidence in such agents. If autonomous

agents cannot reason about their decisions, then they will not be able to correct

themselves, especially when things go wrong. This chapter explores the development

of a methodology for developing ex post facto, i.e., after-the-fact, explanations from

vehicle logs.

3.1.1 Definition of Vehicle Specific Components

When I refer to “vehicle” logs, I am referring to a Controller Area Network (CAN bus)

log. This internal network of the vehicle is decentralized: it allows Electronic Control

Units (ECUs), the embedded controller of one or more of the electrical systems or

subsystems in a vehicle, and devices to communicate their state amongst each other

without a host computer. These communications are recorded on a CAN bus log,

36

which is mimicked in the simulated CAN bus log. For each ECU component, a

“snapshot” is recorded at each time stamp. This includes the CAN bus code and

“parameter information,” which varies between ECU components. For the braking

ECU, it is binary: 0 (brakes not engaged) or 1 (brakes engaged). But for other ECUs,

like drive mode or wheel speeds, the parameter information is a list. The difficulty is

providing a common language to process these parameters into a meaningful, symbolic

story.

Since the CAN bus logs record ECU data at various levels of detail, I processed

and represented CAN bus data in terms of qualitative descriptions. These qualitative

descriptions, e.g., inc (increasing) or dec (decreasing), are a description of the first

derivative change. In Section 3.2.2, I define an extended definition of qualitative terms

based on the qualitative algebras first proposed by Johan de Kleer [49]. I apply abduc-

tive reasoning: I start from an observation or result to deduce the likely explanation

for the observations, using a model of the vehicle system to find (mis)behaviors. My

method provides understandable, symbolic, simulated vehicle log descriptions.

3.2 Method Overview

My system is a three-component process and methodology. The system is visualized

in Figure 3-1.

1. Data processing produces “intervals of interest,” in Section 3.2.1.

2. Models describe the expected behavior of the underlying vehicle system, in Sec-

tion 3.2.3. The models are initialized with “intervals of interest.”

3. Reasoning explains an “interval of interest” by running the models, and exam-

ining the outputs and dependencies in Section 3.2.7.

I applied this methodology to a simulated vehicle. I show a series of test simula-

tions that show the ability of the methodology to explain skids in Section 3.3. In the

next sections, I review the technical specifications and artifacts.

37

Figure 3-1: Ex post facto explanation generation process

3.2.1 Data Generation and Analysis

My method relies on collecting data from a plausible vehicle simulation. My col-

laborators and I developed a basic vehicle simulation using the Unity game engine

[75]. The simulated vehicle has physical properties like tire friction and basic vehicle

internals, at a level of fidelity sufficient to test my analysis pipeline.

Data Log Generation

The vehicle simulation, in response to user control of a simulated vehicle, produces

data traces corresponding to quantities that are tracked by commonly installed vehicle

sensors communicating on a typical vehicle CAN bus, like accelerometer data, wheel

rotation rates, and driver input state. To generate the necessary data corresponding

to an accident scenario, I built a model highway interchange in the simulation, and

then drove the simulated vehicle in a variety of accident regimes. A mock up of this

highway interchange is in Figure 3-2.

Figure 3-2 shows a car entering an oversteering skid on a freeway off-ramp. A

skid occurs when the vehicle tires lose traction on the road surface. An oversteering

skid occurs when the rear wheels of the vehicle lose traction but the front wheels do

not. An oversteering skid can occur when brakes are applied during an otherwise

controlled turn while the vehicle is moving at high velocity resulting in loss of friction

38

Figure 3-2: A difficult driving scenario inspired by the off-ramp of Route 95 in Mas-
sachusetts. The yellow star signifies the starting point, and blue arrows show the
vehicle’s ideal trajectory.

39

56.105 22 1.34
56.105 23 1.34
56.105 25 1.07
56.105 30 0.00
56.105 B1 9799.55 9848.86
56.105 B3 9848.39 9897.63
56.105 120 13 04 50
56.105 244 0.29
56.105 GroundTruthXYZ 4.37 5.05 45.25

Figure 3-3: A sample CAN bus data record. Each line has a time stamp, CAN
bus code, and parameter information. The mappings for the CAN bus codes are in
Appendix B-1.

on the rear wheels and in lateral motion of the rear of the vehicle. I performed 4

simulation runs to replicate the described event, gathering test traces to use for the

developed analysis pipeline.

Data Log Format

The vehicle log data mimics a typical vehicle CAN bus format. There is a time

stamp, a CAN bus code (corresponding to a vehicle specific module), and parameter

information (which varies in length and format, depending on the CAN bus code).

In the simulation, a CAN bus snapshot, with the 9 different CAN bus readings, is

produced every .005 seconds2. I represent each CAN bus snapshot as a log-snapshot.

The CAN bus code mappings are in Appendix B-1. A sample of a CAN bus record

is in Figure 3-3.

Log and Event Analysis

Each log-snapshot is indexed by the corresponding time. I filtered these log-snapshots

into “intervals of interest” using edge detection and interval analysis. In pre-processing,

the data is smoothed with an average pass filter.

Edge detection identifies specific intervals where edge events occurred. The edges

are represented as rules: when the brakes were applied, or when the car accelerated.
2The simulation environment will generate up to 13 CAN bus codes when it is in “autonomous”

mode. The extra information is used for LiDAR interpretation.

40

(define (isBraking? snapshot)
(eqv? (log-snapshot-brake snapshot) 0))

(define (isAccelerating? snapshot)
(eqv? (log-snapshot-accel snapshot) 'inc))

Listing 1: Braking and accelerating rules for edge detection. Note that braking is
indicated by a 0 reading. The inc reading indicates that the reading has increased
between the the last snapshot and the current snapshot.

X before Y XXX YYY

X equals Y XXX
YYY

X meets Y XXXYYY

X overlaps Y XXX
YYY

X during Y XXX
YYYYY

X starts Y XXX
YYYYY

X finishes Y XXX
YYYYY

Table 3.1: The complete set of the possible relationships among time intervals, as
determined by James F. Allen [6].

These specific edge examples are in Listing 1, and a comprehensive list of edge rules

are in Appendix B-2. I filtered the data to find intervals that adhere to these edge

detection rules over successive log-snapshots. This results in braking intervals,

accelerating intervals, right turning intervals, etc. I filter the edge event intervals

that satisfy the temporal relationship description of particular events. For example,

once I have braking intervals, I want to find the intervals within that where the vehicle

is turning, or where the vehicle came to a complete stop. I represented these events

as a combination of intervals using Allen’s Interval Algebra [6] shown in Table 3.1 to

find intervals that work together to make an “interval of interest.” An example is in

Table 3.2. I use these intervals of interest as input to the models, which form a story

of what happened during a particular time span.

41

18:10:25.333 GPS: Heading 321.16, Speed 60.3mph
18:10:26.500 Operator: Brake 0.35, Steer 5.0
18:10:26.560 Driver assist: Brake 0.4
18:10:27.867 GPS: Heading 353.84, Speed 52.1 mph
18:10:29.970 Operator: Brake 0.90, Steer 9.3
18:10:30.010 Wheel Rate Monitor: Skid
18:10:30.040 GPS: Heading 28.27, Speed 0.0mph
18:10:30.070 Wheel Rate Monitor: Skid
18:10:30.170 Operator: Brake 0.91, Steer 6.6
18:10:32.933 GPS: Heading 129.08, Speed 0.2mph
18:10:35.140 Operator: Brake 0.93, Steer 0.0
18:10:35.467 GPS: Heading 121.52, Speed 0.0mph
18:10:38.670 Stopped

Table 3.2: Summary of the “intervals of interest” accumulated during an over-steering
skid.

3.2.2 Qualitative Algebras

I define a set of qualitative algebras3 to explain my vehicle scenarios. My first and

most used algebra, the qualitative increment, was first defined in de Kleer’s PhD the-

sis [49]. However, in my vehicle models, I also needed qualitative actions: tightening

and loosening, and descriptions of vector forces on the vehicles’ wheels. Therefore,

I developed a set of four qualitative algebras to represent the descriptions of me-

chanical components and force vectors: qualitative increment, action, direction, and

magnitude. The algebras are described in Appendix A.1.

3.2.3 Models

I constructed two models, which combined with generated data, provide human-

readable explanations of vehicle behavior. The fully qualitative mechanical model has

implicit rules that describe the relationships among the mechanical components of the

vehicle. For example, when the tire brake pads are engaged, what other mechanical

components are affected? The code for these constraints is shown in Listing 2, which
3A qualitative algebra is a description of change with algebraic properties like addition, subtrac-

tion, multiplication, etc. It is usually used to represent continuous quantities of the world, such
as space, time, and quantity with little “precise” information. For example, representing time with
events: event a occurred “before” event b, event b occurred “after” event a, etc. These types of
representations can support reasoning, even without precise details.

42

shows the causal properties of tire component of mechanical model. Consider that

pressure is the pressure of air in the tire. The following are facts:

1. With low air tire pressure (or decreasing pressure), the axle is closer to the road:

and the radius of rotation is reduced, causing the rotation rate to increase.

2. This was inspired by the idea that some cars have systems that warn you when

your tire pressure is low. This works by measuring the rotation rate of the tires.

3. With under-pressured tires, the speedometer will display a value greater than

your actual speed.

And these facts are expressed qualitatively in Listing 2, so that tire pressure is the

inverse of the qualitative value of the rotation rate. This builds on other “common

sense” facts: when the tire brake pads are engaged, the wheel rotation rate is certainly

decreasing. However, if the wheel rotation rate is decreasing, that does not necessarily

imply that the tire brake pads were engaged. The vehicle could be going uphill, or

the vehicle could slowing down due to the force of friction on the tires.

To provide detailed explanations of why a particular event occurred, I developed

a semi-quantitative physics-based model which quantitatively calculates forces on

the vehicles wheels and combines that information with measured data to provide

qualitative explanations. Both models are written in MIT/GNU Scheme and rely on

the existing propagator system, described in Section 3.2.4.

3.2.4 Vehicle Modeling with the Propagator System

The Art of the Propagator System is a qualitative reasoning system that maintains

dependencies that can be used to construct an explanation of how a command to the

effectors or an intermediate value was determined. Part of those dependencies are

causal chains that come from the expectations determined by the model, and some

will be constraints coming from recorded data. The propagator system [184] can

merge measurements with deductive reasoning and track dependencies. Propagators

43

(define (tire-object diameter-input pressure #!optional given-name)
(physob (list diameter-input)

(lambda ()
(let-cells (rotation friction (diameter diameter-input))

(copier pressure friction)
(inverter pressure rotation)
(define (insides-name message)

(case message
((diameter) diameter)
((pressure) pressure)
((rotation) rotation)
((friction) friction)
(else #f)))

insides-name))
(if (default-object? given-name)

`(,type ,(map name diameter-input))
given-name)))

Listing 2: Propagator code that shows the causal properties of a tire object. The tire
pressure is the inverse of the qualitative value of the rotation rate.

implement a way to build distributed, concurrent computational models intercon-

nected by shared cells. Each propagator continuously examines its neighbor cells

adding information to some, based on deductions it can make from the information

in others.

Consider, for example, the block diagram of the throttle control system in Figure 3-

4. A qualitative model of this system can be made from this diagram. Each wire

can be modeled by a propagator cell that holds information about the signals on that

line. Each block in the diagram can be modeled by a propagator that constrains

information contained in the cells that model the wires incident on it. Although the

diagram indicates that information flows in specific directions, propagators can make

deductions about inputs from information about outputs as well as in the indicated

direction.

In any particular situation the models and the data will converge to some ap-

proximate agreement if the models are good enough. There will be many points of

agreement where the data will be what is expected and there may be points of dis-

44

Figure 3-4: A diagram of the mechanical model that describes the interactions be-
tween the vehicle’s mechanical parts.

agreement. Points of disagreement indicate inadequacies of the models or failures of

some part of the real mechanism to do what is expected of it.

3.2.5 Qualitative Mechanical Model

The qualitative mechanical model describes the interactions among the vehicle’s me-

chanical parts. The mechanical components are modeled from the diagrams and

descriptions in an automotive handbook [187]. Currently, the mechanical model is

relatively simple, only modeling the braking system, steering system, and engine as

shown in Figure 3-4. The sensor output is not yet implemented in my system. While

my model is a simplification of real-life behavior of a car, its lower complexity enables

intuitive explanations, which users can understand. Therefore, the rules of the system

45

fric>on	fric>on	
normal	 normal	

weight	

iner>al	force	

iner>al	force	

centrifugal	
force	

**In	the	frame	of	reference	of	
the	car**	

accelera>on	

fric>on	

fric>on	

fric>on	

fric>on	

accelera>on	

Figure 3-5: The forces that are calculated and used in the semi-quantitative physics
model. Shown from the lateral and top-down view.

are intuitive, and the system does not require complex equation.

The mechanical model is initialized with a specific time interval, where each data

value (e.g., brake pad pressure change, steering change, etc.) is a qualitative incre-

ment, representing the qualitative change during that time span. The model is then

run by propagating the data-initialized qualitative values through the system. Spe-

cific model values can be queried using explain-readable and inquire-readable,

described further in Section 3.2.7.

3.2.6 Semi-quantitative Physics Model

The physics model calculates forces on the vehicle’s wheels, and then constructs causal

chains; some coming from expectations determined by the model, and some coming

from recorded data. Unlike the mechanical model, which is initialized by recorded

data, and then queried for values and explanations, the physics model is initialized by

the log data, but also uses that log data values to provide evidence in its deductions.

The forces that are calculated and then explained are shown in Figure 3-5. Recall,

this model is a simplification, so that I can use rules of naive physics [92], without

solving complex equations.

46

The models are used at the same time. Therefore, the physics model is especially

important when the vehicle’s actions are unexpected and not interesting from the

mechanical model standpoint. For example, if a skid occurs, the mechanical model

will only be able to describe the wheel rotation rates in terms of qualitative increments,

which does not provide the explanation for a skid. Instead, using the physics model,

a skid can be identified by the rear or front wheels losing traction. The wheels lose

traction by a decrease in normal force.

3.2.7 Reasoning

My system outputs readable explanations from the dependency tracking elements

of the propagator system. Most of these explanations are rule-based: outputting a

more readable version of an explain command, which is implemented in the propa-

gator system. The propagator has two explanatory functions: inquire and explain.

The inquire command displays the immediate values of the inquired cell, and the

explain command recursively displays every dependency in that cell’s inquiry in

the system. I implemented two other explanatory functions, inquire-readable and

explain-readable, which display the dependencies tracked through the system in

more readable language. For example, the inquire and explain display the cell’s de-

pendent functions and values without explaining them, whereas inquire-readable

and explain-readable explicitly cite the reasons, inputs, outputs, premises, and

displays the cell value in readable form.

It is important to note the distinction between deductions and expectations. In

my work, I deduce based on a casual chain of expectations. My assumptions are

certain; I expect the mechanical devices within the car to act a certain way, and at

the same time, I can expect the physics of the vehicle to act a certain way.

3.3 Experiment Results

The experiments displayed in this section, although not all inclusive, highlight the

more “interesting” events that my system can detect and explain.

47

3.3.1 Examples from the Mechanical Model

The mechanical model propagates observed data through the different mechanical

subsystems of the vehicle. The model is initialized by the observed data, and then

those values are propagated through the system appropriately. Consequently, the

user is able to query specific components of the system, and a readable explanation

can be displayed through the appropriate command.

I provide two examples below from the same interval in a normal driving scenario

where the vehicle is braking. During a braking interval, I expect that the anti-lock

brakes are engaged (so that the hydraulic brake pressure is increasing and the wheel

rotation rates are decreasing). In the first call to inquire-readable, I check the

hydraulics on the antilock-brakes are increasing. The model also finds the premises, or

root causes for this change: there is a braking change in that interval (from the method

brake-change-from-initialized-interval)). In the second call, I examine the

same interval and find that the wheel rates (specifically the left-front wheel) is decreas-

ing. Further, the model is able to pinpoint why this change happened; by pointing to

the specific interval event change: wheel-change-from-initialized-interval.

>> (inquire-readable

(hydraulic antilock-brakes))

(hydraulic antilock-brakes) has the value

increasing change

Reason: function (+)

inputs: front-brakes-pressure

(booster antilock-brakes)

outputs: (hydraulic antilock-brakes)

Premises:

(brake-change-from-initialized-interval)

>> (inquire-readable left-front-wheel)

left-front-wheel has the value

48

decreasing change

Premises:

(wheel-change-from-initialized-interval)

From the model, I am able to query different internal mechanical devices, like the

hydraulics, and I can also query the data directly, like the left-front-wheel rotation

rate. Notice that the left-front-wheel has no inputs because it is a data input. The

initialization, which I named to be wheel-change-from-initialized-interval, is

the premise which tells the left-front-wheel to be exactly the value decreasing

change. While this model is useful for debugging mechanical systems, it requires

physics knowledge to be able to model complex vehicle behavior like skids.

3.3.2 Examples from the Physics Model

The physics model propagates the underlying forces on the wheel of an average front-

wheel drive sedan. The model is initialized by the acceleration forces (both lateral

and longitudinal) and calculates what is the appropriate magnitude of forces on the

car’s wheels. The first example is of skid behavior. In this scenario, B.Z. Yuan and I

simulated an oversteering skid [75], where I expect that the rear wheels of the vehicle

lose traction but the front wheels do not.

(explain-readable-forces normal-forces)

REASON: rear-wheels-force decreased AND

its magnitude exceeds the traction

threshold.

Since the rear wheels lost traction

the friction of the contact patches

MUST HAVE decreased;

so, the normal forces MUST HAVE

decreased.

Consistent with the accelerometers.

QUALITATIVE TIRE SUMMARY:

49

The left front normal force decreased.

The right front normal force increased.

The left back normal force decreased.

The right back normal force decreased.

The above explanation was automatically generated by explaining the normal forces

during an oversteering skid interval. The more detailed explanations are generated by

aggregating quantities and qualitative reasons that are set after running the physics

model.

(explain-readable-forces normal-forces)

REASON: right-wheels-force increased AND

its magnitude is within traction threshold.

Since the right wheels are gaining

traction

the friction of the contact patches

MUST HAVE increased.

so the normal forces MUST HAVE

increased

So the car is turning left safely.

Consistent with the steering

and accelerometers.

QUALITATIVE TIRE SUMMARY:

The left front normal force decreased.

The right front normal force increased.

The left back normal force decreased.

The right back normal force increased.

The above explanation was automatically generated by explaining the normal forces

during a left turn.

50

3.4 Applying this Methodology

The results I presented are for specific vehicle models on a specific simulated data.

In this section I describe the requirements to apply this methodology to a new ap-

plication. This methodology is designed for complex systems (systems with multiple

parts) and time-series data.

1. Data: A data schema has to be defined, like the log-snapshot that I used

for the simulated vehicle data. Specific edge-detection rules need to be defined

(based on the data schema).

2. Models: The models have to be defined for each system. I have defined a number

of vehicle modules which can be re-used. For other applications, the complex

systems needs to be decomposed into separate propagators (corresponding to

each part), and cells (representing the shared communication between parts).

3. Reasoning: The reasoning process uses the data and defined models. The rea-

soning artifacts: explain, explain-readable, inquire, and inquire-readable

are applicable to other propagator models.

3.5 Related Work

There have been many contributions in the space of reasoning for qualitative change.

The term incremental qualitative (IQ) analysis was coined in Johan de Kleer’s PhD

thesis [49]. Incremental qualitatives represent quantities by how they change when

a system itself is changing. Incremental qualitatives are represented by four values:

increasing, decreasing, no change, unknown change. In his thesis, de Kleer describes

this qualitative algebra, which I extend in this work to represent different algebraic

operations. De Kleer and Forbus also wrote a book on efficient logic truth mainte-

nance systems (LTMSs) [61] to propagate constraints, however, it lacks the verbose

explanatory capability necessary for my system’s verbose goals.

Using back propagation to reason about complex behavior has also been well

studied in the field. Models that can merge measurements with deductive reasoning

51

and that can track dependencies are captured with propagators [184]. This language

is a way to build distributed, concurrent computational models, based on the idea that

computational elements, called propagators, are autonomous machines interconnected

by shared cells. Each propagator continuously examines its neighbor cells adding

information to some, based on deductions it can make from the information in others.

These models are implemented in MIT/GNU scheme with the propagator framework.

In vehicle specific modeling, Stuss and Fracci presented a qualitative model of a

vehicle braking system [214]. Their major contribution is a model-based automation

of failure-modes-and-effects analysis (FMEA), with the specific application to a ve-

hicle braking system. While their results do not include explanations, their model

motivated my own research. They are able to infer braking component behavior from

the models’ inputs, similar to the way that my models can infer changes. This chapter

is a more comprehensive application of the same process. As far as I know, this is

the first application of qualitative reasoning to provide explanations of complex and

comprehensive vehicle actions.

3.6 Limitations

One limitation of the system is that the physics and mechanical models are separate.

With a combined model, and more detailed sensor data, I could model more complex

physics over complex terrain. For example, for a turning radius and a friction coeffi-

cient for what speed will the car skid? And if we observe that the car is decelerating,

is this caused by the brakes, or by the hill or both? I developed a naive query lan-

guage to find edge cases, but a more sophisticated language is required for different

parts. Another limitation is that the CAN bus data is simulated. Simulated data

cannot represent all possible failures. Applying this methodology on a real vehicle

may be explored in future work.

The explanations presented in this chapter are static. To be used in a running

vehicle, my models would need to provide dynamic explanations. This would require

some optimization in order to be used in real time. But the qualitative deductions

52

from the running logs might be used to improve the control strategies in vehicles with

significant autonomy. I explore the use of explanations to improve decision making

in Chapter 6.

3.7 Contributions

In modeling a system of a modern vehicle, I have really created a model of the “mind”

of a car. This is similar to the methodology in the Society of Mind [158]; a “modern”

vehicle is a system made up of lots of pieces that individually handle different tasks,

like anti-lock braking, power steering, and obstacle detection. Similarly, the human

mind can be thought of as a set of various pieces that do different jobs and speak very

different internal languages. My goal is to construct a model of a car mind made of

up different parts that can “share stories” with each other. I explore this idea in our

work so far in a limited setting with cells in a propagator-based system, where the

“sharing” of information is done via the propagator rules. I take this a step further

by applying these ideas to full-sized systems, in which the communicating parts are

entire electromechanical modules, and the stories shared with each other collectively

contain enough detail to permit reconstruction of adequate explanations of particular

phenomena.

But what happens when we cannot create models? Some of the best problem

solvers, like AlphaGo and Deep Blue, are impossible to model: they are opaque. They

cannot explain their actions, or justify their reasoning. In the next chapter, I propose

a solution for opaque subsystems, “reasonableness monitors,” an explanatory sanity

check that justifies decisions with commonsense knowledge and rules. This builds on

the key idea of this chapter: every agent is constantly developing a plausible story

about its neighbors.

53

54

Chapter 4

Reasonableness Monitors

“We can often enhance our ability to deal with a complex problem by adopting

a new language that enables us to describe (and hence to think about) the

problem in a different way, using primitives, means of combination, and

means of abstraction that are particularly well suited to the problem at hand.”

– The Structure and Interpretation of Computer Programs [3]

One component of a complex machine, such as a self-driving vehicle, can be an

opaque subsystem. Most of these opaque subsystems are machine learning models

that are tailored for a particular problem. When applied to unexpected scenarios in

critical domains, these models make fatal mistakes [11].

I present a sanity check for opaque subsystems: a monitoring framework that can

judge and justify whether the underlying opaque decision or action is reasonable or

not. This monitoring framework, called reasonableness monitors, can be customized

for different domains, since it utilizes a standard vocabulary and rule language. The

input to the monitoring system is the output from an opaque learning system: an

intended behavior, which is parsed into a common representation. The monitor uses

a reasoner to find the important concepts leading to contradictions between expected

behavior and anomalous behavior, which is tracked back to a constraint or rule.

The output of a reasonableness monitor is a human-readable explanation suc-

cinctly describing the core reasons and support for an intended behavior. The goal

55

of reasonableness monitors is to improve the performance of individual (i.e. local)

opaque subsystems, by performing a "last-pass" check for clearly unreasonable out-

puts. In this chapter, I contribute two implementations of reasonableness monitors.

1. An end-to-end prototype for machine perception [79, 74] in Section 4.2.

2. A generalized framework [78] in Section 4.3.

4.1 Introduction

When opaque subsystems make mistakes, we would like to know why the error oc-

curred. But diagnostic systems [53] require access and knowledge about the under-

lying mechanism, which may be implausible [149]: the underlying subsystem may be

uninterpretable (black-box), or inaccessible (proprietary or trade-secret). Therefore,

I monitor a subsystem’s output, assuming limited knowledge of underlying processing

or method.

How does this monitor ensure that the underlying subsystem is acting reasonably?

The monitor needs a lot of world knowledge. But that knowledge also needs to be

structured, so that the monitor can find the important concepts leading to unreason-

able behavior. The monitor is able to judge whether a behavior is reasonable or not

by tracking the behavior back to a constraint or rule. This relies on a rule language

for constraints/policies, ontologies for representing data/knowledge, and a reasoner

all leading to an explanation of reasonableness.

The ability to provide coherent explanations of complex behavior is important in

the design and debugging of such systems, and it is essential for societal confidence in

technology: explanations support reasoning, leading to the belief of competence and

integrity of algorithms.

4.2 Method Overview

I describe an end-to-end reasonableness monitor for machine perception. A machine

perception system, or an image captioning system, produces perception descriptions.

56

In this section, I refer to the input to a reasonableness monitor as a description.

4.2.1 Input Parsing

The input of the reasonableness monitor is a perceived scene description that contains

a subject (or actor) and a verb, at minimum. I used the Python NLTK part-of-speech

(POS) tagger [24] to tag each word of the description. I wrote a regular expression

parser which maps the POS tags to specific noun, verb and object phrases. The

parsing code is in Listing 3.

def parse_with_regex(words):
tags = nltk.pos_tag(words)

parser = nltk.RegexpParser('''
NP: {<DT|PRP$>? <JJ>* <NN|NNP|PRP>*} # NP
P: {<IN|TO>} # Preposition
V: {<V.*>} # Verb
PP: {<P> <NP>} # PP -> P NP
Adv: {<RB|RBR|RBS>} # Adverbs
VP: {<V V*> <NP|PP>*} # VP -> V (NP|PP)*
''')
result = parser.parse(tags)
result.draw()
return result

Listing 3: Regex parser for the end-to-end reasonableness monitoring system. The
result.draw() command will display the parse tree. A sample parse tree is in
Appendix B-4.

4.2.2 Representation: Conceptual Primitives

The parsed description is processed into abstract role frames. In the end-to-end repre-

sentation, I used Roger Schank’s Conceptual Dependency (CD) [198]. I chose Schank’s

representation because it represents physical acts in a universal, language-free con-

ceptual base. The CD primitives are also small in number, and only six “physical”

57

primitives1 were needed in my prototype system2. The conceptual primitives are

described in detail in Appendix A.2.

Building Conceptual Primitive Frames

My system needs to determine which CD primitive to use. It does this by searching

for paths between the verb and an anchor point in ConceptNet. An anchor point

is a concept that fulfills a broad categorization for a CD primitive act. Table 4.1

lists the anchor points used for selecting the conceptual primitive acts. I specifically

chose anchor points to best represent the conceptual primitive. For example, the

conceptual primitive “GRASP” is not commonly used in natural language. “Grab” is

a more popular verb that is synonymous with “GRASP,” so “grab” is set as the anchor

point for the GRASP primitive act.

Multiple anchor points are used for some primitives. For the MOVE primitive,

“move” and “action” are used as verb-to-primitive anchors. The specific name of

the conceptual primitive is not always used, and sometimes I chose certain words as

anchor points because they were better represented in ConceptNet. For example, the

verb “ingest” has very few edges in the ConceptNet network, so instead I chose “eat”,

“drink”, and other words with similar meanings for the INGEST anchor points. A

table of the anchor points for each CD primitive can be found in Table 4.1.

Anchor Points for Primitive Acts

My system queries ConceptNet using the stemmed and lemmatized form of the verb,

searching for paths from the verb to the anchor point representatives of the CD

primitives. The verb is anchored to the closest anchor point in terms of IsA hops

in ConceptNet’s semantic network. My system instantiates a CD transframe of the

corresponding primitive to represent the input description.

1The six physical primitives account for most actions: INGEST, EXPEL, GRASP, MOVE, PRO-
PEL, and PTRANS. I focused on the physical action primitives because actions are present in image
descriptions, whereas mental state primitives like MTRANS and MBUILD are not.

2Conceptual primitive frames are synonymous with transframes [157].

58

Table 4.1: The Conceptual Dependency (CD) “physical” primitives used, and the
ConceptNet anchor points used to bind them to incoming verbs.

CD Primitive Anchor Point(s)
INGEST eat, drink, ingest
EXPEL expel
GRASP grasp, grab

MOVE-PTRANS move, action, go
PROPEL propel, hit

Anchor Points for Primitive Roles

A different set of anchor points is used on the concepts filling the actor, object and

direction roles of the frame to determine if they satisfy or violate the frame’s con-

straints. I set constraints for the subject and the object, using the definitions of each

CD primitive frame.

The reasonableness monitor uses six anchor points for these roles: person, plant,

animal, object, vehicle, and weather. These anchor points were chosen for two reasons.

The first reason is that they fit the use case of autonomous vehicles. The second, more

significant reason is that each anchor point is broad enough to include a variety of

items, but just restrictive enough so that each anchor point has different properties

that allow it to perform certain actions.

For example, an animal can move on its own, and thus it can serve as the actor

role in a MOVE-PTRANS CD transframe, but an object cannot move on its own,

unless it is a vehicle. I assume that vehicles are controlled by humans and therefore

they can move, so I also have an anchor point so that cars or other automobiles will

not be categorized as objects, but as vehicles specifically.

Primitive Act Constraints

All physical primitive acts are subject to constraints that can be applied to the actor,

object, and direction cases of the frame to determine reasonableness. For all of these

primitives:

59

Table 4.2: List of ConceptNet anchor points used for actor and object roles in the
CD transframe, and constraints on where a concept may reasonably serve in the role.

Anchor Point Actor Constraints Object Constraints
person EXPEL, GRASP, INGEST, MOVE, PROPEL GRASP, MOVE, PROPEL
animal EXPEL, GRASP, INGEST, MOVE, PROPEL GRASP, INGEST, MOVE, PROPEL
plant none GRASP, INGEST, MOVE, PROPEL
object GRASP GRASP, INGEST, MOVE, PROPEL
place none none

weather PROPEL none
confusion PROPEL none
vehicle EXPEL, GRASP, INGEST, MOVE, PROPEL MOVE, PROPEL

• The actor must be an “animate” object or thing capable of

1. making other objects move (in the case of MOVE, INGEST, EXPEL).

2. moving or applying a force in order to GRASP another object (in the case

of GRASP).

3. applying forces to other objects (in the case of PROPEL).

• The object must be a physical object, thing, substance, or person.

• The direction case should represent a direction in reference to a physical object

or a physical location or place.

There are several additional constraints for particular primitive frames and the com-

plete constraints for actor and object cases of the CD primitives are shown in Ta-

ble 4.2. Based on its definition, each primitive imposes constraints on the types of

anchor points that the subject and object can be categorized as. In order for the

statement to be reasonable, both the subject and the object must share an edge with

one of their respective permitted anchor points. If either of them do not share any

edge with the permitted anchor points, there is a contradiction and the statement is

deemed unreasonable.

For example, in the description: “a mailbox crosses the street”, “mailbox” violates

the constraint that the actor in the MOVE primitive be animate. Taking another

60

example, for the statement “A man pushes the wind,” my system creates a PROPEL

primitive, and “man” will be categorized as a person anchor point, which fits the

subject constraint. However, no edge exists between any of the permitted anchor

points and the object, “wind”, because wind is not a thing (a person, animal, vehicle,

or object). Therefore the statement will be deemed unreasonable.

Compound Primitive Frames

A reasonableness monitor can also construct a Conceptual Dependency transform

using multiple primitives. For example, in the description “Lisa kicked the ball,”

there are two primitive acts. Firstly, Lisa applies a force (PROPEL), and secondly,

the ball is moved (MOVE-PTRANS). Although my system cannot automatically

decompose this sentence into compound primitive frames, I hard-coded select verbs

to be compound by default (instead of using ConceptNet or anchor points), so that

kick decomposes into a PROPEL and MOVE-PTRANS. The resulting justification

does not change, but the explanation is more verbose [79].

Establishing Context

It is possible for the context of a sentence to change its reasonability. For example,

weather may change the reasonability of a statement, as it can easily change the CD

primitive chosen. To illustrate, I refer to the example: “a mailbox crossed the street.”

This is deemed unreasonable since “cross” is a MOVE-PTRANS type and a mailbox

is an object, which conflicts with the actor constraints of MOVE-PTRANS. If instead

the description were “a mailbox crossed the street in a hurricane,” then the description

becomes more reasonable. An outside force, such as a hurricane, can move objects,

which corresponds to the definition of PROPEL. Therefore, the CD primitive frame

becomes a PROPEL rather than MOVE-PTRANS. Since the mailbox satisfies the

constraints for PROPEL, this statement is now classified as reasonable.

My system also checks for prepositional phrases as added context for establishing

reasonableness. When the sentence is parsed, prepositional phrases are identified and

stored as contexts which are additional evidence in the CD primitive structure. In a

61

case like “in a hurricane,” the noun phrase within the prepositional phrase is bound

to another anchor point, in this case “hurricane”. There are also anchor points for ex-

treme conditions that are hard coded, where ConceptNet is not used, i.e., hurricanes,

earthquakes, tornadoes, and floods. In the reasonableness checking phase, the moni-

tor also examines this context to determine if the additional context can ameliorate

a previously unreasonable description.

4.3 Adaptable Implementation

In this section, I describe an adaptable implementation of reasonableness monitors. I

show results on two use cases: descriptions of perception (which could be generated

from a machine learning scene understanding systems), and vehicle plans (from an

autonomous vehicle planning system, which could be proprietary). I describe how to

apply this framework to other domains in Section 4.5. A schematic of the reasonable-

ness monitor as an adaptable framework is in Figure 4-1.

4.3.1 Log Generation and Ontology

In the adaptable implementation, I require that the log, or data, is constructed in

RDF, which is a World Wide Web Consortium (W3C) standard3. RDF allows for

data descriptions and relationships between data in terms of triples4. The RDF

log contains the system state in terms of symbolic triple relations. An example

RDF log is in Listing4. It contains the subject, predicate and object of the input

description, and relevant descriptions aggregated from the commonsense database.

This aggregation utilizes RDFS (the RDF Schema), a semantic extension of RDF,

allowing for additional mechanisms for describing groups of related resources and the

relationships between these resources.

For perception, I generate the RDF log for a description by parsing for relevant

concepts. From the input of a natural language description, I use a regex parser in
3RDF Documentation: https://www.w3.org/TR/rdf-schema/
4Triples suffice for the reasoning in this chapter. Note that a problem with RDF is that you

cannot have information that refers to another triple. In Chapter 7, I use triples with added indexes

62

https://www.w3.org/TR/rdf-schema/

Figure 4-1: The system diagram schematic of a reasonableness monitor as an adapt-
able framework.

Python to extract the noun phrase, verb phrase, context information (prepositional

phrases) to identify the actor, object, and action of the description. The development

of an ontology is incorporated with the process of developing the log data. For this

perception description use case, I develop a set of anchor points to extract common-

sense knowledge from ConceptNet, and primitive actions represented as a conceptual

dependency primitives. This conceptual dependency primitive will be used to con-

struct rules, with the actor, object, and context information as input. An example

of a parsed description represented as an RDF log is in Listing 4. An example of an

RDF log for a vehicle sample is in Listing 19 in Appendix B.5.2.

For vehicle planning, the process is extended with the same parsing process, the

representation is extended to include vehicle primitive actions like yield, move (with

speed and direction), stop and turn. Context is also extended to cover external factors

that are specific to vehicle planning like stop lights, pedestrians, and weather.

63

foo:my_actor
a ont1:Subject ;
ont1:phrase "a wall" .

foo:my_object
a ont1:Object ;
ont1:phrase "the street" .

cd:move
a ont1:Move ;
ont1:actor foo:my_actor ;
ont1:object foo:my_object ;
ont1:verb "cross" .

Listing 4: The RDF log of “a wall crossing the street.”

4.3.2 Rule Input

It is required that the rules are written in AIR (AMORD In RDF)5. AIR is a Semantic

Web-based rule language that can generate and track explanations for its inferences

and actions and conforms to Linked Data principles. Another advantage of AIR is

that it supports Linked Rules, which can be combined and reused in a manner similar

to Linked Data. Since the AIR explanations themselves are Semantic Web data, they

can be used for further reasoning. A benefit to using these Semantic web standards

and data is that you can find related data, rules and concepts easily.

For the perception problem, the rules are from Schank’s conceptual primitives [198].

An example rule for the primitive “MOVE” is that the actor must be animate, or

the actor must be propelled by something. Other rules require more commonsense

knowledge—for “INGEST” the action of consuming food and drink must be through

the mouth or stomach of the actor.

For the vehicle planning problem, rules are derived from the Massachusetts driving

handbook. These rules can be changed to express the rules of the road for other states

and areas. For example, the “right on red” turning rule is explicitly banned in most

intersections in the greater Boston area, although legal in the state of Massachusetts.

A subset of basic driving rules are shown in the Appendix in Listing 14. One example
5AIR is freely available: http://dig.csail.mit.edu/2009/AIR/

64

http://dig.csail.mit.edu/2009/AIR/

:pedestrian-rule a air:Belif-rule;
rdfs:comment "Ensure that pedestrians are safe.";
air:if {

:EVENT a :V;
car_ont:InPathOf :V.

};
air:then [

air:description ("There is a pedestrian");
air:assert [air:statement{:Event

air:compliant-with :safe_car_policy .}]] .
air:else [

air:description ("There is not a pedestrian");
air:assert [air:statement{:Event

air:non-compliant-with :safe_car_policy .}]] .

Listing 5: The “pedestrian right-of-way” rule in AIR.

is the “pedestrian right-of-way” rule in Listing 5.

Rules were constructed automatically and manually validated. In the automatic

part, I wrote a script to read in and process the Massachusetts driving handbook6.

From the natural text, sentences were flagged as “probable” rules if they contained

“rule” keywords: if, then, else, because. Air rules were constructed from natural text

using a parser. The automatic rule extraction is covered in more detail in Chapter 6.

In the automatic process, my script generated 221 rules, which I filtered down to 90

rules7.

4.3.3 Reasoning and Explanations

AIR captures the reasons and descriptions necessary to output explanations. Using

Python and RDFLIB8, the output RDF file is parsed for the justifications and rule

descriptions, which are combined together into a human-readable explanation. For

example, if the pedestrian rule is violated, then the resulting description is “pedestrian

6The Driver’s manual was accessed here: https://driving-tests.org/wp-content/uploads/
2020/03/MA_Drivers_Manual.pdf

7I may examine how to automatically combine and filter rules in future work. The goal of this
chapter is using rules, and not necessary creating rules. Creating rules is discussed in Chapter 6.
The implementation is in the Appendix in Listing 20.

8https://github.com/RDFLib/rdflib

65

https://driving-tests.org/wp-content/uploads/2020/03/MA_Drivers_Manual.pdf
https://driving-tests.org/wp-content/uploads/2020/03/MA_Drivers_Manual.pdf
https://github.com/RDFLib/rdflib

detected.” This is combined with the other rules fired (e.g., the speed rule—do not

make a sudden stop at high speeds) to create the explanation— “Since there is a

pedestrian in the road, move is unreasonable.”

4.4 Evaluation

The monitoring system is evaluated in two ways: by validating the judgment of

reasonableness, and a user study to evaluate how well the system can generate ex-

planations. The output of the monitor is binary judgment, indicating whether the

proposed input is reasonable or not, and a human readable explanation explaining

that judgment. Examples of these explanations can be found the appendix. With

this evaluation, this work aims to answer the following two questions:

1. How accurate is the system at detecting unreasonability?

2. Are users convinced that the statements provide a convincing explanation for

reasonable or unreasonable input?

4.4.1 Validation

Since I have not been able to implement the model on a deployed system with real

data, I developed my own test sets based on uses cases from interviews with potential

customers. The perception description test set is 100 descriptions that I developed

to validate the end-to-end reasonableness monitor in Section 4.2. The descriptions

are equally split between unreasonable and reasonable, with different verbs, subjects,

objects, and contexts.

For the vehicle action test cases, I developed 24 examples. These examples were

generated from four lights (red, yellow, green, no light), three motions (move forward,

turn, stop), and a binary choice for obstructions (pedestrian or no pedestrian). For

validation purposes, I checked that the monitor can determine whether a perception

description or a vehicle action is reasonable or not. Each description of a vehicle action

66

or perception description is labeled with a 1 or 0 as reasonable (1) or unreasonable

(0).

The adaptable monitoring system judges reasonableness with 100% accuracy on

the vehicle action test set. Since there are a countable number of rules and combina-

tions, this makes sense. If the system is deployed in a working vehicle simulation or

platform, more sophisticated and complex rules may be needed. This is discussed in

Section 4.6.

4.4.2 User Study

I recruited 100 users from Amazon Mechanical Turk to evaluate the explanations.

The study participants were instructed to rate each explanation on a five point Likert

scale from “not convincing” to “very convincing.”

Participants were presented with 40 explanations, evenly split between reasonable

and unreasonable judgments. There were 20 vehicle planning explanations, and 20

perception description examples. I presented only 40 explanations to avoid exhaus-

tion. Participants were instructed to rate how convincing the explanations were, on

a scale from 1 to 5. The average score over all explanations was 3.94, indicating

that most users were moderately convinced that the explanations. The survey also

included an optional question for users to explain why they choose their indicated

rating for each explanation. A table of a sample of explanations for the four types of

explanations tested: reasonable vehicle plans, unreasonable vehicle plans, reasonable

perception descriptions, and unreasonable perception descriptions is in Table 4.3.

Users were convinced of the monitor’s explanations, since all explanations were

rated at an average above 3.5. A distribution of ratings can be found in Figure 4-2.

In general, users were slightly more convinced by two factors. Firstly, reasonable were

rated higher than unreasonable statements. This could be due to positive bias [105],

demonstrating that people are generally more favorable to positive examples. Sec-

ondly, perception description explanations (both reasonable and unreasonable) were

rated higher than vehicle planning explanations. This could be attributed to users

being less familiar with vehicle rules. Both differences were not statistically signifi-

67

Figure 4-2: Average rating of 40 explanations over 100 user trials. There are 4 sets
of explanations (from left to right): reasonable vehicle plans, unreasonable vehicle
plans, reasonable perception descriptions, and unreasonable perception descriptions

68

Reasonable Unreasonable

Vehicle Plans Although green means go,
green also means yields to
pedestrian in the road. Since
there is a pedestrian in the
road, waiting is reasonable.
So it is reasonable for the ve-
hicle to wait.

A yellow light means ’stop
if safe’, which is inconsistent
with go. So it is unreasonable
for the vehicle to go.

Perception Descrip-
tions

Although a tree cannot propel
something on its own, a storm
can propel a stationary object
to move. So it is reasonable
for a tree to hit a car in a
storm.

A laptop is an object that can-
not move on its own. So it is
unreasonable for a laptop to
move without context.

Table 4.3: Comparison of explanation descriptions for the four types of explanations
tested: reasonable vehicle plans, unreasonable vehicle plans, reasonable perception
descriptions, and unreasonable perception descriptions.

cant.

4.4.3 Example Explanations

The reasonableness monitor fails on some examples. The majority of these failures

are due to ConceptNet: the relations are not well-defined. A breakdown of failure

cases (and their root causes) is shown in Table 4.4. Table 4.3 displays a few stable

explanations. One interesting example of a reasonableness monitor failure is below:

Input: A hamburger crossing the street.

This perception is REASONABLE:

A hamburger is an animal that can move on its own. So it is

reasonable for a hamburger to cross the street.

This case is interesting because the monitor judgement is wrong, although the rea-

soning is sound. The problem is that there is a chain of IsA relationships in the

commonsense knowledge base that attached hamburger to an animal: (hamburger

IsA food) AND (food IsA animal).

69

Classify as:
Reasonable Unreasonable

Label as:
Reasonable Parser: 2

ConceptNet: 8

Unreasonable Parser: 2
ConceptNet: 6

Table 4.4: A analysis of the causes of the 18 misclassifications on the 100 test cases.

4.5 Applying Reasonableness Monitors

The adaptable implementation (Section 4.3) can be applied to new applications and

domains. The monitoring framework is designed for opaque subsystems where output

can be logged9. These are the requirements to apply reasonableness monitors to a

new application.

1. Data schema: A data schema for model outputs (e.g. labels) and context (e.g.

input or meta data) needs to be defined. Commonsense data (or reasonable

data) for the domain also needs to be given or defined10.

2. Reasonableness rules: Commonsense rules for the domain need to be provided

in AIR.

4.6 Limitations

I define reasonableness as a binary value: it satisfies a set of commonsense rules. In the

case of vehicle planning, these are the rules of the road. For the perception example,

these are commonsense rules for the actor and object of the input description. In

reality, reasonableness should be a score. Reasonableness scoring is being explored

in ongoing work with vector representations of words from GloVe [178], which can

calculate the distances between words or concepts.

9It is preferable if the output is not time dependent. Otherwise, the methodologies in Chapter 3
can be used.

10The commonsense data can also be queried; the search code for ConceptNet in the Ap-
pendix B.2.2

70

This system has has not been validated on machine-generated image captions, such

as Microsoft’s Common Objects in Context (COCO) database [140]. One challenge

is that these captions are not necessary unreasonable in the sense that our monitor

expects: they are often reasonable because they describe reasonable visual scenes,

but incorrect because the description is not correlated with the input image. Another

concern is that ConceptNet nodes are identified by words and phrases in “outer”

natural language, while CD primitives are meant to be inner-language conceptual

representations.

Although this system works fairly well in practice, it does have some obstacles to

overcome to become a deployable system. I developed a parser to represent the data

in RDF, but this may have to be done manually in different applications, as it may

not generalize. The use case of a perceptual “scene understander,” sometimes referred

to as an opaque, deep neural network, is over-simplified for demonstration purposes.

In future work, I may want to apply this system to an actual image captioning system,

although their description of “reasonableness” is slightly different. In that context,

reasonableness is a caption that accurately describes the intended photo. That kind

of monitoring is much harder to enforce than the reasonableness rules that I have

defined in this Chapter.

The use cases are simplified for demonstration purposes. The vehicle actions

have limited context and perceptual use case is simplified. For a deployed system,

these cases will be expanded to cover complex corner cases that are typically not

well-represented in the training data.

4.7 Ongoing Work

In ongoing work, I am combining reasonableness monitoring with the causal reasoning

models from Chapter 3. Imagine monitors that could not only justify their behav-

ior with commonsense, but also justify their behavior with a causal story. This will

71

require organizational knowledge about the underlying subsystem11. I will also use

explanatory methods [19, 112] that examine internal representations of an opaque sub-

systems. Then, I will create a model of the casual links among those representations.

Finally, I will incorporate that model into a reasonableness monitor, to explain (1)

the internal representations supporting the input subsystem’s decision (or not) and

to (2) build a symbolic story supporting the subsystem’s decision with commonsense

and causal reasoning.

4.8 Related Work

One goal of reasonableness monitors is to create safe, trustworthy autonomous sys-

tems made out of subsystems that themselves are made out of parts: a “multi-agent

system” [158]. Marvin Minsky used the term “agent” to describe any component,

subsystem, or part of a cognitive process that is simple enough to understand [210].

Since no single method of problem solving will always work, Minsky suggested that

we also need to know about pitfalls and corner cases. He encouraged the use of neg-

ative expertise in the form of censor and suppressor agents [159]. Minsky explains

that negative knowledge and examples are important to create intelligent systems.

He suggested implementing negative knowledge by dividing a complex system into

parts that can monitor each other, similar to my monitoring framework.

This chapter imposes sanity checks by monitoring subsystems for reasonable out-

puts. Monitoring for reasonability is an open topic in computer science. Although

formal approaches are provably correct, they do not lend themselves well to an im-

plementation. Collins formal approach based in logic [42] lacks a structural imple-

mentation. Cohen’s logical theory of reasonable actions [41] represents “language as

action,” but it is specific to the defined set of reasonable action expressions from logic.

While methodological approaches are more generalized, they remain specific to the

machine specifications [2] or software specs.

11Recall from Chapter 3 that the propagator models need structure. They are, after all, model-
based reasoning systems.

72

Reasonableness monitors represent the input description in terms of conceptual

primitives. Roger Schank introduced Conceptual Dependency theory and its concep-

tual primitives for natural language understanding [198]. Similar work in computa-

tional semantics [101], shows that it is necessary to represent these kinds of conceptual

structures or thoughts and not simply study language in isolation. There are other

choices for compositional decompositions representations [234, 233], including prim-

itives that describe transition space change [26]. Since my domain is a self-driving

car, primitives of physical change, like Schank’s Conceptual Dependency theory are

most applicable.

Reasonable knowledge is provided to the monitoring system from a commonsense

knowledge base. In the adaptable monitoring system, this knowledge is parsed into

a web standard. Commonsense knowledge bases are key tools for developing systems

that understand natural language descriptions and produce explanations. Although

CYC is regarded as the world’s longest-lived artificial intelligence project [135], with a

comprehensive ontology and knowledge base with basic concepts and “commonsense

rules,” there have been significant challenges to using CYC for NLP [148]. Speer

and Havasi [212] demonstrate the usage of ConceptNet5, a freely-available seman-

tic network of commonsense knowledge. Research on SenticNet [32] was inspired by

primitive decomposition theories [198], and links ConceptNet concepts to conceptual

primitives that help generalize them to overcome linguistic variation. Combining

knowledge bases and web standards has been implemented as ConceptRDF; a con-

version of ConceptNet to RDF/XML format [166], although the rules are not applied

to working system. ConceptNet and rules have been combined for emotion recogni-

tion [205], but this work is a combination of rules and common sense for detecting

and explaining reasonableness.

Reasonableness is validated and checked with an existing reasoning system. A

production quality reasoners keep track of consistencies. Since the adaptable monitor

is focused on making a generic monitor using semantic web technologies with RDF

(explained below) to represent logs and AMORD In RDF (AIR) [111] as a rule lan-

guage that supports AMORD-like constructs [116]. AMORD is a rule-based problem

73

solver that keeps track of dependencies, similar to truth maintenance systems [50].

AIR describes properties that can be used to define policies and a reasoner to pro-

vide reasons and explanations. RDF12 is an acronym for the Resource Description

Framework, which is a World Wide Web Consortium (W3C) standard. W3C is the

main international standards organization for the World Wide Web. While RDF is

used mainly for managing and representing data in web frameworks and resources, it

is also used in a variety of knowledge engineering tasks due to its triple-store format.

This format is useful for representing language (as subject-predicate-object) and for

representing premises.

Reasonableness monitors are a system-methodology to identify and explain anoma-

lies in perception, using commonsense knowledge to determine the reasonableness of

perception-derived scene descriptions [74, 79]. This work was extended to validate

scene descriptions from an immersive virtual reality environment [82]. By contrast, in

this chapter, I concentrate on the methodologies, rather than potential applications.

4.9 Contributions

In general, opaque machines and complex algorithms work well in practice. In this

chapter, I presented reasonableness monitors : a final “sanity-check” for autonomous

machines and algorithms, especially those making mission-critical or safety-critical

tasks. In Section 4.2, I used conceptual primitive decomposition as the core repre-

sentation for a monitoring system. I showed how this systems provides succinct, con-

vincing explanations of unreasonable (or reasonable) perceived scenes. In Section 4.3,

I extended the CD representation to an adaptable framework, so that reasonableness

monitors can be utilized to impose reasonableness sanity checks on various subsys-

tems’ outputs.

The key idea here is that monitoring should not be invasive; it should provide an

additional set of quick “checks” to ensure more reliability and safety. Automobiles

and their autonomous counterparts are engineering marvels, and they work quite well

12https://www.w3.org/RDF/

74

https://www.w3.org/RDF/

most of the time. The idea of reasonableness monitoring is to make them work better

by removing blatantly unreasonable situations that can have bad consequences. But

monitoring can also be used to alert for help and for developing better benchmarks

for safety-critical decisions.

As we add more parts and computational power to these vehicles we not only

increase the number of ways for the machine to fail, but also the number of ways

the system can be infiltrated. Consider the recent increase in vehicle hijacks [154].

Although monitors may not directly minimize the security vulnerabilities, they will

allow infiltrations to be detected in a novel way. Self-monitoring constructs, like the

one proposed in this chapter, are a small step towards developing machines without

errors, that are more trustworthy, and that perform reasonably, as we expect them

to.

75

76

Chapter 5

Interpreting Sensor Data

“You could claim that moving from pixelated perception, where the robot looks

at sensor data, to understanding and predicting the environment is a Holy

Grail of artificial intelligence.”

– Sebastian Thrun

A complex mechanism, like a self-driving car, is made out of subsystems that are

made out of parts. In Chapter 4, I discussed how to monitor opaque subsystems,

e.g, deep neural networks or a proprietary planning algorithm, with commonsense

knowledge and rules. But there are other components of a complex mechanism; in

fact, almost all complex machines have sensors at various levels of detail. Unlike the

opaque subsystems, these sensors output large amounts of data. However, the trouble

is understanding that data, particularly, in a way that can be understood at a higher,

symbolic level, requires an interpreter: a program or method that can analyze sensor

data and translate it into a symbolic description.

In this chapter, I present a qualitative sensor interpreter. This sensor interpreter

builds upon the event-based detection and qualitative reasoning from Chapter 3. It

processes a short (10-20 second) sensor interval and outputs a description of what

it perceives; particularly the size and movement of objects. A series of test parallel

parking simulations show the accuracy and performance of the interpreter on sensory

Light Detection and Ranging (LiDAR) data.

77

There are two phases of this chapter. The first is a proof-of-concept sensor in-

terpreter for simulated LiDAR data. The proof-of-concept is demonstrated on par-

allel parking examples. The second phase is how to extend the sensor interpreter

to current-day LiDAR traces, which have increased in scale and complexity. In Sec-

tion 5.6, I discuss this problem in detail, and in Section 5.7, I suggest future research

directions to incorporate these types of symbolic sensor interpreters into existing point

cloud classification methods.

5.1 Introduction

All complex mechanisms have sensors. As a broad definition, "a sensor is a device,

module, machine, or subsystem whose purpose is to detect events or changes in its

environment and send the information to other electronics, frequently a computer

processor. A sensor is always used with other electronics."1 Sensors are rarely used

in isolation. They are necessary inputs to sophisticated subsystems e.g., the anti-lock

braking system (ABS), in which the tire sensor consistently monitors wheel rotation

rates and recognizes when a sudden change occurs. For example, if the tire sensor

detects that the wheels are locking up, the anti-lock braking system attempts to

prevent a skid by repeatedly applying and releasing the brakes, automatically [152].

These automatic safety measure can save lives [60].

Outside of the vehicle domain, people interact with sensors everyday. There are

sensors in touch-sensitive electronics, e.g., smart phones2, 3 or even the keys on a

keyboard. Sensors are important for my thesis work because they perceive small

changes. A humidity sensor can signify changes in weather. A LiDAR sensor uses

laser light and reflections to measure distances from neighboring objects.

1Wikipedia provides a comprehensive definition of a "sensor" in different applications: https:
//en.wikipedia.org/wiki/Sensor.

2One example of a smart phone sensor is the accelerometer which indicates how
to rotate your screen: https://www.nytimes.com/2018/08/07/technology/personaltech/
screen-rotate-isnt-working.html.

3Other sensors have implications to personal privacy: https://www.nytimes.com/interactive/
2019/12/19/opinion/location-tracking-cell-phone.html, but that is out of the scope of this
thesis.

78

https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Sensor
https://www.nytimes.com/2018/08/07/technology/personaltech/screen-rotate-isnt-working.html
https://www.nytimes.com/2018/08/07/technology/personaltech/screen-rotate-isnt-working.html
https://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html
https://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html

5.1.1 LiDAR Sensor Limitations

LiDAR systems have changed the landscape of self-driving vehicle, but LiDAR is ex-

pensive to process in real-time. LiDAR can make high resolution maps [33], which has

a new purpose applied to detecting obstacles in self-driving vehicles [138, 173]. While

image data provides detailed, high-resolution information, it is expensive to process

in time and computational resources, leading to decrease the input resolution [244],

which may obfuscate crucial information.

LiDAR sensors provide detailed depth information that is difficult to interpret.

The output of a LiDAR sensor: a “point cloud” represents the surrounding environ-

ment in 3D space. But these signals are noisy and difficult to interpret: point clouds

do not embed the high-level qualitative descriptions that would be useful in diagnosis.

The state-of-the-art in LiDAR “understanding” to detect and classify objects, which

suppresses depth information.

Neural networks are able to process LiDAR data for single-task classification [127].

For self-driving cars, the single tasks is object detection and labelling. While neural

networks are very good at detection and labeling if there is a lot of training data,

they also lack the ability to do multiple tasks.

For multi-task classification, neural networks have been lagging. Neural networks

can only perform one task, and they do not have commonsense. For example, LiDAR

data is useful for tracking objects and describing their movement. But object detec-

tion and tracking are separate tasks: tracking is typically done by another model or

process [215]. However, the type of object detected and its movement or trajectory

are deeply correlated. Detection and tracking should be incorporated in the same

process, along with commonsense. For example, if a skateboard is observed moving

near a neighborhood, someone (probably a child) is chasing after it. I show how

to interpret sensor data to perform multiple tasks: qualitative object detection and

tracking, which is supported with commonsense knowledge.

In this chapter, I present a sensor interpreter that takes a point cloud as input

and produces a qualitative description of what it has perceived. This method has

79

been tested exclusively on simulated LiDAR data, but the method is applicable to

other sensor outputs, as well. Although the density of the data matters, as described

in Section 5.6, this method is a first step towards interpretable, rule-based symbolic

interpretation of noisy sensor data.

5.2 LiDAR Sensor Overview

LiDAR is an active remote sensing system. It is a way that autonomous systems

can perceive the world4. LiDAR works similarly to radar5 and sonar6. The LiDAR

unit emits infrared light (also known as "laser beams") and measures how long each

light beam takes to come back after hitting a nearby object. The LiDAR unit does

this millions of times a second to create a "point cloud": a 3-D map of the LiDAR’s

perceived world. LiDAR detection range varies, for example, the Luminar7 LiDAR

unit has a 200 meter radius and is used by the Toyota Research Institute8 and Volvo.

5.2.1 Simulated LiDAR format

LiDAR units are typically placed on the top of vehicles. They emit infrared light at

various degrees elevation9 and azimuth degree. An azimuth is an angular measure-

ment in a spherical coordinate system. Each LiDAR "hit" (the distance in meters to

the detected object) has a corresponding degree elevation and azimuth degree.

In simulation, LiDAR data was generated using the same vehicle simulation system

described in Chapter 3. The LiDAR output is represented by the keyword lidar

and is output on the vehicle log every tenth of a second. Each row contains 1980

4I argue that the greatest challenge in autonomous driving is perception. In the safety-critical
driving environment, robust vision and LiDAR processing is essential. But these systems are brittle,
and require careful signal processing.

5Radar uses radio-waves to determine the range, angle, or velocity of objects. It is used in ships
and air crafts.

6Sonar uses sound to determine the range, angle, or velocity of objects underwater. It is used in
submarines.

7https://www.luminartech.com.
8Perception Technology for TRI Platform 3.0: https://www.tri.global/news/toyota-research-

institute-introduces-next-generation-automated-driving-research-vehicle-at-ces-2018-1-4.
9In my work, the LiDAR starts from a neutral degree elevation and rotates down to -10 degrees.

80

https://www.luminartech.com

Degrees Elevation
0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

0 N0 N0 N0 46.6 53.4 40 31.9 26.3 22.6 20 18
2 N0 N0 46.9 46.6 54.1 40.1 31.7 26.1 22.5 20 18
4 N0 N0 N0 79.6 54.6 40.1 31.6 25.9 22.5 20 18
6 N0 N0 N0 79.6 54.6 41.1 32.9 25.7 22.5 20 18

Azimuth 8 N0 N0 N0 79.5 54.7 41.1 32.7 26.3 23.1 20 18
Degrees 10 N0 N0 N0 79.4 54.7 41.1 32.5 26.1 23 20.6 18.4

12 N0 N0 N0 79.3 54.7 41.1 32.5 26 22.9 20.6 18.4
14 N0 N0 N0 81.6 54.6 41.1 32.6 26 22.9 20.6 18.3
16 N0 N0 99.7 81.5 54.6 41.1 32.8 26.5 23 20.6 18.3
18 N0 N0 101.7 81.3 54.5 41 32.8 27 23.2 20.6 18.3

Table 5.1: A raw data table of the LiDAR traces. The LiDAR unit starts at 0 azimuth
degrees and emits 11 pulses at 0,-1, ...,-10 degrees elevation for every two azimuth
degrees.

values: it reports a value for every 2 azimuth degrees (0,2,4,. . . azimuth degrees)

for 11 degrees elevation10. The raw data trace format starts in front of the vehicle

at 0 degrees elevation and 0 degrees azimuth. For each azimuth it sends emits 11

pulses at descending degrees elevation (starting at 0-neutral and descending to -10

degrees elevation). From the point of reference of the vehicle, the LiDAR unit rotates

clockwise and repeats the process every 2 degrees: it emits 11 pulses at 0,-1,. . . ,-10

degrees elevation. It continues this process until the unit has made a full rotation. A

raw data table of values for a subset of one LiDAR row is in Table 5.1. The values are

rounded to the nearest tenth of a meter, and a value of N0 indicates that no object

was hit. A full row of data is in the Appendix in Table C.1.

5.2.2 LiDAR format in Collected Data Sets

Nuscenes [31] and other self-driving data sets report LiDAR data as a PointCloud

object. The PointCloud object is a list of LidarPointCloud instances: (x, y, z,

intensity), where x, y, and z are coordinates, and intensity is the return strength

of the laser pulse that generated the point. The x direction is left and right, the y di-

10Since the LiDAR unit is on the top of the vehicle, the degrees elevation start at 0 and point
down. So that the elevation is negative.

81

Figure 5-1: The 4th, 5th, and 8th beams of nuScenes LiDAR data for one sample.
The 4th beam is in blue, the 5th beam is in green, and the 8th beam is in red. The
8th beam, seen in red, is hitting the ground.

Figure 5-2: The 1st, 10th, and 20th beams of nuScenes LiDAR data. The 1st beam
is blue, the 10th beam is green and the 20th beam is red. The first and 10th beam
are reflecting off parts of the vehicle. And the 20th beam is too scattered.

82

rection is front and back, and the z direction is up and down. The raw LidarPointCloud

instance also has a beam number (sometimes called a ring number) which corresponds

to the beam which sent out the returned point. The LiDAR unit is located at (0,0,0).

NuScenes uses 32 beams (or rings). Each beam samples a cone around the detec-

tor. The axis of the cone is a vertical line. There is a cone for each of 32 altitude

angles from -30° (peering down) to +10° degrees (looking up). The beam is rotated

around 360° in azimuth, sampling 1084 points at that altitude in each rotation. This

results in 34,688 LidarPointCloud instances for each timestamp. But, this LiDAR

data is noisy, which is shown in Figure 5-1. In red, the 8th beam is a circle in the x-y

plane at 𝑧 = 2 meters. This can be interpreted as hitting the ground, since the origin

of the LiDAR unit is on top of the vehicle at (0,0,0) and the height of a vehicle

is around 2 meters. The average angle of ring 8 is -20 degrees. This makes sense,

because the circle is on the ground and the average distance to the ground is -1.77

meters

Some beams are more useful than others. In my analysis, I do not use the early

beams (e.g. 1,2,3) and later (e.g. 20+) beams, as illustrated in Figure 5-2. These

beams are particularly difficult to understand. In particular, the first beam is too

close, hitting the top of the vehicle. The tenth beam hits the ground, and the 20th

beam is too far away. The code to generate these visualizations are in the Ap-

pendix 16.

The nuScenes LiDAR traces are intended to be visualized with the vision data, as

seen in Figure 5-4. In the top-down LiDAR view in Figure 5-3, there is a slight tilt

in the vehicle’s position. This can also be detected from the difference between the

angle on the left of the car and the angle on the right of the car, which I do in my

analysis.

5.2.3 Related Work on LiDAR Processing

In the literature, point cloud interpretation is defined as an "object detection" tasks.

This detection task is defined as creating a "tight" bounding box around perceived

objects. This is difficult due to the amount of noise in point cloud data. One way

83

Figure 5-3: A top-down view of all the LiDAR beams.

84

Figure 5-4: A view of all the LiDAR beams on top of the front-facing camera image.

to decrease noise is to supplement LiDAR with vision data. Frustum PointNets [181]

uses LiDAR data to expand 2-D image detection to 3D bounding boxes. This is an

extension of [182], a unified neural network architecture to segment point cloud data.

I focus on nuScenes because the data set is the most realistic. The nuScenes data

set is long-tailed, highlighting the imbalance between common and rare object classes.

Although the nuScenes challenges are the “closest” to real-world scenarios due to the

data distribution, the challenges do not require abstract thinking11.

As of July 2020, the top performing algorithms on the nuScenes detection task

using only LiDAR 12 were the following algorithms:

1. CVCNET, which is based on Class-based Grouping and Sampling (CBGS) [255],

the algorithm used by the third-rank MEGVII team.

2. DTIF, which is developed by Shanghai JiaoTong University (SJTU), but not
11The major problem in self-driving is the gap between reality and a vehicle’s representation of

it. This gap makes it impossible to represent all failure cases in training data (regardless of how
“close” that data is to real-world data distribution) and creates the need for anticipatory thinking
in autonomous driving. I argue that self-driving challenges should encourage methods that can
identify possible failure cases and manage the vehicle’s risk exposure to them under the uncertainty
in real-world environments.

12The real time results on the nuScenes challenge is updated dynamically: https://www.
nuscenes.org/object-detection?externalData=no&mapData=no&modalities=Lidar. Note that
these algorithms only use LiDAR data.

85

https://www.nuscenes.org/object-detection?externalData=no&mapData=no&modalities=Lidar
https://www.nuscenes.org/object-detection?externalData=no&mapData=no&modalities=Lidar

published.

3. The MEGVII team from Tsinghua University that uses "Class-based Grouping

and Sampling" (CBGS) [255]. The goal is to extract features from the data

(using a 3D convolutional CNN), and then use a class-balanced sampling and

augmentation strategy for a more balanced data distribution.

Recently, state-of-the-art methods have been published that outperform the pre-

viously mentioned algorithms. CBGS recently outperformed PointPillars [127], which

was previously the leading algorithm on the nuScenes detection challenge. Pointpil-

lars is an encoder method, which utilizes PointNets to learn a representation of point

clouds indexed by vertical columns, which they call pillars. These features are then

incorporated into a 2D CNN architecture for object detection.

Mohammad Sanatkar provided a very comprehensive overview of the state-of-the-

art in LiDAR interpretation [196] in a blog post13. Most of these methods combine

vision data and LiDAR data for more data and features in CNN object detection. To

my knowledge, my work is the first method to qualitatively understand dense point

clouds using edge detection, rather that neural network architectures.

5.3 Method

In order to describe the "point clouds" that a LiDAR sensor perceives, I created

thresholds to find "edges," or a cluster of points signaling an object. Thresholds were

made on a trial by trial basis that depended on the application, frequency of LiDAR

data, and objects in question. I describe this process for detecting vehicles below.

5.3.1 Edge Detection for Object Detection

For my use case, I was interested in detecting vehicles and people. Therefore, I had to

define a rule for detecting vehicles, and another rule for detecting pedestrians based
13During this thesis work, most of the leading LiDAR interpretation methods were developed in

industry and trade-secret. So most of the "cutting-edge" algorithms are described in blog posts
instead of academic papers.

86

on their size in the frame of reference of the vehicle. I focused on these two concepts

because the specific motivating problem was to detect errors in parallel parking. For

detecting other vehicles, I used simple geometry to figure out how many LiDAR

hits (or detections) are necessary to confirm there is a car in front (in the frame of

reference of the vehicle). I could also use this information to create a short list of

rules to classify the detected objects based on their approximate geometry, and not

necessarily rely on training data. This is important especially for objects that may

not be present in a training data set. For example, if the autonomous vehicle has

never seen a pedestrian walking a bicycle before, it may not be able to classify it, but

it will know it’s an important "object of interest" because it’s wide (~2 meters wide

and moving).

5.3.2 Angle Estimation

Simulated LiDAR readings report the distance from the LiDAR indexed by an az-

imuth and an altitude. In my analysis, I calculated and estimated the angles between

successive LiDAR points. I filtered for the edges of successive LiDAR hits, at specific

distances (𝑑1 and 𝑑2) and the angle between them, 𝜃, to classify detected objects. This

method is faster and more interpretable than opaque learning systems that classify

objects: the detections and classifications have implicit reasons (e.g., this perceived

object is a vehicle because it is 2 meters wide, which is too wide to be a pedestrian,

etc.)

This estimation setup is visualized in Figure 5-5. The Law of Cosines, in equa-

tion 5.1, shows the relation between the detected distances at the endpoints (𝑑1 and

𝑑2) from the LiDAR log, and the angle between the edges of that object, 𝜃. Consider

if the detected object is directly in front of the simulated (self) vehicle. This is useful

for parking and stopping distance estimation. For the remainder of this section, I

focus on the use case of parallel parking.

𝑥2 = 𝑑21 + 𝑑22 − 2𝑑1𝑑2 cos 𝜃 (5.1)

87

x

δ

y

x
2

x
2

l
2

l
Car in front

self

x

θ
d1 d2

l

θ
d1 d2

Figure 5-5: The geometric definitions for an object detected precisely in front.

To understand how Equation 5.1 can be used for detecting another car parked in

front of the self-driving car, see Figure 5-5, where there is an object detected directly

in front of the vehicle. I approximated the number of hits to determine that the

object is a vehicle at various distances by using: cos−1 𝜃 = 1 − 𝑥2

2𝑑21
, where 𝑥 is the

approximate width of the object in front. I assume that the LiDAR unit is in the

middle of the vehicle14. Then if the estimated width, 𝑥, is hypothesized to be the

width of a standard vehicle, and 𝑙 is the length of a standard vehicle, let 𝑥 = 2 meters,

14This is a fairly good estimation, as most LiDAR units are mounted on the top of the vehicle,
showing a global view of the LiDAR traces radiating from the center of the vehicle. An example of
this “global” LiDAR view is at the end of this chapter in Figure 5-9

88

θ′�

x′�
d′�1

d′�2

γ

y = δ + l
2

δ

l
2

Car in front

self

θ′�

x′�
d1

d2

l
2

self

x

Car in front

Figure 5-6: The geometric definitions for a vehicle detected to the front and to the
side. The precise setup is shown on the left, and the estimated definitions are shown
on the right.

and 𝑑1, 𝑑2 = 4 meters to get 𝜃 = .505 radians = 29.0 degrees.

This is an educated estimate. While the exact number of hits depends on the

scale of LiDAR hits, the conclusion is that I will need to have about 29 degrees of

consistent detections to be confident in the detection of a standard vehicle at 4 meters

distance from the vehicle (at the edges).

Zoe Liu and I extended this analysis for general parallel parking scenarios [146].

Consider if the vehicle is not directly in front, but to the side, as seen in Figure 5-6.

Using the same equation, I get an estimate for 𝑥′, the chordal distance between 𝑑1

and 𝑑2 at angle 𝜃. Since I was focused on estimating this distance, I choose to use

the same equation, and let 𝑥′ ≈ 𝑥. For my scenarios, this worked well, especially

because the rules are in specific ranges corresponding to qualitative values; so the

exact measurements need to only be estimated.

Note that 𝑥 can be more precisely estimated from 𝑥′, 𝑑′1 and 𝑑′2: the corners of the

89

object, classified by the nearest detection. But, this is not always feasible, especially

when there are multiple objects detected, as is typical in most urban, self-driving

environments. This may be explored in future work.

5.3.3 Object Tracking: Describing Movement

Once an object has been detected, tracking movement of objects from the simulation

is straight forward. A propagation model is used with a set a rules that define quali-

tative movement changes, which is describe in Chapter 3. The first step is alignment:

finding the detection of the same object that moves across a scene. This is done

by collecting the object detection across snapshots and qualitatively describing the

movement across several seconds.

5.3.4 Parking Rules

The use case to evaluate this LiDAR interpreter is a parallel parking scenario, shown

in Figure 5-8. This scenario was chosen because it relies on LiDAR information,

concrete rules, and it extends the work in Chapter 3.

I defined the minimum space needed by Equation 5.2 [25]. Let self be the vehicle

doing the parking, where 𝑙 = length of the self vehicle, 𝑥 = width of the vehicle in

front, 𝑘 = distance from the front wheel to the front of self, 𝑏 = the length of the car’s

wheel base, and 𝑟 is the radius of the vehicle parking’s curb-to-curb turning circle.

These are shown in Figure 5-7 and the equation for minimum space needed is given

by Equation 5.2.

minimum space =

√︂
(𝑟2 − 𝑙2) + (𝑙 + 𝑘)−

(︁√
𝑟2 − 𝑙2 − 𝑥

)︁2

− 𝑙 − 𝑘 (5.2)

The parallel parking rules can be expressed as following four thresholds (and an

optional fifth threshold).

1. Minimum space needed: threshold given by Equation 5.2.

90

Figure 5-7: Visual diagram for the variables for the parallel parking scenario.

2. Backup threshold: the distance between the front of our car and the back of

the car we are aligned with.

3. Turning threshold: theta between our right front wheel and the back left wheel

of the car we are aligned with (r = radius of our car’s curb-to-curb turning

circle).

4. Straightening out threshold: theta between our right back wheel and the hori-

zontal

5. (OPTIONAL) Driving forward threshold: optional, minimum space needed -

the length of our car.

Screen shots of these stages are seen in Figure 5-8. Note that checking whether there

is enough space to park is done as the car approaches a potential parking space. After

91

the thresholds have been validated, the parking process is completed in three steps:

1. Approach: bring vehicle to the front of the parking location.

2. S curve: reverse into the space in an “S” shape.

3. Straighten out: once vehicle is in the space, pull forward evenly.

The calculations, using the propagator system [184] is in the Appendix in Listing 13.

5.4 Experiment Results

In order to validate this LiDAR interpretation method, I used simulated log traces,

similar to the ones generated for ex post facto explanations [75]. Because of the

manual controls necessary to run the simulations: an operator had to control the

vehicle in simulation, I focused on a few scenarios targeted at describing the LiDAR

behavior for parallel parking scenarios.

5.4.1 Simulated LiDAR challenge scenarios

The main challenge scenarios were parallel parking logs, which was joint work with

collaborator, Siyu (Zoe) Lu [146]. Example outputs for each operation and for the

whole parking process are split into four parts.

The process checks if there is enough space to park. This is done by measuring

distances and checking it against the minimum parking distance; Equation 5.2. The

explanatory results for a safe parallel park are shown below:

(explain-readable distance)

REASON: The car length exceeds the minimum space needed for parking.

Consistent with the Lidar data.

The second step of parking process checks the S-curve behavior. This is performed

in two steps. First, it is confirmed that the vehicle backs up:

92

Figure 5-8: Screenshots of the four stages of parallel parking from the Unity game
engine.

(explain-readable wheel-acceleration)

REASON: Front wheels and rear wheels accelerated backwards.

Consistent with the steering wheel and accelerometers.

Since the forward acceleration of the car is negative,

the car MUST HAVE backed up.

The second step of the S-curve makes sure that the correct motions took place to

complete the action:

(explain-readable wheel-acceleration)

REASON: Front wheels and rear wheels accelerated backwards AND

Left wheels accelerated more than right wheels.

Since the forward acceleration of the car is negative,

the car MUST HAVE backed up.

Since the magnitude of acceleration of left wheels are

larger than the magnitude of acceleration of right wheels,

the car MUST HAVE turned in.

93

And at the end, successful parking is verified and explained:

(explain-readable parking)

REASON: Regular parking process within all thresholds.

Since the car has backed up, turned in, straightened out,

and driven forward within thresholds,

the car MUST HAVE parked safely.

There are also examples of unsuccessful parking. This is one example of an error

during the backup (first step in the S-curve procedure):

(explain-readable parking)

REASON: Error in backing up.

Since the position of the car before and after backing up exceeded

the backup threshold,

the car MUST HAVE made an error in the backup step.

5.4.2 Data Set LiDAR Challenge Results

Figure 5-9: Various sensor outputs for a nuScenes scene snapshot.

The task to interpret LiDAR in collected data sets is different than the parallel

parking example. In this task, I was interested in qualitatively describing LiDAR

traces. Figure 5-9 shows various sensor outputs that are difficult to interpret. The

labeled outputs is "Pedestrian with a pet, bicycle, car making a u-turn, lane changes,

94

pedestrian crossing in a crosswalk." The task is to interpret LiDAR point clouds and

output a qualitative description.

The first step is to separate the LiDAR point clouds into distinct objects. This

is done with edge detection, as described in Section 5.3.1. However, this method

changes for the scale of collected LiDAR data15 for two reasons.

1. Edge detection is applied for each beam or ring. The early beams are dis-

regarded, as the points reflect off the top of the car, as seen in Figure 5-2.

Similarly, later beams are also disregarded as they reflect off the ground. The

width of an object is the edge length of the earliest beam. The depth is calcu-

lated by finding the last beam where the object of "similar" length was detected.

This method succeeds in finding about 50 percent of all the objects in a scene.

The method fails on objects that are far away, multiple objects being classified

as a single object, and due to the lack of non-hit points. Down sampling will

be revisited in future work, although initial attempts failed.

2. Collected data sets are quite dense; in a single snapshot or scene, there are very

few "non-hits," or LidarPointCloud points that do not hit any object. The

number of non-hits in a scene is between 40-50 points. Therefore, I could not

apply edge detection directly, since nearly all the points are continuous hits.

Due to the difficulties in applying the method directly, an intermediate "bounding-

box" method was used. "Bounding box" methods or "object detection" methods for

point cloud data, are used to generate a tight box around objects. These methods are

described in Section 5.2.3. The nuScenes data set has metadata for these bounding

boxes in each annotated object, as the size property, seen in Figure 5-10. These

boxes are then qualitatively described using threshold rules for size, location, and

movement (by tracking the object across a scene).

movable_object.trafficcone

[1345.3609354399998, 3926.40104428, 2.15223104]
15In simulated data, there are 1,980 points per snapshot, and in collected data sets, there are

34,688 points per snapshot.

95

{'token': 'ef63a697930c4b20a6b9791f423351da',
'sample_token': 'ca9a282c9e77460f8360f564131a8af5',
'instance_token': '6dd2cbf4c24b4caeb625035869bca7b5',
'visibility_token': '1',
'attribute_tokens': ['4d8821270b4a47e3a8a300cbec48188e'],
'translation': [373.256, 1130.419, 0.8],
'size': [0.621, 0.669, 1.642],
'rotation': [0.9831098797903927, 0.0, 0.0, -0.18301629506281616],
'prev': '',
'next': '7987617983634b119e383d8a29607fd7',
'num_lidar_pts': 1,
'num_radar_pts': 0,
'category_name': 'human.pedestrian.adult'}

Figure 5-10: The nuScenes metadata for an annotated object.

Visibility: {'description': 'visibility of whole object is between

80 and 100%', 'token': '4', 'level': 'v80-100'}

Global translation is [410.066, 1196.767, 0.656]

Relatively close to the vehicle, located in the back, to the right.

Figure 5-11: A visualization of a raw data and bounding box for a traffic cone behind
the vehicle.

The following are a few examples of the qualitative descriptions for the nuScenes

data, with visualizations of the scene.

• Figure 5-11 is qualitatively described as "behind, to the right, short, not mov-

96

Figure 5-12: A visualization of a raw data and bounding box for a pedestrian.

Figure 5-13: A visualization of a raw data and bounding box for a vehicle.

97

ing." Note that this object is described to the right, although it appears in the

left of the photo. This is because it’s detected in the rear-facing camera.

• Figure 5-12 is qualitatively described as "to the right, far away, small, slowly

moving."

• Figure 5-13 is qualitatively described as "to the right, somewhat close, long and

deep, not moving."

5.5 Applying Sensor Interpretation

This sensor interpretation should be able to be applied directly to various sensor

outputs. The following parts may need to be tuned for different applications.

1. Edge detection: As described, the edge detection method cannot be directly

applied to a LidarPointCloud data type. In other applications where the sensor

data is especially dense, this method may have to be re-defined.

2. Qualitative Rules: The qualitative descriptions are output from a set of rules

and thresholds. I qualitatively describe size, location (in terms of the vehicle),

and movement. Other qualitative descriptions will have to be defined.

5.6 Limitations

LiDAR data has changed drastically in the last few years. Firstly, the number of

LiDAR hits has increased by orders of magnitude. This results in the density of

the LiDAR point cloud to increase, as shown in Figure 5-14. But the increase in

LiDAR points also adds to complexity in processing. It is no longer possible to use

geometry estimations to detect object sizes. Firstly, since there are more LiDAR

points, the resulting point cloud is noisy and the edges of objects are not easily

detected. Secondly, with more LiDAR points, there are more false detections: due to

noise and because of the density of points, close-by detection are grouped together.

98

When I tested the sensor interpreter on current-scale LiDAR, it described groups of

objects together.

The threshold for determining which points come from the same object is a difficult

task. The majority of successful algorithms are deep neural networks [127], which

create approximate bounding boxes around objects. Because these bounding boxes

are fairly accurate, I instead, describe these bounding boxes on LiDAR data. For

example, I use this approach to describe the nuScenes [31] LiDAR data in Chapter 7.

Figure 5-14: LiDAR density between 2015 and 2020.

5.7 Contributions

In this chapter, I showed how to symbolically describe point clouds. This analysis

relies on complex geometric and physical rules so that the vehicle’s LiDAR compo-

nent can describe what it is perceiving. I showed how sensor interpretation can be

incorporated into ex post facto explanations to justify parallel parking maneuvers.

I also showed preliminary results on LiDAR data from nuScenes. This is ongoing

work in sensor interpreter. I showed the difficulty in applying my method directly to

point cloud data. In future work, I will explore how to directly apply this analysis to

modern-scale LiDAR data.

99

100

Chapter 6

Learning from Explanations

“But surely to understand must involve the formation of a descriptive plateau

of knowledge lying somewhere between raw, totally unprocessed data and de-

tailed answers to problems.”[238]

– Patrick Henry Winston

Rule-based systems are interpretable and explainable, but they are time-consuming

to create and maintain, since rules are generally hand-coded. In this chapter, I present

a method to learn symbolic rules from ex post facto explanations for autonomous

vehicles. My method is able to learn that certain explanations and behaviors are

exceptions to existing rules, and other explanations and behaviors suggest the need

for new rules. These rules can be integrated into an existing monitoring system to

detect and explain anomalies, with limited augmentation to an existing system. I

evaluated my method on a small self-driving car, a custom MIT RACECAR [39], and

I discuss how rules can be used to infer constraints of reasonable behavior in other

complex environments.

There are two contributions in this chapter. First, I show a new application: I

apply reasonableness monitoring to machine actions instead of machine perception.

Secondly, I build upon the reasonableness monitoring system to make it more dy-

namic: I add a rule-learning method so that rules can be added, augmented, and

retracted. This work contributes to "closing the loop" on explainability, where the

101

output explanations are used to improve and learn reasonableness rules in new con-

texts and environments.

6.1 Introduction

Autonomous vehicles are susceptible to failures. There many ways to "fool" an au-

tonomous vehicle [11], and the failure cases cannot be enumerated1. There have been

developments towards test suites of plausible failure modes [223]2. But creating “bet-

ter” failure detection techniques is not enough. The underlying systems need the

capability to introspect about their own behavior and learn through experience. For

example, in the Uber self-driving accident, a software system ignored the pedestrian

detected by the LiDAR sensor to be a false positive detection, resulting in a pedestrian

fatality [151]. The software system lacked the commonsense necessary to know that

an object moving in the middle of the road is likely a pedestrian. The autonomous

vehicle should learn from this mistake and ensure it will not be a repeated failure.

Human drivers are also susceptible to failures. But human drivers fail differently

than autonomous drivers. Human drivers are able to adapt to driving in new envi-

ronments. Humans learn new driving rules by examining context and reflecting on

their behavior: they explain the best action or alternative to themselves. Take for

example, the behavior of "flashing high beams." Based on the location, context, and

social rules, we may apply an existing rule (if a neighboring car is flashing their high

beams, then turn on the vehicle’s headlights), or we may create a new rule based on

a new explanation (e.g. since they are flashing their high beams aggressively, that

means to watch out for something).

In this chapter, I present a rule-learning method that is inspired by the way that

humans learn to drive. I show how to enhance autonomous driving systems with a

dynamic reasonableness monitor that can learn from explanations of perceived errors

that are clearly wrong. My rule-learning method is validated on a real-world robot:

1Some examples are security hacks, adversarial attacks and lack of commonsense knowledge,
which are detailed in Chapter 7.

2Recall from Section 1.1, that an error is a technical mistake and a failure has consequences.

102

a custom MIT RACECAR3 built by Tianye Chen [39]. I tested the method on

new "traffic light" patterns. The rule-learning system is able to add new rules and

behaviors when a new circumstance is repeatedly observed and explained.

6.2 Method

My method extends the adaptable reasonableness monitoring framework [78] to robotic

actions. The contribution of this method is two-fold. Firstly, I demonstrate that rea-

sonableness rules can be learned by processing and querying explanations of intended

vehicle actions. Secondly, I validated this approach on a real system: an MIT RACE-

CAR.

6.2.1 Monitoring Architecture

The reasonableness monitoring architecture consists of rules (constraints), a log data

ontology with system state information, a commonsense knowledge base, and a rea-

soner which constructs explanations. The input to the system is a proposed action

and the system state.

[(red after green), 'Given']
[(cone isLocated right), 'Given: perception']
[(self isMoving true), 'Given: system state']
...
[(red means stop), 'Commonsense']
...

[(red indicates stop),
'Rule triggered: driving rule']

Listing 6: A subset of the facts that are used in the explanation generation process.
The final explanation is that even though the vehicle is moving, and it had perceived
a green cone (light), the next cone (light) is red and the vehicle should stop.

The proposed action is parsed and supplemented with commonsense data. This

data is forward-chained on a set of reasonableness rules to produce more data. With
3MIT RACECAR: http://racecar.mit.edu.

103

http://racecar.mit.edu
http://racecar.mit.edu

from afinn import Afinn
afinn = Afinn()

>>> afinn.score('I saw a yellow light and nothing good happened')
3.0
>>> afinn.score('I saw a yellow light and nothing bad happened')
-3.0
>>> afinn.score('I saw a yellow light and nothing happened')
0.0
>>> afinn.score('I saw a green light')
0.0
>>> afinn.score('red appeared after green')
0.0
>>> afinn.score('I saw another car')
0.0
>>> afinn.score('I saw another speeding car')
0.0
>>> afinn.score('I saw a car run a red light')
0.0

Listing 7: Examples of the sentiment scoring on vehicle explanations.

this comprehensive set of data (or facts) as evidence, the action is deemed to be

reasonable or unreasonable and an explanation is provided. The explanation is a chain

of facts: a symbolic triple with an associated reason4. An example explanation in is

Listing 6. With a natural language generation (NLG) template, the explanation can

be shown to a user in readable text.

6.2.2 Rule Learning

My rule-learning system integrates into the adaptable reasonableness monitoring

prototype [78]. The rule learning system processes an error text file: it parses the

explanations and state at the time of the error (time, system state, sensor data,

etc). After aggregating together this information, the rule learning system judges

whether the explanation in the log data and system state should constitute a new

rule, or whether it is an exception to an existing rule. The system determines this

4Note that each fact has a triple and a reason. They are stored in a pandas DataFrame object,
which includes an index for each fact.

104

by examining the sentiment of the explanation, and it checks if any of the errors are

similar to each other. If any of the errors happen multiple times. If there is more

than one instance, then it uses the error information to create a new rule.

The sentiment analysis determines whether a new rule should be learned. For the

self-driving domain, I used an existing model [172, 90] that scores the sentiment of

the explanation text in a range from -5 (very negative sentiment) to 5 (very positive

sentiment). Most of the explanations that I used were neutral with a score of 0, shown

in Figure 7, so I grouped neutral and positive scores together. Any explanation with

a neutral or positive score is created as a new rule. Note that sentiment analysis is

an open problem, and the accuracy of this analysis is out of scope of this chapter.

A new rule is created by parsing the error log text. The rule learner looks for

specific symbolic relations in the error explanation, for example, “before,” “after,”

“because.” If it finds any of those symbolic relations, it then processes the text before

and after that word for the rule binding. This creates a symbolic triple, composed of

the text before the keyword, the keyword itself, and the text after the keyword. This

triple is used in the new rule text, which is output into the AIR rule Language. The

end result is a new Air rule, written in N3 that is appended to the existing rule file

in the monitoring system.

6.2.3 RACECAR Architecture

The real-world robotic system for validation is a custom, Traxxas Slash RC racing

car, modified to include a JetsonTX2, a Hoyoku lidar, a ZED stereo camera, a inertial

measurement unit (IMU), and a VESC based motor controller5. ROS Kinetic runs

on the JetsonTX2 and takes care of the computation and planning decision making

for the vehicle.

A stereo camera on board is used to detect cones and place them on the map

accordingly. The camera images are processed at a rate of 5hz, the car drives slowly.

The experiment relies on the camera’s detection of cones straight ahead. Therefore,

I removed the top and bottom third of the image, as cones could not possibly appear
5https://vesc-project.com/

105

https://vesc-project.com/

above the ground or be blocking the car. The image is converted to HSV values and

masked using empirically tested red, green and yellow thresholds to find and locate

the cones in the image. If a contour is found, the distance and angle from the car is

calculated using the left and right images of the car.

6.3 Experiments

The main goal of the experiment was to validate the rule learning system with various

traffic light scenarios with and without errors. There are three possible scenarios for

traffic light transitions: red to green, yellow to red, or green to yellow. I generated

five sequences for each type of sequence and allowed the RACECAR to drive through

the given course three times, which generates a sum total of 45 tests.

Test type Sequences Ground Truth System
error 5 exception no rule

normal 5 reasonable no rule
repeat 5 new rule new rule

Table 6.1: A table of the 15 distinct sequences that were tested on the RACECAR
platform. The error logs had specified errors, which are deemed exceptions to the
rule and so no new rules are made. Normal tests were explained to be reasonable,
and so no new rules are made. Repeated errors are explained and so new rules are
made, as expected.

6.3.1 Experiment Design

The experiment was performed in a lab basement with cones four feet apart from

each other. I used three cone colors: red, yellow, and green, corresponding to existing

traffic lights. My goal was to validate the monitor’s rule learning ability on new cone

sequences, to mimic new traffic light sequences. For example, traffic light sequences

typically use “yellow” as a transition from green to red (i.e. green, yellow, red). This is

important to monitor because there are different light patterns in different contexts6.
6It has been shown that AVs learn patterns not meaning: https://medium.com/@swaritd/

red-means-stop-traffic-lights-for-driverless-vehicles-f972b14990e3. AVs cannot sim-
ply memmorize these mundane light patterns

106

https://medium.com/@swaritd/red-means-stop-traffic-lights-for-driverless-vehicles-f972b14990e3
https://medium.com/@swaritd/red-means-stop-traffic-lights-for-driverless-vehicles-f972b14990e3

Figure 6-1: A flow diagram of the experiment design. The RACECAR system outputs
a log file after a running through a specific sequence of cones. That log file is then
processed by the rule learning system, which either creates a new rule for the existing
monitoring system, or not In the case of a normal test run no rule is made.

There were 15 unique sequences of cones that were tested. For each sequence, the

RACECAR is navigated around all of the traffic cones in a single cone sequence. The

log file is saved and the process is repeated for each sequence. This experiment flow

process is demonstrated in Figure 6-1.

A test breakdown of the different cases are seen in Table 6.1. I tested for three

different types of behaviors. The first test sequence was with errors specifically intro-

duced. The second test sequence were normal sequences without errors. The third

test sequence were repeated behaviors that would trigger errors in the log, but should

be learned as new rules.

The RACECAR is connected to a game joystick, and the R1 button gives control

of the VESC motor controller to the autonomous system. When the button is not

pressed, the joystick sends a command of 0 speed to the VESC. This is to ensure the

safety of the car as the testing area is an active hallway with foot traffic. The car is

in autonomous control when it navigates around cones. When it completes a set of

cones representing a traffic light, the R1 button is released to signal to the system

that it has completed a single traffic light and to reset it’s queue of light sightings for

the next traffic light

107

6.3.2 Experiment Results

The RACECAR was able to navigate through the cones successfully and detect errors

as they occurred. At times the RACECAR erroneously detected a cone twice, but

that did not significantly affect the experiment, as it is valid to see the same traffic

light color more than once. The error does not induce an unwanted transition error.

Example log files from each of the runs can be found in Figure 6-2 The error log is

fed into the rule learning system [78] and the resulting rules are integrated into the

monitoring system. The output rules for the corresponding log can be seen in Figure

6-3.

The rule learning system output corresponds to the repeat error log listed Figure

6-2. The rule learning system found the repeated transition errors and created a new

rule that green can be expected to come after yellow. The rule learning system was

able to successfully detect the recurring light transition errors in each log and update

the rule file in the monitoring system.

6.3.3 Challenges

This work focused on building and using the RACECAR platform to evaluate the

performance of anomaly detection in autonomous vehicles based on symbolic rules

and reasonableness. A far more expansive set of rules can also be applied to the car’s

behavior and observations. The set of rules should originate from a driving handbook,

which details the literal rules set for the vehicles on the road. Additionally, given that

autonomous vehicles interact with other vehicles and it would be interesting to apply

the anomaly detection and adaptable monitoring system to an autonomous vehicle in

the presence of other possibly non-autonomous vehicles.

108

.....................
saw green
cone location
[-1.29255795 -0.57215381]
car location
(-1.2945041266837571, 0.028354336305777248, 3.135890209223959)
time: 1553648647.29

saw red
cone location
[-5.30397911 -1.80882075]
car location
(-4.315279739843591, -1.5229740091121877, -1.2719784897751123)
time: 1553648658.4

ERROR red appeared after green

saw green
cone location
[-9.03512466 -0.67572284]
car location
(-8.748572781701807, -0.6094111618329722, 1.749058628932332)
time: 1553648677.85

.....................
saw green
cone location
[-12.65703604 -1.26450313]
car location
(-12.51921296811556, -0.7505525339034774, 2.873493684718304)
time: 1553648693.24

saw red
cone location
[-16.22980824 -1.69140707]
car location
(-16.166375263352524, -2.252114769659417, -3.017005983588666)
time: 1553648704.87

ERROR red appeared after green

Figure 6-2: A subset of a repeated error log.

109

The following events are repeats and should
be new rules.
Found the explanation

ERROR red appeared after green
Found triple ['red', 'after', 'green']

:added-rule-1 a air:Belief-rule;
air:if {

foo:red ontology:after foo:green. };
air:then[

air:description
("ERROR red appeared after green");

air:assert[air:statement{foo:cone
air:compliant-with
:learned_policy .}]] ;

air:else [
air:assert[air:statement{foo:cone
air:non-compliant-with

:learned_policy .}]] ;

Figure 6-3: The output of the rule learning system for the repeated error in Figure
6-2 that should be parsed into a new rule. The resulting rule text is appended to the
rule file and updated in the monitoring system.

110

6.4 Applying Rule Learning

The results presented are for a specific hardware robot in a simplified real-world

environment. In this section, I outline the requirements to apply this methodology

to a new hardware specification, task, or domain. This methodology is designed to

be incorporated with the reasonableness monitoring system. For an arbitrary system,

rule-learning can be applied as long as these constraints are met:

• Data: The system being monitored needs to be able to log its system state. An

ontology for the log needs to be defined.

• Monitoring system: The system should be wrapped in a reasonableness monitor.

This requires an ontology for data (described above), and reasonableness rules.

• Explanation "evaluation": The rule-learning prototype needs a given metric

to determine what is anomalous or not. In the autonomous driving domain, I

used a sentiment score that ranked whether the explanation had a dangerous

or erroneous sentiment.

6.5 Limitations

The traffic light experiment presented here is a simple example of how anomaly de-

tection coupled with a rule updating framework could work together in real life to

inform the car of unreasonable and strange sightings. However, to be applicable to

the complex series of actions and language for autonomous vehicles, the system will

need a human-in-the-loop for verification.

The explanation "evaluation" for the RACECAR application is oversimplified. It

does not utilize the contextual information from the vehicle’s state and surroundings

in making the decision as to whether or not to add the rule to the rule set. Adding

context to each anomaly helps explain why the rule was broken. For example, one

rule of the road states that vehicles shall not drive through red lights. However, if

a car happens to observe multiple times that an emergency vehicle drives through a

111

red light, it should not add to its own rule set that it should be able to drive through

a red light. The context of the rule breaking situation, in this case it is an emergency

vehicle that drove through the red light and not other vehicles, is an important factor

in deciding whether to augment the given rule set based on observations.

My system has trouble with the cases mentioned in Section 6.3.3, and it also

has trouble with out of vocabulary explanations. The current rule-learning platform

examines the sentiment of an explanation and then parses the explanation into the

appropriate rule format. The goal is to take a human readable explanation in plain

text, and parse that into an “if this then that” format rule. Usually, this relies on

looking for symbolic causal terms in the explanation, like “because” or time-varying

symbolic terms like “before” and “after.” If these keywords are not found in the

explanation, the system fails to construct a rule. Dealing with out-of-vocabulary

explanations and complex actions will be examined in future work.

Figure 6-4: The dynamic reasonableness monitoring architecture.

112

6.6 Ongoing Work

Currently, the experiment is setup in a series of steps, and it is not a “real-time” sys-

tem. The goal is for the monitor to be constantly running along side the RACECAR

(or other autonomous system) so that is learning and monitoring more effectively.

This process is visualized in Figure 6-4. The grey arrows designated ongoing work in

closing the loop for the rule leaning system to work dynamically with the monitoring

system in real-time.

In the current iterations of this system, the explanations are generated separately,

incorporated into the log, and then processed by the rule learning system. If a new

rule is generated, then the rule list is augmented with the new rule, and the monitor is

updated. In future iterations of the system, I will add explanations from the monitor

to the rule learning system. The key idea is that the monitor is adaptable; not just

to multiple applications, but also to multiple domains and situations. The behavior

of the monitor (and all similar agents) should be flexible and self-aware; so that its

own explanations can be used to justify similar actions in the future.

6.7 Contributions and Discussion

Driving is a complex task, and corner cases lack the large volume of training data nec-

essary for models to make the correct decision based on input. Instead of exhausting

all possibilities for driving corner cases, I propose that the autonomous system can

evaluate a new situation using two components - commonsense and a set of driving

rules - and then explain its decision based on this information. Analogous to how

humans approach a new situation, the autonomous vehicle would make a decision

using prior knowledge and applicable driving rules. Those driving rules can then be

updated as the car witnesses new situations.

My system, implemented as a dynamic monitor around the self driving unit, checks

vehicle data and decisions for expected validity and reasonableness. The decision

is reasonable if follows the rules set and commonsense knowledge base for the au-

113

tonomous system. Similarly to how biologists are able to classify newly discovered

species using a set of taxonomy rules, the set of driving rules can be applied to un-

foreseen situations that the system has never encountered before and make inferences

about what driving actions are reasonable. As the autonomous vehicle encounters

new situations, the set of driving rules can be updated to reflect acceptable behavior

and expected encounters in the driving world. I propose that the information gap

created by the incompleteness of anomalous training data can be supplemented by

commonsense along with a set of rules regarding appropriate behavior. It is based on

the system in Chapter 4.

This chapter focuses on building and using the RACECAR platform to evaluate

the performance of the reasonableness monitor in dynamic and new environments.

This was an initial study and the work can be expanded to include a richer set of

data used in decision making, such as vehicle position, cone position, vehicle speed,

information from potential other vehicles around the autonomous vehicle. A far more

expansive set of rules can also be applied to the car’s behavior and observations.

The set of rules should originate from a driving handbook, which details the literal

rules set for the vehicles on the road. Additionally, given that autonomous vehicles

interact with other vehicles and it would be interesting to apply the anomaly detection

and adaptable monitoring system to an autonomous vehicle in the presence of other

possibly non-autonomous vehicles.

114

Chapter 7

System-wide Anomaly Detection

“We’ll show you that you can build a mind from many little parts, each

mindless by itself...” 1

– Marvin Minsky

A previously working mechanism can fail in two distinct ways. One way is a local

failure, caused by an error that can be localized to a single subsystem or compo-

nent. I discussed how to localize opaque subsystem errors in Chapter 4 and how to

localize sensor errors in Chapter 5. The second way a mechanism can fail is due to

a failed communication amongst subsystems, which was the root cause of the Uber

self-driving vehicle accident2 [134]. In this chapter, I present an organizational ar-

chitecture: Anomaly Detection through Explanations (ADE), which enables internal

communication amongst the subsystems of a complex machine. It is inspired by the

structure of successful human organizations. As Herb Simon said, “communication is

‘absolutely essential to organizations’ ” [208].

1The revelation of Marvin Minsky’s connection with Jeffrey Epstein came at the pinnacle of my
PhD research. Because of that association, I was conflicted about whether to include Minsky’s words
and his prior work. I believe that it is important to be intellectually honest: I acknowledge that
this chapter is inspired by Minsky’s research. My inclusion of Minsky’s words does not imply my
support for any of Epstein’s behavior or that of his associates.

2When inconsistent judgements arise, an arbitrary subsystem is ignored:
https://www.theinformation.com/articles/uber-finds-deadly-accident-likely-caused-by-software-
set-to-ignore-objects-on-road

115

7.1 The Problem

Complex mechanisms have limited internal reasoning. In some cases, they have none;

so they have no ability to reason. For self-driving vehicles, adversarial attacks using

a few pieces of tape tricked a vision system into classifying a perceived a stop sign

as a 45 mph sign [58]. Biased facial recognition algorithms3 have been extended to

pedestrian detection [237]. It is well known that the “best performing” AI algorithms

are brittle, “deep learning” subsystems [170]. But when these algorithms are connected

to self-driving applications or other mission-critical, safety-critical applications, these

mistakes have consequences.

I created a system-wide architecture that facilitates communication amongst parts.

The communication is a symbolic explanation. The key idea is that the explanation

is for the machine4; the underlying explanations to reconcile inconsistencies amongst

subsystems.

But how does the architecture decide for itself which subsystem or component is

the most “correct” or “reasonable?” To deal with conflicting explanations, I built an

explanation synthesizer; which examines the input explanations, and validates that

the underlying reasons do not violate the high-level rules from a priority hierarchy.

In this chapter, I demonstrate the ADE on a critical example: the Uber self-driving

vehicle accident [180]. For quantitative analysis, I inserted failures in an existing

self-driving vehicle data set [31]. My analysis in Section 7.4.5 shows that using ADE,

with an explanation synthesizer results in more robust failure detection.

7.2 System Monitoring Architecture

The ADE architecture is composed of reasonableness monitors around each subsys-

tem and a explanation synthesizer to reconcile inconsistencies amongst underlying

3Facial recognition systems misidentify people with darker skin tones 5-10 times more than lighter
skin tones [86].

4In Chapter 4, I showed the output of a reasonableness monitor: a natural-language explanations
for an end user. I mentioned that the explanations are also symbolic. This chapter contributes a
novel use of symbolic, dynamic explanations for machine diagnosis.

116

subsystems. The ADE reasoning method detects failures and anomalies in three

steps:

1. Generating qualitative descriptions for each committee or subsystem.

2. Monitoring the outputs of each committee or subsystem.

3. Detecting, reconciling, and explaining inconsistencies5.

The ADE architecture in Figure 7-1 is a simplified model of a self-driving car6. It

is the minimal architecture needed to (1) detect and explain the cause of the Uber

self-driving accident (in Section 7.4.2) and to (2) diagnose the mistakes I inserted, in

Section 7.4.4. The dotted borders around the subsystems are reasonableness monitors.

The translucent red component is the actuation committee, which reports to the

tactics monitor. The grey component is the explanation synthesizer, which monitors

explanation outputs from the vision, LiDAR, and tactics subsystems.

There is a difference between a committee and a subsystem. A committee is a

group of subsystems working together on a common task in the same language. For

example, the tactics subsystem in Figure 7-1 contains the actuation committee. The

actuation committee is composed of the braking, steering, and power subsystems.

These subsystems work on the common task of moving and controlling the mechanics

for driving a car. They communicate in the same CAN bus message language (from

Section 3.1.1). For readability of the reasoning process, I refer to the actuation

committee as the tactics subsystem.

7.2.1 Inspiration from Human Committee Structures

I have represented a complex system as a hierarchical model of introspective sub-

systems working together towards a common goal. This idea is inspired by human

committee structures. In a human organization, tasks are distributed to committees

5If no inconsistencies are detected, then a summary is produced. The summary is a synthesized
story of the underlying subsystem explanations.

6A comprehensive architecture may enable more effective reasoning in real-world environments.

117

of personnel7. Each committee is composed of personnel who work together to ac-

complish committee tasks. A person may be a member of several committees, thus

providing communication about the interaction of tasks of those committees. How-

ever, a person may not know much about the work of a committee they are not a

member of. In fact, the technical language of different kinds of tasks may not have

much overlap.8

However, good committees are able to survive bad work by a member, because

the other members of the committee observe each other’s work and can jointly decide

actions to be taken to correct bad work or to discipline or expel a misbehaving

member. Such an organization, though less efficient than one where each task is

assigned to an individual working independently, is more robust to failure and more

secure. It is hard for a single member to undermine the mission.

Each committee has a supervisor that assigns the goals for the committee to work

on and monitors their performance, making adjustments as necessary9. Of course,

the supervisor may be faulty, so if the members of the committee observe that the

supervisor is acting inappropriately, they, as a group, can complain to a supervisory

committee that the faulty supervisor is a member of. Although not all successful

organizations function this way, it is a necessary safeguard for machines that have

safety-critical or mission critical tasks.

In this chapter, I applied the organization of a human committee to a complex

system. Each subsystem is part of a committee: a reasonableness monitor which

is consistently observing and checking the underlying subsystem’s behavior. The

“supervisor” is an explanation synthesizer, that sets high-level goals and priorities

in the case of disagreements. If the synthesizer is faulty, then the priorities can

be changed: individual priorities can be removed, discounted (reordered), and/or

new priorities can be added10. The synthesizer is dynamic, and different synthesizer
7The machine equivalent is committees of parts or subsystems.
8Similarly, in complex systems, each committee is speaking a different language. For example,

the tactics subsystem, composed of the actuation committee, is communicating in low-level sensor
outputs, which the perception committee (composed of the vision system) is communicating in a
symbolic language. I describe this problem in Section 7.2.2.

9In my architecture, the committee supervisor is the explanation synthesizer in Section 7.3.
10In future work, I may investigate how these priorities could be learned through the committee

118

Figure 7-1: The ADE architecture model for a simplified self-driving vehicle. It is
composed of reasonableness monitors (dotted borders) around each subsystem and
explanation synthesizer

configurations yield different safeguards. I show the results of different configurations

in Section 7.4.5.

I call this idea “committee-based anomaly detection with explanations.” I show

that using (1) a common symbolic explanation language (2) a system organization of

introspective committees (reasonableness monitors applied to full subsystem design),

results in a more robust system. The subsystems monitor each other’s behavior, and

disagreements amongst parts are identified with less ambiguity, since the internal

communication is in a common language.

7.2.2 Generating Qualitative Descriptions

The outputs11 of the parts of any complex machine vary in abstraction. For example,

the labels output by an opaque vision processing systems in Chapter 4 are a mostly

symbolic list of high-level concepts. The sensor subsystems, e.g., LiDAR or weather

sensors, output a (possibly uninterpretable) log of data12. But to reconcile inconsis-

tencies between subsystems, the subsystems need to argue amongst themselves. The

arguments must be in the same language, otherwise vital reasons may be discounted

member’s explanations.
11The outputs of a subsystem may be an action (e.g. a mechanical action like tightening a pinion)

or a log (e.g. the readings of a tire pressure sensor over a time interval).
12These sensor output logs are typical of other “lower level” subsystems of the vehicle, like braking,

steering, power control, etc. I explained how to interpret these basic outputs after-the-fact in
Chapter 3. Another example is the “point cloud” output from the LiDAR subsystem in Chapter 5.

119

IF(AND('(?x) is moving'
'(?x) isA animal',
THEN('(?x) is reasonable.'))

Listing 8: A reasonableness rule for perception. If an object is perceived as moving
and the object is an animal, then it is a reasonableness perception.

arbitrarily.

The subsystem’s output is translated into a qualitative description. For the vision

system, these are the output labels from the vision processing subsystem. For the

LiDAR system, this is the sensor interpretation from Chapter 5, and for the tactics

subsystem (which corresponds to the brakes, steering, and power control) it is the

qualitative summary and analysis generated from the ex post facto explanation system

from Chapter 3. A list of the qualitative descriptions from each subsystem are input

into a reasonableness monitor [73]. Each monitor outputs for symbolic support and a

justification of reasonableness. These justifications are the basis for each subsystem’s

argument.

7.2.3 Monitoring for Reasonableness within Each Subsystem

Recall from Chapter 4 that a reasonableness monitor is a sanity check for the outputs

of a subsystem. The list of qualitative descriptions forward-chained with common-

sense rules to extract more data. Each subsystem has its own set of commonsense

rules. For lower-level components (e.g., the tactics subsystem) these are safe-driving

rules. For example, if a vehicle is traveling at a high speed, then the vehicle should

not make a sudden stop. Other safe-driving rules implement a qualitative physics

idea: if the vehicle slows down and changes direction slowly, then the resulting turn

is safe13.

After forward-chaining, the monitor checks the data against a set of reasonableness

rules. Similarly to commonsense, each subsystem has its own set of reasonableness

rules. The monitor outputs a judgement and justification of whether the input de-

scription is reasonable or not. An input is deemed “unreasonable” if there is no data
13This is defined precisely in first-order logic.

120

to support a reasonable claim, i.e., no data fires a rule that leads to a “reasonable”

consequent. An example of a reasonableness rule for perception is in Listing 8.

Note that an unreasonable judgement does not necessarily indicate that a sub-

system should be completely ignored. An unreasonableness judgement indicates that

the subsystem’s output should be discounted in future decisions. For example, in the

Uber self-driving car accident, which is described in Section 7.4.2, the vision process-

ing subsystem perceived several different objects where the pedestrian was located: a

bicycle, a vehicle, and an unknown object. The vision subsystem is acting unreason-

ably, it is not possible to perceive three different objects in the same location. The

vision system outputs should be discounted, but not completely disregarded. The

vision system is not corrupted, it’s confused. The detection of an object in that place

is reasonable and correct, and the detection is used in the explanation synthesizer as

evidence. The technical details of this reasoning is in Section 7.4.3.

7.2.4 Reconcile Inconsistencies with a Synthesizer

If there are conflicts between explanations, the explanation synthesizer decides which

subsystem to trust or discount. The synthesizer uses a priority hierarchy, which

indicates, in order, which priorities are the most important. If any of those priori-

ties are violated, then that subsystem should be examined and its output should be

discounted for in future decisions.

7.3 Explanation Synthesizer

The explanation synthesizer is an explanation compiler. It processes the explanations

from its underlying parts, and synthesizes (or summarizes) the explanations. If there

are conflicting explanations, the synthesizer constructs an argument tree. The argu-

ment tree contains all the reasons that need to be tested to validate each priority.

The argument tree is dynamic. If more information is available, it can be added. If

data is deemed invalid, that data can be removed. Since the arguments are a tree,

the synthesizer can also be queried for counterfactual support. This may useful in an

121

adversarial proceeding, which is discussed in Chapter 8.

7.3.1 Priority Hierarchy

Erroneous driving is prevalent in human and autonomously operated vehicles. Per-

haps the operator glides through a stop sign (even though that conflicts with a driv-

ing rule) since no one is around. The behavior does not have consequences, and it

is supported by a reasonable explanation, “since no one was around, the operator

proceeded through a stop sign, even though the operator should have stopped due to

the stop-sign rule.” Since there are no consequences, this erratic behavior should not

be classified as a failure14.

However, some errors can cause system failures. For example, if the vehicle op-

erator cannot identify a large object in the road, it should stop regardless. Large

objects, especially ones that are moving, are threats to the vehicle and the people

inside. Whereas smaller unidentified objects are not usually harmful to the vehicle.

For example, moving transparent objects, like plastic bags, should be ignored. But

small sharp objects, like nails, or potholes and uneven paving can can flat tires, lead-

ing to accidents and passenger discomfort. Most autonomous vehicles struggle with

this sort of reasoning, causing consistent starting and stopping behavior15.

I created a priority hierarchy to apply high-level safety constraints in self-driving.

The priorities are as follows (in order):

1. Passenger Safety

2. Passenger Perceived Safety

3. Passenger Comfort

4. Efficiency (e.g. Route efficiency)

14Of course, this behavior should be recorded to avoid a repeated error in a critical environment.
15“Herky jerky” or constant starting and stopping has become an “Achilles heal” for self-

driving: https://www.wired.com/story/ride-general-motors-self-driving-car/. This dis-
comfort lead many vehicle manufacturers to explicitly ignore objects detected with low confidence
scores, instead of trying to reason about which objects are threats (or not).

122

https://www.wired.com/story/ride-general-motors-self-driving-car/

A passenger is safe if:
The vehicle proceeds at the same speed and direction, AND

The vehicle avoids threatening objects.

Figure 7-2: The conditions for passenger safety as a natural language abstract goal.

In this chapter, I specifically focus on the first priority: passenger safety16. Pas-

senger safety can be expressed as an abstract goal in Figure 7-2. It requires two

conditions: the vehicle needs to be proceeding “safely”: there does not exist any sud-

den changes in vehicle speed or direction. The other condition is that there are no

threats : large moving objects close to the vehicle. The major cause of failures in

autonomous driving have been due to violating these two constraints [151].

7.3.2 Underlying Logic Language

Let’s focus on the high level goal for the first priority: passenger safety, in Figure 7-2.

This goal can be strongly defined in first-order logic. Let 𝑠 and 𝑡 be successive states,

and let 𝑣 be a qualitative description of the vehicle’s velocity. Then Equation 7.1

defines the sufficient conditions for passenger safety.

(∀𝑠, 𝑡 ∈ 𝑆𝑇𝐴𝑇𝐸, 𝑣 ∈ 𝑉 𝐸𝐿𝑂𝐶𝐼𝑇𝑌

((𝑠𝑒𝑙𝑓,𝑚𝑜𝑣𝑖𝑛𝑔, 𝑣), state, 𝑠)∧

(𝑡, isSuccesorState, 𝑠)∧

((𝑠𝑒𝑙𝑓,𝑚𝑜𝑣𝑖𝑛𝑔, 𝑣), state, 𝑡)∧

(@𝑥 ∈ 𝑂𝐵𝐽𝐸𝐶𝑇𝑆 s.t.

((𝑥, 𝑖𝑠𝐴, 𝑡ℎ𝑟𝑒𝑎𝑡), state, 𝑠)∨

((𝑥, 𝑖𝑠𝐴, 𝑡ℎ𝑟𝑒𝑎𝑡), state, 𝑡)))

⇒ (passenger, hasProperty, safe)

(7.1)

As long as the vehicle is moving at the same speed, and there are no threatening

16I worked on a short technical report about different metrics of efficiency. I co-
authored a short article on different navigation “efficienty” metrics: https://aipulse.org/
mob-ly-app-makes-driving-safer-by-changing-how-drivers-navigate/

123

https://aipulse.org/mob-ly-app-makes-driving-safer-by-changing-how-drivers-navigate/
https://aipulse.org/mob-ly-app-makes-driving-safer-by-changing-how-drivers-navigate/

IF (AND('moving (?v) at state (?y)', '(?z) succeeds (?y)',
'moving (?v) at state (?z)'),

THEN('safe driving at velocity (?v) during (?y) and (?z)'))

Listing 9: The safe transition rule in implementation. The variables ?v,?y,?z corre-
spond to the vehicle velocity, starting state and successor state.

objects in the way of the vehicle, then the passenger is safe (and satisfying the first

rule in the priority hierarchy). However, it is left to define “a threat”. This is also

defined in first-order logic. Let 𝑠 be a state, and let 𝑥 be an object and 𝑣 be a velocity

in Equation 7.2.

(∀𝑠 ∈ 𝑆𝑇𝐴𝑇𝐸, 𝑥 ∈ 𝑂𝐵𝐽𝐸𝐶𝑇, 𝑣 ∈ 𝑉 𝐸𝐿𝑂𝐶𝐼𝑇𝑌

((𝑥,𝑚𝑜𝑣𝑖𝑛𝑔, 𝑣), state, 𝑠)∧

((𝑥, 𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑁𝑒𝑎𝑟, 𝑠𝑒𝑙𝑓), state, 𝑠)∧

((𝑥, 𝑖𝑠𝐴, 𝑙𝑎𝑟𝑔𝑒_𝑜𝑏𝑗𝑒𝑐𝑡), state, 𝑠)

⇔ ((𝑥, 𝑖𝑠𝐴, 𝑡ℎ𝑟𝑒𝑎𝑡), state, 𝑠))

(7.2)

7.3.3 Abstract Rules

In the implementation, I use the logic in Equation 7.1 and Equation 7.2 to define

rules in python. For example, the safe transition rule is defined in Listing 9. Notice

that the rule is abstract and contains placeholders for the velocity and states: (?v),

(?y), (?z) respectively.

The rules form the simplified natural language goal tree in Listing 10, and the

AND-OR tree in Listing 11. The goal tree is generated by backward-changing the list

of rules to a specified goal, which is specified for each priority. The goal for passenger

safety is: passenger is safe at velocity V between s and t where V, s, and

t are given by the data, and obj corresponds to all the objects encountered between

𝑠 and 𝑡. The implementation is in the Appendix in Listing 18.

124

passenger is safe,
AND(

safe transitions,
NOT(threatening objects)

Listing 10: The high-level goal tree for passenger safety. It ensures that the the
vehicle avoids threatening objects (large, moving objects located close to the vehicle)
and it makes smooth transitions (there is not a large or sudden qualitative change
between two successive state).

passenger is safe at velocity V between s and t
AND(AND(moving V at state s

t succeeds s
moving V at state t)

AND(
OR (obj is not moving at s

obj is not locatedNear at s
obj is not a large object at s)

OR (obj is not moving at t
obj is not locatedNear at t
obj is not a large object at t)))

Listing 11: The implemented goal tree used for passenger safety in the explanation
synthesizer. ‘safe transitions’ and ‘threatening objects’ have been expanded, as de-
fined in Equation 7.1 and Equation 7.2.

125

passenger perceived safe,
AND(

cautious transitions,
NOT(ominous objects))

Listing 12: The high-level natural language goals for passenger perceived safety.

The other abstract rules for the other properties are not used in this implemen-

tation. The focus of this work is to detect failures that can cause harm, and the first

priority is sufficient to ensure that. But for sake of example, the natural language

abstract goal tree for perceived safety is in Listing 12. Note it is assumed that the

first priority has been met for all transitions. So that this priority checks for different

behaviors: cautious transitions (which is defined as avoiding reckless driving) and not

avoiding ominous objects17.

7.4 Evaluation

In order to evaluate ADE, I relied on two studies. My colleagues and I simulated the

Uber accident and generated a log that was similar to the accident data from their

report [80, 180]. I validated that the algorithm (1) detected the inconsistency and (2)

could explain the inconsistency and why it is critical (in terms of the given priority

hierarchy). I also wanted to ensure that the explanation was “similar” to the to the

Uber accident testimony; that the explanation was true to the failure explained in

the Uber report. The second evaluation is a quantitative study to detect and explain

simulated failures. To my knowledge, this is the first data set of multimodal failures

in the self-driving vehicle domain18.

17This was not explored. But an ominous object may be something with a big shadow: some
illusion that appears larger than it actually appears.

18A self-driving vehicle has multimodal interaction (multiple modes of interaction) with an oper-
ator: haptic feedback, video, etc.

126

7.4.1 Simulation Setup

The simulation modeled the events of the Uber Accident Scenario described in detail

below. This simulation was performed using CARLA, an open-source simulator for

self-driving research [56]. The primary data recorded in this simulation included raw

images, semantic-segmented images, and LiDAR point clouds.

The simulation was performed on a machine running Ubuntu 18.04 LTS. The

version of CARLA running on the machine at the time of testing was 0.9.6. In

addition, CARLA renders the simulation using Unreal Engine, which has was installed

separately. I used Unreal Engine version 4.22 for testing.

7.4.2 Uber Accident Scenario

On March 18, 2018, the first reported self-driving pedestrian fatality occurred. The

vehicle was an Uber Technologies, Inc. test vehicle: a modified 2017 Volvo XC90

with a self-driving system in computer control mode. At approximately 9:58 p.m

that evening, the vehicle struck a pedestrian on northbound Mill Avenue, in Tempe,

Maricopa County, Arizona. Although the test vehicle had a human safety driver, the

driver was not paying attention at the moments before impact. The following is from

the Uber accident preliminary report.

“According to data obtained from the self-driving system, the system first

registered radar and LiDAR observations of the pedestrian about 6 sec-

onds before impact, when the vehicle was traveling at 43 mph. As the

vehicle and pedestrian paths converged, the self-driving system software

classified the pedestrian as an unknown object, as a vehicle, and then

as a bicycle with varying expectations of future travel path. At 1.3 sec-

onds before impact, the self-driving system determined that an emergency

braking maneuver was needed to mitigate a collision. According to Uber,

emergency braking maneuvers are not enabled while the vehicle is under

computer control, to reduce the potential for erratic vehicle behavior. The

vehicle operator is relied on to intervene and take action. The system is

127

not designed to alert the operator” [180].

This is a motivating use case of the need for system-level communication. I generated

this scenario in CARLA [56] and analyzed the logs after the fact. In the following

sections, I demonstrate the ADE process on that simulated log.

Figure 7-3: A screenshot of the Uber accident simulation (in segmentation mode) on
the Carla Platform.

Generating Qualitative Descriptions

From the Uber accident data analysis, the “vehicle was traveling at 43 mph” and

“the self-driving system software classified the pedestrian as an unknown object, as a

vehicle, and then as a bicycle with varying expectations of future travel path, ” and

for the sensor information LiDAR had detected the pedestrian “...about 6 seconds

before impact” [180].

Note, that due to limitations in Carla, it was not possible to simulate a pedestrian

walking with a bicycle. Therefore, for the LiDAR data, I manually added noise and to

make the detection range reflect the length of the bicycle. Besides that augmentation,

the raw data is processing automatically with edge detection (from Chapter 3) and

128

Figure 7-4: The qualitative description outputs from my simulation of the Uber
accident in the ADE architecture.

sensor interpretation (from Chapter 5). Since the vision system outputs symbolic

concepts, I represented the outputs of the vision system as oscillating among: vehicle,

bike, and an unknown object. This is shown in a diagram of the ADE architecture

in Figure 7-4.

Monitoring

Each qualitative description is input into reasonableness monitor. The monitored

outputs are as follows (in human readable form):

1. VISION: This vision perception is unreasonable. There is no commonsense data

supporting the similarity between a vehicle, bike and unknown object except

that they can be located at the same location. This component’s output should

be discounted.

2. LIDAR: This lidar perception is reasonable. An object moving of this size is a

large moving object that should be avoided.

129

3. TACTICS: This system state is reasonable given that the vehicle has been

moving quickly and proceeding straight for the last 10 second history.

Note, that these are also represented in symbolic triples to be used by the synthe-

sizer. The triples are stored in a pandas table so they are also indexed19.

Synthesizing

The explanations are symbolic. Below are a few highlights of these reasons (the ones

that are deemed “important” for the synthesizer).

1. VISION:

(monitor, judgement, unreasonable)

(input, isType, labels)

(all_labels, inconsistent, negRel)

(all_labels, notProperty, nearMiss)

(all_labels, locatedAt, consistent)

(monitor, recommend, discount)

2. LIDAR:

(monitor, judgement, reasonable)

(input, isType, sensor)

(input_data[4], hasSize, large)

(input_data[4], IsA, large_object)

(input_data[4], moving, True)

(input_data[4], hasProperty, avoid)

(monitor, recommend, avoid)

Note: input_data[4] corresponds to the detection of the pedestrian with the

bicycle. There were other, smaller objects detected that were not deemed

threats.
19Indexing is essential, so that the triples can refer to other triples. Although, the lat-

est version of RDF, published in 2014, allows for RDF Quads https://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/.

130

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

3. TACTICS:

(monitor, judgement, reasonable)

(input, isType, history)

(input_data, moving, True)

(input_data, direction, forward)

(input_data, speed, fast)

(input_data, consistent, True)

(monitor, recommend, proceed)

These symbolic reasons are passed to the explanation synthesizer, which finds that

the LiDAR’s data, specifically, the object described in input_data[4], violates the

goal: NOT (‘threatening objects’). The final output, is the follow explanation,

in human readable form:

The best option is to veer and slow down.

The vehicle is traveling too fast to suddenly stop.

The vision system is inconsistent, but the LiDAR system

has provided a reasonable and strong claim to avoid the object

moving across the street.

This is shown graphically in Figure 7-5, where the corresponding reasons are high-

lighted in the final judgment and explanation.

7.4.3 Reasoning

How does the synthesizer reason about threatening objects? We see that the LiDAR

detection: input_data[4] is a threat. But how does the synthesizer know that? The

synthesizer checks if the goal tree is satisfied. But a statement is not met: OR (obj

is not moving at s, obj is not locatedNear at s, obj is not a large object

at s) from Listing 11 is not satisfied. This fires the threat rule. Now the synthesizer

has added new data: (input_data[4], IsA, threat). This new piece of data is

131

Figure 7-5: The symbolic reasons that are used in the explanation synthesizer.

a “strong” reason. It is the argument in the synthesizer’s explanation to trust the

LiDAR subsystem and discount the vision subsystem.

7.4.4 Adding Mistakes to Existing Data

Self-driving data sets [31, 110, 69] do not contain errors that could lead to failures.

They are hand-curated, so that the labelings and bounding boxes are error-free. The

vehicle tactics operation is also smooth, so that there are not egregious mistakes in

driving behavior. Since the data sets themselves do not have failures to explain, I

added failures20. I scrambled labels and added noise. I hypothesized that the ADE

architecture’s explanation synthesizer would (1) more robustly identify a failure (2)

explain which subsystem failed and why.

To valdiate my hypothesis, I added mistakes to the NuScenes data set [31].

NuScenes data was collected in various conditions, including dense traffic and chal-

lenging driving scenarios21. It also has a more complete 360 view camera, rather than

20In Section 1.1, I described an error as a technical property, and a failure as an error with
consequences. While I cannot add “true” failures because the data set is already curated (i.e. the
mistakes I add do not have consequences), I refer to these as failure since if the mistakes were
occurred in an existing self-driving vehicle, they could cause system failures.

21NuScenes data was collected in Boston and Singapore; two very difficult (and different) driving
environments).

132

the front facing camera data on KITTI [69]. NuScenes has 1000 different scenes (20

clips of driving) where each scene is split into frames (I refer to frames as snapshots).

I define two types of mistakes: a frame error (a single point in time where obstacles

are incorrectly labeled) and a scene error (a prolonged error over several frames).

I invoked errors at the frame level. For each frame, 50% of the objects in that frame

are scrambled. This is performed randomly: when a frame is loaded, a scrambleFlag

vector is randomized with 1’s and 0’s; corresponding to whether the object in question

should be “scrambled” or not. I invoked two types of errors:

1. Label Errors: The “true” object label is replaced with another label.

2. “Noise” Errors: The object size is perturbed.

Label errors are chosen at random and retain the same label distribution on the

data set. Noise errors are also chosen at random, but require careful manipulation.

Naively adding random numbers to the object size clearly results in an error. For

example, a car that is over 20 meters wide is clearly wrong. So instead, I added

random noise from the range [0, 2𝜎], where 𝜎 is the standard deviation of the object

size in meters. Therefore I generate a set of noisy sizes, which are not “clearly wrong,”

but near misses [238].

A series of experiments are in Table 7.1. The table has three different configu-

rations of the explanation synthesizer: no synthesizer (baseline), a naive preference

(choosing one component over the other), and the “safety” priority explained in Sec-

tion 7.3.1. The accuracy and analysis is shown in Table 7.1. This table contains the

average of 10 randomized runs on the 18,538 annotations (objects detected) in the

NuScenes mini data set.

7.4.5 Evaluation of Inserted Errors

Synthesizing increases correctness of accuracy of detecting errors. Note that the

method is susceptible to false positives and negatives. Since I add noise in a reasonable

range, i.e., [0, 2𝜎], to scramble the data, it is difficult to separate errors from noise. If

133

instead, I added noise that is significantly greater than 2𝜎, then the number of false

positives and false negatives approaches zero, since the subsystem explanation clearly

identifies a local error, and the synthesizer can confidently determine which system

to discount.

Priority Correctness False Positives False Negatives
No synthesizer 85.6% 7.1% 7.3%

Single subsystem 88.9% 7.9% 3.2%
Safety 93.5% 4.8% 1.7%

Table 7.1: A comparison of the ADE results on different synthesizer constraints. The
“no synthesizer” option signifies that all subsystem errors are reported. The “single
subystem” option means that one subsystem is arbitrarily chosen to always be given
preference. The “safety” constraint is our default, where “threatening” objects are
given a higher priority (to be classified as erroneous.)

Example explanations are in Table 7.2 of the object detected in Figure 7-6. I

created an error by scrambling the label of a pedestrian to a “traffic cone.” In the

case that no errors are detected, the synthesizer outputs a summary. I focused on

inserting frame (i.e, snapshot) errors because generating scene errors (i.e., video)

requires careful tracking of objects, which is out of the scope of this thesis.

Examples

The scene monitor uses the explanation synthesizer to summarize the findings.

This scene with with 225 distinct annotations 2018-07-23

23:29:06.797517 is reasonable. Explanation synthesized: Reasonable

scene with a car proceeding forward, turning left, and following a

van. Perceived a parked truck, construction, and intersection.

This explanation can be compared with the description from the data set; where

parked truck, construction and intersection are part of the scene description (amongst

a few other concepts).

134

Figure 7-6: The “true” annotation of a pedestrian.

Regular Output Scrambled Output

This sample’s 69 labeled objects are
reasonable. Sample explanations:
The human.pedestrian.adult located
at [373.256, 1130.419, 0.8] is approx-
imately the right size. It is some-
what close, located to the right.

At least one of this sample’s 69 la-
beled objects are unreasonable. Un-
reasonable explanations: The mov-
able_object.trafficcone located at
[373.256, 1130.419, 0.8] is not a rea-
sonable size: it is too tall. There
is no commonsense supporting this
judgement. Ignoring objects de-
tected to the right.

The vehicle.car located at is
[353.794, 1132.355, 0.602] is ap-
proximately the right size. It is
somewhat close, located to the
right, past the movable_object.

The human.pedestrian.adult located
at is [353.794, 1132.355, 0.602] is not
a reasonable size: it is too wide and
it is too deep. It’s location is too far
away to be close to a street. Ignoring
objects detected to the right.

Table 7.2: A comparison of the ADE system on regular and scrambled outputs. The
regular output is a summary supporting that the judgement or action is reasonable.
The scrambled output (where a different label than the true label is used) shows that
the architecture can correctly identify judgements or actions that are incorrect.

135

7.5 Challenges and Benchmarks

There are threeways to evaluate the ADE architecture:

1. Detection: Generate logs from scenarios to detect failures.

2. Invoke errors: Scrambling multiple labels on existing data sets.

3. Real errors: Examining errors on the validation dataset of NuScenes leader-

board.

I validated the first detection task by simulating the Uber Carla scenario and ex-

plaining it. I discussed preliminary results for inserting errors in Section 7.4.4. The

second validation is to examine the outputs of existing algorithms that are trained

on some of these self-driving data sets. I wanted to find common failure scenarios by

finding where existing algorithms failed. NuScenes [31] has several different online

challenges including detection, tracking, and prediction. The testing sets of these

challenges are private. I researched if I could acquire any of the top-performing algo-

rithms and examine their validation errors. Unfortunately, most of these algorithms

are not open source. Secondly, even if the source code was available, the source code

requires significant changes to be applied to nuScenes22. While I was able to find

many pre-trained models, I was not able to find one for the nuScenes challenges. This

may be examined again in future work.

Other anomaly detection data sets are not applicable to my method. These data

sets are are single modal: they contain outputs from a single subsystem with a con-

sistent data distribution. The key contribution of ADE is that it examines multiple

subsystems to make a judgement. These types of multimodal, anomalous data sets

do not currently exist.

22Most of these algorithms are pre-trained on KITTI [69], the predecessor to nuScenes.

136

7.5.1 Other Potential Evaluations

Other evaluations could be performed in simulation. There are a number of challenge

scenarios proposed23 that have not been simulated or released. I am currently working

on a set of challenge problems for anticipatory thinking in autonomous driving24.

The goal is to develop scenarios that that require abstract, high-level anticipatory

thinking [7], similar to the type of reasoning that humans do in difficult situations.

In other domains, I argue that explaining errors should be evaluated on tasks in-

stead of data. Unlike other explanatory methods that are evaluated for end-users [76],

my explanations for the machine. In future work, I will design tasks that require

machine explanations to complete tasks. This is discussed in the Conclusion in Sec-

tion 9.3.

7.6 Requirements to Apply ADE

Recall that ADE is an architecture and a reasoning process. The ADE architecture

is application-dependent. The hierarchical model needs to be defined for each ap-

plication. This requires constructing reasonableness monitors for each component

(specifications in Section 4.5), and composing components into committees. In this

Chapter, I showed one synthesizer that reconciles outputs from three committees. My

methodology can also be applied to multiple committees with multiple synthesizers.

The explanation synthesizer, can be utilized without or without an underlying

architecture definition. The explanation synthesizer has its own set of requirements.

1. Multiple pieces of information (e.g. vision, LiDAR, vehicle state) about corre-

sponding things25.

2. Priorities (e.g. safety) and associated rules.

23Carla challenges: https://carlachallenge.org/challenge/nhtsa/
24AAAI Fall Symposium on Anticipatory Thinking: https://www.anticipatorythinking.ai.
25The multiple pieces of information should overlap. If there is no overlapping information between

the monitored parts, then the explanation synthesizer cannot synthesize anything ; it will simply
summarize disparate information. Test cases of this behavior are shown in Appendix B.4

137

https://carlachallenge.org/challenge/nhtsa/
https://www.anticipatorythinking.ai

Note that the explanation synthesizer can be utilized without the architecture,

as long as it is provided with multiple explanations or justifications, and a priority

hierarchy.

7.7 Related Work

The main goal of this work is to use internal subsystem explanations to decrease

the number of false positives in anomaly detection. Anomaly detection is a data

science and machine learning discipline [37]. Although, anomaly detection is also

used in security to combat intrusion detection in networks [68]. Real-time anomaly

detection requires scoring algorithms to dynamically detect “anomalous” streaming

data, including a series of benchmarks [129]. The goal of anomaly detection is to be

accurate, and reduce the number of false-positives and false-negatives. Some tactics

include smoothing the output [85], or piece-wise approximations [229].

The final goal of this work is to provide interpretable explanations. Within

the context of self-driving car, previous work has used reasoning systems, propa-

gation [184], and models of expected vehicle physics and electromechanical behavior

to create causal chains that explain the events leading up to and in an accident [75].

This work is also being extended to include commonsense rules of vehicle actions, so

that it could monitor planning systems for inconsistent tactics.

My approach and position is similar to that proposed in Explainable Agency [128].

This refers to the ability of autonomous agents to explain their decisions and be

questioned. Although I adhere to many of the principles of explainable agency, my

goal is to extend these principles to full system design.

7.8 Limitations

ADE decomposes a complex machine into introspective committees or subsystems.

This requires knowledge of the underlying complex machine structure. For the self-

driving domain, I simplified a self-driving car into the three committees (vision, Li-

138

DAR, tactics) that are essential for planning. I also choose these committees since

they are well-represented in self-driving vehicle data [31]. A similar architecture is

applicable to other autonomous robotic systems like home robotics (without LiDAR),

and autonomous flight (with additional sensor information and Radar).

Priorities have to be manually set. For self-driving, this was straight-forward, as

the priority is safety of the passenger inside the vehicle. I cases where there is a

variety of external distractions and near-perfect information, it may be important to

consider which outside factors to prioritize; which reduces to the trolley problem [16].

One interesting area of future work would be to investigate whether these priorities

can be learned from experience. This requires a human-in-the-loop to provide proper

feedback. I will explore the right ways to incorporate human preferences into ADE.

This has implications for system debugging, but also for personalizing autonomy.

Each passenger may have their own preferences and priorities. There may be other

meaningful priorities besides passenger safety (i.e., passenger comfort, or limited in-

terruptions, or a smooth route). I will explore whether these can be learned through

user feedback in ongoing work.

7.9 Conclusion and Future Work

Complex machines have insufficient communication between parts. I showed how to

use dynamic explanations along with a logic system to reason between the subsys-

tems of a complex system. This enables allows better system-wide communication,

even with limited information, uninterpretable information, or receiving conflicting

information from the underlying subsystems. I have motivated this use case with a

self-driving failure example. I showed a quantitative evaluation on a data set where

I inserted errors.

This chapter motivates a new view of anomaly detection. A view in which failures

and errors are not necessarily outliers, but inexplicable instances. When an explana-

tion is inadequate or inappropriate, the underlying subsystem or process should be

corrected or disabled. The novel idea is using symbolic explanations as an internal

139

language. The explanations facilitate better communication. Better communications

can yield better performance; failures and errors are explicitly, logged, debugged, and

reconciled. This applies to complex systems that include humans.

As machines and humans share control of tasks, communication is necessary. This

is important for debugging, so that humans can improve complex systems, but also

for education, where complex could “improve” or teach humans. Imagine a system

where human interventions are well-communicated. The explanation supports the

intervention, and the explanation is used to improve the system. The machine is

introspective: the machine reflects and reasons about its behavior. The machine is

articulate: the machine explains and describes its behavior to other systems (including

a human) and itself. For most definitions, the machine is intelligent. This chapter is

a first step towards articulate machines that can coherently explain themselves and

learn from their mistakes: machines that are self-aware problem solvers.

140

Chapter 8

Philosophy of Explanations: A

Review with Recommendations

“The word explanation occurs so continuously and has so important a place

in philosophy, that a little time spent in fixing the meaning of it will be

profitably employed.”1

– J.S. Mill

During my PhD, there was a surge of work in explanatory artificial intelligence

(XAI). This research area tackles the important problem that complex machines and

algorithms often cannot provide insights into their behavior and thought processes.

XAI allows users and parts of the internal system to be more transparent, providing

explanations of their decisions in some level of detail. These explanations are impor-

tant to ensure algorithmic fairness, identify potential bias/problems in the training

data, and to ensure that the algorithms perform as expected. However, explanations

produced by these systems is neither standardized nor systematically assessed. In an

effort to create best practices and identify open challenges, I describe foundational

concepts of explainability and show how they can be used to classify existing lit-

erature. I discuss why current approaches to explanatory methods for deep neural

networks are insufficient. An earlier version of this review is available on arXiv [77]

1This is the first quote in the Chapter 1 of Sylvain Bromberger’s book on explanations [30].

141

and as a conference proceeding [76]. The ideas about the ethical implications of

explainability were part of a workshop paper [81].

8.1 Background and Foundational Concepts

This section provides background information about the key concepts of interpretabil-

ity and explanability, and elaborates and details the meaningful differences between

them.

8.1.1 What is an Explanation?

Philosophical texts show much debate over what constitutes an explanation. Of par-

ticular interest is what makes an explanation “good enough” or what really defines an

explanation. Sylvain Bromberger says that good explanation depends on the question.

In Bromberger’s set of essays [30], he discusses the nature of explanation, theory, and

the foundations of linguistics. Although for my work, the most important and inter-

esting work is on “why questions.” In particular, when you can phrase what you want

to know from an algorithm as a why question, there is a natural qualitative represen-

tation of when you have answered said question–when you can no longer keep asking

why. There are two why-questions of interest; why and why-should. Similarly to the

explainable planning literature, philosophers wonder about the why-shouldn’t and

why-should questions, which can give the kinds of explainability requirements society

desires. The details of the societal requirement for explanations are in Section 8.6.

There is also discussion in philosophy about what makes the best explanation.

Gilbert Harman says it is a type of abductive reasoning.

“In general, there will be several hypotheses which might explain the ev-

idence, so one must be able to reject all such alternative hypotheses be-

fore one is warranted in making the inference. Thus one infers, from the

premise that a given hypothesis would provide a ‘better’ explanation for

the evidence than would any other hypothesis, to the conclusion that the

142

given hypothesis is true.” [91]

This is slightly different than Charles Pierce’s definition of abduction2, which is to

infer a premise from a conclusion [177]. While Paul R. Thagard agrees that “inductive

inference is inference to the best explanation” [221], he also suggests three new criteria

to evaluate the “best” explanation: consilience (converging to a conclusion), simplicity,

and analogy.

Interactive Explanations

I argue that a good explanation is interactive. The user or program should be able to

ask for details, inquire for more information, and collaborate on tasks. I argue that

these types of interactive, collaborative tasks are also appropriate for evaluation3.

8.1.2 Interpretability vs. Completeness

I argue that an explanation can be evaluated in two ways: according to its inter-

pretability, and according to its completeness.

The goal of interpretability is to describe the internals of a system in a way that

is understandable to humans. The success of this goal is tied to the cognition, knowl-

edge, and biases of the user: for a system to be interpretable, it must produce de-

scriptions that are simple enough for a person to understand using a vocabulary that

is meaningful to the user4.

The goal of completeness is to describe the operation of a system in an accurate

way. An explanation is more complete when it allows the behavior of the system to be

anticipated in more situations. When explaining a self-contained computer program

2Pierce’s classic example of “abduction” explains rain. If it is observed that the grass is wet, it
probably rained. He states that rain is the best explanation for wet grass, especially in his native
area of New England. But this is not the best explanation in a desert location, where the best
explanation may be a the result of a sprinkler system (especially if the grass is wet but the pavement
is not.)

3I describe how to develop these evaluations, by designing collaborative tasks (between a human
and machine) that require explanations for success, in Section 9.3

4If there is no “simple” explanation that supports a decision, this could be worrisome, and possibly
unethical. I describe this and other ethical implications of XAI systems in Section 8.6.

143

such as a deep neural network, a perfectly complete explanation can always be given

by revealing all the mathematical operations and parameters in the system.

The challenge facing explainable AI is in creating explanations that are both

complete and interpretable: it is difficult to achieve interpretability and completeness

simultaneously. The most accurate explanations are not easily interpretable to people;

and conversely the most interpretable descriptions often do not provide predictive

power.

Herman notes that we should be wary of evaluating interpretable systems using

merely human evaluations of interpretability, because human evaluations imply a

strong and specific bias towards simpler descriptions [96]. He cautions that reliance

on human evaluations can lead researchers to create persuasive systems rather than

transparent systems. He presents the following ethical dilemmas that are a central

concern when building interpretable systems:

1) When is it unethical to manipulate an explanation

to better persuade users?

2) How do we balance our concerns for transparency and

ethics with our desire for interpretability?

I believe that it is fundamentally unethical to present a simplified description of a

complex system in order to increase trust. The explanation may be optimized to hide

undesirable attributes of the system. Such explanations are inherently misleading,

and may result in the user justifiably making dangerous or unfounded conclusions.

To avoid this trap, explanations should allow a trade-off between interpretability

and completeness. Rather than providing only simple descriptions, systems should

allow for descriptions with higher detail and completeness at the possible cost of

interpretability. Explanation methods should not be evaluated on a single point

on this trade-off, but according to how they behave on the curve from maximum

interpretability to maximum completeness.

144

8.1.3 Explainability of Deep Networks

Explanations of the operation of deep networks have focused on either explaining the

processing of the data by a network, or explaining the representation of data inside a

network. An explanation of processing answers “Why does this particular input lead

to that particular output?” and is analogous to explaining the execution trace of a

program. An explanation about representation answers “What information does the

network contain?” and can be compared to explaining the internal data structures of

a program.

A third approach to interpretability is to create explanation-producing systems

with architectures that are designed to simplify interpretation of their own behavior.

Such architectures can be designed to make either their processing, representations,

or other aspects of their operation easier for people to understand.

8.2 Review

Due to the growing number of sub-fields, as well as the policy and legal ramifications

[83] of opaque systems, the volume of research in interpretability is quickly expanding.

Since it is intractable to review all the papers in the space, I focus on explainable

methods in deep neural architectures, and briefly highlight review papers from other

sub-fields.

8.2.1 Explanations of Deep Network Processing

Deep networks derive their decisions using a large number of elementary operations.

For example, ResNet [93], a popular architecture for image classification, incorporates

about 5 × 107 learned parameters and executes about 1010 floating point operations

to classify a single image. Thus the fundamental problem facing explanations of such

processing is to find ways to reduce the complexity of all these operations. This can be

done by either creating a proxy model which behaves similarly to the original model,

but in a way that is easier to explain, or by creating a salience map to highlight a

145

small portion of the computation which is most relevant.

Linear Proxy Models

LIME is a model-agnostic5 proxy method [189]. With LIME, a black-box system

is explained by probing behavior on perturbations of an input, and then that data

is used to construct a local linear model that serves as a simplified proxy for the

full model in the neighborhood of the input. The method can be used to identify

regions of the input that are most influential for a decision across a variety of types

of models and problem domains. Proxy models such as LIME are predictive: the

proxy can be run and evaluated according to its faithfulness to the original system.

Proxy models can also be measured according to their model complexity, for example,

number of nonzero dimensions in a LIME model. Because the proxy model provides a

quantifiable relationship between complexity and faithfulness, methods can be bench-

marked against each other, making this approach attractive.

Decision Trees

Another appealing type of proxy model is the decision tree. Efforts to decompose neu-

ral networks into decision trees have recently extended work from the 1990s, which fo-

cused on shallow networks, to generalizing the process for deep neural networks. One

such method is DeepRED [257], which demonstrates a way of extending the CRED

[197] algorithm (designed for shallow networks) to arbitrarily many hidden layers.

DeepRED utilizes several strategies to simplify its decision trees: it uses RxREN [15]

to prune unnecessary input, and it applies algorithm C4.5 [195], a statistical method

for creating a parsimonious decision tree. Although DeepRED is able to construct

complete trees that are closely faithful to the original network, the generated trees

can be quite large, and the implementation of the method takes substantial time and

memory and is therefore limited in scalability.

Another decision tree method is ANN-DT [200] which uses sampling to create

a decision tree: the key idea is to use sampling to expand training using a nearest
5Model-agnostic means that the method (in this case, LIME) can be applied to any model.

146

neighbor method.

Automatic-Rule Extraction

Automatic rule extraction is another well-studied approach for summarizing decisions.

Andrews et al. [9] outlines existing rule extraction techniques, and provides a useful

taxonomy of five dimensions of rule-extraction methods including their expressive

power, translucency and the quality of rules. Another useful survey can be found in

the master’s thesis by Zilke [256].

Decompositional approaches work on the neuron-level to extract rules to mimic the

behavior of individual units. The KT method [66] goes through each neuron, layer-

by-layer and derives an if-then rule by finding a threshold. Similar to DeepRED, there

is a merging step which creates rules in terms of the inputs rather than the outputs

of the preceding layer. This is an exponential approach which is not feasible for deep

neural networks. However, a similar approach proposed by Tsukimoto [227] achieves

polynomial-time complexity, and may be more tractable. There has also been work

on transforming neural network to fuzzy rules [21], by transforming each neuron into

an approximate rule.

Pedagogical approaches aim to extract rules by directly mapping inputs to out-

puts rather than considering the inner workings of a neural network. These treat

the network as a black box, and find trends and functions from the inputs to the

outputs. Validity Interval Analysis is a type of sensitivity analysis to mimic neu-

ral network behavior [222]. This method finds stable intervals, where there is some

correlation between the input and the predicted class. Another way to extract rules

using sampling methods [102, 44]. Some of these sampling approaches only work on

binary input [219] or use genetic algorithms to produce new training examples [89].

Other approaches aim to reverse engineer the neural network, notably, the RxREN

algorithm, which is used in DeepRED[257].

Other notable rule-extraction techniques include the MofN algorithm [225], which

tries to find rules that explain single neurons by clustering and ignoring insignificant

neurons. Similarly, The FERNN [204] algorithm uses the C4.5 algorithm [195] and

147

tries to identify the meaningful hidden neurons and inputs to a particular network.

Although rule-extraction techniques increase the transparency of neural networks,

they may not be truly faithful to the model. With that, there are other methods that

are focused on creating trust between the user and the model, even if the model is

not “sophisticated.”

Salience Mapping

The salience map approach is exemplified by occlusion procedure by Zeiler [246],

where a network is repeatedly tested with portions of the input occluded to create a

map showing which parts of the data actually have influence on the network output.

When deep network parameters can be inspected directly, a salience map can be cre-

ated more efficiently by directly computing the input gradient (Simonyan [209]). Since

such derivatives can miss important aspects of the information that flows through a

network, a number of other approaches have been designed to propagate quantities

other than gradients through the network. Examples are LRP [17], DeepLIFT [207],

CAM [254], Grad-CAM [203], Integrated gradients [217], and SmoothGrad [211].

Each technique strikes a balance between showing areas of high network activation,

where neurons fire strongest, and areas of high network sensitivity, where changes

would most affect the output. A comparison of some of these methods can be found

in Ancona [8].

8.2.2 Explanations of Deep Network Representations

While the number of individual operations in a network is vast, deep networks are in-

ternally organized into a smaller number of subcomponents: for example, the billions

of operations of ResNet are organized into about 100 layers, each computing between

64 and 2048 channels of information per pixel. The explanation of deep network rep-

resentations aims to understand the role and structure of the data flowing through

these bottlenecks. This work can be divided by the granularity examined: represen-

tations can be understood by layer, where all the information flowing through a layer

148

is considered together, and by unit, where single neurons or single filter channels are

considered individually, and by vector, where other vector directions in representation

space are considered individually.

Role of Layers

Layers can be understood by testing their ability to help solve different problems from

the problems the network was originally trained on. For example Razavian [185] found

that the output of an internal layer of a network trained to classify images of objects

in the ImageNet data set produced a feature vector that could be directly reused

to solve a number of other difficult image processing problems including fine-grained

classification of different species of birds, classification of scene images, attribute

detection, and object localization. In each case, a simple model such as an SVM was

able to directly apply the deep representation to the target problem, beating state-

of-the-art performance without training a whole new deep network. This method of

using a layer from one network to solve a new problem is called transfer learning,

and it is of immense practical importance, allowing many new problems to be solved

without developing new data sets and networks for each new problem. Yosinksi [245]

described a framework for quantifying transfer learning capabilities in other contexts.

Role of Individual Units

The information within a layer can be further subdivided into individual neurons or

individual convolutional filters. The role of such individual units can be understood

qualitatively, by creating visualizations of the input patterns that maximize the re-

sponse of a single unit, or quantitatively, by testing the ability of a unit to solve a

transfer problem. Visualizations can be created by optimizing an input image us-

ing gradient descent [209], by sampling images that maximize activation [253], or by

training a generative network to create such images [169]. Units can also be charac-

terized quantitatively by testing their ability to solve a task. One example of a such a

method is network dissection [19], which measures the ability of individual units solve

a segmentation problem over a broad set of labeled visual concepts. By quantifying

149

the ability of individual units to locate emergent concepts such as objects, parts, tex-

tures, and colors that are not explicit in the original training set, network dissection

can be used characterize the kind of information represented by visual networks at

each unit of a network.

A review of explanatory methods focused on understanding unit representations

used by visual CNNs can be found in [247], which examines methods for visualization

of CNN representations in intermediate network layers, diagnosis of these representa-

tions, disentanglement representation units, the creation of explainable models, and

semantic middle-to-end learning via human-computer interaction.

Pruning of networks [64] has also been shown to be a step towards understanding

the role of individual neurons in networks. In particular, large networks that train

successfully contain small subnetworks with initializations conducive to optimization.

This demonstrates that there exist training strategies that make it possible to solve

the same problems with much smaller networks that may be more interpretable.

Role of Representation Vectors

Closely related to the approach of characterizing individual units is characterizing

other directions in the representation vector space formed by linear combinations

of individual units. Concept Activation Vectors (CAVs) [112] are a framework for

interpretation of a neural net’s representations by identifying and probing directions

that align with human-interpretable concepts.

8.2.3 Explanation-Producing Systems

Several different approaches can be taken to create networks that are designed to be

easier to explain: networks can be trained to use explicit attention as part of their

architecture; they can be trained to learn disentangled representations ; or they can

be directly trained to create generative explanations.

150

Attention Networks

Attention-based networks learn functions that provide a weighting over inputs or in-

ternal features to steer the information visible to other parts of a network. Attention-

based approaches have shown remarkable success in solving problems such as allowing

natural language translation models to process words in an appropriate non-sequential

order [230], and they have also been applied in domains such as fine-grained image

classification [242] and visual question answering [145]. Although units that control

attention are not trained for the purpose of creating human-readable explanations,

they do directly reveal a map of which information passes through the network, which

can serve as a form of explanation. Data sets of human attention have been created

[46], [174]; these allow systems to be evaluated according to how closely and their

internal attention resembles human attention.

While attention can be observed as a way of extracting explanations, another

interesting approach is to train attention explicitly in order to create a network that

has behavior that conforms to desired explanations. This is the technique proposed

by Ross [192], where input sensitivity of a network is adjusted and measured in order

to create networks that are “right for the right reasons”; the method can be used to

steer the internal reasoning learned by a network. They also propose that the method

can be used to learn a sequence of models that discover new ways to solve a problem

that may not have been discovered by previous instances.

Disentangled Representations

Disentangled representations have individual dimensions that describe meaningful

and independent factors of variation. The problem of separating latent factors is

an old problem that has previously been attacked using a variety of techniques such

as Principal Component Analysis [104], Independent Component Analysis [99], and

Nonnegative Matrix Factorization [23]. Deep networks can be trained to explicitly

learn disentangled representations. One approach that shows promise is Variational

Autoencoding [115], which trains a network to optimize a model to match the input

151

probability distribution according to information-theoretic measures. Beta-VAE [97]

is a tuning of the method that has been observed to disentangle factors remarkably

well. Another approach is InfoGAN [40], which trains generative adversarial networks

with an objective that reduces entanglement between latent factors. Special loss func-

tions have been suggested for encouraging feed-forward networks to also disentangle

their units; this can be used to create interpretable CNNs that have individual units

that detect coherent meaningful patches instead of difficult-to-interpret mixtures of

patterns [249]. Disentangled units can enable the construction of graphs [248] and

decision trees [250] to elucidate the reasoning of a network. Architectural alternatives

such as capsule networks [194] can also organize the information in a network into

pieces that disentangle and represent higher-level concepts.

Generated Explanations

Finally, deep networks can also be designed to generate their own human-understandable

explanations as part of the explicit training of the system. Explanation generation

has been demonstrated as part of systems for visual question answering [12] as well

as in fine-grained image classification [95]. In addition to solving their primary task,

these systems synthesize a “because” sentence that explains the decision in natural

language. The generators for these explanations are trained on large data sets of

human-written explanations, and they explain decisions using language that a person

would use.

Multimodal explanations that incorporate both visual pointing and textual ex-

planations can be generated; this is the approach taken in [174]. This system builds

upon the winner of the 2016 VQA challenge [67], with several simplification and addi-

tions. In addition to the question answering task and the internal attention map, the

system trains an additional long-form explanation generator together with a second

attention map optimized as a visual pointing explanation. Both visual and textual

explanations score well individually and together on evaluations of user trust and ex-

planation quality. Interestingly, the generation of these highly readable explanations

is conditioned on the output of the network: the explanations are generated based on

152

the decision, after the decision of the network has already been made.

The rise of dialog systems and chatbots for customer care have lead to research in

how to build trust between users and technology. The most straightforward methods

eschew sophisticated natural language understanding techniques and mimic conver-

sations to build trust [179] either by scripted conversation6 or wizard-of-oz methods

[109].

8.3 Related Work

This section contains a summary of review papers, and an overview of interpretability

and explainability in other domains.

8.3.1 Interpretability

A previous survey attempted to define taxonomies and best practices for a “strong

science” of interpretability [54]. The authors define interpretability as “the ability to

explain or to present in understandable terms to a human” and suggest a variety of

definitions for explainability, converging on the notion that interpretation is the act of

discovering the evaluations of an explanation. The main contribution of the paper is

a taxonomy of modes for interpretability evaluations: application-grounded, human-

grounded, and functionally grounded. The authors state interpretability is required

when a problem formulation is incomplete, when the optimization problem – the key

definition to solve the majority of machine learning problems – is disconnected from

evaluation. Since their problem statement is the incompleteness criteria of models,

resulting in a disconnect between the user and the optimization problem, evaluation

approaches are key.

The first evaluation approach is application-grounded, involving real humans on

real tasks. This evaluation measures how well human-generated explanations can aid

other humans in particular tasks, with explanation quality assessed in the true context

6Juergen Pirner, creator of the 2003 Loebner prize winner Jabberwock, has been outspoken about
the scripting process behind a chatbot.

153

of the explanation’s end tasks. For instance, a doctor should evaluate diagnosis

systems in medicine. The second evaluation approach is human-grounded, using

human evaluation metrics on simplified tasks. The key motivation is the difficulty

of finding target communities for application testing. Human-grounded approaches

may also be used when specific end-goals, such as identifying errors in safety-critical

tasks, are not possible to realize fully. The final evaluation metric is functionally

grounded evaluation, without human subjects. In this experimental setup, proxy

or simplified tasks are used to prove some formal definition of interpretability. The

authors acknowledge that choosing which proxy to use is a challenge inherent to this

approach. There lies a delicate trade-off between choosing an interpretable model and

a less interpretable proxy method which is more representative of model behavior;

the authors acknowledge this point and briefly mention decision trees as a highly

interpretable model. In my XAI taxonomy, Table 8.1, decision trees and proxy models

explain the same part of an underlying model (namely, the model’s processing).

8.3.2 Explainable AI for HCI

One previous review paper of explainable AI performed a sizable data-driven literature

analysis of explainable systems [1]. In this work, the authors move beyond the classical

AI interpretability argument, focusing instead on how to create practical systems

with efficacy for real users. The authors motivate AI systems that are “explainable

by design” and present their findings with three contributions: a data-driven network

analysis of 289 core papers and 12,412 citing papers for an overview of explainable

AI research, a perspective on trends using network analysis, and a proposal for best

practices and future work in HCI research pertaining to explainability.

Since most of the paper focuses on the literature analysis, the authors highlight

only three large areas in their related work section: explainable artificial intelligence

(XAI), intelligibility and interpretability in HCI, and analysis methods for trends in

research topics.

The major contribution of this paper is a sizable literature analysis of explain-

able research, enabled by the citation network the authors constructed. Papers were

154

aggregated based on a keyword search on variations of the terms “intelligible,” “in-

terpretable,” “transparency,” “glass box,” “black box,” “scrutable,” “counterfactuals,”

and “explainable,” and then pruned down to 289 core papers and 12,412 citing pa-

pers. Using network analysis, the authors identified 28 significant clusters and 9

distinct research communities, including early artificial intelligence, intelligent sys-

tems/agents/user interfaces, ambient intelligence, interaction design and learnability,

interpretable ML and classifier explainers, algorithmic fairness, accountability, trans-

parency, policy, journalism, causality, psychological theories of explanations, and cog-

nitive tutors. In contrast, my work is focused on the research in interpretable ML

and classifier explainers for deep learning.

With the same sets of core and citing papers, the authors performed LDA-based

topic modeling on the abstract text to determine which communities are related. The

authors found the largest, most central and well-studied network to be intelligence

and ambient systems. In my research, the most important subnetworks are the Ex-

plainable AI: Fair, Accountable, and Transparent (FAT) algorithms and Interpretable

Machine Learning (iML) subnetwork and the theories of explanations subnetworks.

In particular, the authors provide a distinction between FATML and interpretability;

while FATML is focused on societal issues, interpretability is focused on methods.

Theory of explanations joins causality and cognitive psychology with the common

threads of counterfactual reasoning and causal explanations. Both these threads are

important factors in my taxonomy analysis.

In the final section of their paper, the authors name two trends of particular inter-

est to us: ML production rules and a road map to rigorous and usable intelligibility.

The authors note a lack of classical AI methods being applied to interpretability,

encouraging broader application of those methods to current research. Though this

paper focused mainly on setting an HCI research agenda in explainability, it raises

many points relevant to my work. Notably, the literature analysis discovered subtopics

and subdisciplines in psychology and social science, not yet identified as related in

my analysis.

155

8.3.3 Explanations for Black-Box Models

A recent survey on methods for explaining black-box models [87] outlined a taxonomy

to provide classifications of the main problems with opaque algorithms. Most of

the methods surveyed are applied to neural-network based algorithms, and therefore

related to my work.

The authors provide an overview of methods that explaining decision systems

based on opaque and obscure machine learning models. Their taxonomy is detailed,

distinguishing small differing components in explanation approaches (e.g. Decision

tree vs. single tree, neuron activation, SVM, etc.) Their classification examines four

features for each explanation method:

1. The type of the problem faced.

2. The explanatory capability used to open the black box.

3. The type of black box model that can be explained.

4. The type of input data provided to the black box model.

They primarily divide the explanation methods according to the types of problem

faced, and identify four groups of explanation methods: methods to explain black

box models; methods to explain black box outcomes; methods to inspect black boxes;

and methods to design transparent boxes. Using their classification features and these

problem definitions, they discuss and further categorize methods according to the type

of explanatory capability adopted, the black box model “opened”, and the input data.

Their goal is to review and classify the main black box explanation architectures,

so their classifications can serve as a guide to identifying similar problems and ap-

proaches. I find this work a meaningful contribution that is useful for exploring the

design space of explanation methods. my classification is less finely-divided; rather

than subdividing implementation techniques, I examine the focus of the explanatory

capability and what each approach can explain, with an emphasis on understanding

how different types of explainability methods can be evaluated.

156

8.3.4 Explainability in Other Technical Domains

Explainable planning [63] is an emerging discipline that exploits the model-based

representations that exist in the planning community. Some of the key ideas were

proposed years ago in plan recognition [107]. Explainable planning urges the familiar

and common basis for communication with users, while acknowledging the gap be-

tween planning algorithms and human problem-solving. In this paper, the authors

outline and provide examples of a number of different types of questions that expla-

nations could answer, like “Why did you do A” or ”Why DIDN’T you do B”, ”Why

CAN’T you do C”, etc. In addition, the authors emphasize that articulating a plan

in natural language is NOT usually the same thing as explaining the plan. A request

for explanation is “an attempt to uncover a piece of knowledge that the questioner

believes must be available to the system and that the questioner does not have”. I

discuss the questions an explanation can and should answer in the conclusion.

Automatic explanation generation is also closely related to computers and ma-

chines that can tell stories. In John Reeves’ thesis [186], he created the THUNDER

program to read stories, construct character summaries, infer beliefs, and understand

conflict and resolution. Other work examines how to represent the necessary struc-

tures to do story understanding [162]. The Genesis Story-Understanding System

[241] is a working system that understands, uses, and composes stories using higher-

level concept patterns and commonsense rules. Explanation rules are used to supply

missing causal or logical connections.

At the intersection of human robot interaction and story-telling is verbalization;

generating explanations for human-robot interaction [191]. Similar approaches are

found in abductive reasoning; using a case-based model [132] or explanatory coherence

[168]. This is also a well-studied field in brain and cognitive science by filling in the

gaps of knowledge by imagining new ideas [147] or using statistical approaches [120].

157

8.3.5 Explanations for Society

Explanations have been proposed as an artifact to build societal trust. Recent work

has looked at ways to correct neural network judgments [251] and different ways to

audit such networks by detecting biases [220]. But these judgments are not enough

to completely understand the model’s decisions-making. Other work answers why

questions by finding similar data points [38]. Although these methods are clearly

interpretable, they do not provide any unique insights into why the model made

those decisions. Other work examining best practices for explanation [206] provides a

set of categories, but does not evaluate the questions that explanatory systems should

be able to answer; which is necessary for policy makers and societal trust in DNN

decision processes.

The desire for explanations in certain sectors of the law is not new. For example,

the U.S. Fair Credit Reporting Act creates obligations for transparency in certain

financial decision-making processes, even if they are automated [126]. The role of

explanation has been examined to enforce accountability under the law [55]. Similar

recommendations in using explanations in law have been examined in promoting

ethics for design [164], for privacy [165], and liability for machines [231].

In this chapter, I explicitly examine DNNs, even though there have been impor-

tant developments in explanatory systems not tailored to DNNs, such as randomized

importance [144], rule lists [136], partial dependence plots [252, 65, 161], Shapely

scores [213, 161], and Bayesian case based models [113].

8.4 Taxonomy

The approaches from the literature that I have examined fall into three different cat-

egories. Some papers propose explanations that, while admittedly non-representative

of the underlying decision processes, provide some degree of justification for emitted

choices that may be used as response to demands for explanation in order to build

human trust in the system’s accuracy and reasonableness. These systems emulate

the processing of the data to draw connections between the inputs and outputs of the

158

system.

The second purpose of an explanation is to explain the representation of data

inside the network. These provide insight about the internal operation of the network

and can be used to facilitate explanations or interpretations of activation data within

a network. This is comparative to explaining the internal data structures of the

program, to start to gain insights about why certain intermediate representations

provide information that enables specific choices.

The final type of explanation is explanation-producing networks. These networks

are specifically built to explain themselves, and they are designed to simplify the

interpretation of an opaque subsystem. They are steps towards improving the trans-

parency of these subsystems; where processing, representations, or other parts are

justified and easier to understand.

The taxonomy I present is useful given the broad set of existing approaches for

achieving varying degrees of interpretability and completeness in machine learning

systems. Two distinct methods claiming to address the same overall problem may, in

fact, be answering very different questions. My taxonomy attempts to subdivide the

problem space, based on existing approaches, to more precisely categorize what has

already been accomplished.

I show the classifications of my reviewed methods per category in Table 8.1. Notice

that the processing and explanation-producing roles are much more populated than

the representation role. I believe that this disparity is largely due to the fact that it

is difficult to evaluate representation-based models. User-study evaluations are not

always appropriate. Other numerical methods, like demonstrating better performance

by adding or removing representations, are difficult to facilitate.

The position of my taxonomy is to promote research and evaluation across cate-

gories. Instead of other explanatory and interpretability taxonomies that assess the

purpose of explanations [54] and their connection to the user [1], I instead assess

the focus on the method, whether the method tries to explain the processing of the

data by a network, explain the representation of data inside a network or to be a

self-explaining architecture to gain additional meta predictions and insights about

159

the method.

I promote this taxonomy, particularly the explanation-producing sub-category, as

a way to consider designing neural network architectures and systems. I also highlight

the lack of standardized evaluation metrics, and propose research crossing areas of

the taxonomy as future research directions.

Processing Representation Explanation
Producing

Proxy Methods Role of layers Scripted conversations
Decision Trees Role of neurons Attention-based

Salience mapping Role of vectors Disentangled rep.
Automatic-rule extraction Human evaluation

Table 8.1: The classifications of explanation methods by the focus of the explanation.

8.5 Evaluation

Although I outline three different focuses of explanations for deep networks, they do

not share the same evaluation criteria. Most of the work surveyed conducts one of

the following types of evaluation of their explanations.

1. Completeness compared to the original model. A proxy model can be evalu-

ated directly according to how closely it approximates the original model being

explained.

2. Completeness as measured on a substitute task. Some explanations do not

directly explain a model’s decisions, but rather some other attribute that can

be evaluated. For example, a salience explanation that is intended to reveal

model sensitivity can be evaluated against a brute-force measurement of the

model sensitivity.

3. Ability to detect models with biases. An explanation that reveals sensitivity to

a specific phenomenon (such as a presence of a specific pattern in the input)

160

can be tested for its ability to reveal models with the presence or absence of a

relevant bias (such as reliance or ignorance of the specific pattern).

4. Human evaluation. Humans can evaluate explanations for reasonableness, that

is how well an explanation matches human expectations. Human evaluation

can also evaluate completeness or substitute-task completeness from the point of

view of enabling a person to predict behavior of the original model; or according

to helpfulness in revealing model biases to a person.

The trade-off between interpretability and its completeness can be seen not only

as a balance between simplicity and accuracy in a proxy model. The trade-off can also

be made by anchoring explanations to substitute tasks or evaluating explanations in

terms of their ability to surface important model biases. Each of the three types of

explanation methods can provide explanations that can be evaluated for completeness

(on those critical model characteristics), while still being easier to interpret than a

full accounting for every detailed decision of the model.

8.5.1 Processing

Processing models can also be regarded as emulation-based methods. Proxy meth-

ods should be evaluated on their faithfulness to the original model. A handful of

these metrics are described in [189]. The key idea is that evaluating completeness

to a model should be local. Even though a deep neural network, is too complex

globally, you can still explain in a way that makes sense locally by approximating

local behavior. Therefore, processing model explanations want to minimize the “com-

plexity” of explanations (essentially, minimize length) as well as “local completeness”

(error of interpretable representation relative to actual classifier, near instance being

explained).

Salience methods that highlight sensitive regions for processing are often evaluated

qualitatively. Although they do not directly predict the output of the original method,

these methods can also be evaluated for faithfulness, since their intent is to explain

model sensitivity. For example, [8] conducts an occlusion experiment as ground truth,

161

in the model is tested on many version of an input image where each portion of

the image is occluded. This test determines in a brute-force but computationally

inefficient way which parts of an input cause a model to change its outputs the most.

Then each salience method can be evaluated according to how closely the method

produces salience maps that correlate with this occlusion-based sensitivity.

8.5.2 Representation

Representation-based methods typically characterize the role of portions of the rep-

resentation by testing the representations on a transfer task. For example, represen-

tation layers are characterized according to their ability to serve as feature input for

a transfer problem, and both Network Dissection representation units and Concept

Activation Vectors are measured according to their ability to detect or correlate with

specific human-understandable concepts.

Once individual portions of a representation are characterized, they can be tested

for explanatory power by evaluating whether their activations can faithfully reveal a

specific bias in a network. For example, Concept Activation Vectors [112] are evalu-

ated by training several versions of the same network on data sets that are synthesized

to contain two different types of signals that can be used to determine the class (the

image itself, and an overlaid piece of text which gives the class name with varying

reliability). The faithfulness of CAVs to the network behavior can be verified by

evaluating whether classifiers that are known to depend on the text (as evidenced

by performance on synthesized tests) exhibit high activations of CAV vectors corre-

sponding to the text, and that classifiers that do not depend on the text exhibits low

CAV vectors.

8.5.3 Explanation-Producing

Explanation-producing systems can be evaluated according to how well they match

user expectations. For example, network attention can be compared to human at-

tention [46], and disentangled representations can be tested on synthetic data sets

162

that have known latent variables, to determine whether those variables are recovered.

Finally, systems that are trained explicitly to generate human-readable explanations

can be tested by similarity to test sets, or by human evaluation.

One of the difficulties of evaluating explanatory power of explanation-producing

systems is that, since the system itself produces the explanation, evaluations neces-

sarily couple evaluation of the system along with evaluation of the explanation. An

explanation that seems unreasonable could indicate either a failure of the system to

process information in a reasonable way, or it could indicate the failure of the ex-

planation generator to create a reasonable description. Conversely, an explanation

system that is not faithful to the decision making process could produce a reasonable

description even if the underlying system is using unreasonable rules to make the

decision. An evaluation of explanations based on their reasonableness alone can miss

these distinctions. In [54], a number of user-study designs are outlined that can help

bridge the gap between the model and the user.

8.6 Societal Expectations for Explanations

Imagine you do not receive a loan, you would want to know what was the key attribute

that limited the algorithm. You would want to know why you were denied a loan.

But further, you may also want a sensitivity analysis: what would you need to change

to be able to get the loan. There may be several possibilities. For example, you may

have received a loan if you made $1,000 more per month; something you may be able

to change in the future. However, other factors may be things you cannot control,

such as the specific time you applied or your gender or ethnicity. So, in this case, we

would like to have system that is able to explain why it decided to give or not a loan

to each person.

Moreover, consider again the AI system example mentioned earlier of a self-driving

car involved in an accident. The first thing we would want to know is why the accident

happened. In this case there are many algorithms interacting. Finding if there was a

faulty component is extremely challenging, making it even more relevant for each part

163

of the system to be able to explain its decisions. In the recent Uber accident where

the vehicle struck and killed a pedestrian, detecting the root-cause of the accident

took several weeks to uncover in the complex AI software system [151, 150].

But the other, more challenging question we would want to ask is if the accident

could have been avoided. This is a more difficult question than the previous, single

algorithm question. In complex systems, an error could be local (caused by a single

failure), or it could be caused by an inconsistency between parts working together.

The latter is much more difficult to detect, diagnosis, and explain.

In the Uber case, since the accident was caused by a false positive [134] on the error

detection monitoring the pedestrian, several explanations could provide evidence of

how this could have been avoided. Again, some inconsistencies are easier to fix than

others (which may not be possible). Perhaps the sensitivity on the error detection

monitor should be decreased or increased. Or perhaps the pedestrian would have been

detected with higher certainty during the daytime, or if they were walking slower. It

is still left to question whether the training data was at fault, which introduces a new

set of questions.

8.6.1 Definitions

I follow the definition from Section 8.1.2 that a proper explanation should be both

interpretable and complete. By interpretable, I mean that the explanation should

be understandable to humans. That does not necessarily imply that the explanation

must be in human-readable form, in fact, visual cues are well-understood by humans.

When I say that the methods must be complete, I mean the resulting explanation

should be true to the model. For example, while using a simplified model that is

explainable (like a linear model) to fit the input to the output results in a nice

explanation, it is not a true and complete representation of the internal concepts,

representations, and decisions of the model.

I refer to inside and outside explanations for explaining DNNs. When I refer to

inside explanations, I am referring to the type of explanations that currently exist,

that are catered towards AI developers and experts. They are tailored to people

164

Table 8.2: Strengths, benefits, and challenges of current DNN XAI systems

Method Questions it can an-
swer

Questions it cannot an-
swer

Processing Why does this partic-
ular input lead to this
particular output?

Why were these inputs most
important to the output?
How could the output be
changed?

Representation What information does
the network contain?

Why is a representation
relevant for the outputs?
How was this representation
learned?

Explanation Given a particular out-
put

What information con-
tributed to this

producing or decision, how can the
network explain its be-
havior?

output/decision? How can
the network yield a different
output/decision?

inside the field. We encourage the development of outside explanations that are

interpretable, complete, and answer why questions. They build trust not only to

their technical developers, but also those outside the technical scope that may use

their technology without a technical background.

8.6.2 Current Limitations

To show the strengths, benefits, and challenges of current explanatory approaches for

opaque, DNN systems, I use the taxonomy from Section 8.4 [76] . The taxonomy

consists of 3 classes. The first class are systems that explain processing by look-

ing at the relationships between the inputs and the outputs. These include salience

mapping [254, 203], decision trees [257], automatic rule-extraction [9], and influ-

ence functions [119]. The second class are systems that explain representation for

DNNs either in terms of layers [185, 245], neurons [19] or vectors [112]. The final

class is explanation-producing systems that look at attention-based visual question

answers [174] or disentangled representations [194] to create self-explaining systems.

When examining this taxonomy for policy purposes, the biggest shortcoming is

that these systems cannot explain why. There are two types of questions that we

165

should ask of a decision making algorithm:

1. Why did this output happen?

2. How could this output have changed?

A summary of the types of questions that current DNN XAI systems can and

cannot answer are in Table 8.2. Explanation producing systems nearly answer the

first question we would want to ask a decision making algorithm: why did this output

happen? But the problem is that their explanation may not be complete and true to

the model’s internal decisions and processes.

8.7 A Big Problem: Opaque Perception Processes

Some of the best performing AI mechanisms are opaque. I showed how to monitor

these approaches in Chapter 4, most complex statistical computations are not ex-

plainable. Although some “concept-level” explanations exist [112, 19], these are based

on partial explanations are a set of numerical weights. There is immediate “story”

available.

But humans have the same problem. We cannot make a symbolic justification of

a perception. If we perceive something hazardous, such as the smell of smoke in a

building, we cannot explain why. However, we are able to describe this perception in

the context of a longer story: “There are many people in my apartment. I smelled

smoke and so I told the occupants to evacuate.” Every decision or action may depend

on some primitive perceptions but the combination that led to the result can be

explained, if we have the right symbolic descriptions for the primitive perceptions.

In the next few sections, I describe methods that attempt to “fill in the gaps” of

perception.

8.7.1 Hallucinating Information

Expectation is essential to perception. The idea is that the expectation generates

a “hallucination:” a reasonable interpretation of constrained sensory data. In fact,

166

Andy Clark has said that “Perception itself is a kind of controlled hallucination”7.

Beale and Sussman actually showed a proof-of-concept of this idea [20]. Computers

struggle to perceive Kanizsa’s triangle or other illusionary contours that are are visible

to humans. Humans can also “fill in the gaps” and use context to classify blurry

photos [224].

The key idea is that expectation needs to be constructed in a way that is anal-

ogous to the domain-specific language. Consider the domain of stage-acting. Scene

descriptions (the domain-specific language) describe the characters and how they ap-

pear (e.g. “Hamlet enters stage right”. This description produces an expectation that

is aligned with our perception.

8.7.2 Imagining Possible Futures

Sound decisions are not made based on some single instant in time; rather, they are

made with careful consideration of their consequences. Sometimes these consequences

may not be known beforehand. This was stated nicely by Donald Rumsfled8:

There are known knowns. These are things we know that we know. There

are known unknowns. That is to say, there are things that we know we

don’t know. But there are also unknown unknowns. There are things we

don’t know we don’t know.

Thus, a system must be able to imagine each possible future that may result from

its choices, and evaluate whether that future might be reasonable. To do this well, the

system must be able to simulate the behavioral and physical consequences of acting

on any set of premises that may be chosen by committee arbitration, particularly

in the case where it will have accepted premises that in fact represent the wrong

situation.

Given a set of premises whose relative validity may not be obvious, it can be

difficult to decide which premises to accept. There are of course situations in which

7https://www.edge.org/conversation/andy_clark-perception-as-controlled-hallucination
8Gerald Jay Sussman introduced me to this idea of “Rumsfledian reasoning.”

167

https://www.edge.org/conversation/andy_clark-perception-as-controlled-hallucination

premises can be identified as faulty – for example, if they lead to violations of rea-

sonableness constraints or contradictions of systematic axioms. Often, though, we

cannot reject any of the available premises outright. In such cases we need a way to

decide which system of premises, out of equally plausible-looking possibilities, is to

be accepted in practice – and, as a corollary, what future our system pursues.

One can try to treat this problem as one of simulation-based search, with a pos-

sible objective being to find the choice of premises resulting in the “least bad” set of

consequences given the set of possible realities under consideration. It is of course

impossible to consider every potentially available reality; for instance, one cannot, in

this process, reasonably account for events like a meteor strike during the interval

under consideration, where no evidence exists to support the notion of incoming me-

teors. However, information reported by onboard perception supporting the existence

of an “unusual” object, like a lawnmower, provides at least two possibilities – the ex-

istence of a lawnmover, or a defect in the onboard perception – whose consequences

must be examined.

8.7.3 Commonsense Reasoning

Humans are opaque systems. When something goes wrong, we cannot always say

why. For example, when we are ill or malfunctioning, we cannot always point to the

exact subsystem causing the error. But we can form a coherent explanation of what

we believe we are suffering from, by querying previous data and commonsense. If we

have a fever, we can usually come up with a reason: we feel hot, then cold, and that

is similar to a previous time when we had a fever. We can also create explanations

with commonsense. If we have a stomach ache, perhaps it was the spicy food that

caused the pain. Or, it was the fact that we ate a heavy meal on a previously [starved]

stomach.

One way to mitigate perception errors is to supplement decisions with common-

sense. For example, in the stomach ache example, we can use commonsense to come

up with multiple explanations. This requires the availability of a commonsense knowl-

edge base. I can formulate explanations using “nearby” information: the stomach is

168

close to the appendix, which may be ruptured. Or we can create other causal expla-

nations: stomach aches can be caused by spicy food, or stomach aches can be caused

by eating too much on an empty stomach. It is difficult to determine which one of

these explanations is “most” correct or plausible, which is left to future work. But, the

ability for intelligent machines to use commonsense to formulate these explanations

themselves is a promising area of research.

8.8 The Risk of Deploying Opaque Models

Generally explaining model behavior is not enough to build trust in these sorts of

models. Another way these algorithms and systems can behave badly is due to a

inconsistency in the training data and/or knowledge bases. This does not necessarily

mean that the training data is “bad” per say, but that there is a misalignment between

the expected data and the actual training data used. We have seen this recently

with the Amazon recruiting algorithm [47]. This algorithm was eventually disbanded

because the results were extremely biased; since the algorithm had been trained on

applicants data for the past 10 years (where males are dominant), it was teaching

itself to choose male candidates. Even if the algorithm was modified, there was no

way to ensure it was unbiased. Although this is an extremely compelling case for

inquisitive explanatory systems, an even more persuasive case is for safety-critical

tasks.

Consider a machine learning classifier to diagnose breast cancer from an image,

where the training set was carefully selected to be fairly close to a 50-50 split of breast

cancer and non-breast cancer scans. Even if the classifier is very accurate, without

having access to complete explanations to understand how decisions are made in

the model, it is not certain that it is making decisions for the right reasons—the

model may in fact, learn a feature it should not rely on despite predicting breast

cancer very accurately. In [106], one classifier learned the resolution of the scanner

camera, therefore predicting cancerous images from a high resolution very accurately.

Figuring out this sort of data problem is extremely difficult. It requires either an

169

attuned intuition of the model’s inner workings or the model to be able to answer

questions to do a fine-grain sensitivity analysis.

8.9 Conclusions

One common viewpoint in the deep neural network community is that the level of

interpretability and theoretical understanding needed to for transparent explanations

of large DNNs remains out of reach; for example, as a response to Ali Rahimi’s Test of

Time NeurIPS address, Yann LeCunn responded that “The engineering artifacts have

almost always preceded the theoretical understanding” [133]. However, I assert that,

for machine learning systems to achieve wider acceptance among a skeptical populace,

it is crucial that such systems be able to provide or permit satisfactory explanations

of their decisions. The progress made so far has been promising, with efforts in

explanation of deep network processing, explanation of deep network representation,

and system-level explanation production yielding encouraging results.

I find, though, that the various approaches taken to address different facets of

explainability are siloed. Work in the explainability space tends to advance a par-

ticular category of technique, with comparatively little attention given to approaches

that merge different categories of techniques to achieve more effective explanation.

Given the purpose and type of explanation, it is not obvious what the best type of

explanation metric is and should be. I encourage the use of diverse metrics that

align with the purpose and completeness of the targeted explanation. My position is

that, as the community learns to advance its work collaboratively by combining ideas

from different fields, the overall state of system explanation will improve dramati-

cally, resulting in methods that provide behavioral extrapolation, build trust in deep

learning systems, and provide usable insight into deep network operation enabling

system behavior understanding and improvement.

170

Chapter 9

Contributions and Future Work

“Human beings are symbolic creatures. Inside their heads they break down the

outside world into a mass of mental symbols, then recombine those symbols

to recreate that world.”1

– Ian Tattersall via Patrick Henry Winston

Failures in autonomous machines, whether fatal2 or uncomfortable3, are due to

mistakes that a human would never make. Such increased level of harm on human lives

is undesirable and completely untenable. Consequently, assessing pre-deployment

reliability is important for autonomous agents that are responsible for decisions in

critical settings. One solution is to provide a reason or justification for the decision of

the autonomous agent being assessed: an explanation. But most of these explanations

are static, and not representative of the underlying agent’s processing.

In this thesis, I present a novel methodology, implementation, and evaluation that

utilizes explanations in two distinct ways. System-wide explanations are provided to

an end-user for analysis, while internal explanations are used among subsystems to

defend their actions and ensure robust higher-level decisions. Therefore, I differen-

tiate between (i) an internal subsystem explanation (or internal explanation), the
1This quote is from Patrick H. Winston’s last public talk at the celebration of MIT’s new

Swartzman College of Computing. Available at: https://people.csail.mit.edu/phw/video/
NewCollegeTalk.mp4

2An uber self-driving vehicle strikes and fatally kills a pedestrian [151].
3Mall robot injures a toddler: https://qz.com/730086/

a-robot-mall-cop-did-more-harm-than-good/

171

https://people.csail.mit.edu/phw/video/NewCollegeTalk.mp4
https://people.csail.mit.edu/phw/video/NewCollegeTalk.mp4
https://qz.com/730086/a-robot-mall-cop-did-more-harm-than-good/
https://qz.com/730086/a-robot-mall-cop-did-more-harm-than-good/

symbolic reasons and dependencies for a specific local subsystem’s behavior, and (ii)

a system-wide narrative explanation (or system explanation), a (mostly causal) chain

of reasoning generated from the underlying subsystems. Since the underlying reasons

and dependencies are symbolic, they can be translated into a human-understandable

explanation with various degrees of detail: for anomaly detection, legal analysis, and

diagnosis.

My thesis contributes a new perspective on anomaly detection. Instead of viewing

anomalies as outliers in some coordinate system, I define anomalies as circumstances

which cannot be explained away by a consensus of neighboring subsystems. If a sub-

system provides an explanation that is inadequate or inappropriate, the subsystem

should either be corrected or disabled. In Chapter 7, I applied this methodology to

an autonomous vehicle. Through simulated erroneous test cases, I demonstrated that

ADE can reconcile inconsistencies between subsystems by examining the underlying

subsystem explanations. The key idea is that ADE is a general methodology; all com-

plex mechanisms should have the ability to reason, abstract from data, and explain

their behavior. Imagine if computer debugging was communicative: the computer

works with the human user to reconcile and diagnose errors. Computers could teach

their human counterparts new skills by explaining themselves clearly and coherently.

9.1 Explanations as a Debugging Language

Figure 9-1: My vision for articulate machines that can coherently communicate to
each other and to a human.

In Chapter 7, I used internal explanations as a debugging language between sub-

systems. But the larger goal is to facilitate better communication amongst subsys-

172

tems. In fact, there is limited internal reasoning and communication amongst the

subsystems of a complex machine. One reason is that the subsystems speak differ-

ent languages. In Chapter 5, I showed the log traces from a sensor and how those

low-level “point clouds” are quite different from the high-level vision processing labels.

However, LiDAR and vision systems are both perceiving the world. Even though they

process perception at different levels of abstraction, both systems should be able to

reason about their results in the same language.

I view symbolic reasons, justifications, and explanations as a communication lan-

guage. My vision is two-fold, as seen in Figure 9-1. On the left, I argue that system-

level explanations can facilitate better communication among systems to complete

tasks, e.g., a hybrid reasoning system, described in Section 9.2.1. On the right, I

argue that explanations are a debugging language, for systems and tasks that include

people. I discuss some of these tasks in Section 9.3.1.

In this thesis, I developed symbolic systems to monitor opaque learning systems,

but the symbolic systems do not currently change the internal state of the opaque

learning system. However, imagine if they could learn from each other. Symbolic

systems excel at abstraction, while learning systems excel at finding trends in data.

What if they could work together and communicate between themselves to infer

abstract trends in data? I believe that combining symbolic and learning approaches,

by facilitating a communication language for them to work together, is a concrete

step towards artificial intelligence [156]4.

9.2 Future Applications

My research vision is for complex machines to be articulate by design. Dynamic in-

ternal explanations will be part of the design criteria, and system-level explanations

will be able to be challenged in an adversarial proceeding. Further, explanations

are dynamic: if the explanation is inadequate or inappropriate, the underlying pro-

4Examining Minsky’s classic steps towards artificial intelligence paper, there are both symbolic
and data-driven learning approaches. If we are to learn anything from Minsky, it is that neither
approach can solve all the AI problems alone.

173

cess should be corrected or disabled. With this vision, all machines will be able to

explain themselves at various levels of detail. This requires progress in reasoning

and representation, narrative intelligence and natural language processing (NLP),

and human-centered computing. These types of articulate systems are applicable to

many domains, including computer security (see Section 9.2.4).

9.2.1 Hybrid Approaches to Intelligent Systems

In critical applications, multiple methods are used to check and validate solutions.

The financial realm has double-entry bookkeeping, and airplanes have multiple en-

gines and checks for safety-critical components. We should also require machines to

be able to reason about their decisions in multiple ways. But reasoning systems and

approaches currently function in isolation. My work relies on techniques from com-

monsense reasoning, case-based reasoning, and hypothetical reasoning. Many of these

techniques are used in isolation, but as a first step, I will try to incorporate these

approaches together in a hybrid-reasoning system that uses rules, commonsense, and

hypotheticals for more robust decision making.

Systems that use higher-level representations are restrictive; they are typically

human-curated, static, and specific to the target application or input data. In my

reasonableness monitoring system [74], I represented the input descriptions as a com-

position of conceptual primitives. This representation is difficult to learn automat-

ically. As a first step, I will look at more flexible representations of knowledge and

language, and how representations can be learned with limited human-curated infor-

mation.

9.2.2 Using Explanations as Internal Narrative

Machines should be able to tell stories like people do. The types of explanations

that I develop serve two purposes: their symbolic representation is used internally

by the parts of a machine to reconcile their errors, and is then constructed into a

human-readable explanation documenting what happened and why. Processing, un-

174

derstanding, and building these types of explanations is still an open area of research.

9.2.3 Explanations for Society

When autonomous machines share control with a human operator, there will be some

explaining to do. If the autonomous operator intervenes, the human will ask why. If

the machine operator does not provide a proper explanation, the collaboration will

be flawed. They will need to speak a common language, and be able to process,

understand, interpret, and intervene based on this language in real-time. I am inter-

ested in using explanations shared between a human and machine operator for more

streamlined and trustworthy decision making. This relies on better system design

and mechanisms for humans to intervene based on explanations.

Another societal problem is that the legal realm does not support the upcoming

transition to autonomous decision making (e.g., AVs). These decision making sys-

tems have been shown to cause harm, including racial bias [237] and in some cases

even physical harm. In safety-critical and mission-critical decisions, AVs will need

to be able to defend their actions and testify in an adversarial proceeding. As an

interdisciplinary direction, I could encode the legal requirements for these machines

to be able to explain themselves to abide by legal rules and infrastructure.

In this thesis, I created a system architecture that is inspired by the structure of hu-

man committees. The methodology can be applied to complex human organizations:

imagine a social or government structure where every intended action is supplemented

with a corresponding reason. Inconsistencies amongst committees are reconciled by

comparing the committees’ proposed actions and their underlying justifications to a

priority hierarchy. Automatic reasoning and negotiation (with explanations) will help

to mitigate societal conflicts.

9.2.4 Security Applications

Computer security systems are imperfect. Intrusion detection software is good at

catching single points of failure and other local vulnerabilities, but most security

175

software fails when there is a faulty connection or an inexplicable communication be-

tween parts. Using symbolic subsystem explanations can mitigate these intrusions by

constantly and consistently monitoring the reasonableness of subsystem communica-

tion and checking the behavior against prior data. This approach is also relevant for

IoT systems, in which independent entities work together, making common commu-

nication key to diagnosing errors.

9.3 Reevaluating Evaluations

A common question is “who is the explanation for?” This is a difficult question to

answer because it depends on the applications and the use case. For the critical,

self-driving application, I argue that the explanations are for the machine: they are

used as evidence to reconcile system-wide errors. I argue that the type of evaluation

is dependent on what the explanation is actually explaining (see Table 8.1). Since my

explanation procedures are explaining inconsistencies, it is important to consider the

types of tasks where these explanations are essential. In this section, I propose tasks

that require explanations: software debugging, collaborative games, and autonomous

vehicle challenges.

9.3.1 Tasks that Require Explanations

A way to evaluate explanations is to design tasks that rely on explanations to be

completed. For example, a task for which a human operator and computer system

have to work together, and the explanations (from and to a human) are necessary

for task completion. A nice example would be computer debugging, where the error

is communicated through a series of explanations from a computer. The debugging

program and the human communicate back and forth until the root cause is correctly

identified. Other types of collaborative tasks would also be reasonable benchmarks.

Hanabi is a collaborative card game. It has recently been proposed as an important

new challenge for artificial intelligence [18]. It has imperfect information, as the

players can view other players’ cards but not their own. The goal is to play a series of

176

cards in a specific order, and players are allowed to give information to each other in

a specific language. This game has been solved mathematically [43], but I argue that

it is still an important task due to the fact that collaboration is necessary to succeed.

Further, self-explanation is important in these kinds of games, and in card games in

general. In poker, expert players use a “theory of mind”5.

9.3.2 Challenges for Imagining and Explaining Possible Fu-

tures

Human drivers are able to reason about circumstances they have not seen before,

exactly the ones that confound autonomous vehicles. But these “difficult autonomous

scenarios,” are not yet characterized or bench-marked. I argue that careful writing of

challenge scenarios will ensure safety, trust, and reliability in widespread autonomous

vehicle adoption.

There is a complete void of erroneous autonomous vehicle data. The current self-

driving data sets are hand-curated and perfectly labeled [31, 110, 69]. Autonomous

driving challenges6 are vaguely constructed (e.g., avoid a neighboring car or switch

lanes), but a successfully completed challenge would be precise in execution. The

successes of autonomous vehicles are completely dependent on their ability to learn

through (previously observed) experiences. Instead, I aim to create a set of self-driving

error scenarios that require abstract, high-level anticipatory thinking: the same type

of reasoning humans do in difficult situations. In the same way humans can learn

without experiencing, I will develop scenarios that ensure autonomous vehicles can

also learn new things, without failing first.

These challenges may include meta-tasks like theory of mind (e.g., what is the

neighboring vehicle trying to accomplish) or self-introspection (e.g., after observing

a new highway sign, retroactively analyzing one’s actions). These error scenarios,

although not fully representative of all the failure cases, will encapsulate the types
5Poker players using theory of mind to imagine their opponents https://www.forbes.com/

sites/alastairdryburgh/2015/08/20/how-theory-of-mind-can-make-or-lose-you-money
6Carla autonomous driving challenge scenarios: https://carlachallenge.org/challenge/

nhtsa/

177

https://www.forbes.com/sites/alastairdryburgh/2015/08/20/how-theory-of-mind-can-make-or-lose-you-money
https://www.forbes.com/sites/alastairdryburgh/2015/08/20/how-theory-of-mind-can-make-or-lose-you-money
https://carlachallenge.org/challenge/nhtsa/
https://carlachallenge.org/challenge/nhtsa/

Figure 9-2: A difficult driving scenario for a self-driving vehicle.

of abstract anticipatory thinking that autonomous machines (and especially vehicles)

need to possess for safety-critical or mission-critical tasks. Developing this capability

results in adaptive autonomous vehicles that can reason and address the ever-growing

long tail of errors.

Consider the cross-walk example in Figure 9-2. Large trucks typically block the

field of view of neighboring drivers. In suburban areas, the truck may block a pedes-

trian or another critical, moving object. Human drivers can “imagine” this scenario,

but autonomous agents cannot. The key question is how an autonomous agent could

“haluccinate” this hidden threat, especially if it has not seen it before. This is a

scenario that requires abstract reasoning and anticipatory thinking7.

Other difficult scenarios are “corner cases” that humans learn from experience.

Consider an autonomous vehicle stopped on an incline. When I was learning to drive

in San Francisco (a city that is known for its hills), I was shocked to learn that you

want to engage the brakes and the gas at the same time when accelerating up a hill

from a stop. It is left to consider whether this type of behavior could be learned.

But these types of intuitive physics “corner cases” are important to reason about,

especially in difficult driving conditions.

7The idea of Anticipatory Thinking (AT) is an emerging area. I have been defining this idea in
terms of autonomous vehicle challenge problems: https://www.anticipatorythinking.ai.

178

https://www.anticipatorythinking.ai

9.4 Implications

My thesis contributes a new vision of anomaly detection; in which anomalies are not

outliers, but instances that cannot be explained away by the consensus of neighboring

parts. These errors are actually beneficial for the system, and can be used to mitigate

future problems. For example, if LiDAR fails when it is raining, then the high-level

planner can discount the LiDAR component in inclement weather. If the vehicle

continuously skids on left turns, then parts that contribute to the turning sequence

(e.g., the tires, vehicle alignment, brakes, steering, power control, etc.) can be re-

evaluated. If the vision system consistently confuses turtles with weapons [14], then

it should have to explain why. It is only in the case where the machine cannot explain

its failure that the error becomes a bug.

I have presented two ideas towards system-wide anomaly detection. First are

sanity checks, or reasonableness monitors, that uphold subsystems to a set of rea-

sonable rules and behaviors. Second is to facilitate better communication amongst

parts through explanation. When those two ideas are combined into a system-wide

architecture, namely Anomaly Detection Through Explanations (ADE) in Chapter 7,

I discovered that explanations facilitate a common debugging language for inconsis-

tencies amongst subsystems.

My work has opened up the new area of explanatory anomaly detection, towards a

vision in which: complex mechanisms will be articulate by design; dynamic, internal

explanations will be part of the design criteria, and system-level explanations will be

able to be challenged in an adversarial proceeding. I have discussed how these expla-

nations aid in system-level debugging, but imagine a world in which an autonomous

agent can defend itself. The system-wide explanations are a story: an unbiased

account of what happened and why. By querying the explanation synthesizer, infor-

mation can be retracted and added; possibly creating a way to fix a formerly broken

complex machine. While not all complex machines will work this way, it ensures safer,

more robust monitored machines in safety-critical and mission-critical tasks.

In summary, autonomous agents are making decisions with consequences. For

179

stakeholders (e.g., insurance companies, police overseers) and society (e.g., the peo-

ple who may be harmed) to trust these autonomous thought-partners, the agents need

to provide concise and understandable explanations of their actions. This explana-

tory ability requires significant technical developments in reasoning, representation,

and narrative, while also exploring societal questions in HCI and policy-making. In

the current interim of shared autonomy (between human and machines), a path of

adoption includes the use of monitoring, learning from explanations, and adaptable

representations towards system-wide deployment of self-explaining systems. By focus-

ing on limited autonomy, like a car that drives itself, complex machines are learning

details and trends rather than abstracting and learning from their mistakes. Instead,

my approach is to create the capability for a complex machine, like a car, to be aware

of its internal state as well as its environment. In other words, a car that knows and

can explain that it is driving.

9.5 A Salute

In Patrick Winston’s “How to Speak” lecture, he suggested that you end each talk

(or document) with a salute. The salute thanks the audience (or the reader) for their

attention, questions, and participation.

I have been fortunate to work on a problem that is unsolved. Errors in autonomous

vehicles, whether fatal [151] or uncomfortable8, are difficult to represent. In fact, there

is a complete void of erroneous autonomous vehicle data. The current self-driving data

sets are hand-curated and perfectly labeled [31, 110, 69]. At the same time, current

challenges9 are vague in approach, but precise in execution. In my thesis work, I

have defined a methodology for complex machines to reason about their own errors.

It utilizes abstract, high-level reasoning; the same type of reasoning humans do in

difficult situations.

8Consistent starting and stopping self-driving behavior: https://www.wired.com/story/
ride-general-motors-self-driving-car/.

9NTHSA inspired autonomous vehicle challenges: https://carlachallenge.org/challenge/
nhtsa/.

180

https://www.wired.com/story/ride-general-motors-self-driving-car/.
https://www.wired.com/story/ride-general-motors-self-driving-car/.
https://carlachallenge.org/challenge/nhtsa/
https://carlachallenge.org/challenge/nhtsa/

I have evaluated my methodology on simulated errors. In ongoing work, I will cre-

ate a set of self-driving error scenarios that embed abstract, high-level anticipatory

thinking. These challenges may include meta-tasks like theory of mind (i.e. what is

the neighboring vehicle trying to accomplish) or self-introspection (i.e. in new ex-

periences, how does one reason to itself). These error scenarios, although not fully

representative of all the failure cases, will personify the types of abstract, anticipa-

tory thinking that autonomous machines (and especially vehicles) need to possess

for safety-critical or mission-critical tasks. This long list of errors demonstrates that

complex machines need the ability to reason, abstract, and explain.

I alluded that this section is a salute, which thanks the reader. At his last public

lecture, my mentor Patrick Henry Winston said, “Now that’s the end of my story for

today, but I hope it will be just the beginning of a story that will be told in the days

and years to come”10. But this is not the end of the story, as Neil Gershenfeld11 once

said: a thesis is not finished, rather, it is abandoned. And while there are many more

errors to justify, machines to monitor, and rules to learn; I leave the next explanation

to a curious reader.

10This quote is from Patrick Henry Winston’s last public lecture: https://people.csail.mit.
edu/phw/video/NewCollegeTalk.mp4. This thesis greatly benefited from his guidance and leader-
ship.

11I learned “How To Make Almost Anything” from Professor Gershenfeld: http://ng.cba.mit.
edu. In this course, I witnessed, debugged, and made complex machine errors, first hand.

181

https://people.csail.mit.edu/phw/video/NewCollegeTalk.mp4
https://people.csail.mit.edu/phw/video/NewCollegeTalk.mp4
http://ng.cba.mit.edu
http://ng.cba.mit.edu

182

Appendix A

Auxiliary Information

A.1 Qualitative Algebras

• The qualitative increment algebra is essentially a qualitative description of the

first derivative. In this chapter, these qualitative descriptions of the first deriva-

tive were sufficient to explain the vehicle phenomena. However, for future work,

I may need to use more precise quantitative descriptions. In anticipation, I de-

veloped a system to keep track of derivative values on the cells in the art of the

propagator system.

• The qualitative action describes mechanical changes within an interval as a set

of four actions: tightening, loosening, no action, and unknown action. It may

appear as if the qualitative action is unnecessary, since it has a surjective map-

ping to the qualitative increment, where tightening is a qualitative increment

value of increasing, loosening is a qualitative increment value of decreasing,

no action maps to no change, and unknown action maps to unknown change.

However, having the qualitative action makes our explanations much easier to

report: while the description of “tightening a caliper” is easy to understand,

“increasing a caliper” is a bit ambiguous.

• The qualitative direction has two values: an incremental change description and

a direction description. The incremental change is defined as the qualitative

183

increment. The second value, the direction description, describes a lateral di-

rection in four values: left, right, neutral, and unknown direction. This direction

is with respect to a point of reference. In our research, the point of reference is

usually the center of mass of the vehicle.

• The qualitative position also has two values: a lateral description and a longitu-

dinal description. The lateral description is defined with respect to the direction

description defined in the qualitative direction. The longitudinal direction is de-

fined with respect to four values: front, back, neutral and unknown.

After defining the algebras, it is necessary to define the combinations of these

values so that the algebraic descriptions can work together to provide a comprehensive

explanation. It then becomes important to define the resulting qualitative type from

different combinations, so if two qualitative values are added, the resulting qualitative

value makes sense. For example, if a qualitative increment and a qualitative action

are added together, the resulting value with be a qualitative increment, because the

qualitative action can be directly mapped to the qualitative increment. An example

additive algebraic function for the qualitative-direction is shown in Figure A-1.

Since there are only one type of combinations of different qualitative algebras in our

model so far: combining qualitative increments and qualitative actions, defining a

qualitative hierarchy is left to future work1.

1It is an open problem to create an ontology or organization of qualitative values. In fact, most
ontologies are domain-dependent, which is why I defined four different qualitative values for vehicle
changes.

184

(define (add-qualitative-direction x y)
(let ((x-desc (qualitative-direction-description x))

(y-desc (qualitative-direction-description y))
(x-turn (qualitative-direction-turn x))
(y-turn (qualitative-direction-turn y)))

(let ((added-desc (qualitative-description
(generic-+ (make-qualitative x-desc)

(make-qualitative y-desc)))))
(cond ((equal? x-turn y-turn)

(make-qualitative-direction added-desc x-turn))
((or (equal? x-turn '?) (equal? y-turn '?))
(make-qualitative-direction added-desc '?))

((equal? x-turn '0)
(make-qualitative-direction added-desc y-turn))

((equal? y-turn '0)
(make-qualitative-direction added-desc x-turn))

(else (make-qualitative-direction added-desc '?))))))

Figure A-1: An example of qualitative addition for the qualitative direction algebra.

A.2 Conceptual Primitive Descriptions

• PTRANS : The PTRANS act primitive represents the event of a thing changing

location from one place to another. The PTRANS act typically has an object

case, representing the thing which moved or was moved, an actor case repre-

senting the actor which performed or caused the movement, and a direction

case indicating the start and end point of the movement.

• MOVE : The MOVE act primitive represents the event of a thing moving a part

of its body or part of itself. The MOVE act has an object case, representing

the body part that was moved, an actor case representing the actor which

performed the MOVE, and a direction case indicating the start and end point

of the movement.

• PROPEL: The PROPEL act primitive represents the event of a thing applying

a force to another thing, or a moving thing striking or impacting another thing.

The PROPEL act typically has an object case, representing the object which

was struck or has a force applied to it, an actor case representing the actor

185

which performed or caused the PROPEL, and a direction case indicating the

direction of the force.

• INGEST : The INGEST act primitive represents the event of a thing moving,

being forced, or forcing itself to go from the outside to the inside of another

thing.

The INGEST act has an object case, representing the thing which moved or

was moved to the inside of another thing, an actor case representing the actor

which performed or caused the movement, and a direction case indicating the

start and end point of the movement. Often the end point of an INGEST is a

part of the body of the actor. Eating, for example, is an INGEST of something

where the end point of the object’s movement is the mouth or stomach of the

actor.

• EXPEL: The EXPEL act primitive represents the event of a thing moving, being

forced, or forcing itself to go from the inside to the outside of another thing.

The EXPEL act has an object case, representing the thing which moved or was

moved from inside to the outside of another thing, an actor case representing the

actor which performed or caused the movement, and a direction case indicating

the start and end point of the movement. Often the start point of an EXPEL

is a part of the body of the actor. If a surgeon removes a bullet, a tumor, or a

parasite from another person’s body, however, the surgeon is the actor, but the

start point of the movement of the object is a body part of another individual.

• GRASP : The GRASP act primitive represents the event of a thing grasping

or becoming attached to another thing. The GRASP act has an object case,

representing the thing which is being GRASPed, and an actor case representing

the actor which performed the GRASPing.

PTRANS and MOVE are very similar primitives because they both involve movement

from one place to another: for PTRANS an entire thing moves, while for MOVE, an

animate thing only moves part of its body. In building the reasonableness monitor

186

prototype system, I found it difficult to find ConceptNet anchors allowing us to de-

termine whether a verb should instantiate a PTRANS or MOVE. Because of this, I

chose to combine the PTRANS and MOVE primitives into a single primitive, which

I call MOVE-PTRANS, or simply MOVE. Any referral to MOVE in this thesis is the

MOVE-PTRANS primitive.

187

188

Appendix B

Code

B.1 Vehicle Specific Artifacts

(define (make-bus-code-mapping #!optional mapping-file)
(set! *bus-code-mapping* (make-strong-eq-hash-table))
(hash-table/put! *bus-code-mapping* 22 'lateral)
(hash-table/put! *bus-code-mapping* 23 'acceleration)
(hash-table/put! *bus-code-mapping* 25 'steering)
(hash-table/put! *bus-code-mapping* 30 'brakes)
(hash-table/put! *bus-code-mapping* '3e 'gear-rotation)
(hash-table/put! *bus-code-mapping* 'b1 'front-wheels)
(hash-table/put! *bus-code-mapping* 'b3 'back-wheels)
(hash-table/put! *bus-code-mapping* 'b4 'speed)
(hash-table/put! *bus-code-mapping* 120 'drive-mode)
(hash-table/put! *bus-code-mapping* 244 'gas-pedal)
(hash-table/put! *bus-code-mapping* 'groundtruthxyz 'ground-truth)
(hash-table/put! *bus-code-mapping* 'groundtruthheading 'heading))

Figure B-1: CAN bus mapping code for the vehicle simulation in Chapter 3

189

(define (isBraking? snapshot)
(eqv? (log-snapshot-brake snapshot) 0))

(define (isAccelerating? snapshot)
(eqv? (log-snapshot-accel snapshot) 'inc))

(define (isTurningRight? snapshot)
(eqv? (log-snapshot-steering snapshot) 'inc))

(define (isTurningLeft? snapshot)
(eqv? (log-snapshot-steering snapshot) 'dec))

Figure B-2: A subset of the edge detection rules for the “intervals of interest” in
Chapter 3.

(define w) ;; width of the car in front from lidar sensor
(define k) ;; distance from the front wheel to self
(define l) ;; self's wheel base
(define r) ;; radius of self
(define d) ;; lenth of self

(define rlsqdiff (e:- (e:square r) (e:square l)))
(define lksumsq (e:square (e:+ l k)))
(define c (e:square (e:- (e:sqrt rlsqdiff) w)))
(define sqrtres (e:sqrt(e:-(e:+ rlsqdiff lksumsq) c)))

;;minimum space needed
(define m (e:+ d (e:- (e:- sqrtres l) k)))
(add-content w 2.43) ;;m
;;estimate based on l and d
(add-content k 0.8)
(add-content l 2.8804)
(add-content r 10.82)
(add-content d 4.8285)

(define distance-threshold m)
(define actual-distance) ; read from processed log snapshot

Listing 13: Propagator code to calculate the minimum space needed to parallel park.

190

:safe_car_policy a air:Policy;
air:rule :light-rule;
air:rule :pedestrian-rule;
air:rule :right-turn-rule;
air:rule :speed-rule .

:pedestrian-rule a air:Belief-rule;
air:if {

foo:some_pedestrian
ont1:InPathOf foo:my_car.

};
air:then [

air:description ("Pedestrian detected");
air:assert [air:statement{

foo:my_car
air:non-compliant-with

:safe_car_policy .}]];
air:else [

air:description ("No obstructions");
air:assert [air:statement{

foo:my_car
air:compliant-with
:safe_car_policy .}]] .

:light-rule a air:Belief-rule;
air:if { :EVENT a :V;

ont1:Location
foo:some_traffic_light.

};
air:then [air:rule :traffic-light-rule].

Listing 14: A subset of the safe-driving rules written in AIR.

191

B.2 Adaptable Code Artifacts

These are independent code “snippets” that can be used in multiple domains.

B.2.1 Conceptual Dependency Parsing

tokens = annotation.split()
tree = rep.parse_with_regex(tokens)

IPython.core.display.display(tree)
all_annotations.append(annotation['caption'])

concepts = rep.get_concepts(tree)

(noun, noun_phrase, adjectives) = rep.get_noun_phrase(tree)
(verb, obj, context, phrase_dict) = rep.get_verbs(tree, True)

Listing 15: The parsing process that creates a CD primitive frame.

B.2.2 Commonsense Data Querying

192

def find_anchor(concept_phrase, anchors):
"""
Search for a specific anchor from a set of anchors
"""
logging.debug("searching for an anchor point for %s" % concept_phrase)

for anchor in anchors:
if anchor in concept_phrase:

logging.debug("anchor point %s is partof the concept phrase: %s"
% (anchor, concept_phrase))

triple = [concept_phrase, 'IsA', anchor]
return make_fact(triple, "direct search")

for anchor in anchors:
if type(concept_phrase) is list:

concept = concept_phrase[-1]
else:

concept = concept_phrase
return get_closest_anchor(concept, 'IsA', anchors)

193

def get_closest_anchor(concept, relation, anchors):
"""
Goes through all the relations and tries to find the closest one.
If the anchor point is in the isA hierarchy at all, it
"""
for anchor in anchors:

logging.debug("Searching for an IsA link between %s and %s" \
% (concept, anchor))

obj = requests.get(query_prefix + concept + rel_term + 'IsA' +\
limit_suffix).json()

edges = obj['edges']
if edges:

for edge in edges:
if check_IsA_relation(concept, anchor, edge):

triple = [concept, 'IsA', anchor]
return make_fact(triple, "ConceptNet IsA link")

else:
return "not found" # TODO this needs a better message

If it is never found, make default object
triple = [concept, 'IsA', default_anchor]
return make_fact(triple, "Default anchor point")

def make_fact(triple, reason):
"""
Makes a basic data fact base in pandas data
"""
logging.debug("Making a new fact: %s with reason: %s" % (triple, reason))
[subject, predicate, obj] = triple
fact_term = "%s %s %s" % (subject, predicate, clean_phrase(obj))
return [fact_term, reason]

194

B.3 Interpreting LiDAR data

def get_raw_lidar(sample):
"""
Loads LIDAR data from binary numpy format.
Data is stored as (x, y, z, intensity, ring index).
"""
lidar_data = nusc.get('sample_data', sample['data']['LIDAR_TOP'])
file_path = nuscenes_root+data_name+'/'+lidar_data['filename']
scan = np.fromfile(file_path, dtype=np.float32)
return scan

def with_ring(sample):
"""
Retuns (x, y, z, intensity, ring index).
"""
scan = get_raw_lidar(sample)
points = scan.reshape((-1,5))
print(np.shape(points))
return points

def visualize_rings(rings, ring_nums):
"""
takes in the rings and the ring numbers
"""
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

for ring in ring_nums:
temp = rings[rings[:,RING_IND]==ring]
x = temp[:,0]
y = temp[:,1]
z = temp[:,2]

ax.scatter(x,y,z, marker='o')
plt.show()

Listing 16: Visualization code for examining specified beams.

195

my_sample_token = my_scene['first_sample_token']
my_sample = nusc.get('sample', my_sample_token)

raw = get_raw_lidar(my_sample)
rings = with_ring(my_sample)

visualize_rings(rings, [4,5,8])
visualize_rings(rings, [1,10,20])

Listing 17: Minimal working code for the LiDAR point cloud ring visualization.

B.4 Synthesizer

passenger is safe at velocity V between s and t
AND(OR(safe driving at velocity V during s and t

AND(moving V at state s
t succeeds s
moving V at state t))

OR(obj is not a threat between s and t
AND(OR(obj not a threat at s

obj is not moving
obj is not located near
obj is not a large object)

OR(obj not a threat at t
obj is not moving
obj is not located near
obj is not a large object)))))

Listing 18: The implemented goal tree used for passenger safety in the explanation
synthesizer. “safe transitions” and “threatening objects” have been expanded, as de-
fined in Equation 7.1 and Equation 7.2.

Note that there are multiple AND (OR (...) statements in Figure 11. This due to

my backward-chaining algorithm. These statements can also be simplified, but they

are left for readability; so the reader can see where the rules are expanded. For exam-

ple, in line 2 of Listing 11, “safe transitions”: safe driving at velocity V during

s and t is met only if AND(moving V at state s, t succeeds s, moving V at

state t))

196

B.5 Sample Results

B.5.1 NuScenes Examples

Figure B-3: A labeled data sample from NuScenes.

B.5.2 Parsing Examples

Figure B-4: The parse tree for “A mailbox crossing the street.”

197

Figure B-5: The parse tree for a real image caption from “A man looks at his cellphone
while standing next to a motorcycle.”

@prefix foo: <http://foo#>.
@prefix car_ont: <http://car_ont#>.

foo:my_car
a car_ont:Vehicle ;
car_ont:LastState "stop" ;
car_ont:CurrentState "stop" ;
car_ont:direction foo:some_traffic_light .

foo:some_pedestrians
a car_ont:Pedestrian ;
car_ont:label "woman" ;
car_ont:CurrentState "move" ;
car_ont:propel foo:woman-object ;
car_ont:InPathOf foo:my_car .

a car_ont:Pedestrian ;
car_ont:label "man" ;
car_ont:CurrentState "move" ;
car_ont:NextTo foo:woman-object ;
car_ont:InPathOf foo:my_car .

foo:woman-object
a car_ont:Object ;
car_ont:CurrentState "propel" ;
car_ont:InPathOf foo:my_car .

foo:some_traffic_light
a car_ont:TrafficLight ;
car_ont:LightColor "red" .

Listing 19: The RDF log associated with Figure B-3.

198

import PyPDF2
from nltk.tokenize import word_tokenize

IF = 'if'
THEN = 'then'
BC = 'because'
RULE_KEYWORDS = [IF,THEN,BC]

def read_manual(file_name='MA_Drivers_Manual.pdf'):
"""
File located at
https://driving-tests.org/wp-content/uploads/2020/03/MA_Drivers_Manual.pdf
"""
pdfFile = open(LOCAL_PATH+file_name, 'rb')
creating a pdf reader object
pdfReader = PyPDF2.PdfFileReader(pdfFile)

printing number of pages in pdf file
MAX_PAGES = pdfReader.numPages
START_PAGE = 10 # The beginning few pages are indexes

total_automatic = 0
for page in range(START_PAGE, MAX_PAGES):

pageObj = pdfReader.getPage(page)
pageText = pageObj.extractText()
total_automatic+=extract_if_then(pageText)

closing the pdf file object
print("Found %d potential rules"%total_automatic)
pdfFile.close()

def extract_if_then(page_text):
"""
Check for rule keywords in text
"""
if_counter = 0
sentences = page_text.split('.')
for sentence in sentences:

tokens = word_tokenize(sentence.lower())
if IF in tokens:

words = [word for word in tokens if word.isalpha()]
if_counter +=1

return if_counter

Listing 20: Script for counting the number of probable rules in a driving manual.

199

200

Appendix C

Data Samples

C.1 LiDAR Data

Table C.1: A full, simulated Lidar trace.

N0 N0 N0 46.6 53.4 40 31.9 26.3 22.6 20 18

N0 N0 46.9 46.6 54.1 40.1 31.7 26.1 22.5 20 18

N0 N0 N0 79.6 54.6 40.1 31.6 25.9 22.5 20 18

N0 N0 N0 79.6 54.6 41.1 32.9 25.7 22.5 20 18

N0 N0 N0 79.5 54.7 41.1 32.7 26.3 23.1 20 18

N0 N0 N0 79.4 54.7 41.1 32.5 26.1 23 20.6 18.4

N0 N0 N0 79.3 54.7 41.1 32.5 26 22.9 20.6 18.4

N0 N0 N0 81.6 54.6 41.1 32.6 26 22.9 20.6 18.3

N0 N0 99.7 81.5 54.6 41.1 32.8 26.5 23 20.6 18.3

N0 N0 101.7 81.3 54.5 41 32.8 27 23.2 20.6 18.3

N0 N0 N0 81.1 54.4 41 32.8 27.2 23.4 20.6 18.3

N0 N0 N0 80.9 54.3 40.9 32.8 27.3 23.4 20.6 18.3

92.3 92.3 92.3 80.6 54.2 40.8 32.8 27.3 23.4 20.6 18.3

90.4 90.4 90.4 80.2 54 40.7 32.7 27.3 23.4 20.5 18.3

88.7 88.7 88.7 79.9 53.9 40.6 32.6 27.3 23.4 20.5 18.3

93.8 93.8 93.8 79.4 53.7 40.5 32.6 27.2 23.4 20.5 18.2

201

N0 N0 N0 79 53.5 40.4 32.5 27.2 23.3 20.5 18.2

N0 N0 N0 78.5 53.2 40.3 32.4 27.1 23.3 20.4 18.2

N0 N0 N0 78 53 40.2 32.3 27 23.3 20.4 18.2

N0 N0 N0 77.4 52.8 40 32.2 27 23.2 20.4 18.1

N0 N0 N0 76.8 52.5 39.8 32.1 26.9 23.1 20.3 18.1

N0 N0 N0 76.2 52.2 39.7 32 26.8 23.1 20.3 18.1

N0 N0 N0 75.6 51.9 39.5 31.9 26.8 23 20.2 18

N0 N0 N0 74.9 51.6 39.3 31.8 26.7 23 20.2 18

N0 N0 N0 74.2 51.3 39.1 31.7 26.6 22.9 20.1 18

N0 N0 N0 73.5 50.9 38.9 31.5 26.5 22.8 20.1 17.9

N0 N0 N0 72.8 50.6 38.7 31.4 26.4 22.8 20 17.9

N0 N0 N0 72.1 50.2 38.5 31.3 26.3 22.7 20 17.8

N0 N0 N0 71.4 49.9 38.3 31.1 26.2 22.6 19.9 17.8

N0 N0 N0 70.6 49.5 38.1 31 26.1 22.5 19.9 17.7

N0 N0 N0 69.8 49.1 37.9 30.8 26 22.5 19.8 17.7

N0 N0 118.6 69.1 48.7 37.7 30.7 25.9 22.4 19.7 17.6

N0 N0 116.3 68.3 48.4 37.4 30.5 25.8 22.3 19.7 17.6

N0 N0 114.1 67.5 48 37.2 30.4 25.7 22.2 19.6 17.5

N0 N0 111.9 66.8 47.6 37 30.2 25.6 22.1 19.5 17.5

N0 N0 109.8 66 47.2 36.7 30.1 25.4 22.1 19.5 17.4

N0 N0 107.6 65.2 46.8 36.5 29.9 25.3 22 19.4 17.4

N0 N0 105.6 64.5 46.4 36.2 29.7 25.2 21.9 19.3 17.3

N0 N0 103.5 63.7 46 36 29.6 25.1 21.8 19.3 17.3

N0 N0 101.6 62.9 45.6 35.8 29.4 25 21.7 19.2 17.2

N0 N0 99.6 62.2 45.2 35.5 29.2 24.9 21.6 19.1 17.2

N0 N0 97.7 61.5 44.8 35.3 29.1 24.7 21.5 19.1 17.1

N0 N0 95.9 60.7 44.4 35 28.9 24.6 21.4 19 17

N0 N0 94.1 60 44 34.8 28.8 24.5 21.3 18.9 17

N0 N0 92.4 59.3 43.7 34.5 28.6 24.4 21.3 18.8 16.9

N0 N0 90.7 58.6 43.3 34.3 28.4 24.3 21.2 18.8 16.9

202

N0 N0 89.1 57.9 42.9 34.1 28.3 24.1 21.1 18.7 16.8

N0 N0 87.5 57.2 42.5 33.8 28.1 24 21 18.6 16.8

N0 N0 85.9 56.6 42.2 33.6 27.9 23.9 20.9 18.6 16.7

N0 N0 84.4 55.9 41.8 33.4 27.8 23.8 20.8 18.5 16.6

N0 N0 83 55.3 41.4 33.2 27.6 23.7 20.7 18.4 16.6

N0 N0 81.6 54.7 41.1 32.9 27.5 23.6 20.6 18.4 16.5

N0 N0 80.3 54.1 40.8 32.7 27.3 23.5 20.5 18.3 16.5

N0 N0 79 53.5 40.4 32.5 27.2 23.3 20.5 18.2 16.4

N0 N0 77.7 52.9 40.1 32.3 27 23.2 20.4 18.1 16.4

N0 N0 76.5 52.3 39.8 32.1 26.9 23.1 20.3 18.1 16.3

N0 N0 75.4 51.8 39.4 31.9 26.7 23 20.2 18 16.3

N0 N0 74.2 51.3 39.1 31.7 26.6 22.9 20.1 18 16.2

N0 N0 73.2 50.7 38.8 31.5 26.4 22.8 20 17.9 16.1

N0 N0 72.1 50.2 38.5 31.3 26.3 22.7 20 17.8 16.1

N0 N0 71.1 49.7 38.3 31.1 26.2 22.6 19.9 17.8 16

N0 N0 70.2 49.3 38 30.9 26 22.5 19.8 17.7 16

N0 119 69.2 48.8 37.7 30.7 25.9 22.4 19.7 17.6 15.9

N0 116.5 68.4 48.4 37.4 30.5 25.8 22.3 19.7 17.6 15.9

N0 114 65.5 48 37.2 30.4 25.7 22.2 19.6 17.5 15.9

N0 111.7 64.6 47.5 36.9 30.2 25.5 22.1 19.5 17.5 15.8

N0 109.6 63.7 47.1 36.7 30 25.4 22 19.4 17.4 15.8

N0 107.5 63 46.4 36.5 29.9 25.2 21.8 19.3 17.3 15.7

N0 105.6 62.2 45.8 36.2 29.7 25.1 21.7 19.2 17.3 15.7

N0 103.8 61.3 45.4 35.4 29.6 25 21.6 19.2 17.2 15.6

N0 102.1 62.8 44.9 35.2 29.5 24.9 21.5 19.1 17.2 15.6

N0 100.5 62.1 44.6 35 28.5 24.9 21.5 19 17.2 15.6

N0 99 61.7 44.3 34.7 28.4 23.9 21.5 19 17.1 15.5

N0 97.6 61.4 44 34.6 28.3 23.9 21.5 19 17.1 15.5

N0 96.3 60.9 44.5 34.4 28.2 23.8 20.7 19 17 15.5

N0 95 60.4 44.2 34.2 28.2 23.8 20.7 18.9 17 15.4

203

N0 93.9 59.9 44 34.1 28.1 23.8 20.8 18.5 17 15.4

N0 92.8 59.5 43.7 34 28.1 23.8 20.8 18.5 16.6 15.4

N0 91.8 59 43.5 34.5 28.1 23.8 20.8 18.4 16.6 15.2

N0 90.8 58.6 43.3 34.3 28.1 23.8 20.9 18.4 16.6 15.2

N0 89.9 58.3 43.1 34.2 28.1 23.8 20.8 18.4 16.5 15.1

N0 89.1 57.9 42.9 34.1 28.1 23.8 20.7 18.3 16.5 15.1

N0 88.4 57.6 42.7 34 28.1 23.9 20.6 18.3 16.5 15.1

N0 87.7 57.3 42.6 33.9 28.1 23.7 20.6 18.3 16.5 15

N0 87.1 57.1 42.4 33.8 28.1 23.6 20.5 18.3 16.5 15

N0 86.5 56.8 42.3 33.7 28 23.5 20.5 18.2 16.5 15

N0 86 56.6 42.2 33.6 27.9 23.4 20.5 18.2 16.4 14.9

N0 85.6 56.4 42.1 33.6 27.9 23.4 20.4 18.1 16.3 14.9

N0 85.2 56.2 42 33.5 27.9 23.8 20.4 18.2 16.2 14.9

N0 84.8 56.1 41.9 33.4 27.8 23.8 20.3 18.1 16.2 14.8

N0 84.5 56 41.8 33.4 27.8 23.8 20.3 18 16.2 14.7

N0 84.3 55.9 41.8 33.4 27.8 23.8 20.3 17.9 16.1 14.6

N0 84.1 55.8 41.7 33.3 27.7 23.8 20.8 17.8 16 14.6

N0 84 55.7 41.7 33.3 27.7 23.8 20.8 17.8 15.9 14.5

N0 83.9 55.7 41.7 33.3 27.7 23.7 20.7 17.7 15.9 14.5

N0 83.9 55.7 41.7 33.3 27.7 23.7 20.7 17.6 15.8 14.4

N0 83.9 55.7 41.7 33.3 27.7 23.7 20.6 18.1 15.7 14.3

N0 83.9 55.7 41.7 33.3 27.7 23.7 20.5 18 15.6 14.2

N0 84.1 55.8 41.7 33.3 27.7 23.7 20.4 17.9 15.5 14.1

N0 84.2 55.8 41.7 33.3 27.8 23.7 20.4 17.8 16 14.1

N0 84.5 55.9 41.8 33.4 27.8 23.8 20.4 17.8 15.9 14

N0 84.7 56 41.9 33.4 27.8 23.8 20.4 17.7 15.8 14.4

N0 85 56.2 41.9 33.5 27.8 23.8 20.5 17.8 15.7 14.4

N0 85.4 56.3 42 33.5 27.9 23.9 20.7 17.8 15.6 14.3

N0 85.9 56.5 42.1 33.6 27.9 23.9 20.7 17.9 15.6 14.2

N0 86.3 56.7 42.3 33.7 28 23.9 20.8 17.9 15.5 14.2

204

N0 86.9 57 42.4 33.8 28 24 20.9 18.1 15.5 14.2

N0 87.5 57.2 42.5 33.8 28.1 24 21 18.2 15.6 14.3

N0 88.1 57.5 42.7 33.9 28.2 24.1 21 18.4 15.8 14.3

N0 88.9 57.8 42.9 34 28.2 24.1 21.1 18.5 16.1 14.4

N0 89.6 58.2 43 34.2 28.3 24.2 21.1 18.6 16.3 14.5

N0 90.5 58.5 43.2 34.3 28.4 24.2 21.2 18.7 16.5 14.6

N0 91.4 58.9 43.4 34.4 28.5 24.3 21.2 18.8 16.6 14.8

N0 92.4 59.3 43.7 34.6 28.6 24.4 21.3 18.8 16.7 14.9

N0 93.5 59.7 43.9 34.7 28.7 24.5 21.3 18.9 16.8 15.1

N0 94.6 60.2 44.1 34.9 28.8 24.5 21.4 18.9 16.9 15.2

N0 95.8 60.7 44.4 35 28.9 24.6 21.4 19 16.9 15.3

N0 97.1 61.2 44.7 35.2 29 24.7 21.5 19 17 15.4

N0 98.5 61.7 45 35.4 29.1 24.8 21.6 19.1 17.1 15.5

N0 99.9 62.3 45.3 35.6 29.3 24.9 21.6 19.1 17.2 15.6

N0 101.5 62.9 45.6 35.7 29.4 25 21.7 19.2 17.2 15.6

N0 103.2 63.6 45.9 36 29.5 25.1 21.8 19.3 17.3 15.6

N0 104.9 64.2 46.3 36.2 29.7 25.2 21.9 19.3 17.3 15.7

N0 106.8 64.9 46.6 36.4 29.8 25.3 21.9 19.4 17.4 15.7

N0 108.8 65.6 47 36.6 30 25.4 22 19.4 17.4 15.8

N0 110.9 66.4 47.4 36.9 30.1 25.5 22.1 19.5 17.5 15.8

N0 113.2 67.2 47.8 37.1 30.3 25.6 22.2 19.6 17.5 15.8

N0 115.5 68 48.2 37.3 30.5 25.7 22.3 19.6 17.6 15.9

N0 118.1 68.9 48.7 37.6 30.6 25.9 22.4 19.7 17.6 15.9

N0 N0 69.8 49.1 37.9 30.8 26 22.5 19.8 17.7 16

N0 N0 70.8 49.6 38.2 31 26.1 22.6 19.9 17.7 16

N0 N0 71.8 50.1 38.4 31.2 26.3 22.7 19.9 17.8 16.1

N0 N0 72.8 50.6 38.7 31.4 26.4 22.8 20 17.9 16.1

N0 N0 73.8 51.1 39 31.6 26.5 22.9 20.1 17.9 16.2

N0 N0 74.9 51.6 39.3 31.8 26.7 23 20.2 18 16.2

N0 N0 76.1 52.1 39.6 32 26.8 23.1 20.3 18.1 16.3

205

N0 N0 77.3 52.7 40 32.2 27 23.2 20.3 18.1 16.3

N0 N0 78.5 53.3 40.3 32.4 27.1 23.3 20.4 18.2 16.4

N0 N0 79.8 53.8 40.6 32.6 27.3 23.4 20.5 18.3 16.4

N0 N0 81.1 54.4 41 32.8 27.4 23.5 20.6 18.3 16.5

N0 N0 82.5 55.1 41.3 33.1 27.6 23.6 20.7 18.4 16.6

N0 N0 83.9 55.7 41.7 33.3 27.7 23.8 20.8 18.5 16.6

N0 N0 85.4 56.3 42 33.5 27.9 23.9 20.9 18.5 16.7

N0 N0 86.9 57 42.4 33.8 28 24 21 18.6 16.7

N0 N0 88.5 57.7 42.8 34 28.2 24.1 21 18.7 16.8

N0 N0 90.1 58.3 43.1 34.2 28.4 24.2 21.1 18.7 16.8

N0 N0 91.8 59 43.5 34.5 28.5 24.3 21.2 18.8 16.9

N0 N0 93.4 59.7 43.9 34.7 28.7 24.5 21.3 18.9 17

N0 N0 95.1 60.4 44.3 34.9 28.8 24.6 21.4 19 17

N0 N0 96.9 61.1 44.6 35.2 29 24.7 21.5 19 17.1

N0 N0 98.8 61.9 45 35.4 29.2 24.8 21.6 19.1 17.1

N0 N0 100.7 62.6 45.4 35.7 29.3 24.9 21.7 19.2 17.2

N0 N0 102.7 63.4 45.8 35.9 29.5 25 21.8 19.2 17.2

N0 N0 104.7 64.1 46.2 36.1 29.7 25.2 21.8 19.3 17.3

N0 N0 106.7 64.9 46.6 36.4 29.8 25.3 21.9 19.4 17.3

N0 N0 108.8 65.6 47 36.6 30 25.4 22 19.4 17.4

N0 N0 110.9 66.4 47.4 36.8 30.1 25.5 22.1 19.5 17.5

N0 N0 113.1 67.2 47.8 37.1 30.3 25.6 22.2 19.6 17.5

N0 N0 115.3 67.9 48.2 37.3 30.5 25.7 22.3 19.6 17.6

N0 N0 117.5 68.7 48.6 37.5 30.6 25.8 22.4 19.7 17.6

N0 N0 119.7 69.5 48.9 37.8 30.8 25.9 22.4 19.8 17.7

N0 N0 N0 70.2 49.3 38 30.9 26 22.5 19.8 17.7

N0 N0 N0 71 49.7 38.2 31.1 26.2 22.6 19.9 17.8

N0 N0 N0 71.7 50 38.4 31.2 26.3 22.7 19.9 17.8

N0 N0 N0 72.5 50.4 38.6 31.3 26.3 22.7 20 17.8

N0 N0 N0 73.2 50.7 38.8 31.5 26.4 22.8 20 17.9

206

N0 N0 N0 73.9 51.1 39 31.6 26.5 22.9 20.1 17.9

N0 N0 N0 74.6 51.4 39.2 31.7 26.6 22.9 20.2 18

N0 N0 N0 75.2 51.7 39.4 31.8 26.7 23 20.2 18

N0 N0 N0 75.9 52 39.6 31.9 26.8 23.1 20.2 17.8

N0 N0 N0 76.5 52.3 39.8 32.1 26.9 23.1 20.1 17.8

N0 N0 N0 77.1 52.6 39.9 32.2 26.9 23.2 20.1 17.8

N0 N0 N0 77.6 52.9 40.1 32.3 27 23.2 20.1 17.9

N0 N0 N0 78.2 52.8 40.2 32.4 27.1 23.3 20.1 17.9

N0 N0 N0 78.7 52.4 40.3 32.4 27.1 23.3 20.1 17.9

N0 N0 N0 79.1 51.6 40.5 32.4 27.2 23.2 20.1 17.9

N0 N0 N0 79.6 52.1 39.5 32.3 27.1 23.1 20.1 17.9

N0 N0 N0 80 51.2 39.7 32.2 26.9 23 20 17.9

N0 N0 N0 80.3 52 39.8 32.1 26.7 22.9 20 18

N0 N0 N0 80.6 52.8 39.8 32 26.5 22.8 20 18

207

lidar N0 N0 N0 O46.62432 O53.44825 O39.97103 O31.9073 O26.28929
O22.64947 O20.04059 O17.98683 N0 N0 O46.87839 O46.64302 O54.0672
O40.0536 O31.74601 O26.07668 O22.54086 O20.03818 O17.99744 N0 N0
N0 O79.60463 O54.57677 O40.13287 O31.59498 O25.86347 O22.4957
O20.03653 O18.00723 N0 N0 N0 O79.56297 O54.63397 O41.07882
O32.86723 O25.65002 O22.45222 O20.03563 O18.01616 N0 N0 N0
O79.47211 O54.66991 O41.09912 O32.67908 O26.32562 O23.054
O20.03549 O18.02423 N0 N0 N0 O79.38465 O54.68449 O41.10737
O32.47697 O26.14731 O22.98088 O20.60007 O18.35239 N0 N0 N0
O79.33179 O54.67776 O41.10355 O32.4968 O25.97624 O22.91073
O20.59906 O18.35169 N0 N0 N0 O81.58467 O54.64955 O41.08763 O32.63
O25.96671 O22.88974 O20.60324 O18.34851 N0 N0 O99.73756 O81.47443
O54.60002 O41.05967 O32.77287 O26.51481 O23.02333 O20.60772
O18.34291 N0 N0 O101.6534 O81.31727 O54.52946 O41.01976 O32.80005
O26.98192 O23.20032 O20.6072 O18.33497 N0 N0 N0 O81.11401
O54.43799 O40.96796 O32.81677 O27.19497 O23.3803 O20.59934
O18.32467 N0 N0 N0 O80.86557 O54.32598 O40.90452 O32.80289
O27.33922 O23.42793 O20.58329 O18.312 O92.31916 O92.31704
O92.32194 O80.57301 O54.19383 O40.82962 O32.75472 O27.34817
O23.43776 O20.56436 O18.297 O90.39896 O90.397 O90.40192 O80.23775
O54.04201 O40.74336 O32.69921 O27.30945 O23.44469 O20.54245
O18.2797 O88.66282 O88.66101 O88.66593 O79.86122 O53.87103
O40.6461 O32.63658 O27.26583 O23.41444 O20.51785 O18.26018
O93.79497 O93.78721 O93.78659 O79.44511 O53.6814 O40.53813
O32.56696 O27.21724 O23.37859 O20.49034 O18.23841 N0 N0 N0
O78.99117 O53.4738 O40.41964 O32.49045 O27.16378 O23.33926
O20.46006 O18.21449 N0 N0 N0 O78.50139 O53.24896

Figure C-1: A sample of the simulated LiDAR data extracted from a simulated vehicle
log. This corresponds to a subset of a single snapshot (or point in time).

208

LidarPointCloud instance
x y z intensity

0 -3.12 -0.43 -1.87 4.00
1 -3.29 -0.43 -1.86 1.00
2 -3.47 -0.43 -1.86 2.00
3 -3.67 -0.43 -1.86 3.00
4 -3.9 -0.43 -1.86 6.00
5 -4.17 -0.42 -1.87 5.00
6 -4.43 -0.42 -1.86 7.00
7 -4.75 -0.42 -1.87 22.00
8 -5.04 -0.41 -1.85 12.00
9 -5.04 -0.41 -1.72 6.00
10 -5.41 -0.41 -1.7 45.00
11 -5.85 -0.4 -1.69 29.00
12 -6.33 -0.4 -1.67 30.00
13 -6.84 -0.39 -1.63 35.00
14 -7.36 -0.38 -1.58 41.00
15 -8.21 -0.37 -1.56 44.00

Ring 16 -5.49 -0.42 -0.92 31.00
Index 17 -10.51 -0.4 -1.49 22.00

18 -11.5 -0.39 -1.36 5.00
19 -13.62 -0.37 -1.29 5.00
20 -16.54 -0.35 -1.17 2.00
21 -22. -0.31 -1.04 9.00
22 -21.73 -0.3 -0.52 26.00
23 −2.17× 10 −3.00× 10−1 −1.00× 10−2 4.30× 10
24 0. −4.50× 10−1 −1.0× 10−2 3.00
25 -14.22 -0.34 0.65 6.00
26 0 −4.50× 10−1 −1.00× 10−2 1.14× 102

27 -14.16 -0.34 1.31 88.00
28 -14.17 -0.33 1.64 85.00
29 -14.14 -0.33 1.97 81.00
30 -14.14 -0.33 2.31 75.00
31 -14.12 -0.32 2.65 40.00

Table C.2: A raw data table of a subset of the NuScenes LiDAR traces.

209

C.2 Simulations

Figure C-2: A screenshot of the Uber accident simulation (with similar lighting to
the report) on the Carla Platform.

210

Bibliography

[1] Ashraf Abdul, Jo Vermeulen, Danding Wang, Brian Y Lim, and Mohan Kankan-
halli. Trends and trajectories for explainable, accountable and intelligible sys-
tems: An hci research agenda. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, page 582. ACM, 2018.

[2] Jose Vicente Abellan-Nebot and Fernando Romero Subirón. A review of ma-
chining monitoring systems based on artificial intelligence process models. The
International Journal of Advanced Manufacturing Technology, 47(1-4):237–257,
2010.

[3] Harold Abelson and Gerald Jay Sussman. Structure and interpretation of com-
puter programs. MIT Press, 1996.

[4] Leman Akoglu and Christos Faloutsos. Anomaly, event, and fraud detection in
large network datasets. In Proceedings of the sixth ACM international confer-
ence on Web search and data mining, pages 773–774, 2013.

[5] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly
detection and description: a survey. Data mining and knowledge discovery,
29(3):626–688, 2015.

[6] James F Allen. Maintaining knowledge about temporal intervals. In Readings
in qualitative reasoning about physical systems, pages 361–372. Elsevier, 1990.

[7] Adam Amos-Binks and Dustin Dannenhauer. Anticipatory thinking: A
metacognitive capability. arXiv preprint arXiv:1906.12249, 2019.

[8] Marco Ancona, Enea Ceolini, A. Cengiz Öztireli, and Markus H. Gross. A
unified view of gradient-based attribution methods for deep neural networks.
CoRR, abs/1711.06104, 2017.

[9] Robert Andrews, Joachim Diederich, and Alan B Tickle. Survey and cri-
tique of techniques for extracting rules from trained artificial neural networks.
Knowledge-based systems, 8(6):373–389, 1995.

[10] Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection in high dimensional
spaces. In European Conference on Principles of Data Mining and Knowledge
Discovery, pages 15–27. Springer, 2002.

211

[11] Samuel English Anthony. The trollable self-driving car.
https://slate.com/technology/2016/03/google-self-driving-cars-lack-a-humans-
intuition-for-what-other-drivers-will-do.html, March 2016. (Accessed on
07/01/2020).

[12] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Ba-
tra, C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In
Proceedings of the IEEE International Conference on Computer Vision, pages
2425–2433, 2015.

[13] Grigoris Antoniou and Frank Van Harmelen. Web ontology language: Owl. In
Handbook on ontologies, pages 67–92. Springer, 2004.

[14] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing
robust adversarial examples. volume 80 of Proceedings of Machine Learning Re-
search, pages 284–293, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

[15] M Gethsiyal Augasta and Thangairulappan Kathirvalavakumar. Reverse engi-
neering the neural networks for rule extraction in classification problems. Neural
processing letters, 35(2):131–150, 2012.

[16] Edmond Awad, Sohan Dsouza, Richard Kim, Jonathan Schulz, Joseph Henrich,
Azim Shariff, Jean-François Bonnefon, and Iyad Rahwan. The moral machine
experiment. Nature, 563(7729):59–64, 2018.

[17] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation. PloS one,
10(7):e0130140, 2015.

[18] Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot,
H Francis Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Ed-
ward Hughes, et al. The hanabi challenge: A new frontier for ai research.
Artificial Intelligence, 280:103216, 2020.

[19] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba.
Network dissection: Quantifying interpretability of deep visual representations.
In Computer Vision and Pattern Recognition, 2017.

[20] Jacob Beal and Gerald Jay Sussman. Engineered robustness by controlled hal-
lucination. In AAAI Fall Symposium: Naturally-Inspired Artificial Intelligence,
pages 9–12, 2008.

[21] José Manuel Benítez, Juan Luis Castro, and Ignacio Requena. Are artificial neu-
ral networks black boxes? IEEE Transactions on neural networks, 8(5):1156–
1164, 1997.

212

[22] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
american, 284(5):34–43, 2001.

[23] Michael W Berry, Murray Browne, Amy N Langville, V Paul Pauca, and
Robert J Plemmons. Algorithms and applications for approximate nonnegative
matrix factorization. Computational statistics & data analysis, 52(1):155–173,
2007.

[24] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with
Python: analyzing text with the natural language toolkit. " O’Reilly Media,
Inc.", 2009.

[25] Simon R Blackburn. The geometry of perfect parking, 2009.

[26] Gary C Borchardt. Thinking Between the Lines: Computers and the Compre-
hension of Causal Descriptions. MIT Press, Cambridge, MA, 1994.

[27] Ronald J. Brachman. What IS-A is and isn’t: An analysis of taxonomic links
in semantic networks. IEEE Computer, 16(10):30–36, 1983.

[28] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander.
Lof: identifying density-based local outliers. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, pages 93–104, 2000.

[29] Dan Brickley and Libby Miller. Foaf vocabulary specification 0.91, 2007.

[30] Sylvain Bromberger. On what we know we don’t know: Explanation, theory,
linguistics, and how questions shape them. University of Chicago Press, 1992.

[31] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Li-
ong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Bei-
jbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019.

[32] Erik Cambria, Soujanya Poria, Devamanyu Hazarika, and Kenneth Kwok. Sen-
ticNet 5: Discovering conceptual primitives for sentiment analysis by means of
context embeddings. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans, LA, February 2018. AAAI Press.

[33] James B Campbell and Randolph H Wynne. Introduction to remote sensing.
Guilford Press, 2011.

[34] Ricardo J. G. B. Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander.
Hierarchical density estimates for data clustering, visualization, and outlier de-
tection. ACM Trans. Knowl. Discov. Data, 10:5:1–5:51, 2015.

[35] Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram Ridder,
Arnau Carrera, Narcis Palomeras, Natalia Hurtos, and Marc Carreras. Ros-
plan: Planning in the robot operating system. In Twenty-Fifth International
Conference on Automated Planning and Scheduling, 2015.

213

[36] Silvia Cateni, Valentina Colla, and Marco Vannucci. A fuzzy logic-based method
for outliers detection. In Artificial Intelligence and Applications, pages 605–610,
2007.

[37] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[38] Chaofan Chen, Oscar Li, Alina Barnett, Jonathan Su, and Cynthia Rudin. This
looks like that: deep learning for interpretable image recognition. arXiv preprint
arXiv:1806.10574, 2018.

[39] Tianye Chen. Augmenting anomaly detection for autonomous vehicles with
symbolic rules. Master’s thesis, MIT, 2019.

[40] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. Infogan: Interpretable representation learning by information maximiz-
ing generative adversarial nets. In Advances in Neural Information Processing
Systems, pages 2172–2180, 2016.

[41] Philip R Cohen and Hector J Levesque. Rational interaction as the basis for
communication. Technical report, SRI International, 1988.

[42] Allan Collins and Ryszard Michalski. The logic of plausible reasoning: A core
theory. Cognitive science, 13(1):1–49, 1989.

[43] Christopher Cox, Jessica De Silva, Philip Deorsey, Franklin H. J. Kenter, Troy
Retter, and Josh Tobin. How to make the perfect fireworks display: Two strate-
gies for hanabi. Mathematics Magazine, 88(5):323–336, 2015.

[44] Mark W Craven. Extracting comprehensible models from trained neural net-
works. PhD thesis, University of Wisconsin, Madison, 1996.

[45] Xuan Hong Dang, Barbora Micenková, Ira Assent, and Raymond T Ng. Local
outlier detection with interpretation. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 304–320. Springer, 2013.

[46] Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi Parikh, and Dhruv Batra.
Human attention in visual question answering: Do humans and deep networks
look at the same regions? Computer Vision and Image Understanding, 163:90–
100, 2017.

[47] Jeffrey Dastin. Amazon scraps secret AI recruiting tool that showed bias against
women. Reuters, October 2018.

[48] Randall Davis. Diagnostic reasoning based on structure and behavior. Artificial
intelligence, 24(1-3):347–410, 1984.

[49] Johan De Kleer. Causal and teleological reasoning in circuit recognition. Techni-
cal report, MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB, 1979.

214

[50] Johan De Kleer. An assumption-based tms. Artificial intelligence, 28(2):127–
162, 1986.

[51] Johan De Kleer and John Seely Brown. Theories of causal ordering. Artificial
intelligence, 29(1):33–61, 1986.

[52] Johan De Kleer, Alan K Mackworth, and Raymond Reiter. Characterizing
diagnoses and systems. Artificial intelligence, 56(2-3):197–222, 1992.

[53] Johan De Kleer and Brian C Williams. Diagnosing multiple faults. Artificial
intelligence, 32(1):97–130, 1987.

[54] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning. arXiv, 2017.

[55] Finale Doshi-Velez, Mason Kortz, Ryan Budish, Chris Bavitz, Sam Gershman,
David O’Brien, Stuart Schieber, James Waldo, David Weinberger, and Alexan-
dra Wood. Accountability of AI under the law: The role of explanation. CoRR,
abs/1711.01134, 2017.

[56] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st
Annual Conference on Robot Learning, pages 1–16, 2017.

[57] Charles Elkan and Russell Greiner. Building large knowledge-based systems:
Representation and inference in the cyc project: Db lenat and rv guha, 1993.

[58] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rah-
mati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song.
Robust physical-world attacks on deep learning models. arXiv preprint
arXiv:1707.08945, 2017.

[59] Hadi Fanaee-T and João Gama. Tensor-based anomaly detection: An interdis-
ciplinary survey. Knowledge-Based Systems, 98:130–147, 2016.

[60] Charles M Farmer, Adrian K Lund, Rebecca E Trempel, and Elisa R Braver.
Fatal crashes of passenger vehicles before and after adding antilock braking
systems. Accident Analysis & Prevention, 29(6):745–757, 1997.

[61] Kenneth D Forbus and Johan De Kleer. Building problem solvers, volume 1.
MIT press, 1993.

[62] Kenneth D Forbus and Thomas Hinrich. Analogy and relational representations
in the companion cognitive architecture. AI Magazine, 38(4):34–42, 2017.

[63] Maria Fox, Derek Long, and Daniele Magazzeni. Explainable planning. CoRR,
abs/1709.10256, 2017.

[64] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training
pruned neural networks. CoRR, abs/1803.03635, 2018.

215

[65] Jerome H Friedman. Greedy function approximation: a gradient boosting ma-
chine. Annals of statistics, pages 1189–1232, 2001.

[66] LiMin Fu. Rule generation from neural networks. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 24(8):1114–1124, 1994.

[67] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell,
and Marcus Rohrbach. Multimodal compact bilinear pooling for visual question
answering and visual grounding. arXiv preprint arXiv:1606.01847, 2016.

[68] Pedro Garcia-Teodoro, J Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique
Vázquez. Anomaly-based network intrusion detection: Techniques, systems and
challenges. computers & security, 28(1-2):18–28, 2009.

[69] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.

[70] Michael R. Genesereth. The use of design descriptions in automated diagnosis.
Artificial Intelligence, 24(1):411 – 436, 1984.

[71] Liqiang Geng and Howard J Hamilton. Interestingness measures for data min-
ing: A survey. ACM Computing Surveys (CSUR), 38(3):9–es, 2006.

[72] Dedre Gentner, Sarah Brem, Ronald W Ferguson, Arthur B Markman, Bjorn B
Levidow, Phillip Wolff, and Kenneth D Forbus. Analogical reasoning and con-
ceptual change: A case study of johannes kepler. The journal of the learning
sciences, 6(1):3–40, 1997.

[73] Leilani Gilpin. Reasonableness monitors. In The Twenty-Third AAAI/SIGAI
Doctoral Consortium at AAAI-18, New Orleans, LA, 2018. AAAI Press.

[74] Leilani Gilpin. Reasonableness monitors. In The Twenty-Third AAAI/SIGAI
Doctoral Consortium at AAAI-18, New Orleans, LA, 2018. AAAI Press.

[75] Leilani Gilpin and Ben Yuan. Getting up to speed on vehicle intelligence. AAAI
Spring Symposium Series, 2017.

[76] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter,
and Lalana Kagal. Explaining explanations: An overview of interpretability of
machine learning. In 2018 IEEE 5th International Conference on data science
and advanced analytics (DSAA), pages 80–89. IEEE, 2018.

[77] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter,
and Lalana Kagal. Explaining explanations: An overview of interpretability of
machine learning. arXiv preprint arXiv:1806.00069, 2018.

216

[78] Leilani H. Gilpin and Lalana Kagal. An adaptable self-monitoring framework for
complex machines. Proceedings of the 16th Conference on Autonomous Agents
and MultiAgent Systems, AAMAS 2019, Montreal, Quebec, May 13-17, 2019,
page 3, 2019.

[79] Leilani H. Gilpin, Jamie C. Macbeth, and Evelyn Florentine. Monitoring
scene understanders with conceptual primitive decomposition and commonsense
knowledge. Advances in Cognitive Systems, 6, 2018.

[80] Leilani H. Gilpin, Vishnu Penuparthi, and Lalana Kagal. Explanation-based
anomaly detection for complex machines. Under Review, 2020.

[81] Leilani H Gilpin, Cecilia Testart, Nathaniel Fruchter, and Julius Adebayo. Ex-
plaining explanations to society. arXiv preprint arXiv:1901.06560, 2019.

[82] Leilani H. Gilpin, Cagri Zaman, Danielle Olson, and Ben Z. Yuan. Reasonable
perception: Connecting vision and language systems for validating scene de-
scriptions. In Proceedings of the Thirteenth Annual ACM/IEEE International
Conference on Human Robot Interaction, HRI ’18, Chicago, IL, 2018. ACM.

[83] Bryce Goodman and Seth Flaxman. European union regulations on algorithmic
decision-making and a" right to explanation". arXiv preprint arXiv:1606.08813,
2016.

[84] Bryce Goodman and Seth Flaxman. European union regulations on algorithmic
decision-making and a “right to explanation”. AI Magazine, 38(3):50–57, 2017.

[85] Martin Grill, Tomáš Pevnỳ, and Martin Rehak. Reducing false positives of
network anomaly detection by local adaptive multivariate smoothing. Journal
of Computer and System Sciences, 83(1):43–57, 2017.

[86] Patrick J Grother, Mei L Ngan, and Kayee K Hanaoka. Ongoing face recognition
vendor test (frvt) part 2: identification. Technical report, NIST, 2018.

[87] Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi, and Fosca
Giannotti. A survey of methods for explaining black box models. arXiv preprint
arXiv:1802.01933, 2018.

[88] David Gunning. Darpa’s explainable artificial intelligence (xai) program. In
Proceedings of the 24th International Conference on Intelligent User Interfaces,
IUI ’19, page ii, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[89] Tameru Hailesilassie. Rule extraction algorithm for deep neural networks: A
review. arXiv preprint arXiv:1610.05267, 2016.

[90] Lars Kai Hansen, Adam Arvidsson, Finn Årup Nielsen, Elanor Colleoni, and
Michael Etter. Good friends, bad news-affect and virality in twitter. In Future
information technology, pages 34–43. Springer, 2011.

217

[91] Gilbert H Harman. The inference to the best explanation. The philosophical
review, 74(1):88–95, 1965.

[92] PJ Hayes. The naive physics manifesto. Colchester, Essex, UK: Department of
Computer Science, University of Essex, 1975.

[93] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[94] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local
outliers. Pattern Recognition Letters, 24(9-10):1641–1650, 2003.

[95] Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt
Schiele, and Trevor Darrell. Generating visual explanations. In European Con-
ference on Computer Vision, pages 3–19. Springer, 2016.

[96] Bernease Herman. The promise and peril of human evaluation for model inter-
pretability. arXiv preprint arXiv:1711.07414, 2017.

[97] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae:
Learning basic visual concepts with a constrained variational framework, 2016.

[98] Dylan Alexander Holmes. Story-enabled hypothetical reasoning. PhD thesis,
Massachusetts Institute of Technology, 2017.

[99] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms
and applications. Neural networks, 13(4-5):411–430, 2000.

[100] Ieee standard glossary of software engineering terminology, 1990.

[101] Ray S Jackendoff. Semantics and Cognition. MIT Press, Cambridge, MA, 1983.

[102] Ulf Johansson, Rikard Konig, and Lars Niklasson. Automatically balancing
accuracy and comprehensibility in predictive modeling. In Information Fusion,
2005 8th International Conference on, volume 2, pages 7–pp. IEEE, 2005.

[103] Philip Nicholas Johnson-Laird. Mental models: Towards a Cognitive Science of
Language, Inference, and Consciousness. Harvard University Press, Cambridge,
MA, 1983.

[104] Ian T Jolliffe. Principal component analysis and factor analysis. In Principal
component analysis, pages 115–128. Springer, 1986.

[105] Yaakov Kareev. Positive bias in the perception of covariation. Psychological
review, 102(3):490, 1995.

218

[106] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. Leakage
in data mining: Formulation, detection, and avoidance. ACM Transactions on
Knowledge Discovery from Data (TKDD), 6(4):15, 2012.

[107] Henry A. Kautz and James F. Allen. Generalized plan recognition. In Proceed-
ings of the Fifth AAAI National Conference on Artificial Intelligence, AAAI’86,
page 32–37. AAAI Press, 1986.

[108] Fabian Keller, Emmanuel Muller, and Klemens Bohm. Hics: High contrast
subspaces for density-based outlier ranking. In 2012 IEEE 28th international
conference on data engineering, pages 1037–1048. IEEE, 2012.

[109] Alice Kerly, Phil Hall, and Susan Bull. Bringing chatbots into education: To-
wards natural language negotiation of open learner models. Knowledge-Based
Systems, 20(2):177–185, 2007.

[110] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Ferreira,
M. Yuan, B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah, A. Kulkarni,
A. Kazakova, C. Tao, L. Platinsky, W. Jiang, and V. Shet. Lyft level 5 av
dataset 2019. urlhttps://level5.lyft.com/dataset/, 2019.

[111] Ankesh Khandelwal, Jie Bao, Lalana Kagal, Ian Jacobi, Li Ding, and James
Hendler. Analyzing the air language: a semantic web (production) rule lan-
guage. In International Conference on Web Reasoning and Rule Systems, pages
58–72. Springer, 2010.

[112] Been Kim, Justin Gilmer, Fernanda Viegas, Ulfar Erlingsson, and Martin Wat-
tenberg. Tcav: Relative concept importance testing with linear concept activa-
tion vectors. arXiv preprint arXiv:1711.11279, 2017.

[113] Been Kim, Cynthia Rudin, and Julie A Shah. The bayesian case model: A
generative approach for case-based reasoning and prototype classification. In
Advances in Neural Information Processing Systems, pages 1952–1960, 2014.

[114] Phil Kim, Brian C Williams, and Mark Abramson. Executing reactive, model-
based programs through graph-based temporal planning. IJCAI, pages 487–493,
2001.

[115] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[116] Johan de Kleer, Jon Doyle, Charles Rich, Guy L Steele Jr, and Ger-
ald Jay Sussman. Amord: A deductive procedure system. Technical report,
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLI-
GENCE LAB, 1978.

[117] Gary Klein, David Snowden, and Chew Lock Pin. Anticipatory thinking. In-
formed by knowledge: Expert performance in complex situations, pages 235–245,
2011.

219

[118] Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. Distance-based out-
liers: algorithms and applications. The VLDB Journal, 8(3-4):237–253, 2000.

[119] Pang Wei Koh and Percy Liang. Understanding black-box predictions via in-
fluence functions. arXiv preprint arXiv:1703.04730, 2017.

[120] Jorie Koster-Hale and Rebecca Saxe. Theory of mind: a neural prediction
problem. Neuron, 79(5):836–848, 2013.

[121] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Outlier
detection in axis-parallel subspaces of high dimensional data. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pages 831–838. Springer,
2009.

[122] Hans-Peter Kriegel, Peer Kroger, Erich Schubert, and Arthur Zimek. Interpret-
ing and unifying outlier scores. In Proceedings of the 2011 SIAM International
Conference on Data Mining, pages 13–24. SIAM, 2011.

[123] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Outlier
detection in arbitrarily oriented subspaces. In 2012 IEEE 12th international
conference on data mining, pages 379–388. IEEE, 2012.

[124] John E Laird, Christian Lebiere, and Paul S Rosenbloom. A standard model
of the mind: Toward a common computational framework across artificial in-
telligence, cognitive science, neuroscience, and robotics. AI Magazine, 38(4),
2017.

[125] John E Laird, Allen Newell, and Paul S Rosenbloom. Soar: An architecture
for general intelligence. Technical report, STANFORD UNIV CA DEPT OF
COMPUTER SCIENCE, 1986.

[126] Susan Landau. Control use of data to protect privacy. Science, 347(6221):504–
506, 2015.

[127] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and
Oscar Beijbom. Pointpillars: Fast encoders for object detection from point
clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 12697–12705, 2019.

[128] Pat Langley, Ben Meadows, Mohan Sridharan, and Dongkyu Choi. Explainable
agency for intelligent autonomous systems. In AAAI, pages 4762–4764, 2017.

[129] Alexander Lavin and Subutai Ahmad. Evaluating real-time anomaly detection
algorithms–the numenta anomaly benchmark. In Machine Learning and Appli-
cations (ICMLA), 2015 IEEE 14th International Conference on, pages 38–44.
IEEE, 2015.

220

[130] Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, and Jaideep
Srivastava. A comparative study of anomaly detection schemes in network
intrusion detection. In Proceedings of the 2003 SIAM international conference
on data mining, pages 25–36. SIAM, 2003.

[131] Aleksandar Lazarevic and Vipin Kumar. Feature bagging for outlier detec-
tion. In Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 157–166, 2005.

[132] David B Leake. Focusing construction and selection of abductive hypotheses. In
Proceedings of the 13th international joint conference on Artifical intelligence-
Volume 1, pages 24–29, 1993.

[133] Yann LeCun. My take on ali rahimi’s test of time award talk at nips, 2017.

[134] Timothy B. Lee. Report: Software bug led to death in Uber’s self-driving crash,
May 2018.

[135] Douglas B Lenat, Ramanathan V. Guha, Karen Pittman, Dexter Pratt, and
Mary Shepherd. CYC: Toward programs with common sense. Communications
of the ACM, 33(8):30–49, 1990.

[136] Benjamin Letham, Cynthia Rudin, Tyler H McCormick, David Madigan, et al.
Interpretable classifiers using rules and bayesian analysis: Building a better
stroke prediction model. The Annals of Applied Statistics, 9(3):1350–1371, 2015.

[137] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema
challenge. In Thirteenth International Conference on the Principles of Knowl-
edge Representation and Reasoning, 2012.

[138] Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from 3d lidar using fully
convolutional network. arXiv preprint arXiv:1608.07916, 2016.

[139] Yihua Liao and V Rao Vemuri. Use of k-nearest neighbor classifier for intrusion
detection. Computers & security, 21(5):439–448, 2002.

[140] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common
objects in context. In European Conference on Computer Vision, pages 740–755,
Zurich, 2014. Springer.

[141] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008
Eighth IEEE International Conference on Data Mining, pages 413–422. IEEE,
2008.

[142] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly
detection. ACM Transactions on Knowledge Discovery from Data (TKDD),
6(1):1–39, 2012.

221

[143] Juan Liu, Eric Bier, Aaron Wilson, John Alexis Guerra-Gomez, Tomonori
Honda, Kumar Sricharan, Leilani Gilpin, and Daniel Davies. Graph analy-
sis for detecting fraud, waste, and abuse in healthcare data. AI Magazine,
37(2):33–46, 2016.

[144] Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre Geurts. Under-
standing variable importances in forests of randomized trees. In Advances in
neural information processing systems, pages 431–439, 2013.

[145] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-
image co-attention for visual question answering. In Advances In Neural Infor-
mation Processing Systems, pages 289–297, 2016.

[146] Siyu Lu. “the car can explain”–propagators for autonomous vehicles. Technical
report, MIT CSAIL, 2018.

[147] Rachel W Magid, Mark Sheskin, and Laura E Schulz. Imagination and the
generation of new ideas. Cognitive Development, 34:99–110, 2015.

[148] Kavi Mahesh, Sergei Nirenburg, Jim Cowie, and David Farwell. An assessment
of CYC for natural language processing. Memoranda in computer and cognitive
sciences MCCS-96-296, Computing Research Laboratory, New Mexico State
University, Las Cruces, NM, 1996.

[149] Gary Marcus. Deep learning: A critical appraisal. arXiv preprint
arXiv:1801.00631, 2018.

[150] Aarian Marshall. The Uber Crash Won’t Be the Last Shocking Self-Driving
Death. Wired, March 2018.

[151] Aarian Marshall and Alex Davies. Uber’s Self-Driving Car Saw the Woman
It Killed, Report Says. https://www.wired.com/story/uber-self-driving-crash-
arizona-ntsb-report/.

[152] Norman S. Mayersohn. Antilock brakes at last. Popular Mechnaics, 1988.

[153] A E Michotte. The perception of causality. Basic Books, New York, 1963.

[154] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passenger
vehicle. Black Hat USA, 2015:91, 2015.

[155] George A Miller. WordNet: An electronic lexical database. MIT press, 1998.

[156] Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE,
49(1):8–30, 1961.

[157] Marvin Minsky. A framework for representing knowledge. MIT-AI Laboratory
Memo 306, 1974.

[158] Marvin Minsky. Society of Mind. Simon & Schuster, Inc., New York, 1988.

222

[159] Marvin Minsky. Negative Expertise. International Journal of Expert Systems,
7(1):13–19, 1994.

[160] Marvin Minsky. The emotion machine: Commonsense thinking, artificial intel-
ligence, and the future of the human mind. Simon and Schuster, 2007.

[161] Christoph Molnar. Interpretable Machine Learning. 2019. https://
christophm.github.io/interpretable-ml-book/.

[162] Erik T Mueller. Story understanding. Encyclopedia of Cognitive Science, 2006.

[163] Erik T Mueller. Commonsense reasoning: an event calculus based approach.
Morgan Kaufmann, 2014.

[164] Deirdre K Mulligan and Kenneth A Bamberger. Saving governance-by-design.
Calif. L. Rev., 106:697, 2018.

[165] Deirdre K Mulligan, Colin Koopman, and Nick Doty. Privacy is an essentially
contested concept: a multi-dimensional analytic for mapping privacy. Phil.
Trans. R. Soc. A, 374(2083):20160118, 2016.

[166] Erfan Najmi, Zaki Malik, Khayyam Hashmi, and Abdelmounaam Rezgui. Con-
ceptrdf: An rdf presentation of conceptnet knowledge base. In Information and
Communication Systems (ICICS), 2016 7th International Conference on, pages
145–150. IEEE, 2016.

[167] Allen Newell. Unified theories of cognition. Harvard University Press, 1994.

[168] Hwee Tou Ng and Raymond J Mooney. The role of coherence in construct-
ing and evaluating abductive explanations. In Working Notes, AAAI Spring
Symposium on Automated Abduction, Stanford, California, 1990.

[169] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune.
Synthesizing the preferred inputs for neurons in neural networks via deep gen-
erator networks. In Advances in Neural Information Processing Systems, pages
3387–3395, 2016.

[170] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In Proceedings
of the 2015 IEEE Conference on Computer Vision and Pattern Recognition,
pages 427–436, Boston, MA, 2015. IEEE.

[171] Hoang Vu Nguyen, Hock Hee Ang, and Vivekanand Gopalkrishnan. Mining
outliers with ensemble of heterogeneous detectors on random subspaces. In
International Conference on Database Systems for Advanced Applications, pages
368–383. Springer, 2010.

[172] F. Å. Nielsen. Afinn, mar 2011.

223

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

[173] Takashi Ogawa and Kiyokazu Takagi. Lane recognition using on-vehicle lidar.
In 2006 IEEE Intelligent Vehicles Symposium, pages 540–545. IEEE, 2006.

[174] Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata, Anna Rohrbach, Bernt
Schiele, Trevor Darrell, and Marcus Rohrbach. Multimodal explanations: Jus-
tifying decisions and pointing to the evidence. CoRR, abs/1802.08129, 2018.

[175] Gabriele Paul. Approaches to abductive reasoning: an overview. Artificial
intelligence review, 7(2):109–152, 1993.

[176] Joel Pearson and Stephen M Kosslyn. The heterogeneity of mental represen-
tation: Ending the imagery debate. Proceedings of the National Academy of
Sciences, 112(33):10089–10092, 2015.

[177] Charles Sanders Peirce. Collected papers of charles sanders peirce, volume 2.
Harvard University Press, 1960.

[178] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543, 2014.

[179] Maria João Pereira, Luísa Coheur, Pedro Fialho, and Ricardo Ribeiro.
Chatbots’ greetings to human-computer communication. arXiv preprint
arXiv:1609.06479, 2016.

[180] Preliminary report highway hwy18mh010. https://www.ntsb.gov/
investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf,
2018.

[181] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum
pointnets for 3d object detection from rgb-d data. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 918–927, 2018.

[182] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 652–660,
2017.

[183] M Ross Quillan. Semantic memory. Technical report, BOLT BERANEK AND
NEWMAN INC CAMBRIDGE MA, 1966.

[184] Alexey Radul and Gerald Jay Sussman. The art of the propagator. In Proceed-
ings of the 2009 international lisp conference, pages 1–10, 2009.

[185] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
Cnn features off-the-shelf: an astounding baseline for recognition. In Computer
Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference
on, pages 512–519. IEEE, 2014.

224

https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf

[186] John Fairbanks Reeves. Computational morality: A process model of belief
conflict and resolution for story understanding. 1991.

[187] K. Reif, K.H. Dietsche, STAR Deutschland GmbH, and Robert Bosch GmbH.
Automotive Handbook. Robert Bosch GmbH, 2014.

[188] Raymond Reiter. A theory of diagnosis from first principles. Artificial intelli-
gence, 32(1):57–95, 1987.

[189] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust
you?: Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1135–1144. ACM, 2016.

[190] Lawrence G Roberts. Machine perception of three-dimensional solids. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, 1963.

[191] Stephanie Rosenthal, Sai P Selvaraj, and Manuela M Veloso. Verbalization:
Narration of autonomous robot experience. In IJCAI, volume 16, pages 862–
868, 2016.

[192] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. Right for the
right reasons: Training differentiable models by constraining their explanations.
arXiv preprint arXiv:1703.03717, 2017.

[193] Cynthia Rudin. Please stop explaining black box models for high stakes deci-
sions. arXiv preprint arXiv:1811.10154, 2018.

[194] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between
capsules. In Advances in Neural Information Processing Systems, pages 3859–
3869, 2017.

[195] Steven L Salzberg. C4. 5: Programs for machine learning by j. ross quinlan.
morgan kaufmann publishers, inc., 1993. Machine Learning, 16(3):235–240,
1994.

[196] Mohammad Sanatkar. Lidar 3d object detection methods | by mohammad
sanatkar | jun, 2020 | towards data science. https://towardsdatascience.
com/lidar-3d-object-detection-methods-f34cf3227aea, June 2020.

[197] Makoto Sato and Hiroshi Tsukimoto. Rule extraction from neural networks
via decision tree induction. In Neural Networks, 2001. Proceedings. IJCNN’01.
International Joint Conference on, volume 3, pages 1870–1875. IEEE, 2001.

[198] Roger C Schank. Conceptual dependency: A theory of natural language under-
standing. Cognitive Psychology, 3(4):552–631, 1972.

[199] Roger C. Schank and Robert P. Abelson. Scripts, plans, goals and understanding
: an inquiry into human knowledge structures. L. Erlbaum Associates, Hillsdale,
NJ, 1977.

225

https://towardsdatascience.com/lidar-3d-object-detection-methods-f34cf3227aea
https://towardsdatascience.com/lidar-3d-object-detection-methods-f34cf3227aea

[200] Gregor PJ Schmitz, Chris Aldrich, and Francois S Gouws. Ann-dt: an algo-
rithm for extraction of decision trees from artificial neural networks. IEEE
Transactions on Neural Networks, 10(6):1392–1401, 1999.

[201] Erich Schubert, Remigius Wojdanowski, Arthur Zimek, and Hans-Peter Kriegel.
On evaluation of outlier rankings and outlier scores. In Proceedings of the 2012
SIAM International Conference on Data Mining, pages 1047–1058. SIAM, 2012.

[202] Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel. Local outlier detec-
tion reconsidered: a generalized view on locality with applications to spatial,
video, and network outlier detection. Data Mining and Knowledge Discovery,
28(1):190–237, 2014.

[203] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization. See https://arxiv.
org/abs/1610.02391 v3, 7(8), 2016.

[204] Rudy Setiono and Wee Kheng Leow. Fernn: An algorithm for fast extraction
of rules from neural networks. Applied Intelligence, 12(1-2):15–25, 2000.

[205] S. Shaheen, W. El-Hajj, H. Hajj, and S. Elbassuoni. Emotion recognition from
text based on automatically generated rules. In 2014 IEEE International Con-
ference on Data Mining Workshop (ICDMW), volume 00, pages 383–392, Dec.
2014.

[206] Raymond Sheh and Isaac Monteath. Defining explainable ai for requirements
analysis. KI-Künstliche Intelligenz, pages 1–6, 2018.

[207] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning im-
portant features through propagating activation differences. arXiv preprint
arXiv:1704.02685, 2017.

[208] Herbert A Simon. Administrative behavior. Simon and Schuster, 2013.

[209] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
arXiv preprint arXiv:1312.6034, 2013.

[210] Push Singh. Examining the Society of Mind. Computing and Informatics,
22(6):521–543, 2012.

[211] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Mar-
tin Wattenberg. Smoothgrad: removing noise by adding noise. CoRR,
abs/1706.03825, 2017.

[212] Robert Speer and Catherine Havasi. ConceptNet 5: A large semantic network
for relational knowledge. In The People’s Web Meets NLP, pages 161–176.
Springer, New York, 2013.

226

[213] Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individ-
ual predictions with feature contributions. Knowledge and information systems,
41(3):647–665, 2014.

[214] Peter Struss and Alessandro Fraracci. Modeling hydraulic components for au-
tomated fmea of a braking system. Technical report, Tech. Univ. of Munich
Garching Germany, 2014.

[215] Muhammad Sualeh and Gon-Woo Kim. Dynamic multi-lidar based multiple
object detection and tracking. Sensors, 19(6):1474, 2019.

[216] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A large
ontology from wikipedia and wordnet. Journal of Web Semantics, 6(3):203–
217, 2008.

[217] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for
deep networks. arXiv preprint arXiv:1703.01365, 2017.

[218] Katia P Sycara. Multiagent systems. AI magazine, 19(2):79–79, 1998.

[219] Ismail A Taha and Joydeep Ghosh. Symbolic interpretation of artificial neural
networks. IEEE Transactions on knowledge and data engineering, 11(3):448–
463, 1999.

[220] Sarah Tan, Rich Caruana, Giles Hooker, and Yin Lou. Detecting bias
in black-box models using transparent model distillation. arXiv preprint
arXiv:1710.06169, 2017.

[221] Paul R Thagard. The best explanation: Criteria for theory choice. The journal
of philosophy, 75(2):76–92, 1978.

[222] Sebastian Thrun. Extracting rules from artificial neural networks with dis-
tributed representations. In Advances in neural information processing systems,
pages 505–512, 1995.

[223] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th International Conference on Software Engineering, ICSE ’18, pages 303–
314, New York, NY, USA, 2018. ACM.

[224] Antonio Torralba. Contextual priming for object detection. International jour-
nal of computer vision, 53(2):169–191, 2003.

[225] Geoffrey G Towell and Jude W Shavlik. Extracting refined rules from
knowledge-based neural networks. Machine learning, 13(1):71–101, 1993.

[226] Rebecca Traynor. Seeing-in-for-action: The cognitive penetrability of percep-
tion. In Proceedings of the Fifth Annual Conference on Advances in Cognitive
Systems, Troy, NY, 2017. The Cognitive Systems Foundation.

227

[227] Hiroshi Tsukimoto. Extracting rules from trained neural networks. IEEE Trans-
actions on Neural Networks, 11(2):377–389, 2000.

[228] Shimon Ullman. Aligning pictorial descriptions: an approach to object recog-
nition. Cognition, 32(3):193–254, 1989.

[229] Owen Vallis, Jordan Hochenbaum, and Arun Kejariwal. A novel technique for
long-term anomaly detection in the cloud. In HotCloud, 2014.

[230] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems, pages 6000–6010, 2017.

[231] David C Vladeck. Machines without principals: liability rules and artificial
intelligence. Wash. L. Rev., 89:117, 2014.

[232] Justin Werfel, Kirstin Petersen, and Radhika Nagpal. Designing collective be-
havior in a termite-inspired robot construction team. Science, 343(6172):754–
758, 2014.

[233] Anna Wierzbicka. Semantics: Primes and Universals. Oxford University Press,
New York, 1996.

[234] Yorick Wilks and Dann Fass. The preference semantics family. Computers &
Mathematics with Applications, 23(2-5):205–221, 1992.

[235] Brian C Williams and P Pandurang Nayak. Immobile robots ai in the new
millennium. AI magazine, 17(3):16–16, 1996.

[236] Brian C Williams and P Pandurang Nayak. A model-based approach to reactive
self-configuring systems. In Proceedings of the national conference on artificial
intelligence, pages 971–978, 1996.

[237] Benjamin Wilson, Judy Hoffman, and Jamie Morgenstern. Predictive inequity
in object detection. arXiv preprint arXiv:1902.11097, 2019.

[238] Patrick H Winston. Learning structural descriptions from examples. PhD thesis,
Massachusetts Institute of Technology, 1970.

[239] Patrick Henry Winston. The right way. Advances in Cognitive Systems, 1:23–36,
2012.

[240] Patrick Henry Winston. The genesis story understanding and story telling sys-
tem a 21st century step toward artificial intelligence. Technical report, Center
for Brains, Minds and Machines (CBMM), 2014.

[241] P.H. Winston and D. Holmes. The genesis manifesto: Story understanding and
human intelligence, 2017.

228

[242] Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and
Zheng Zhang. The application of two-level attention models in deep convolu-
tional neural network for fine-grained image classification. In Computer Vision
and Pattern Recognition (CVPR), 2015 IEEE Conference on, pages 842–850.
IEEE, 2015.

[243] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end learning
of driving models from large-scale video datasets. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2174–2182, 2017.

[244] Ming Yang, Shige Wang, Joshua Bakita, Thanh Vu, F Donelson Smith, James H
Anderson, and Jan-Michael Frahm. Re-thinking cnn frameworks for time-
sensitive autonomous-driving applications: Addressing an industrial challenge.
In 2019 IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), pages 305–317. IEEE, 2019.

[245] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transfer-
able are features in deep neural networks? In Advances in neural information
processing systems, pages 3320–3328, 2014.

[246] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer,
2014.

[247] Quan-shi Zhang and Song-Chun Zhu. Visual interpretability for deep learn-
ing: a survey. Frontiers of Information Technology & Electronic Engineering,
19(1):27–39, 2018.

[248] Quanshi Zhang, Ruiming Cao, Ying Nian Wu, and Song-Chun Zhu. Growing
interpretable part graphs on convnets via multi-shot learning. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, pages 2898–2906,
2017.

[249] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolu-
tional neural networks. In Computer Vision and Pattern Recognition, 2018.

[250] Quanshi Zhang, Yu Yang, Yuchen Liu, Ying Nian Wu, and Song-Chun Zhu.
Unsupervised learning of neural networks to explain neural networks. arXiv
preprint arXiv:1805.07468, 2018.

[251] Xin Zhang, Armando Solar-Lezama, and Rishabh Singh. Interpreting neu-
ral network judgments via minimal, stable, and symbolic corrections. CoRR,
abs/1802.07384, 2018.

[252] Qingyuan Zhao and Trevor Hastie. Causal interpretations of black-box models.
Journal of Business & Economic Statistics, 0(0):1–10, 2019.

229

[253] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. Object detectors emerge in deep scene cnns. arXiv preprint
arXiv:1412.6856, 2014.

[254] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. Learning deep features for discriminative localization. In Computer Vi-
sion and Pattern Recognition (CVPR), 2016 IEEE Conference on, pages 2921–
2929. IEEE, 2016.

[255] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu. Class-
balanced grouping and sampling for point cloud 3d object detection, 2019.

[256] Jan Ruben Zilke. Extracting Rules from Deep Neural Networks. Master’s thesis,
Technische Universitat Darmstadt, 2016.

[257] Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen. Deepred–rule
extraction from deep neural networks. In International Conference on Discovery
Science, pages 457–473. Springer, 2016.

[258] Arthur Zimek, Ricardo J. G. B. Campello, and Jörg Sander. Ensembles for
unsupervised outlier detection: challenges and research questions a position
paper. SIGKDD Explorations, 15:11–22, 2014.

[259] Arthur Zimek, Ricardo JGB Campello, and Jörg Sander. Data perturbation for
outlier detection ensembles. In Proceedings of the 26th International Conference
on Scientific and Statistical Database Management, pages 1–12, 2014.

[260] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on unsuper-
vised outlier detection in high-dimensional numerical data. Statistical Analysis
and Data Mining: The ASA Data Science Journal, 5(5):363–387, 2012.

230

	Introduction
	Definitions
	Thesis Contributions
	Local Sanity Checks
	System-wide Communication
	Explanation Feedback

	Thesis Overview

	Background
	Anomaly Detection
	Diagnostics
	Monitoring

	Knowledge Representation and Reasoning
	Frame-based Representations
	Ontology
	Commonsense Knowledge and Reasoning
	Reasoning
	Cognitive Architectures
	Theory of Mind

	Multi-agent Systems
	Integrating Perception and Reasoning

	Ex post facto Explanations
	Introduction
	Definition of Vehicle Specific Components

	Method Overview
	Data Generation and Analysis
	Qualitative Algebras
	Models
	Vehicle Modeling with the Propagator System
	Qualitative Mechanical Model
	Semi-quantitative Physics Model
	Reasoning

	Experiment Results
	Examples from the Mechanical Model
	Examples from the Physics Model

	Applying this Methodology
	Related Work
	Limitations
	Contributions

	Reasonableness Monitors
	Introduction
	Method Overview
	Input Parsing
	Representation: Conceptual Primitives

	Adaptable Implementation
	Log Generation and Ontology
	Rule Input
	Reasoning and Explanations

	Evaluation
	Validation
	User Study
	Example Explanations

	Applying Reasonableness Monitors
	Limitations
	Ongoing Work
	Related Work
	Contributions

	Interpreting Sensor Data
	Introduction
	LiDAR Sensor Limitations

	LiDAR Sensor Overview
	Simulated LiDAR format
	LiDAR format in Collected Data Sets
	Related Work on LiDAR Processing

	Method
	Edge Detection for Object Detection
	Angle Estimation
	Object Tracking: Describing Movement
	Parking Rules

	Experiment Results
	Simulated LiDAR challenge scenarios
	Data Set LiDAR Challenge Results

	Applying Sensor Interpretation
	Limitations
	Contributions

	Learning from Explanations
	Introduction
	Method
	Monitoring Architecture
	Rule Learning
	RACECAR Architecture

	Experiments
	Experiment Design
	Experiment Results
	Challenges

	Applying Rule Learning
	Limitations
	Ongoing Work
	Contributions and Discussion

	System-wide Anomaly Detection
	The Problem
	System Monitoring Architecture
	Inspiration from Human Committee Structures
	Generating Qualitative Descriptions
	Monitoring for Reasonableness within Each Subsystem
	Reconcile Inconsistencies with a Synthesizer

	Explanation Synthesizer
	Priority Hierarchy
	Underlying Logic Language
	Abstract Rules

	Evaluation
	Simulation Setup
	Uber Accident Scenario
	Reasoning
	Adding Mistakes to Existing Data
	Evaluation of Inserted Errors

	Challenges and Benchmarks
	Other Potential Evaluations

	Requirements to Apply ADE
	Related Work
	Limitations
	Conclusion and Future Work

	Philosophy of Explanations: A Review with Recommendations
	Background and Foundational Concepts
	What is an Explanation?
	Interpretability vs. Completeness
	Explainability of Deep Networks

	Review
	Explanations of Deep Network Processing
	Explanations of Deep Network Representations
	Explanation-Producing Systems

	Related Work
	Interpretability
	Explainable AI for HCI
	Explanations for Black-Box Models
	Explainability in Other Technical Domains
	Explanations for Society

	Taxonomy
	Evaluation
	Processing
	Representation
	Explanation-Producing

	Societal Expectations for Explanations
	Definitions
	Current Limitations

	A Big Problem: Opaque Perception Processes
	Hallucinating Information
	Imagining Possible Futures
	Commonsense Reasoning

	The Risk of Deploying Opaque Models
	Conclusions

	Contributions and Future Work
	Explanations as a Debugging Language
	Future Applications
	Hybrid Approaches to Intelligent Systems
	Using Explanations as Internal Narrative
	Explanations for Society
	Security Applications

	Reevaluating Evaluations
	Tasks that Require Explanations
	Challenges for Imagining and Explaining Possible Futures

	Implications
	A Salute

	Auxiliary Information
	Qualitative Algebras
	Conceptual Primitive Descriptions

	Code
	Vehicle Specific Artifacts
	Adaptable Code Artifacts
	Conceptual Dependency Parsing
	Commonsense Data Querying

	Interpreting LiDAR data
	Synthesizer
	Sample Results
	NuScenes Examples
	Parsing Examples

	Data Samples
	LiDAR Data
	Simulations

