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Abstract 

Algorithms for symbolic partial fraction 
decomposition and indefinite integration of 
rational functions are described. Two types 
of partial fraction decomposition are in- 
vestigated, square-free and complete square- 
free. A method is derived, based on the 
solution of a linear system, which produces 
the square-free decomposition of any rational 
function, say A~B. The computing time is 
shown to be O(n (in nf) 2) where deg(A)<deg(B) 
=n and f is a number which is closely related 
to the size of the coefficients which occur 
in A and B. The complete square-free partial 
fraction decomposition can then be directly 
obtained and it is shown that the computing 
time for this process is also bounded by 
O(n4(in nf)2). 

A thorough analysis is then made of the 
classical method for rational function inte- 
gration, due to Hermite. It is shown that 

composition and symbolic integration algorithms. 
Also, the basic theorems for performing a 
computing time analysis of these algorithms 
will be presented. In Section 3, several 
algorithms for partial fraction decomposition, 
including a new method, will be derived and 
their computing times will be analyzed. In 
Section 4, algorithms which implement Hermite's 
method for rational function integration will 
be developed and analyzed. These algorithms 
will then be compared to a new method. Both a 
theoretical and an empirical analysis will be 
done. In Section 5, several extensions of this 
new method for integration will be discussed. 

DEFINITIONS AND THEORY 

In order to analyze the efficiency of algorithms 
it is necessary to develop the computing time 
for all subparts of the algorithm. Moreover, 
we require that these computing times shall be 
independent of the particular computer on 
which these algorithms may be implemented. Let 
us assume that integers are represented in 
radix form with arbitrary base B. Then compu- 
ting times for the arithmetic operations can 
be expressed as functions of the number of 8- 
digits of the numbers which occur in the 
algorithms. Hoever, since the number of 8- 
digits of N is [logsN]+l and since logBN= 
(in N)/(in 8) where~"in '' is the natural loga- 
rithm function and since we will usually ig- 
nore constant multipliers, the computing times 

the most efficient implementation of this 
method has a computing time of O(k3n5(in nc)2) are given in terms of In N. Also, these con- 
where c is a number closely related to f ' stant multipliers are dependent upon the paTti- 

and k is the number of square-free factors of 
B. A new method is then presented which 
avoids entirely the use of partial fraction 
decomposition and instead relies on the solu- 
tion of an easily obtainable linear system. 
Theoretical analysis shows that the computing 
time for this method is O(n5(in nf) 2) and 
extensive testing substantiates its superi- 
ority over Hermite's method. 

INTRODUCTION 

The idea of using computers to do symbolic 
mathematics has been with us now for almost 
two decades. Many computer systems have 
been developed, some of which concentrate on 
a particular task (e.g. symbolic integration) 
while others provide a wide variety of opera- 
tions on large classes of mathematical ex- 
pressions. A rather complete list of these 
systems can be found in [9] and [i0]. 

The classical method for symbolic rational 
function integration is due to the 19th 
century mathematician Charles Hermite, [5]. 
Several systems, such as Engelman's MATHLAB, 
[3], and Moses' SIN, [8], have relied on 
Hermite's method to perform partial fraction 
decomposition and rational function integra- 
tion. Tobey, in [Ii] undertook a detailed 
study of possible implementations resulting 
from Hermite's method, expressed these 
strategies in algorithmic form and then pro- 
ved their correctness. 

More recent people such as Collins [i] and 

cular computer of implementation, the data 
representation and numerous other details. It 
is, therefore, useful to ignore them uniformly 
and provide an analysis which is independent 
of any particular computer. I will now state 
several theorems which give the computing times 
for operations on integers and univariate 
polynomials. For proofs of these theorems, see 
[i]. These results will be used in analyzing 
the algorithms which occur in the latter 
sections. 

Definition: f(x)=O(g(x)) means that there exists 
a constant c such that f(x)Jc.g(x) for all 
sufficiently large x. 
The following theorems present computing times 
for algorithms which can be found in [7]. 
Theorem 2.1. Let t(a,b) be the time required 
to compute a+b (or a-b). Let T(d) = 
max {t(a,b): lal, Ibl < d}. Then T(d) = 
O(in d). 
Theorem 2.2 Let t(a,b) be the time required 
to compute a,b. Let T(d,e)=max{t(a,b) :lalj d, 
Ibl!e}. Then T(d,e)=O((in d)(In e)). 

Theorem 2.2 refers to a classical multSplication 
algorithm, Although recently developed algori- 
thms for multiplication of large integers are 
much faster, see [7], we will assume in this 
paper that the above computing time applies. 

Theorem 2.3 Let t(a,b) be the time required to 
compute q and r given a and b, such that 
a=bq+r,0<Irl~ ~. ,ar>0,abq>0. Let T(d,e)= 
max{t(a,b) : d,lqI~ e}~ Then T(d,e)=0((In d) 
(in e)). 

i Knuth [7] have developed analysis techniques Definition: Let A(x) =~--m aix be a uni- 
which can be applied to algorithms which per- ~i= 0 
form complex, symbolic mathematical operations, variate polynomial with integer coefficients. 
Section 2 will lay the theoretical framework ~m 
for the development of partial fraction de- Then, deg(A) = m and norm (A) = fail . 
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Norm(A) is a norm for the ring of poly- 
nomials over the integers and hence satisfies 
the following rules: norm(A+B)~norm(A)+norm(B) 
norm(A.B)inorm(A)'norm(B). 

Definition: U(d,m)={A(x): norm(A)~d,deg(A) ! 
m#. 

Theorem 2.4. The time to compute A(x)~B(x) 
for A,B6 U(d,m) is O(m(in d)). 

Theorem 2.5. The time to compute A(x)'B(x) 
for A6 U(d,m), B 6 U(e,n) is O(m n(In d)(in 
e)). 

Theorem 2.6. The time to compute A(x)/B(x) 
for B 6 U(d,m),A/B 6 U(e,n) is O(m n(in d) 
(in e)). 

The foundation for the analysis of more com- 

plex algorithms dealing with polynomial mani- 

Ai(x)/B~(x), deg(Ai)<deg(B~) or if deg(Bi)=0, 

A.=O. Then, this sum is called a square-free 
l 

partial fraction decomposition of A(x)/B(x). 

Definition: Let A(x)/B(x) be a regular rational 

funetio k i 
and B(x~=bH..B. (x) the square-free factori- 
zation of B~. I Suppose also that there exist 
polynomials Ai,j(x)(l!j!i,l<i<k) with~coeffi- 

in Q(1) such that A(x)/B(x) =~k cients 
Z_ i=l 

j=lAi,j(x)/B~(x),de~i,j)<deg(Bi) o r  i f  

deg (Bi)=0 ' Ai,j=O for l<j<i. Then this sum 

is called a complete, square-free partial 
fraction decomposition of A(x)/B(x). 

pulation has now been presented. Before begin- 
ning a discussion of the algorithms for partial For an example of these decompositions see 
fraction decomposition and rational function 
integration, it is necessary to define cert- 
ain notions. 

A rational function R(x) will be regarded as 
a numerator - denominator pair of polynomials 
A(x)/B(x) where A(x) and B(x) have integer 
coefficients, are relatively prime and the 
leading coefficient of B(x) is positive. 

Definition: A rational function R(x)=A(x)/ 
B(x) is called resular if deg(A)<deg(B). 

We note that every rational function can be 
uniquely expressed as a polynomial plus a 
regular rational function. Since symbolic 
integration of polynomials is a comparatively 
easy process, we will concern ourselves pri- 
marily with regular rational functions. 

Let I denote the integral domain of the in- 
tegers and Q(1) its quotient field, the 
rational numbers. 

Definition: Let B(x) be a polynomial of 
positive degree. Then B(x) is said to be 
square-free if it cannot be written in the 
form B(x)=C(x)D2(x) where D(x) is a poly- 
nomial of positive degree. 

It follows that a polynomial which is square- 
free has only roots of multiplicity one. 

k i 
Definition: Let BE l[x] and suppose B=bIli=iBi 

where each B.6 l[x], B. is primitive and has 
i a positive leading coefficient for l<i<k. 

Also, be l,deg(B k)>0 and the B. are pairwise 
k I 

relatively prime. Then b~i=iB i is called 

the square-free factorization of B. 

We now define two forms of partial fraction 
decomposition which will be investigated in 
later sections. Both of these decompositions 
are necessary in connection with the classi- 
cal method of rational function inte'gration. 

Definition: Let A(x)/B(~) be a regular ration- 
al f~nction and B(x)=bH. ~ ~B.i(x) the square- 
free faetorizatlon of B(x~. Suppose also that 
there exist polynomials A i with coefficients 

in Q(1),l<i<k such that A(x)/B(x) = L k 
i=l 

Figure i. 

Let 

A(x)/B(x)=i/(x2+l)(x-l)2(x-2)3(x-3) 3. The 

Square-Free Partial Fraction Decompostion of 

A(x) -(x+~) 7x-5 
B~-I000(xZ+i) + 32(x_i)2 

+(871x 5 + l1944x4-65567x3+180458x2-24979x + 

139864.)/4000 (x-2)3(x-3) 3 

The Complete Square-Free Partial Fraction 

Decomposition of 

A(x) -(x+l) + 7 + i 

B(x) = 1000(x2+l) 32(x-i) 16(x-l) 2 

-871x+3234 -1000x+ 3540 

+ 4000(x-2)(x-3) + 4000(x-2)2( x-3)2 

-700x+220 + 
4000(x-2)3(x-3) 3 

Figure 1 

In [6] the uniqueness of both of these decompo- 
sitions is established. The method of Hermite 

depends first upon obtaining these two decom- 
positions, successively. In Section 4 it will 
be shown how the integral is obtained from the 
terms of the complete square-free partial frac- 
tion decomposition. 

Let us now look at some theoretical results 
about the form of the integral of a rational 
function. The proofs of these theorems have 
appeared several times and so I have omitted 
some of them here for the purposes of brevity. 

Theorem 2.7. ([4], pp. 12) Let R(x)=A(x)/B(x) 
be a regular rational function. 

/ I m Then R ( x ) d x = S ( x ) +  i = l d i  l o g ( x - b i )  whe re  

S (x )  i s  a r e g u l a r  r a t i o n a l  f u n c t i o n ,  b i a r e  i n  

t h e  e o m l p e x  number  f i e l d ,  ~ , and t h e  b i a r e  t h e  
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distinct roots of B(x),di6 ~ for l<i<m. 

Proof: We can write B(x) as B(x)=b0(x-bl)nl, 
n 

.. (X_bm) m where big ~,b i are the distinct 

roots of B(x) and the n. are their multiplici- 
ties. Then, expanding ~(x) into a complete 
partial fraction decomposition where the 
denominators are the linear factors of B(x) 
we get constants ~ii,~12,... 6 ~ such that 

R(x) = i,i/(x-bi)+~i,2/(x-bi )2+...+ 
i=l 

~. /(x-bi) . It then follows that/R(x) 
l,n i 

dx = 

Im Ic~i i [°g (x-bi)-c~i, 2/ (x-bi)-" " "-C~i / 
i=l ' 'ni 

n'-i I (ni_l)(x_bi) i . Hence, let 

=Im i S(x) i = l  -c~i'  2 / ( x - b i )  . . . . .  a i  'ni/ ( n i - 1  

ni-i } 
(x-bi) and di=~i, 1 for l<i<m. 

Theorem 2.8. ([4],pp.14) let bl,...,b m be 

distinct elements of ~ and C~l,...,C~m6 ~. 

X m If c~.log(x-bi) is a rational functionp 
i=l z 

then ct.=0 for l<i<m. 
l 

Theorem 2.9. Given a regular rational function 
A(x)/B(x) where B(x) is square-free, then 

f A(x)/B(x)dx= i=l c~il°g(x-bi) where the b i 

are the distinct roots of B(x),C~i,bi~ ~. 

Proof Since B(x) is square-free, let 

bl,... ,b m be the distinct roots of B(x). We 

can write B(x) as B(x)=b0(x-bl)... (X-bm). Then 

there exists constants c~i, I for l<i<m such that 

A(x)/B(x)= i,i/(x-b i) . It follows 
i=l 

f I m that A(x)/B(x)dx = c~i,llOg(x-bi ) . By 
i=l 

the previous theorem, no part of this sum can 
be equal to a rational function. We can now 
make the following definitions. 

Definition: Let R(x) be a rational function 
such that 

fR +C m 
(x)dx=S(x) ¢~ilog(x-bi), where b i 

J L_~ i=l 

are the distinct roots of the demoninator of 
R(x). Then S(x) is called the rational part 

V m and ~ i l o g ( x - b i  ) i s  c a l l e d  the  t r a n s c e n -  
L_..~i=l 

f% 
dental part of jR(x)dx. 

Theorem 2,10. It R(x)is a rational function, 
then the rational and transcendental parts of 

R(x)dx are unique. 

~i l°g (x-bi) Proof Suppose R(x)dx=S(x) ~_~ i=l 

I~ l~il°g(x-ci ) =T(x)+ where S(x), 
= 

T(x) are rational functions. Then 

In S(x)-T(x) = ~ilog(x-ci ) ailog(x-bi). 
i=l i=l 

Then by Theorem 2.8, we have the right-hand side 
of this equation equal to a rational function 
only if that rational function is equal to 
zero. Therefore, S(x)=T(x) and 

! n I m 
i=l ~il°g(x-ci)= i=l~il°g(x-bi)" 

We now have defined two types of partial frac- 
tion decomposition which will be needed to 
implement Hermite's method. Also, the rational 
and transcendental parts of the integral of a 
rational function have been defined and shown 
to be unique. 

Then, what does Hermite's method really do. It 
gives us a constructive means of obtaining 
exactly the rational part of the integral of a 
rational function. Moreover, this method re- 
quires only rational operations and not a priori 
knowledge of the roots of the denominator. The 
method has two main phases. The first consists 
of obtaining the complete square-free partial 
fraction decomposition of the integrand. The 
second phase applies a reduction scheme to 
these partial sums, producing two rational 
functions. One of these is the rational part 
of the integral while the integral of the other 
is the transcendental part of the original inte- 
gral. 

Section 3 will develop and analyze algorithms 
for finding partial fraction decompositions. 
Section 4 will combine the partial fraction 
decomposition algorithms of Section 3 with an 
algorithm that implements the second phase of 
Hermite's method, This resulting procedure 
will be compared to a new method for obtaining 
the same results as Hermite's method. Both 
theoretical and empirical computing time analyses 
of the two methods will be presented. 

PARTIAL FRACTION DECOMPOSITION 

There are two distinct types of decompositions 
we wish to obtain, square-free and complete 
square-free partial fraction decomposition. 
The latter should be recognized as a refinement 
of the former. The first algorithm which will 
be presented is one which computes the square- 
free factorization of a given polynomial. These 
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factors will constitute the denominators for 
both of these partial fraction decompositions. 
This algorithm will be followed by a theorem 
which bounds its computing time. Then, to 
obtain the numerators i~ the square-free 
partial fraction decomposition, I will first 
describe and analyze the approach suggested 
by Hermite [5] and implemented by several 
others, e.g. [3]. A new method for square-free 
partial fraction decomposition will then be 
derived and shown to be computationally more 
efficient than the previously used method. An 
algorithm based on this new method will be 
formally presented and analyzed. 

In ~deriving a method for producing the complete 
square-free partial fraction decomposition, 
two sub-algorithms are needed. The first 
actually reduces the partial sums of the 
square-free decomposition while the second 
controls its application. Several theorems 
will be presented which establish the exist- 
ence of a certain type of polynomial with 
integer coefficients which occurs in the re- 
duction to the complete square-free decomposi- 
tion. The existence of these polynomials 
allows for a more efficient algorithm. 

Let us now begin with the algorithm which 
computes the square-free factorization of a 
primitive polynomial. A univariate polynomial 
with integer coefficients, A(x) is primitive 
if the greatest common divisor of its coeffic- 
ients is one, [7]. Similarly, the content of 
A(x), abbreviated cont(A), is equal to the 
greatest common divisor of the coefficients 
of A. Given an arbitrary polynomial A(x)~ l[x] 
such that A~U(f,n), then the time to compute 
its content and primitive part (abbreviated 
pp(A)) is O(n(In f)2). For a proof of this 
result see [i]. Throughout the remainder of 
this paper, let idcf(A) stand for the leading 
coefficient of A(x). 

Algorithm PSQFRE (B) 

Input BEI[x],B#O,B primitive,deg(B)>0, 

idcf(B)>0; 

Output A list L=(Bi,...,B k) where Bi61[x] 

for l<i<k and 

B= H k B. i is the square-free 
i 

i=l 

factorization of B; 

I) I+0 ;Q÷0 ;D÷O ;P÷i ;A÷B ; 

2) E÷gcd(A,A') ; If deg(E)#O,do(F+A/E;go to (4)) 

3) F÷A; 

4) If I=0, go to (7); 

5) If deg(D)#deg(F),do(Adjoin D/F to Q; 

go to (7)); 

6) Adjoin P to Q; 

7) If deg(E)#O,do(l+l;A÷E;D÷F;go to (2)); 

8) Adjoin A to Q; 

9) L÷INVERSE(Q) ; 

i0) Return; 

k for J=l Note that if k>l, then D=IIi=iB i ,..., 

k-i at successive executions of step (7) and 

_ k i-j+l 
E-Hi=jB i for j=2,...,k at successive 

executions of step (2) in the algorithm. 
If the polynomial B is initially square-free, 
then the gcd(B,B') in step (2) has degree 
zero and hence Algorithm PSQFRE(B) performs 
only one greatest common divisor calculation 
and then terminates. If BeU(f,n), then the 
minimum computing time for PSQFRE(B) is 

O(n3(in nf)2). In any case, step (2) is 
executed k times, where B is the square-free 
factorization 

k i 
B=Hi=iB i 

Theorem 3.1. Let BEl[x],B#0,n=deg(B) and 

[li=iB i k  i and square-free factorization of B. 

k i 
Let fi=norm(Bi)for l<i<k and f=Ili=ifi . Then 

the computing time for PSQFRE(B) is bounded 

by O(kn3(In nf)2). 

Proof: The times for steps (1),(3),(4),(6), 
(7),(8), and (9) are bounded by O(k). The 
successive values of A at step (2) are 

. 2 B k 2 k-i B k iB~,Bk Each of BiB 2. • . k,B2B3 • • .B k ,... , _ ~ • 

these polynomials belongs to U(f,n) and hence 
their derivatives belong to U(nf,n). The time 
for one execution of step (2) is O(n3(in g)2) 
and hence the total time for step (2) in 

O( n 3 ( l n  n f ) 2 ) = 0 ( k n 3 ( l n  n f ) 2 ) .  
i = l  

In  s t e p  ( 5 ) ,  t h e  s u c c e s s i v e  v a l u e s  o f  D b e l o n g  
to  U ( f , n )  and t h e  v a l u e s  of  D/F b e l o n g  to  
U ( f , n i )  , where  n i = d e g ( B i ) .  H e n c e ,  t h e  t o t a l  

time for step (5) is 

2~-- k- i 
0 "n(in f)2)=O(n(in f) hi< 

i=ini -- , 
i=l 

O(n2(in f)2). 

Now that we have investigated the determination 
of the square-free factorization of B, let us 
examine how we might determine the polynomials 
A. such that 
l 

Ik i is the square-free A/B = Ai/B i 
i=l 

partial fraction decomposition of the regular 
rational function A/B. Assume that the Bi, 

l<i<k have already been calculated. Hermite 
has suggested that we use the following proce- 
dure: 

i) F0÷A; C0+B; 

2) For i=2,...,k do 
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2.1) Ci_ I + Ci_ 2 / Bi-l; 
i-i 

2.2) Find Fi_ I, Ai_ 1 such that 

i-i + Ci - where 
Fi-i Bi-i Ai-i 1 =Fi-2' 

deg(Fi_ I) < deg(Ci_ I) , 

i-I 
deg(Ai_ I) < deg (Bi_l) ; 

3) A k + Fk_l; 

The difficulty is in step (2.2). We know that 
in general Fi_ 1 and Ai_ 1 will have rational 

number coefficients. One method of solution 
would be to equate coefficients. If 

ii-1 n = deg(B _i ) + deg (Ci_ I) this approach would 

produce n linear equations in as many un- 
knowns. It is known that the time.needed ~o D 
solve such a system exactly is 0(n (in nf) ), 
where the elements of the matrix and the right- 
hand side are integers bounded by the postive 
integer f. This computing time applies if we 
use either the exact division method over the 
integers or Gaussian elimination over the 
rationals. Also, the numerators and denomi- 
nators of the elements of the solution vector 
will be bounded by (nf) n. This follows dir- 
ectly by applying Hadamard's theorem, 

1 

{I n det(E) <_ II n e 2 }2 to any matrix 

i=l J=l i,j 

E = (el,j) nxn where [ei,jl <_ f. 

Suppose instead that we consider an alternative 
way of implementing step (2.2), namely by using 
the extended Euclidean algorithm for poly- 
nomials, see [7] pp. 377. A new, fast al- 
gorithm has~been developed which has a computing 
time of 0(nJ(in g)Z) where n bounds the degree 
of the inputs and g bounds their norms. 
Initially, this would seem to be better than 
using the linear systems approach. However, 
if we use the bound for the coefficients of 
Fi_ 1 and Ai_ 1 that was obtained in the analysis 

of the extended Euclidean algorithm, we would 
again arrive at a total computing time which 
is an exponential function of n and k. 

This growth of the coefficient bound leads us 
to consider a non-iterative approach for deter- 
mining the numerators of the square-free par- 
tial fraction decomposition. 

Given the regular rational function A/B, let 

Ai/B be the square-free partial 
i=l 

fraction decomposition of A/B, the coefficients 
of A. being rational numbers. Let n = deg(B), 

1 

n. = deg(B.) and E = B/B. i for i < i < k. 
i 1 l -- -- 

Then, if we consider the equation 

k 

I A.E 
A = I=i i i 

where the coefficients of the A. are undeter- 
mined, we can equate the corresponding coef- 
ficients on the two sides of this equation. 
This will produce an nXn linear system of 
equations whose solution contains the coef- 
ficients of the numerators in the square-free 
decomposition of A/B. Let us examine more 
closely what this system will look like. 

jx j 
ai, 

We can apply these results to solving for ~-'~in.-i 
If Ai(x) => i 

Fi_ 1 and Ai_ 1 in (2.2). However before wedo we L__,j=0 

realize that to obtain all the numerators, 
the A i, we must perform step (2.2) for 

2 < i < k. It must be noted that one of the 
outputs--of step (2.2) is Fi_ I. Then, Fi_ 1 is 

used as input to step (2.2) in the next iter- 
ation. If f. = norm (B.) and 

1 1 

f =ilk i i=l fi' then f is a bound for the co- 

i-I and C for all iterations. efficients of Bi_ 1 i-i 

However, if the numerators and denominators 
of the coefficients of F are bounded.by f, 

O 

then the coefficients of F i (which are elements 

of the solution vector of a linear system) will 
be bounded by (nf) n and the corresponding 
bound for F 2 will be (n(nf)n) n. If we continue 

the analysis we will find that the total com- 
puting time for solving step (2.2) for 
2 < i < k using an algorithm for solution of 
linear--systems is an exponential function of 
n and k. 

Ai(x) Ei(x) =)n-l~-- then 
j=0 

~--~n-in i 
El(X)= ) e i , f___jJ=O 'JxJ 

c. .x j where 
1,3 

y ini-i 

Ci,k = L--"J=k-n+ini ai,jei,k_ j for 

0 < k < n-l, where j < 0 or k-j < 0 implies 

aij ei,k_j = O. The coefficient of x j in 

A i E i is given b c i . If we 
i=l f__,i= I 'J 

consider the matrix which is formed from these 
coefficients, we see tha~ we have k distinct 
groups of columns, the i ~h group consisting 
of the coefficients of E.. Thus we are able 
to derive the following imatrix: 

4 4 5  



LA B~I where 

A = 

(3 .I) 

el, n-n I' 

el, n-nl-l' el, n-n I, . 

e I, n-n I-I'. 

el, I' 

el, O' el, I 

0 el, 0 

0 

0, . . . . . , 0, 

• el, n-nl' 

el, n-nl-l' 

0 

k 

. el, I 

0 , . .  . . . .  e l ,  o , 
J 

V 

n I columns 

ek, n_kn k, 0 . . . . .  O 

ek, n-knk-l'ek, n-knk. 

ek, n_knk_ 1 , 0 

ek, 1 

ek, 0' 

0 

ek, n-kn k 

"ek, n-knk-i 

ek ,  I' 

ek, 0 

4 

ek, 1 

0 0 , ek ' 
0 k 

V "  

kn  k c o l u m n s  

= B 
(3.1) 

If this matrix is called E and if A(x) = 

i n-i "x j we obtain the linear system 
a 3 , 

j=0 
Ey = F where y=(al,nl_l,...,al,O,... , 

ak,knk_ 1 ..... ak, 0) and F=(an_l,an_ 2 ..... a 0) . 

(3.2) 
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Examining E columnwise, we see k distinct 

groups, the i th group consisting of in i ad- 

jacent columns, for i < i < k. 

The i th group consists of columns which 

contain the coefficients of E. with possibly 
i 

leading and trailing zeros• Hence, we see that 

to form the matrix E, we need only compute 

E i = B/B~ for 1 ~ i ~ k. Also, if fi = n°rm(Bi) 

k i then f is a bound for the and f = ~i= 1 fi ' 

elements of E. Morever, the elements of the 

solution vector, which are the coefficients 

of the Ai, have numerators and denominators 

which are bounded by (nf) n provided f is also 

a bound for the coefficients of A. Thus, this 

provides a good bound for all of the coef- 

ficients of the A i. Furthermore, we now have 

a new method for obtaining the square-free 

partial fraction decomposition and the comput- 

ing time will be the time needed to solve a 

single linear system, O ( n 5 ( l n  n f ) 2 )  • 

Suppose instead that we reconsider using the 

extended Euclidean algorithm with the new 

bound we have just derived. Substituting 

(nf) n for g and applying the algorithm k - 1 

times we have that the computing time is 

k 

0 ( I n3(n in nf) 2) = 0(kn5(in nf)2). 

i=2 

This is clearly not superior to 0(nb(ln nf) 2) 

which we obtain by solving a linear system. 

In [2], a more efficient algorithm for the 

exact solution of linear systems has been 

developed which is based on modular arithmetic. 

The computing time for this new algorithm is 

0(n4(in nf) + n3(in nf)2). 

Therefore, I will now present an algorithm 
for square-free partial fraction decomposition 
which is based upon solving the matrix E. A 
subprogram, MUSSLE has been developed which 
takes as input an n by n non-singular matrix, 
E, and an n element vector F, both with integer 
entries. The n+l vector of integers, 
(go,gl,...,gn) is returned such that go = det(E) 

and EG=F where G=(gl/go,...,gn/go). The integers 

gi are bounded by (nf) n for o ~ i ~ n, if f 

bounds the elements of E and F. The computing 

time for MUSSLE is O ( n 4 ( l n  n f )  + n 3 ( l n  n f ) 2 ) .  
For the precise specifications of MUSSLE, see 
[2]. 



Algorithm RSQDEC(A/B) 

Input: A non-zero, regular rational 

function A/B, where deg(B) > 0 

and idcf(B) > 0; 

Output: A list L = (X,Y,Z) where X= 

(A 1 ..... Ak), Y= (B 1 ..... B k) and 

Z = (v I ..... Vk). 

Ai,B i 6 l[x] v E I and A/B = 
' i 

~k Ai/viB ~ is the square-free 

i=l 

partial fraction decomposition of 

A/B. If B i = i, then A i = 0 and 

v i = i. Otherwise, 

deg(A i) < deg(B~), v i > 0 and 

gcd(v i, cont(Ai)) = i; 

i) b ÷ cont(B) ; B ~ pp(B) ; X~ Z ~0; 

2) Y ~ PSQFRE (B) obtaining Y = (B 1 ..... Bk) ; 

k ÷ LENGTH(Y); 

3) If k = i, do (L = ((A), (B), (i)) ; return); 

4) For i = i,..., k-i do (If deg(Bi) ~ 0, 

go to (5)); 

4.1) Adjoin A to X, b to Z; 

4.2) For i = l,...,k-i do (Adjoin 0 to X, 

1 to Z); 

4.3) L = (X,Y,Z) ; return; 

5) Create the matrix E as defined in (3.1); 

Create the vector F as defined in (3.2); 

6) Use MUSSLE(E,F) to solve for the vector G: 

EG = F where E is nxn, 

G = (gl/go ..... gn/go ) and 

= (go,gl ..... gn); 

7) w ÷ b.go, 

8) For i = l,...,k do 

8.1) m + deg(Bi) ; If m = 0, do (Adjoin 

0 to X, 1 to Z; go to (8.6)); 

8.2) n ÷ im; Take the next n elements 

of G and create polynomial A.. 
i 

8.3) h ÷ gcd(w,cont(Ai)) ; 

8.4) v ÷ w/h ; A i ÷ Ai/h ; If v < 0 do 

(v ÷ - v; A i + - Ai) ; 

8.5) Adjoin A. to X, v to Z; 
i 

8.6) Continue; 

9) X + INVERSE(X); Z + INVERSE(Z) ; L ÷ (X,Y,Z) : 

i0) Return; 

Theorem 3.2 Let A/B be a non-zero, regular 
rational function, deg(B) > 0 and 

k B i the square-free factorization of B. b Hi= 1 i 

Let fi = norm (B i), n i = deg(Bi) for 

l <_ i <_ k, and let f = max {norm(A), bll'~1=l fi'}'l 

Then, the computing time for RSQDEC(A/B) is 

0(kn3(in nf) 2 + n4(in nf)). 

Proof: Step (1) takes 0(n(In nf)2) . By 

Theorem 3.1 step (2) takes 0(kn3(in nf)2). 

The time for steps (3) ,(4) ,(9) , and (i0) is 

bounded by 0(n). The time to form the matrix 

and right-hand side in step (5) is 

0(n2(in nf) 2) and the elements of E, F are 

bounded by f. Hence, the time for step (6) 

is O(n4(in nf) + n3(in nf) 2) and the elements 

of G are bounded by (nf) n. Step(7) takes 

0(n(in nf) 2) . Steps (8.1) , (8,2) , and (8.5) 

are bounded by 0(n) and the time for steps 

(8.3) and (8.4) is 

O( i n i n 2 ( l n  n f )  2) = O ( n 3 ( l n  n f ) 2 ) .  

i = l  

Hence, the total time for RSQDEC(A/B) is 

0(kn3(in nf) 2 + n4(in nf)). 

I have now presented an algorithm for obtaining 
the square-free partial fraction decomposition 
of a regular rational function, 

~ k  the com- i 
A/B = Ai/v i Bi, where 

i=l 

puting time is bounded by 0(n4(in nf)2) . 
This algorithm is faster by at least one order 
of magnitude then the algorithms which resulted 
from iteratively applying either the extended 
Euclidean algorithm or the solution of a linear 
system to the determination of the A i. 

Before we can apply Hermite's reduction process, 

the p a r t i a l  f r a c t i o n s  Ai/B ~ f o r  i > 2 must  be 
1 - -  

decomposed further into a sum of partial fractions 

Ai/B~ = ~i=i Ai,3"/B~'i In this'case, either 

Ai. j = 0 or deg(Ai,j) < deg(B i) for i ~ j ~ i. 
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We know that in general, the coefficients of 

Ai, i ~ are rational numbers. The following 

theorems will show that in fact a decompo- 

sition over I exists in the form Ai/B = 

Z (i/b m-n+l) Ai,j/BJ i where b = idcf(B i) 

j=l 

m = deg(Ai), n = deg(B i) and Ai, j E l[x] 

such that either Ai, j = 0 or 

deg(Ai, j) < deg(B i) for i < j < i. 

Theorem 3.3. Let A and B be non-zero poly- 
nomials over an integral domain I, with m = 
deg(A), n = deg(B), m > n > 0. Let Q and R 
be the unique polynomials o--ver I such that 

b m-n+l A = BQ + R, with h = idcf(B) and 
n n 

either R = 0 or deg(R) < n. Then there 

exist qo,...,qm_n E I such that Q(x) = 

m-n i 
li=0 qi (bnX) 

x i Proof; Let B(x) = ~n b i , Q(x) = 
i=O 

I m-n- i im-i (i)xJ 
i=0qi x and Ai(x) = aj , for 

j=0 
0 <_i<m-n+l and let A0,Al,...,Am_n_i+ 1 be 

defined by A 0 = bm-n+lAn 'Ai(x) = 

m-n-i+l 
Ai-i (x) (a(i-l)/bm-i+l n )" B(x) " x , for 

a (i) /b for 1 _< i <_ m - n+l. Then q m_n_i = m-i n 

0 _< i _< m - n. If we can show that A i is of 

the form Ai(x) = Lj=oVm-ibm-n-i+in qj(i)xJ' qj(i) E I 

0 <_ i < m-n, it follows that q m-n-i = 

bm-n-i (i) • q for 0 < i< m-n and hence Q(x) 

is of the desired form. We proceed by 

induction. 

Case (i): A0(x) = bm-n+iA(x)n = 

~m bm-n+l i x so A0(x) is in the 
a i , 

i=O n 

desired form. 

Case (i) : Assume Ai_lhaS the form Ai_l(X) = 

im-i+l bm-n+2-i q~i-1)xJ 
J=O n 

Then Ai(x) = Ai_l(X) - (b~ -n-i+2 

(i-l) Ib II n b x j+m-n-i+l 
qm-i+l" n" j=0 j = 

~m-i+l.m-n+2-i (i-l)xJ im-i+l 
j=O Dn qj - j =m-n-i+l 
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b i n - n - i + !  (i-l)_ j 
n qm-i+l Dj-m+n+i-I x 

m-i _m-n-i+l (i) j 
= ~J=0 On qj x . 

Theorem 3.4 Let A and B be non-zero poly- 
nomials over an integral domain I, with 
m = deg(A), n = deg(B) and m > n > 0. 

n i 
Let B(x) li=0bi x and A(x) = 

~=0ai(bnX) i where ai,bi E I. Then, there 

exist Q and R over I such that A = BQ + R, 
either R = 0 or deg(R) < n, and Q is of the 

m-n i 
form Q(x) = li=oqi(bn x) where qi 6 I. 

vm-i (i)xJ Proof: Suppose Ai(x) = Lj=0a j for 

0 j i J m-n+l, and let Ao,Ai, .... Am+n_ 1 

he defined by A ° = A, Ai(x) = 

"a(i-l)/b ) , B(x)- x m-n-i+l 
Ai-l(X) - ~ m-i+l n 

for 1 j i ~ m-n+l. Then we define Q(x) = 

m-n- - a(i~/bn li=oqi xi where qm-n-i = m- 

for 0 < i < m-n. If we can show that A. 

m-i ~i) J 
is of the form Ai(x) = [J=0 q (bnX) ' 

• i) E I f o < i < m-n Since q , or _ _ . 

m - i > m - (m-n) - I = n - 1 > O, it 

follows that Q is over I and has the form 
vm-n *, i+n-i i vm-n (bnX) i 

Q(x) = Li=oqiDn x =Li=oqi We 

proceed by induction. 

m i 
Case (i) : Ao(x) = A(x) = [i=oai(bnX) 

by hypothesis. 

Case (i) : Assume that Ai_ I is of the form 

Ai l(X) = im-i+l (i-l) j 
- j=0 qj (bnX) 

Then Ai(x) = Ai_l(X) - 

(a(i-l)/bn) ~n h J +m-n-i+l_ 
m-i+l LJ=o-jX - 

~m-i+l q(i-l) 
Ai-l(X) - ~j=m-n-i+l m-i+l 

bm-i 
n b J-m+n+i- ixJ~ 

~m-j (i) j 
J=0 qJ (bnX) "" 

Theorem 3.5. Let A and B be non-zero poly- 
nomials over an integral domain I, with 
m = deg(A), n = deg(B) and m > n > 0. Let 
b = idcf(B) and k = [m/n] + i. Then there 
exist polynomials Ai,...,A k over I such that 

A/B k = (i/hm-n+l) ~ k1=. 1 Ai/Bi and where either 

A i = 0 or deg(A i) < n for i j i ~ k. 



Proof: By Theorem 3.3. there exist poly- 
nomials Qi' A k over I such that 

bm-n+in A=BQi + A k an~ either A k = 0 or 

deg(A k) < n. Also, Q1 is of the form Ql(X) = 

Im-n ° .. 
i=O qi (bx)i Now assume that Qi' "'Qi 

and Ak,Ak_l,...,Ak_i+ 1 have been defined, 

that deg(Qi) = m - in and that Qi has the 

form Qi(x) = ~m-in (i) J=0 qj (bx)J If i + 2 j k, 

then i + i > [m/n]. m > (i+l)n and m-in>n. 

We then define Qi+l' Ak-i' using Theorem 3.4 

by Qi = BQi+l+Ak-i where either Ak_i=0 or 

deg(Ak_ i) < n. If i+l = k, then i = 

[m/n], m < (i+l)n and m-n < n. We then 

define Ak_ i = A 1 = Qi = Qk-l" Then 

b m-n+l A = BQ I + A k and Qi = BQi+i + Ak-i 

for i ~ i j k-2. It follows that A/B k = 

(i/b m-n+l) [~=l(Ai/Bi) and either A i = 0 

or deg(A i) < n. 

Theorems 3.3, 3.4, and 3.5 establish the 

fact that we can decompose A/B k in the 

form A/Bk=(i/b m-n+l) ~=I(Aj/BJ) where k = 

[m/n] + 1 and either Aj - 0 or deg(Aj) < deg(B) 

for i ~ J ~ k. In general, one needs a decom- 

position of the form A/B i = (I/b m-n+l) 

[k (Aj/B j+i-k) so we take Aj -- J=l can = Aj+k_ i 

for i - k + 1 j j ~ i and Aj = 0 for 

i ~ j ~ i - k and obtain the required decom- 

position. 

We will apply this procedure to the partial 
fractions in the square-free partial fraction 

k i 
decomposltion A/B = ~i=l (Ak/viBi). We will 

then obtain the complete square-free partial 

fraction decomposition in the form A/B = 

 Ll(I/wi) where either Ai,j° 0 

or deg(Ai~ j) < deg(B i) for 1 j J J i, 

l<i<k. 

[m/n] + 1 and A/B k = (l/b)" 

~=iAj/B j. b = idcf(B) m-n+l Also, 

and either Aj = 0 or deg(Aj) < deg(B) 

for i < j _< k; 

I) m÷deg(A) ; n~--deg(B); b+ Idcf(B)m-n+l; 

X÷0 ; 

2) Q÷ b,A; 

3) Obtain Q,A E I[x] : Q = BQ + 

and either A = 0 or deg(A) < n; 

4) Adjoin A to X; 

5) If deg(Q) ! n, do (Q÷ Q; go to (3)); 

6) Adjoin Q to X; x÷ INVERSE(X); 

7) Return; 

Theorem 3.6. Let A,B E l[x], m = deg(A), 
d = norm(A), n = deg(B) , e= norm(B) , 
m > n > 0 and i = [m/n] + I. Then, the 
computing time for PCDEC(A,B) is 

O(i2n2(ln e) {in d + i2n(In e)}). 

Proof: The time for step (i) is 

0(m2(in e)2). The time for step (2) is 

o(m2(ln d)(in e)) and norm (Q) < de m-n+l. 

Steps (3) - (5) are executed i-I times. 

At the jth execution, Q E U(d(l + e) j(m-n+l) , 

m - (J-l)n). The time to obtain Q,A is 

o(n(m-n+l)(In e)(In d + (m-n+l)(in e))), see 

[2]. Letting m - (J-l)n replace m and 

d(l+e)J(m-n+l)replace d we have that the 

total time for step (3) is 

ili 0( n(m-jn+l)(in e) {In d(l+e)J(m-n+l)+ 

.= 

(m-jn+l)(in e)}). Now, m = 0(in) and 

m-jn+l _< J(m-n+l), so the time for step (3) 

•i 
- 1  

is 0(i n2(in e) {In d + j(m-n+l)(in e)}) 

j=l 

= 0(i n2(In e){i(in d) + i3n (in e)})." 

Steps (4), (5) and (6) are bounded by O(i). 

An algorithm is now given which performs this 
decomposition. 

Algorithm PCDEC(A,B) 

Input: A,B E l[x], A,B # 0, m = deg(A), 

n = deg (B), m ~ n > O; 

Output: The list (X,b) where X = (Ak,...,Ai) 

and b is an integer such that k = 
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If we view PCDEC as a subpart of the complete 
algorithm for partial fraction decomposition 
then empirical tests have shown that the time 
spent on PCDEC is a small fraction of the time 
for the entire algorithm. We can combine 
RSQDEC and PCDEC to produce an algorithm 
which obtains the complete, square-free partial 
fraction decomposition in the form A/B = 



~ k ~i . /BJ  i where 
(i/w i ) Ai, 3 , 

i=l j=s i 

if B i = i, S i = i, Ai, i = 0 and w i = i. 

Otherwise 1 < s i _< i, w i > 0 and either 

Ai,j=O or deg(Ai, j) < deg(B i) for 

s. < J < i. The two main steps would be: 

i) applying RSQDEC(A/B) to produce A/B = 
'k i 

Y A~/v.B. with a computing time of 
L_~i=l i 1 1 

0(n4(In nf)2); 2) applying PCDEC iteratively 
i 

to Ai/B i thus giving a computing time of 

0( i n i (in f) {n(in nf) + 

=2 k 

2 Ii (i2n2i+i3ni2)) i ni(in f)}) < O(n(in nf) 2 

=2 

= 0(n(in nf)2(n 2 + kn2)) = 0(kn3(in nf)2). 

Therefore, the time for square-free 
decomposition bounds the computing time 
for complete square-free decomposition. 
For a precise statement of this final algo- 
rithm see [2]. 

Before leaving this section it is necessary 
to derive good bounds for the sizes of the 
coefficients in the complete square-free 
partial fraction decomposition. This is so 
because these coefficients are manipulated 
by Hermite to obtain exactly the rational 
part of the integral. Therefore let A/B = 

I Ai,j/B ~ where Ai, j E Q[x], 

i=l j=l 

Ai, j = 0 or deg(Ai, j) < deg(B i) for 

i _< J _< i be the complete square-free 
partial fraction decomposition over the 
rationals of A/B. We wish to have bounds 
for the numerators and denominators of the 
coefficients of the Ai, j. For a given i, 

considers the rational function 
i-i i 

( A i ,  i + A i , i _ l B i  + . . .  + A i , i B  i .)./B i "  

= = norm(B i) and if we If n i deg(Bi) ' fi 

consider the coefficients of Ai, ~ ~ as 

undetermined, we then have in i indeter- 

minates. Hence, if we consider \ 

0 A/B = Ai,jB'-J . B/B /B 

i=l j=l 

we can construct a linear system of order 
n = deg(B) by equating the corresponding 
coefficients in yhe numerator. If f = max 

k i 
; fi }, then the elements of this {n6~m(A) Hi= I 

linear system will be bounded by f. The 
elements of the solution vector are simply 
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the coefficients of the Ai, j and so the 

numerators and denominators of these coef- 

ficients are bounded by (nf) n. 

In order to empirically compare the efficiency 
of these algorithms several classes of rational 
functions were used as test data. Consider the 
following class of rational functions: poly- 
nomials Bi(x) with random integer coefficients 

bi, j were generated such that deg(B i) = 1 and 

Ibi,jl ! 2 9 for j = 1,2, i ! i ! n; then 

n i (x) is a Bn(X) = Hi=IBi(x) is formed. A n 

random polynomial such that deg(An)= deg(Bn)- 1 

and the coefficients of An(X), an, j , satisfy 

]an,j[ ~ 29; then the rational functions 

Rn(X) = An(X)/Bn(X) are formed for n = 1,2,... 

In Figure 2 below the rational functions R (x) 
n 

were used as input to two algorithms RDEC and 
QRDEC. RDEC obtains the complete square-free 
partial fraction decomposition of A/B in the 

form I (i/wi) Ai,j/B ~ and it uses 

i=1 j=l 

the algorithms RSQDEC and PCDEC. The second 
algorithm, QRDEC obtains a decomposition in 

k i 

the f°rm A/B =I I Ai'j/B~' where the 

i=l j=l 

coefficients of Ai, j are rational numbers. 

The method QRDEC uses is the one suggested 
by Hermite with all computations over the 
rationals. 

Func. RDEC. QRDEC 

R 1 .009 .406 

R 2 .218 .361 

R 3 1.193 3.488 

R 4 3.761 18.782 

R 5 17.929 100.406 

FIGURE 2. (seconds) 

4. Rational Function Integration 

Given the complete square-free partial fraction 

decompositon of 

A/B = (i/w i) Aij/B ,we are now 

i=1 j=l 

ready to apply Hermite's reduction process 

T the partial fractions Ai,j/B l ~ for to 

"~-Jj=l 



2 < i < k. Since B. is square-free, we know 

that deg(gcd(Bi,Bi)) = 0 and hence that there 

exist polynomials Ci, D i E Q [x] such that 
I 

CiB i + DiB i = Ai, i. For proofs of these 

assertions see [7], pp. 377. If deg(Bi) = 0, 

then C i = 0, B i = Ai,i/Bl.. Otherwise, 
") 

deg(C i) < deg(B~) and deg(Di) < deg(B i . 

C i and D i may be obtained by the extended 

Euclidean algorithm for polynomials. Then 

by substitution 

am+ 

7  DiB I  dx. 

Using integration by parts on the second 
term of the right-hand side of this for- 
mula we get that 

I{Ai,i/Bii}dx = 7{Ci/B~-l}dx - Di/(i_l)Bii-i 

+ I D J(i l>dx = + 

+ 

Hence we see that by using this procedure 
we have reduced by one the power of B 

i 
which is within the integral sign. If 
we continue in this manner we would next 
find polynomials Ci_l, Di_ 1 such that 

Ci_iBi + Di_iB i = (Di '  + ( i - 1 ) C  i + 

(i-l)Ai,i_ I) = Ai,i_ I. We would then 

* 7 * i-l}dx substitute for Ai,i_ 1 in {Ai,i_i/B i 

and perform integration by parts again. 

Eventually we arrive at 

{ Ai,j/B~}dx = - Dj/(i-l)... 

J=l =2 

(j-i)B~ -I + 7{Ti/Bi}dx where T i is a 

polynomial either zero or d e g ( T  i )  < d e g ( B i ) .  

f By Theo rem 2 . 9  we know t h a t  T i / B  i i s  

s t r i c l y  t r a n s c e n d e n t a l  and  t h u s  we h a v e  

exactly found the rational part of 

{ A i , j / B  ~ ~ } dx .  I f  w e  a p p l y  
j = l  

this process for 2 < i < k, then we will 
obtain two rational--funCtions S,T such that 

f{A/B}dx = S(x) + ~T(x) and S(x) is the 
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rational part of this integral. Note that 
k-i 

S,T are of the form S = U/B2B ...B k and 

T = V/BiB 2. ..B k. 

I will now present two algorithms which 
represent an implementation of Hermite's 
method. The first algorithm applies the 
reduction process Just described to a sum 
of rational functions of the form 

• i /B~. The second algorithm takes Ai,j 

J=l 

as input a regular rational function and 
determines its rational part exactly. It 
does this by first performing partial fraction 
decomposition and then applying the previous 
algorithm iteratively. The computing time 
analysis for this last algorithm and hence 
for this implementation of Hermite's method 
is presented. Afterwards, a new method for 
determining the rational part of the integral 
of a rational function will be derived and 
analyzed. 

Algorithm HERM(A,B,il 

Input: A non-null list of polynomials 

= (A 1 ..... Ak), B E I[x] and an 

integer i > 2 such that 1 < k < i, 

deg(B) > 0, B is square-free and 

either Aj = 0 or deg(Aj) < deg(B) 

for 1 J J j k; 

Output: (R,T) where R,T are regular 

rational functions such that 

k 

7{ ~ Aj/Bi+l-J}dx = R 
J=l 

+ J T dx and R is the rational 

part of the integral; 

i) R~0; h~l; S~Ai; 

2) Z~-PEGCD(B ,B ') obtaining C,D E l[x], 

r E I such that CB + DB' = ~. 

(Polynomial Extended Euclidean Algorithm); 

3) For J = i ..... 2 do 

3.1) Z ~EGCD(S,B,B',C,D,r) obtaining 

C,D 6 I[x], r E I such that 

CB + DB' = rS; 

3.2) Z~---INTPTS(C,D,r.h,j) obtaining 

G,H 6 I[x], g,h E I such that 



3.3)  

3.4) 

~ ' , {S /h  = + BJ}dx G/g B j-I 

{H/h B j-l} dx; 

R~R + G/gBJ-i; 

If A is empty or A i = 0 do 

(S~H; go to (3.6);) 

3.5) 

3.6)  

S~H + h'A.; 
i 

If A is empty and S = O, 

go to (4); 

4) T+S/h'B; 

5) Return; 

The exact specifications of algorithms PEGCD, 
EGCD and INTPTS are not given here because of 
their length. The operations they perform can 
be easily understood from the algorithm 
description of HERM. A computing time 
analysis of HERM produced the result that 
if A.i E U((nc) n , n i) B E U<(c,n i) the com- 

puting time for HERM((A i ..... Ak),B,i) is 

O(in3(in ne) 2 + n 7 - n2(in nc)2). This result 

will be used in the next algorithm, RHERM, 
which represents an implementation of Hermite's 
method. 

Algorithm RHERM(A/B) 

Input: A non-zero regular rational 

function A/B, with deg(B) > O, 

Output: 

idcf(B) > 0 and gcd(A,B) = i; 

(R,S) where R is a regular 

rational function, S is a list of 

regular rational functions, S = 

(S I ..... Sk) such that 

AIB}dx = R 

i=l 

i)R~- S~- 0 ; 

and R is the rational part of 

{A/B} dx; 

2)Z~ RDEC(A/B) obtaining Z = (Li, L2, L3), 

Li = ((Al,l), (A2,2, A2,m2 ) ..... 

(Ak, k ..... Ak,mk)), L2 = (B I ..... B k) 

L3 = (Wl,...,w k) such that A/B 
k 

= y  (1/w i) Ai,j/B ; 
i=l j=m. 

1 

3)If k = I, do (St--A/B; return); 

Otherwise, adjoin Ai,i/WlBi to S; 
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4) For i = 2,...,k do 

4.1) If B i ffi l, do (Qi÷0; go to (4.4)); 

4.2) Z ~HERM(Ai,Bi,i) where A i = 

(A i i,...,Ai ) obtaining Pi,Qi 
, ,m i 

such that 

=m i 

Qidx; 

4.3) Pi ÷Pi/wi ; Qi ÷ Qi/wi ; 

4.4) Adjoin Qi to S; 

5) For i = 2,...,k do (R÷ R + P.); 
i 

6) S÷ INVERSE(S); Return; 

Theorem 4.1. Let A/B be a non-zero regular 

function and 

(i/wi) Ai, /B 7 the complete 
i=l =i J 

square-free partial fraction decomposition 

of A/B. Let n = deg(B), fi = n°rm(Bi)' 

k fi i f = Hi= 1 and D/E the rational part of 

f{A/B}dx. Let c = max{norm(A), norm(D),f}. 

Then, the computing time for RHERM(A/B) is 

O(k3n5 (in nc)2) . 

Proof: Step (i) takes 0(i) and by Theorems 

3.2 and 3.6, step (2) takes O(n4(In nc)2). 

Also, Ai, j e U((ncln,ni ) , Iwil <_ (nc) n 

Step (3) takes O(n2(in nc)2). Steps (4.1), 

(4.4) are bounded by O(k). Step (4.2) takes 

Ik 3 2 2 
O( {i n3(in nc) 2 + nin (in nc) }) = 

i=2 

0 ( n 5 ( l n  n c ) 2 ) .  Also ,  a t  the i th  i t e r a t i o n ,  

the numerators and denominators of 

Pi,Qi E U((nc)(i+l)n+2,ini ) . Therefore, 

step (4.3) takes 

O( i n. i n2(in nc) 2) = 
1 

i=2 

0(k n 3 ( l n  nc)2)  . The t ime f o r  s t ep  (5) 

is bounded by the time to reduce the rational 

function R to lowest terms which is 

i 
k 2( 2) 

O( (i n. i n In nc) = 
i 

.= 1 2 

~ k  5 3 O(n2( ln  nc) 2 i n i )  = 0 ( k 3 n 5 ( l n  n c ) 2 ) .  

i=2 



Hermite's method has been intensively studied, 
algorithms specified and computing time 
analyses done. In searching for better bounds 
for the coefficients of the outputs of this 
method an entirely new method was discovered. 
Moreover, the algorithm which is derived 
from this method will be at least one order 
of magnitude faster than this efficient 
implementation of Hermite's method• This 
method is now presented• 

Let A/B be a non-zero regular rational 
function, deg(B) > 0 and let A/B = 

~k ~i Ai, /B~ constitute the complete 
i=l j=l j 

square-free partial fraction decomposition 
of A/B over the rationals• Then, by Hermite's 
method we are able to obtain polynomials 
C,D such that 

2 k-i 
A/B}dx = C/(B2B 3. ..B k ) + 

fD/(B I. . .B k) }dx, (4.1) 

k-i 
where C/B2...B k is the rational part of 

the integral. Suppose C and D are undeter- 
k-i 

mined and note that B 2 . . . B  k and B 1 . . . B  k 

are easily calculated from B, see Section 3. 
Then, differentiating both sides of (4.1) 
we get 

C,(B 2 . k-I k-i 
A = "'Bk ) - C(B2"''Bk ) + D 
B 

2"" "B~--'L i)2 Bl'''bk (B 

k-i 
= {C'(B l"'-Bk) (B 2. ..B k ) - 

k-i k-i 2 
C(B I. • .Bk)(B 2 ..B k ) ' + D(B 2 . . . .  B k ) } 

_k-l. 2 
/(Bi" " "Bk) (B2" " "Bk ) (4.2) 

Induction : 
2 k 

Let k > 2, B = BiB2•..B k and 

2 k-i 
suppose that (BiB2...Bk_i)' 

2 k-2 
= (B2B3...Bk_i) 

k • 
(~i=l I Bi'''Bi_iB~Bi+i''.Bk_i). 

2 k-l,k 
Then B' = ( B 1 B 2 . . . B k _ i )  B k 

+ (BiB~. k-I k-I • .Bk_l)kB k Bkl 

2 k-2 k-l- 
= (B2B3. • .Bk_iB k ) 

(~k-i i B I i=l "''Bi-iBiBi+l 

•..Bk_iB k) 

+ (B2B ~ k-2 k-I 
• ''Bk_ I B k ) 

(k BIB2...Bk_iB~) 

= (B2B23" " "Bk-l)k 

(Iki=l i Bi...Bi_iB~Bi+ I. ..Bk) • 

It follows immediately that, for k > 2, 

2 k-i (B3B~. Bk (B2B 3 . . . .  .B k ) , = k-2) 

k ( .. , . 
(~i=2 i-l)B2" Bi-IBiBi+l" " "Bk) Then, 

applying Theorem 4.2. to equation (4.2) we 

get A/B = {C'(B I. .Bk)(B 2. B k-l) - 
• " " k 

CBi(B2B2 3 Bk-l) (~ki=2 (i-l) B 2 "'" k "'" 

Bi_iB~Bi+ I.-'B k) + 

k-i 2 
D(B 2. • .Bkk-l)2}/(Bl...B k) (B 2. • .B k ) 

={6'(Bi.. •B k) c(~ki=2(i-l)Bl • • "Bi_IB~Bi+l.. "B k) 

k-i 
+ D(B 2. ..B k } (4.3) 

k-I 
(Bi...B k) (B2...B k ) 

We now prove a theorem about the form 
2 Bk-l) , 

of (B2B3... k 

Theorem 4.2 Let B k i = ]li=iBi, k > 2. Then 
k i-I 

B ' = (Hi=2B i ) 

(I k i B 1 i=l "" "Bi-iBi Bi+ I" "'Bk)" 

Basis: k = 2 and B = BiB2 2. 

, 2 
Then B' = BiB 2 + 2BIB2B 2 = 

B2(BiB 2 + 2BiB~). 

k-l) 
But B = (Bi...Bk)(B2.•.B k and so we can 

equate coefficients of like powers in the 
numerators of (4.3)• This will produce an 
n x n linear system where n = deg (B) and 
so we can solve for C and D. In Sectfon 3 
it was stated that the computing time for 
solving such a system is 

O(n4(in nf) + n3(lnnf) 2) where n is the 
order of the system and f is a bound 
for the elements of the matrix and the right- 
hand side. Therefore, this algorithm should 
be at least one order of magnitude faster 
than Hermlte's method• Let us now take a 
closer look at the linear system which is 
formed under this new procedure. 
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Given the non-zero regular rational function 

ki i the A/B, let n ~- deg(B) and B = l[ =iBi 

square-free factorization of B. Let V(x) = 
~m i = k i-i 
i=o vix i Ilk= 2 B i , U(x) = 

[n-m uix Ill= 1 Bi, and W(x) = 
i=0 

n-m-i wixi k {(i-l)B ...B .B'B 
i=O = - Zi=2 I i-± i i+l 

...Bk}, We will determine the polynomials 

C and D by equating coefficients in the 

expression 

A= c:u÷ cw+ Dv. 

Since 7{A/B}dx = C/V +J{D/U}dx, C/V and 

D/U are regular rational functions and we 

m-i i 
can write C(x) = -~i=O c=xx , D(x) = 

[n-m-I i C' 
i=0 dix , and (x) = 

m-2 i 
[i=O (i+l) ci+ix . 

in-2 i Then C'U = i=O eix and 

= I m-z ( j + l )  
ei J=O Cj+lUi-j' 

n-2 i 
CW = Zi=0 fi x and 

m-I 
fi = Zj=0cjwi-j' and 

rn-i i 
DV = Li=ogi x and 

m 
gi = Zj=0di-jvj " 

Therefore if A(x) vn-i i , = Li=0ai x , then 

m 
a i = Zj=o{(J+l) Cj+lUi_ j + cjwi_ j 

+ di_jv j } . 

In particular, we have 

an_ 1 = dn_m_iV m, 

an_ 2 = Cm_lWn_m_ 1 + (m-1) Cm_lUn_m 

+ dn_m_iVm_ 1 + dn_m_2V m, 

a 
n-3 = (m-l) Cm_lUn_m_ I + 

(m-2)Cm_2Un_ m + Cm_lWn_m_ 2 

+ Cm_2Wn_m_ I + dn_m_3V m + 

dn_m_2Vm_l + dn_m_iVm_ 2, 

. . . ° . , . . . . . . . . . o . . . . . . ° , . . . .  

a 2 = 3c3u 0 + 2c2u I + ClU 0 + c2w 0 + 

ClW I + c0w 2 + d2v 0 + dlV I + d0v 2, 

a I = 2c2u 0 + ClU 1 + ClW 0 + CoW i + 

dlV 0 + dov I , 

a 0 = ClU 0 + CoW 0 + dov O. 

Hence if X = (c ... e 0 .. ,do) m-l' ' ' dn-m-l' " 
and F = (an_l,...ao) , then X is the unique 

vector satisfying EX = F, where E is the 

following matrix: let e = n-m-i and 
i 

8 i = m-i, then 

and 

---A = 

0 
j ° . . . . . . . .  • 

Wal+BlUa 0 " 0 

w +u 
el C~o 

Wc~2+~ lUcK 1 • 

% 
% 

w +BlU 
n-m C~n-m-i 

~W +U W 

W 

?2 

~lUc~ 
n-m. • . ~o+U I Wl 

0 

0 . . . . . . . . . .  , " u 0 w 0 

m columns 
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B = 

Vjn~ 

Vm-l' Vm' 

vm - Z  Vm -1' " 

O, ...... O, O, 

@ 

@ 

@ 

Q 

O. O, 

v , O, 
m 

Vm_ l v m 

v I , v 2 , 

v 0 , v I , 

0 V o ,  

o 

• V 2 , 

G, " ' v  I. 

O, O, v O, 

O, 0 ...... 0 

n-~columns 

VIn -1 

v 2 

v 1 

Vo) 

5) Form the matrix E previously defined; 

Form the vector F previously defined; 

6) G<-MUSSLE(E,F) obtaining G = (go,gl,...,gn) 

where n = deg(B), go = det(E) and 

EG = F where G = (gl/go .... ,gn/go ) 

7) The first i elements of G are the 

coefficients of the numerator of R 

8) The next j elements of G are the 

coefficients of the numerator of S 

R÷R/b,V; S+S/b.U; 

Return; 

Theorem 4.3 Let A/B be a non-zero regular 

rational function, n = deg(B) > 0, 
k i 

B = ~i=iBi the square-free factorization of 

B. Let fi = n°rm(Bi) and f = max {norm(A), 
k i 

bHi=ifi}. Then, the computing time for 

RINTG(A/B) is 0 ( n 5 ( l n  n f )2)  o 

Proof: Step (i) takes 0(n(in f)2). By 

Theorem 3 step (2) takes 0(kn3( ln  n f )2)  . 

Steps (3),(4) and (5) are all bounded by 

0 ( n 2 ( l n  f )2)  . The time for  MUSSLE is 
0(n4(in nf) + n3(in nf)2). Now the 

numerators of R and S are polynomials in 

U((nf)n,n). Therefore, in step (9) when 

we reduce the rational functions to lowest 

terms, the computing time is bounded by the 

gcd operation. This takes 0(n3(n(ln nf)) 2) 

= 0(n5(ln nf)2) . 

9) 

i0) 

Algorithm RINTG(A/B) 

Input: A non-zero regular rational 
function A/B, deg(B) > 0 and 
gcd(A,B) = i; 

Output: (R,S) where R,S are either zero 
or regular rational functions, 
R is the rational part of 

~{A/B}dx and ~ dx; fA/B}dx = R + 

i) b ÷cont(B) ; B÷ pp(B) ; U ÷ i; 

2) Z ÷ PSQFRE(B); returning Z = (Bi, .... Bk) 

k i is the square-free where B = ~i=l Bi 

factorization of B; 

3) If k=l, do (R+O; S+A/B; return); 

4) For i = l,...,k do (U+U'Bi) ; 

VeT/U; i÷deg(V)-l; j÷deg(U)-l; 

The theoretical computing time for Hermite's 

method was shownkto be 0 (k3n5( ln  n c ) 2 ) .  

Remember, n =F in i where n i = deg(Bi) 

L--Ji=l 

and so in general all we can say about k 

is that is is bounded above by n. For the 

rational functions used in the table below, 
1 
2 

k ~ n . In any case, the theoretical com- 

puting time for the new method, 0(n5(in nf)2), 

is clearly superior. 

The empirical studies which were done agree 

with these theoretical bounds. Below, I 

present the results from one set of rational 

functions which were input to both algorithms. 

R i is a rational function of the form R i = 

2 i 
Ai/Bi,iBi, 2 ...B. .where Ai,B i j E I[x] and 

they have random coefficients in the range 
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[-29,29]. Also, deg(Bi, j) = i for 

I ! J ~ i and deg(A i) = 

B 2 .B i 
deg(Bi,l" i,2"" i,i ) - i. 

Comparsion of Computing Times 
for the New Method 

vs. Hermite's Method (RHERM) in Seconds 

Function RINTG RHERM 

R 1 .001 .017 

R 2 .034 .542 

R 3 .886 3.432 

R 4 4.412 22.246 

R 5 82.684 271.523 

5 , Extensions 

There are three questions which arise in 
connection with the previous work. Can the 
new partial fraction decomposition and 
integration methods be extended to multi- 
variate rational functions? What results 
can be derived for iterated integrals? How 
can the transcendental part be exactly ob- 
tained? In this section I will mention some 
results and outline some approaches which 
apply to the solution of these questions. 

In a natural way we many extend the notions 
of square-free factorization to poly- 
nomials in n variables. Both of these 
definitions will then make reference to a 
specific variable. The notion of the 
rational part of the integral of a multi- 
variable rational function can also be 
defined. Then, the final methods of 
Section 3 and 4 will apply to n variable 
rational functions for all n > I. The only 
difference is that instead of--matrices with 
integer entries, the entries will be 
polynomials in n-i variables. These poly- 
nomials are easily obtainable when the machine 
representation for polynomials is in recursive 
canonical form (i.e. given A(xl, ... :x the 
coefficients of x i are polynomlals in n) 

Xl,... ,xi_ 1 for. 2 < i < n) . A capability 

for solving exactly a linear system with 
multivariable polynomial entires is needed. 
Algorithms for this operation are currently 
being developed. 

Suppose we wish to find the m th iterated 

integral ['... ~ R(x)dx...dx 

m m 

for some univariate rational function R(x) . 
We can apply our method iteratively e.g. 

7R(x)dx = Sl(X) +bTl(X)dx 

~7R(x)dx dx = S2(x) +~T2(x) dx + 
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fTl(X) dx. 

Finally we have that 

i Smf:+ 
dx + ... + . l(X) dx...dx. 

The computing time for determining 

S m,Tm,.. . ,T 1 would be 
l m  2) • 

O( n 5 ( l n  n f )  = 0 ( m n 5 ( l n  n f )  2) 

i = l  

i f  R(x)  = A ( x ) / B ( x ) ,  n = d e g ( B )  and  f 

bounds all of the coefficients in the 

numerators and denominators of Sm,Tm,...,T I. 

We can go further if we recognize that the 

denominators of the T i are ~3=iBj for 

1 < i < m < k where B(x) has the square-free 
k i 

factorization Ki=iBi . In fact, we can 

generalize the method of Section 4 to produce 
a single linear system whose solution vector 
contains the coefficients of Sm,Tm,...,T I. 

The consequences of this result are twofold. 
First, a single bound for these coefficients 
in terms of the coefficients of R(x) is 
produced. Secondly, the total computing 
time bound for determining Sm,Tm,...,T 1 

is reduced to 0 ( n 5 ( l n  n f ) 2 )  . 

Let us return to the one dimensional case of 

R(x)dx = S(x) +bT(x)dx where S(x) is 

the rational part of the integral. There 
are two approaches which can be followed to 
obtain a more precise answer than 

fT(x)dx, one numeric and one symbolic. T(x) 
has the form T(x) = U(x)/B](x)...Bk(X), 
where Bi(x) is square-free-for 

i < i ~ k. If we are given a range of 
integration, [a,b], we can use a numerical 
integration technique and apply it to 

a b T(x) dx. Care must be taken if the 

poles of T(x) lie within [a,b]. In any case 
this method will work quite well to provide 
us with a numerical result for the transcen- 
dental part of the integral. 

If we try to continue our symbolic approach, 
we must do the following: i) factor the de- 
nominator, 2) perform a partial fraction 
decomposition and 3) check if the numerators 
are constant multiples of the derivative of 
their denominators. If (3) is satisfied 
for all partial fractions, then we are done. 
If not, we continue these three steps, factor- 
ing first into irreducibles over Q(1) and then 
factoring over successively larger algebraic 
extensions fields of Q(1). Tobey, in [ii] has 
given a more thorough treatment of these 
problems. At this time, algorithms for per- 
forming these operations are extremely time 
consuming and suffer from exponential growth. 
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