
THE USER-LEVEL SEMANTIC MATCHING CAPABILITY IN MACSYMA 

Summary 

The pattern matching facility of 
MACSYMA, an algebraic manipulation system, is 
described in this paper. By taking advantage 
of the special semantic properties of 
algebraic expressions, diverse expressions are 
recognized as occurrences of the same pattern. 
For example, a semantic pattern for "quadratic 
in x" matches both 3"x*'2+4 and (x+l)*(x+6). 

Patterns are created by declaring 
variables to satisfy predicates, and then 
composing, out of these variables, expressions 
which serve as templates for the pattern 
matching process. Efficiency is achieved by 
compiling programs corresponding to each pat- 
tern. 

Specific examples show how this recogni- 
tion capability is used in augmenting simpli- 
fication rules and in writing algorithms for 
the solution of differential equations. 

Other systems with related capabilities 
are compared with regard to their implementa- 
tions and matching strategies. 

Introduction and Overview 

When complex algorithms are coded in an 
algebraic manipulation language, it is 
sometimes advantageous to supplement the 
command language with a pattern recognition 
capability. In effect, a pattern recognition 
facility simulates the action of a human 
mathematician who, by examining the structure 
of a formula, decides on his next step. It is 
to our advantage to make this recognition 
capability relatively independent of the 
particular style in which the formula is 
expressed. In particular, such details as 
whether products are distributed over sums or 
not, should be irrelevant to the matching 
process. 

Consider the problem of solving linear 
differential equations with constant coef- 
ficients. Before we can apply our knowledge 
in any generally useful manner, we must be 
able to recognize when a given expression is 
an equation, a differential equation, a linear 
differential equation, and a linear differ- 
ential equation with constant coefficients. 
Because pattern matching can perform this type 
of decision-makihg which might otherwise 
require human intervention, it is an important 
adjunct to a computer-aided mathematical 
laboratory. Often, only when the computer can 
recognize a given pattern and its components, 
can it proceed to the next step in processing. 
Furthermore, pattern-matching capabilities are 
essential to building useful additions to a 
mathematical laboratory. Through pattern 
matching, new simplification rules can be 
described, non-standard transformations can be 
made, and algorithms extended. 

This paper describes pattern matching 
facilities designed and implemented by the 
author for MACSYMA, a system for algebraic 
manipulation currently being developed at 
MIT's Project MAC. Comparisons with other 

Richard J. Fateman 
Project MAC, M.I.T, and Harvard University 

Cambridge, Mass. 

systems with regard to both implementation and 
strategy are included, as are many examples. 

Patterns can be considered lexical 
entities, as in SNOBOL [3]° Inside an 
algebraic manipulation system, arbitrary 
strings of characters, e.g. /A+)(-X*, are 
rarely useful. The input-line editor of 
MACSYMA and the parser's lexical routines are 
the only portions of the system concerned with 
more-or-less arbitrary strings of characters. 

Patterns can be considered syntactic 
entities, as in FAMOUS [5] or AMBIT/S [2]. 
Although syntactic correctness is necessary, 
it is not sufficient for algebraic expressions 
to be meaningful. For example, 0"*0 (using 
FORTRAN notation) is syntactically correct, 
but semantically unclear. A syntactic pattern 
for "quadratic in x" would match expressions 
of the form a'x**2 + b*x + c, but might fail 
to match the expressions x**2 and 
(x + l)*(x +6), which are, however, quadratic 
functions of x. 

Patterns can be considered semantic 
entities, given a suitable context. We will 
be concerned primarily with the context and 
semantics of algebraic expressions. A 
semantic pattern for "quadratic in x" should 
match 3"x*'2 + 4 or (x + 1)~(x + 6), but 
should not match a'x**2 + b*x + sin(x), which 
is not a quadratic function of x. 

Slagle's SAINT [13] and Moses' SIN [ll] 
demonstrated one important application of 
semantic pattern matching: large classes of 
expressions were mapped into forms with known 
integrals. Other applications, some of which 
are detailed below, range from adding new 
operations and simplifications to an algebraic 
manipulation system, to recognizing and 
solving special cases of differential equa- 
tions. 

The facilities used for pattern matching 
by Slagle and Moses were not user-oriented. 
By contrast, the programs described here give 
the MACSYMA user a powerful and sophisticated 
semantic matching capability, and the tools by 
which he can introduce these capabilities into 
the command level of the system and into his 
own programs. Of the other algebraic mani- 
pulation systems currently in use, it appears 
that only Hearn's REDUCE [8] has a user-level 
matching facility. REDUCE gives the user 
(through the LET command) a limited syntactic 
matching facility which is considerably 
restricted in its generality by its emphasis 
on efficiency. For example, patterns which 
are sums are not permitted. FAMOUS [5] and 
Formula Algol [12], neither of which is 
currently in use, provided matching 
facilities, although (as we shall see in 
section 8), they were largely syntactic, 
rather than semantic in approach. 

In sections 1 to 4, methods for defining 
patterns in MACSYMA are described, largely 
through examples. Section 5 discusses 
MACSYMA's Markov algorithm-style (pattern- 
replacement) programming facility. Section 6 
considers the problem of introducing new sim- 
plification rules into MACSYMA efficiently and 
effectively. Section 7 demonstrates how these 
techniques can be used to introduce rules for 

311 



non-commutative multiplication. Section 8 NEGATIVEPRED(X): = IF SIGNUM(X)=-l THEN TRUE 
critically examines the pattern-matching ELSE FALSE@. 
facilities of SCHATCHEN, REDUCE, FAMOUS, and 
Formula Algol, and compares them to MACSYMA's 
facility. Questions of strategy and 
implementation are considered. Section 9 
considers applications of pattern matching to 
solving differential equations. These sec- 
tions are supplemented by an appendix 
(Appendix I) with precise, extended defini- 
tions of the matching procedures. Appendix II 
includes an example of a match program as 
compiled by the system. A theoretical discus- 
sion of the problem of defining classes of ex- 
pressions over which these matching procedures 
can be considered effective can be found in 
[4]. 

1. Predicates and Declarations 

An intuitive pattern for a quadratic in 
x is A'x**2 + B*x + C where A, B, and C are 
pattern variables which can match numbers or 
other expressions free of the variable x. In 
addition, A must not match zero, otherwise 
linear expressions would be included in the 
domain of the pattern. 

Clearly we must be able to insist that 
variables in a pattern have certain 
characteristics (e.g. are nonzero or are free 
of x); that is we must be able to make the 
success of a match dependent on the matched 
values satisfying predicates. Predicates ~for 
our purposes) are programs which return either 
TRUE or FALSE. In practice, we consider 
anything other than FALSE as TRUE. Patterns 
themselves are predicates since they return 
FALSE if applied to a non-matchlng expression. 
Predicates can take any number of arguments 
(usually at least one) and can be defined in 
LISP, (in which MACSYMA itself is written) or 
in the MACSYMA programming language, which 
resembles Algol 60. 

FREEOF(X,Y) is a predicate with two 
arguments, X and Y, which answers the ques- 
tion, "Does the expression Y depend explicitly 
on the variable X?" Thus FREEOF(A,A**2+B) is 
FALSE; FREEOF(A,C+SIN(D)) is TRUE. TRUE(X) 
is a predicate which is always TRUE. This is 
useful because it is convenient to allow some 
variables to match anything. INTEGER(X) is 
TRUE when X is an integer. 

FREEOF, TRUE, and INTEGER are already 
defined in the standard MACSYMA system. We 
might define NONZERO by the program: 

NONZERO(X):= IF X=0 THEN FALSE ELSE TRUE@. 

The function SIGNUM(X) returns -1, 0 or +l 
respectively if X < 0, X = 0, or X > 0. 
SIGNUM, we should note, expands its argument 
using MACSYMA's rational function routines 
[10]. This produces a form which is canonical 
over rational functions (up to the order of 
the variables) and allows us to uniquely 
determine a sign for the coefficient of the 
highest power of the main variable (in the 
numerator). Thus it knows that the following 
expressions are negative: -4, -X, -X - Y, 
-(1 + X). Whether X - Y is negative or not 
depends on which variable (X or Y) the ra- 
tional function package has been told is the 
main variable. It will choose a main variable 
itself if necessary. The only expression 
whose SIGNUM is 0 is 0. Using SIGNUM we can 
define: 

A few more predicates which are used in 
examples to follow are: 

INRANGE(LOW,HI,VAR) := IF (LOW < VAN) AND (VAN 
< HI) THEN TRUE ELSE FALSE@ 

NONZEROANDFREEOF(X,Y) := IF NONZERO(Y) THEN 
FREEOF(X,Y) ELSE FALSE@. 

To associate a pattern variable with a 
predicate, we have the DECLARE command. It 
has the form: 

DECLARE(name,predicate(ars1, ... , ~n))@. 
(n >_0~ 

For example, 
DECLARE(A,FREEOF(X))@ 
DECLARE(A,INRANGE(N,M))@ 
DECLARE(A,TRUE)@ 

Note that the last argument of each 
predicate is missing from the declaration. 
The value matching the declared variable will 
serve as the final actual argument. Thus if A 
were declared NONZERO and an attempt were made 
to match A with X**2 + 3, then 
NONZERO(X**2 + 3) would be evaluated. Since 
the result would be TRUE, the match would be 
successful, and A would be assigned the value 
X**2 + 3. 

The binding times of the arguments to 
DECLARE must be clarified. The first argument 
is not evaluated; thus DECLARE(A,..) affects 
the declaration of A, even if the value of A 
is B + 2. The second (predicate) argument to 
DECLARE is treated as an undefined function: 
if we were to change the definition of INRANGE 
to some other function of three arguments, it 
would not be necessary to redeclare A. The 
extra arguments to the predicate (ars1 , ..., 
ar~n) are bound at the time the predicate is 
applied. Thus if A were declared to be 
FREEOF(X), and the value of X at some later 
time were Z, an attempt to match A current 
with that assignment would invoke a test to 
see if the potential match for A were 
dependent on Z. 

2. Match Definitions 

The DEFMATCH command defines a new pro- 
gram (a predicate) which will succeed only if 
a particular semantic pattern is matched. The 
DEFMATCH command has the form: 

DEF~TCH(prosramname , att~, patternvarl, 
..., patternvarn)@. (n ~ o) 

For example, 

DEFMATCH(LINEAR, A*X + B , X)@ 
DEFMATCH(F3, X+ 3 + F(X,Y,5), Y)@ 
DEFMATCH(COSSIMP, COS(N*PI) )@ 

These examples will have different 
interpretations depending on the declarations 
(or lack of declarations) for A,B,X,N, and F. 
The result in each case will be a program with 
name programname (e.g. LINEAR, F3, COSSIMP) 
which will test to see if the pattern pattern 
(i.e. A*X + B, etc.) can be applied to its 
first argument. The program will have n 

312 



additional arguments, corresponding to the 
patternvars. 

During the execution of these resulting 
programs, undeclared variables (i.e., those 
variables not appearing as the first argument 
in a DECLARE command) in the pattern are 
lambda-bound to the values in the program 
invocation if their names are among those 
variables listed in the DEFMATCH command. 
Variables not listed among the patternvari's 
are bound to their values in the environment 
at execution time. At the successful 
conclusion of a match, declared variables will 
be assigned the values that they match, and a 
list of the associations of variables and 
their values is returned. 

An extended example should clarify this. 
The lines labelled Ci are typed by the user, 
the lines labelled Di are typed by the 
computer. Lines terminated by a $ suppress 
printing of the result. Lines terminated by 
an @ result in a computer generated display of 
the answer. 
(Cl) DECLARE(A,NONZEROANDFREEOF(X))$ 
(C2) DECLARE(B,FREEOF(X))$ 
(C3) DEFMATCH(LINEAR,A*X+B,X)@ 
(D3) LINEAR 

(C4) LINEAR(3*Y+4,Y)@ 
(D4) (B = 4,A = 3,X = Y) 

(C5) LINEAR(Z*Y+4+X,Y)@ 
(D5) (B = X + 4,A = Z, X = Y) 

At this point the value of A is Z, the 
value of B is X + 4. If the value of X 
previous to llne C5 had been 4, the answer 
would have been (B = 8,A = Z, X = Y). 

The X on line D4 is a completely 
separate entity from the X on line C5, in that 
the first is like a formal parameter to a 
subroutine, and the latter is a global 
variable with the same name. This distinction 
should be apparent on line D5. 

The patternvar's may appear in the 
declarations also. Thus: 
(C6) DECLARE(A,INRANGE(N,M))$ 
(C7) DEFMATCH(BETWEEN,A,N,M)@ 
A 
IS THE PATTERN 
(C8) BETWEEN(5,1,6)@ 
(D8) (A = 5,N = i,M = 6) 

The message following line C7 is from 
the DEFMATCH compiler, indicating that it had 
evaluated A to see if perhaps A's value was 
the intended pattern. In this case, the value 
of A was A, thus the message, "A IS THE 
PATTERN" is printed. The pattern in the 
DEFMATCH command is generally not evaluated, 
since this (with its substitution of values 
for variables) tends to make patterns 
disappear. However, if (as in this example) 
the pattern is an "atom," or single variable, 
then it is evaluated. This allows a user to 
compose an elaborate pattern, say as a result 
of a computation, and then give its name to 
the DEFMATCH command, rather than having to 
type it in all at once. If A had had the 
value B + 4, the message "B + 4 IS THE 
PATTERN" would have been printed. 

Now that we have shown how pattern 
programs are defined, we can clarify the use 
of the predicate TRUE. Recall that declaring 
A to be TRUE means that A in a pattern will 
match anything occupying the appropriate posi- 
tion in the expression. Thus 

(C9) DECLARE(A,TRUE)$ 
(Cl0) DECLARE(B,TRUE)$ 
(Cll) DEFMATCH(G,A*X+B*Y)$ 
(C12) G(3*X+I*Y+J*X)@ 
(DI2) (B = I,A = J + 3) 

We can now enunciate another principle 
in matching patterns. If A is undeclared and 
not a att~ variable, A in a p_attern will 
m~chonlF A's current vaTu~. --(If ~ ~s 
value, then MACSYMA provides "A" for the value 
of A. As a special case, constants match onlF 
themselves.) 

3. Selectors 

Sometimes it is not sufficient to find 
out whether or not a predicate succeeds on a 
given argument. Sometimes we wish to not only 
test, but separate components of a pattern 
which in ordinary circumstances would remain 
indivisible. We wish to permit a special form 
of predicate which (i) confirms that a 
subexpression satisfies a predicate, and then 
(2) hands back to the pattern program more 
information than just "the predicate 
succeeded." We will call such programs, when 
used in the place of predicates, selectors. 
The selectors that are of the greatest 
interest to us here always "succeed" in one 
form or another, but in so doing, return a 
particular part of the expression which is 
being matched. Aiding us in this venture is 
the convention that any result which is not 
"FALSE" is true. 

Consider the predicate INTEGER. It 
returns TRUE when applied to an integer. A 
corresponding predefined "selector" WfIOLE 
returns only the integer part of a number. 
Another selector, FRACTIONPART, might be 
defined: 

FRACTIONPART(X) := X - WIIOLE(X)$ 

It would then have to be designated a 
selector by: 

SELECTOR(FRACTIONPART)$. 

A dialogue would look like this: 

(C1) FRACTIONPART(X) := X - WHOLE(X)$ 
(C2) SELECTOR(FRACTIONPART)$ 
(C3) DECLARE(A,WHOLE)$ 
(C4) DECLARE(B,FRACTIONPART)$ 
(C5) DEFMATCH(SEPARATE, A + B)$ 
B 
MATCHES ALL IN 
B + A 
(C6)SEPARATE(5/2)@ 

i 
(D6) (A = 2,B = -) 

2 

The message following llne C5 would 
normally indicate an error. Here it signifies 
that B's predicate (or selector) will be 
applied to what is left after A's predicate 
(or selector) is applied. Here, this is what 
is intended, but note that if both A and B had 
only predicates, SEPARATEwould match one of 
them to 0 in every case. The following cau- 
tion should be observed: if a selector is 
used, a complementary selector should 
generally be used with it, since, for example, 



(C7) DEFMATCH(F3,A)$ 
A 
IS THE PATTERN 
(C8) F3(5/2)@ 
(D8) (A = 2) 

results. The "fractionpart" has (perhaps 
unintentionally) been discarded. 

Another selector provided by MACSYMA is 
NUMFACTOR, which selects the numerical factor 
from a product (or l, otherwise). A 
complementary selector, OTHERFACTOR might be 
defined by 

OTHERFACTOR(X) := X/NUMFACTOR(X)$ 

Other selectors provide facilities for 
picking out items in a sum or product one by 
one. The notion of "extractor" in Formula 
Algol is weaker than this, in that extractors 
can only be used to attach labels to syntac- 
tically distinguishable subexpressions. Thus 
the numerator of a fraction can be labelled 
through "extraction" but the "whole part" of a 
ratio of two numbers cannot be labelled 
through Formula Algol. 

4. More Match Details 

Patterns can be more complicated. For 
example, with A and B declared TRUE, the pat- 
tern 3**A + B**4 will match 

w**4 + 3**z 
w**4 + i 
3**Z 

3 
1 

with A = z , B = w 
with A = 0 , B = w 
with A = z , B = 0 
with A = 1 , B = 0 
with A = 0 , B = 0. 

The expression i0, (which is 3**2 + 
1"'4) will not match. The exact limitations 
of the exponentiatlon treatment are described 
in Appendix I. 

Any pattern, or part of a pattern, P 
which is ehtirel~ f~e o_~ va~a~les which ate 
declared and as ~et unmatched will match and 
expression ~ such that (when all free 
variables are ~iven their assisned values)-~ 
P = 0. To some extent this type of match 

d~pen~s on what algorithm is used to simplify 
the result of the subtraction. Ordinarily the 
MACSYMA simplifier is used, but rational sim- 
plification [10] is used when coefficients are 
being picked off, since expansion is often 
needed to produce proper results. We feel 
this is very important if we are to abide by 
our belief that the semantics of the 
expression, rather than the syntax, is the 
important aspect to model in pattern matching. 
Thus the following dialogue is possible: 

(Ci) DECLARE(A,NONZEROANDFREEOF(X))$ 
(C2) DECLARE(B,FREEOF(X))$ 
(C3) DECLARE(C,FREEOF(X))$ 
(C4) DEFMATCH(QUAD,A*X**2 + B*X + C , X)$ 
(C5) QUAD((Z+i)*(Z+2),Z)@ 
(D5) (C = 2,B = 3,A = l,X = Z) 

Rational simplification must be used to 
compute (Z+l)*(Z+2) - (Z**2+3*Z+2), to 
convince QUAD that the match has succeeded. 
This is the only effective method at our 
disposal, if we wish to implement such matches 
as C5. The additional rational simplification 
is not particularly inefficient, since the 

coefficient routines [10] used have already 
converted the expression to a canonical 
rational form. 

DEFMATCH has produced in QUAD a program 
which operates as follows. QUAD(E,X) 
a. picks out the coefficient of X**2 in E, and 

if the coefficient is free of X and non- 
zero, assigns it to A, otherwise returns 
FALSE. 

b. Sets E to E - A'X**2 
c. Picks out the coefficient of X in E, and if 

the coefficient is free of X, assigns it to 
B, otherwise returns FALSE. 

d. Sets E to E - B*X 
e. If E is free of X, assigns E to C and 

returns a list of the values A, B, and C, 
otherwise returns FALSE. 

Implicit in this algorithm are several 
basic principles of semantic pattern matching. 
For example, line (C5) above demonstrates that 
coefficients in an expression should be 
extracted effect~ve~. 

(C6) QUAD(3*X**2+4,X)@ 
(06) (C = 3,B = 0,A = 3) 

Line (C6) demonstrates that summands in 
the pattern which are missin 5 in the expreS- 
sion are matched with 0. This is what 
happened to the term~1~ i~ the QUAD pattern. 
Furthermore, if a product is matched with 0, 
one of its fac~r~ must match 0. Thus f~ B;X 
to match 0, B must match 0. 

I 

(C7) QUAD(X**2+3*X+4,X)@ 
(D7) (C = 4,B = 3,A = I) 
That is, factors in the pattern which are 
missing i_.n th9 expression are matched with i. 
This assigns to A the value i. 

Since DEFMATCH actually produces short 
programs (e.g. QUAD), the matching programs 
may be compiled by a LISP compiler into 
machine code for increased speed. The pro- 
gram, QUAD, produced above, is shown in 
Appendix II. 

To help prevent the user from asking for 
ambiguous matches (where they can be 
detected), the match compiler used by DEFMATCH 
has a number of warning messages. Generally 
they indicate points where there is a 
likelihood that the user has submitted a pat- 
tern which is ambiguous, or could be more 
suitably constructed for optimal matching. In 
general, patterns should be expanded so that 
the full freedom of commutative operators can 
be exploited. The pattern x**2-y**2 will 
match a wider range of expressions than the 
pattern (x+y)*(x-y). The latter will match 
only expressions which are the product of two 
sums of the specific syntactic form used. 
This asymmetry with respect to patterns and 
expressions (the expressions x**2-y**2 and 
(x+y)*(x-y) will be treated identically by 
most pattern programs) is a consequence of the 
fact that it is far easier to multiply out 
sums and pick out coefficients, than it is to 
factor polynomials. We allow either pattern 
however, since it is possible that the latter, 
strictly syntactic match (like those available 
in Formula Algol or FAMOUS) might be of some 
use anyway. 

Since backing up (i.e., abandoning 
assignments of values and trying new ones) is 
not done in the matching process, the user 
should consider whether his intentions will be 

314 



properly represented. While a back-up 
algorithm could have been adopted, the 
tremendous cost increase, combined with no 
assurance that the user would be happy anyway, 
make such an approach unattractive. There is 
the further argument that pattern-match pro- 
blems can be easily constructed which are 
undecidable (in the Turing-Church sense), so 
back-up will not solve all our problems. 
SC}{ATCHEN uses back-up; back-up is expensive, 
and as is demonstrated by the examples in this 
paper, the lack of back-up is not generally 
noticed. This is discussed further in section 
8. 

An example which demonstrates how 
backing-up might be implied by a pattern 
follows: 

(Cl) DECLARE(A,TRUE)$ 
(C2) DECLARE(B,FREEOF(Y))$ 
(C3) DEFMATCH(NEEDBACKUP, SIN(A)+SIN(B))$ 
(C4) NEEDBACKUP(SIN(X)+SIN(Y))$ 

The final line may match with (A = Y, 
B = X); but, if A = X is tried first 
(succeeding), and then B = Y is attempted, the 
pattern will fail. 

One method of circumventing this 
difficulty is as follows: (RETLIST returns 
its argument list as a sequence of equations, 
"'" is the assignment operator, and DUMMY is 
used as an indicator that the next list 
consists of local (i.e., "dummy") variables.) 

(Cl) DECLARE(A,TRUE)$ 
(C2) DECLARE(B,TRUE)$ 
(C3) DEFMATCH(PAT,SIN(A)+SIN(B))$ 
(C4) DOESBACKUP(Z):=IF PAT(Z)=FALSE THEN FALSE 
ELSE IF FREEOF(Y,B) THEN RETLIST(A,B) 

ELSE (DUMMY (TEMP), 
TEMP:A, 
A:B, 
B:TEMP, 
RETLIST(A,B))$ 

The purpose of the fancy ELSE clause in C4 is 
to reverse the assignment of values to A and B 
in the returned list. Thus, while a conscious 
design decision was made to prevent back-up, 
the possibility of simulating it, when 
necessary, is available. 

Arbitrary n-ary functions may be used in 
a pattern, as is illustrated below: 

(Cl) DECLARE(F,TRUE)$ 
(C2) DECLARE(X,TRUE)$ 
(C3) DECLARE(Y,TRUE)$ 
(C4) DEFMATCH(F2,F(X,Y))$ 
(C5) F2(POINT(3,4))@ 
(D5) (Y = 4,X = 3,F = POINT) 

It is also possible to execute 

(c6) F2(W+4)@ 
(D6) (Y = W,X = #,F = MPLUS) 

This gives a facility for explicitly 
matching operators, if, for example, F is 
declared to match only MPLUS. This facility 
could be used to simulate simpler styles of 
pattern matching which are completely syntax 
based. 

5. Markov Algorithms 

Users of a mathematical laboratory may 
find that certain algorithms lend themselves 
to an organization based on the Markov 
algorithm formalism: a list of rules, each 
consisting of a pattern-replacement pair is 
applied to an expression. FAMOUS [5], PANON- 
IB [1], AMBIT/S [2], Formula Algol [12], and 
SNOBOL [3], among others, are based on such a 
formalism. In order to allow MACSYMA algo- 
rithms to be written in such a style, a 
command to define rules, DEFHULE, is provided, 
along with sequencing algorithms. The form of 
the DEFRULE command is: 

DEFRULE(rulename,pattern,replacement)@ 

If the rule named rulename is applied to 
an expression (by one of the APPLY programs 
below), every subexpression matching the 
pattern will be replaced by the replacement. 
All variables in the replacement which have 
been assigned values by the pattern match are 
assigned those values in the replacement which 
is then simplified. The rules themselves can 
be treated as programs which will transform an 
expression by one operation of pattern-match 
and replacement. If the pattern fails, the 
value of the rule is NIL, displayed as (). 

Applying Rules 

Each of the programs described in this 
section applies its rules to the expression 
indicated by its first argument, recursively 
on that expression and its subexpressions, 
from the top down. 

APPLYi(~,E1 , E2,...,En) applies the 
first rule, El, to the expression e until it 
fails, and then recursively applies the same 
rule to the subexpressions of that expression, 
left-to-right, until the first rule has failed 
on all subexpressions. Then the second rule 
is applied in the same fashion. When the final 
rule fails on the final subexpression, the 
application is finished. 

APPLY2(~, E1,E2,...,En) differs from 
APPLY1 in that if the first rule, E1 fails on 
a given subexpression, then the second is 
applied, etc. Only if they all fail on a 
given subexpression is the whole set of rules 
applied to the next subexpression. If one of 
the rules succeeds, then the same subexpres- 
sion is reprocessed, starting with the first 
rule. 

APPLY1 corresponds to Formula Algol's 
[9,12] one-by-one sequencing mode, and APPLY2 
corresponds to its parallel sequencing mode 
(with the inessential difference that Formula 
Algol processes from right to left). 

Thus if R1, R2, R3, and R4 are rules 
defined by DEFRULE, a program might be written 
using them as follows: 

PROGRAM(X):=APPLYi(APPLY2(X,R3,R4),R1,R2)$ 

and the Markov-style algorithm represented by 
PROGRAM could be executed on the expr@ssion Y 
by 

Z:PROGRAM(Y)@ 

Here is an example of using rules to 
alter an expression. The symbol S is used as 
an abbreviation for e**z, RATSIMP [10] expands 
an expression into a ratio of polynomials and 

315 



cancels common factors, and the symbol % 
always denotes the most recently displayed ex- 
pression. 

(Ci) DEFRULE(Ri,SECH(Z),i/COSH(Z))$ 
(C2) DEFRULE(R2,TANH(Z),SINH(Z)/COSH(Z))$ 
(C3) DEFRULE(R3,SINH(Z),(S-1/S)/2)$ 
(C4) DEFRULE(R4,COSH(Z),(S+i/S)/2)$ 
(C5) SECH(Z)**2+TANH(Z)**2@ 

2 2 
(D5) TANH(Z) + SECH(Z) 

(C6) APPLYi(%,Ri,R2,R3,R4)@ 

2 
1 

(s - -) 
4 s 

(D6) + 
2 2 

1 1 
(s + -) (s + -) 

s s 

(C7) RATSIMP(%)@ 
(DT) 1 

6. AdvisiD~ the Simplifier 

When the user of a system like MACSYMA 
introduces new functions, or uses old func- 
tions in a way that is unfamiliar to the 
system, he may find himself battling certain 
"built-in" aspects of MACSYMA. 

On one hand, he may find that the 
SIMPLIFY program does not simplify expressions 
the way he wants it to. While he can work at 
odds with the simplifier to some extent by 
using Markov-style algorithms on his data, the 
global and all-pervasive influence of the sim- 
plifier must sometimes be modified. Although 
the user could just turn off the simplifier, 
this solution is probably not very useful. 
The chances are that he still wants the sim- 
plifier to work on most of the expression 
under consideration, but not on some 
particular part in some particular fashion. 

On the other hand, he may find that the 
SIMPLIFY program is just ignorant of functions 
of interest to him. For example, a user may 
wish to see SINH(0) replaced by 0 whenever it 
occurs, especially if it occurs inside a 
calculation. 

Another useful possibility is the one 
typified by telling the simplifier that X**N 
is 0 for N greater than some number M. This, 
in effect, allows one to truncate while doing 
arithmetic on power series. 

For these reasons, an advising facility, 
similar in certain respects to Teitelman's 
ADVISE [14] has been implemented. There are 
two commands to advise the simplifier: 
TELLSIMP, and TELLSIMPAFTER. They have the 
following forms: 

TELLSIMP(pattern, replacement)@ 

TELLSIMPAFTER(pattern, replacement)@ 

The arguments are similar to those of 
DEFRULE, but the pattern must conform to 
certain restrictions described below. 

TELLSIMP analyzes the pattern, and if it 
is either a sum, a product, or an atom (i.e. a 
single variable name or a number) it will 

complain. Sums and products are excluded by 
TELLSIMP because of the interdependence of the 
simplifier and the matching programs in this 
implementation. TELLSIMPAFTER, discussed at 
the end of this section, has no such restric- 
tion. 

The exception for atomic variables is 
necessary because the advice is stored on the 
property list of operators, where SIMPLIFY 
looks for it. SIMPLIFY does not look on the 
property list of variables for simplification 
advice. This restriction, however, is hardly 
important, since setting a variable to its 
"simplified" form will give the same effect. 

The simplification of sums and products 
should probably be attacked in ways other than 
through TELLSIMP or TELLSIMPAFTER. It is 
simple (but somewh~ naive) to suggest that 
(sin x)**2 + (cos x)**2 ==> 1 be told to the 
simplifier as TELLSIMP (SIN(X)**2,1- 
COS(X)**2); what is really needed is a 
facility that demands the presence of both 
sines and cosines, and removes them in appro- 
priate circumstances. 

All the above rule does is remove sines in 
favor of cosines, sometimes. 
TELLSIMPAFTER(SIN(X)**2+COS(X)**2,1), although 
a legal command, does far less that the user 
may think. For example, it leaves out the 
possibility of a third term in the sum (e.g., 
5+sin(y)**2+cos(y)**2), it does not back up 
(e.g., sin(y)**2+cos(2*y)**2+sin(2*y)**2) and 
it does not detect instances of the pattern 
implicit in such constructions as 
sin(y)**4+2*sin(y)**2*cos(y)**2+cos(y)**4. 
While patterns may be constructed for some ~of 
these expressions, it is our opinion that such 
substitutions as sin(x)**2+cos(x)**2 ==> 1 
require much stronger methods than pattern 
matching. Methods for doing such simplifica- 
tions effectively are available in the ra- 
tional substitution facility of MACSYMA [10]. 
In it the approach used by REDUCE to handle 
products [8, p. 8], is implemented, but is 
extended to deal with sums also. 

TELLSIMP piles new advice on top of old 
advice, but old advice is still accessible if 
the new advice is not appropriate (i.e. the 
pattern fails). This is exhibited in the 
following example. 

(Cl) COS(PI)@ 
(Di) COS(PI) 

(C2) TELLSIMP(COS(PI),-i)@ 
-I 
IS THE REPLACEMENT 
(D2) COS 

(C3) COS(PI)@ 
(D3) - 1 

(c4) cos(-PI)@ 
(D4) COS( - PI) 

(C5) MPRED(X):=IF (SIGNUM(X)=-i)THEN TRUE ELSE 
FALSE$ 
(C6) DECLARE(M,MPRED)$ 
(C7) TELLSIMP(COS(M),COS(-M))$ 

(c8) cos(-PI)@ 
(D8) - 1 

(c9) cos(5*PI)@ 
(Dg) COS(5 PI) 

316 



(Ci0) DECLARE(N,~INTEGER)$ 
(Cll) TELLSIMP(COS(N*PI), (-1)**N)$ 
(c12) cos(5*P1)@ 
(012) - 1 

(C13) COS(-6)@ 
(D13) COS(6) 

The dialogue above shows (DI) that the 
simplifier (at that time) did not know the 
rules about pi (=3.1415+). If we tell it that 
the cosine of pi is -1, it can (D3) simplify 
COS(PI) to -1. Line (D4) demonstrates that 
the simplifier did not know about cosine being 
symmetric about 0. Lines (C5)-(C7) add this 
bit of information, as evidenced by llne (D8). 
Line (Cll), which makes superfluous the advice 
of (C2), but not of (C7), adds the capa- 
bilities shown in (D12). (C13) shows that the 
old advice is still accessible. 

One of these rules happens to coincide 
with a "built-in" simplification COS(0) = l, 
since N*PI for N=0 matches 0; however, since 
the answer will be (-1)**0, the ordinary 
operation of the simplifier underneath will 
not be affected. (System-defined simplifica- 
tions will be tried, but only if none of the 
advice is applicable. Note that if any of the 
advice is applicable, the replacement part of 
the advice will have already triggered a 
further simplication, if such is possible.) 

TELLSIMPAFTER is similar to TELLSIMP 
except that new rules are placed after old 
rules and "built-in" simplifications. Because 
of this, TELLSIMPAFTER cannot be used to 
drastically alter the action of the simplifer, 
whose "built-in" simplifications take 
precedence. On the other hand, these restric- 
tions make it possible to apply TELLSIMPAFTER 
to sums and products. 

TELLSIMPAFTER should be used on "built- 
in" operators whenever possible, since such 
rules will be applied only if the same 
operator is still the lead operator after the 
previous simplification has been performed. 
If the lead operator has been changed, all 
"after" rules are bypassed, producing faster 
operation. 

7. Non-Commutative Multiplication 

At this time,non-commutative multiplica- 
tion simplification is not available in 
MACSYMA. This section describes how the 
author added such a fairly extensive facility 
by using the TELLSIMP commands. The group 
operation, represented by a period (.), is 
allowed by the parser in anticipation of the 
time when an efficient non-commutative 
multiplcation scheme is programmed in LISP. 
(Since the same symbol is used to denote the 
decimal point of a floating point number, 
extra parentheses may sometimes be required to 
avoid misinterpretation.) 

Telling the simplifier about non- 
commutative multiplication requires a bit of 
knowledge of the internal representation. The 
input A.B is parsed to ((MCTIMES) $A $B), that 
is, a prefix representation (although with 
certain peculiarities of no importance to this 
discussion). The fact that MCTIMES is a 
binary operator rather than a "vari-ary" 
operator will complicate matters somewhat. We 
will abbreviate ((MCTIMES) $A $B) as (. A B). 

The input A.B.C or (A.B).C is parsed to 
(. (. A B) C), but A.(B.C) is parsed to 

(. A(. B C)). Clearly one of the first Jobs 
of the "MCTIMES" simplifier is to transform 
the second structure into the first. To do 
this (in effect, telling the simplifier about 
the associative law), we 

DECLARE(A,TRUE)$ 
DECLARE(B,TRUE)$ 
DECLARE(C,THUE)$ 
TELLSIMP(A.(B.C),(A.B).C)$ 

As an example of how this operates, 
consider (A.B).(C.D). This is parsed to 
(. (. A B)(. C D)) which is then simplified to 
(.(.(. A B) C) D). Since the simplifier is 
recursive, any depth of forced nesting is 
untangled. Any time two identical elements 
are adjacent, we want to combine them. That 
is, A.A = A**2; more generally, (A**n).(A**m) 
= A**(n+m). Since our pattern marcher is 
clever enough to recognize A as an occurrence 
of A**l, this one pattern would suffice, but 
for one difficulty: although A.A isparsed to 
(. A A), B.A.A is parsed to (. (. B A) A). 
These two situations differ sufficiently with 
respect to adjacency of the A's so as to 
require the two patterns below. 

DECLARE(N,TRUE)$ 
DECLARE(M,TRUE)$ 
TELLSIMP((A**M).(A**N),A**(M+N))$ 
TELLSIMP(B.(A**M).(A**N)~B.A**(M+N))$ 

Let us denote the inverse of A by 
INV(A), and the identity by 1. We might then 

TELLSIMP(INV(1),i)$ 
TELLSIMP(INV(INV(A))jA)$ 
TELLSIMP(INV(A.B)jINV(B).INV(A))$ 

Recall that these pieces of advice are 
placed on the property llst of the function 
INV, and so are independent of the previous 
bits of advice, which are on the property list 
of " " 

Another piece of advice which will be 
needed goes on the property llst of "**" -- 
this time, after other simplifications have 
been made: 

TELLSIMPAFTER(INV(A)**N,INV(A**N))$ 

The major fact concerning inverses is 
their "cancellation" property. That is, 
A.INV(A) = INV(A).A = i. To automate this, 
let us consider the more general situation, 
(A**n).INV(A**m) = A**J * !NV(A**k) where at 
least one of j or k is 0. 

Let us define MONUS(N,M), which will 
compute J and k: 

MONUS(N,M):= IF N>M THEN N-M ELSE 05 

and INVPROG(A,N,M) which will compute the 
right hand side of the above reduction 
formula. 

INVPROG(A,N,M):= 
A**MONUS(N,M)*INV(A**MONUS(M,N))$ 

Thus: 

TELLSIMP((A**N).INV(A**M),INVPROG(A,N,M))$ 
TELLSIMP(INV(A**M).(A**N),INVPROG(A,N,M))$ 
TELLSIMP(B.(A**N).INV(A**M),B.INVPROG(A,N,M))$ 
TELLSIMP(B.INV(A**M).(A**N),B.INVPROG(A,N,M))$ 

317 



Finally, 

DECLARE(N,~NTEGER)$ 
TELLSIMP(N.A,N*A)$ 
TELLSIMP(A.N,N*A)$ 

gives us such useful notions as left and right 
zeros, identities, and multiplication by 
scalars. It may appear that we have left out 
some items, for example, 

TELLSIMP(A**0,1)$ 
TELLSIMP(INV(A)**0,1)$ 
TELLSIMP(1.A,A)$ 

but this is not so. Since 1.A will be 
converted to l'A, which will be simplified to 
A, the last rule is unnecessary. Since A**0 
will (unless we tell the simplifier otherwise) 
always result in l, the other two are also 
unneeded. 

As examples of how this new simplifier 
operates, X.INV(X)**2 is simplified to INV(X), 
and A.B.(B**3).C.INV(C) is simplified to 
A.B**4. This last example used about .7 
seconds of machine time when the simplifica- 
tion rules were in uncompiled LISP (on a PDP- 
l0 computer using 2.75 microsecond cycle time 
memory), and when compiled by the LISP 
compiler, about .05 sec. 

8. Comparisons with SCHATCHENj FAMOUS, 
REDUCEs and Formula Algol 

SCHATCHEN, Moses' matching program Ill] 
is similar to our matching program in many 
respects. However, there are significant 
differences, both in implementation and in 
philosophy, between the two systems. 

SCHATCHEN, demands patterns in a form 
resembling the internal form for expressions. 
It uses controls (called modes) on the pattern 
match to direct its highly recursive matching 
processes. Our "straight-line" matching pro- 
grams preserve some, but not all, of the 
aspects of the mode facility. 

A SCHATCHEN pattern corresponding to the 
intuitive notion of "quadratic in x" discussed 
in section 4 is: 
(QUOTE 
(PLUS 
(COEFFPT 
(A 
(FUNCTION 
(LAMBDA (Y) (AND (FREE Y (QUOTE X)) 

(NOT (EQUAL Y 0)))))) 
(EXPT X 2)) 

(COEFFPT 
(B (FUNCTION (LAMBDA (Y) 

(FREE Y (QUOTE X))))) 
x) 

(COEFFP 
(c 
(FUNCTION (LAMBDA (Y) 

(FREE Y 
(QUOTE X)))))))) 

This is not in the best possible form for 
SCHATCHEN, but it serves to illustrate several 
points. First, the pattern is written as a 
LISP S-expression which, upon close 
examination, has most of the components of a 
prefix representation of the algebraic 
expression A*X**2+B*X+C. Second, there are a 
number of extra notations in the pattern, some 
of which clearly depend on LISP's version of 
the lambda-calculus. A less obvious point is 

that the pattern implies an ordering on the 
subtasks required to match it to an 
expression. 

There are two modes, COEFFPT and COEFFP, 
used in this pattern. They stand for "coef- 
ficient in plus and times" and "coefficient in 
plus" respectively, and their uses are best 
described through an example. 

Consider the quadratic, Q = 2"X*'2 + 
Y'X**2 + 3 + Z. There are two terms involving 
X**2. For the Pattern A'X**2 + B*X + C to 
match Q, A must match 2 + Y. This is 
indicated to SCHATCHEN by using the mode 
COEFFPT. This modifies the action taken to 
match A by causing SCHATCHEN to traverse Q 
looking for coefficients of X**2 and assigning 
to A the simplified sum of those coefficients. 
Similarly, by matching B with mode COEFFPT, B 
is assigned the simplified sum of the coef- 
ficients of X (or is assigned zero if there 
are no coefficients, as is the case for Q). 

SCHATCHEN requires that C in the 
quadratic pattern be matched using the mode 
COEFFP (that is, "coefficient in plus") so 
that in Q, C will match Z + 3, and not Just 
one term (e.g. Z or 3). Sin~e A'X**2 and B*X 
have been previously deleted from the expres- 
sion by the matching procedure, C (by virtue 
of its being indicated a COEFFP) will match 
what is left in the sum, namely Z + 3. 

SCHATCHEN also provides opportunities to 
apply predicates to A, B, and C; in this case 
they each are checked to make sure they are 
free of X. A is also checked to make sure it 
is nonzero. 

Compared to the relatively casual defi- 
nition of QUADRATIC in section 4, using these 
controls requires a high level of awareness on 
the part of the user, both of the representa- 
tion of data, and the operation of SCHATCHEN. 
This burden of awareness is considerable. 
However, SCHATCHEN matches differ from the 
matches done here in a more fundamental sense. 
We find a particular subexpression and apply a 
predicate. If the predicate fails, the match 
fails. In a similar situation, SCHATCHEN will 
try to find another subexpression which 
matches the subpattern, which might satisfy 
the predicate. The match fails only if this 
exhaustive search fails to find any subexpres- 
sion matching (and satisfying) the subpattern. 

This difference, which would seem to 
indicate that SCHATCHEN is more powerful, is 
somewhat deceptive. We use more powerful 
tools to find an appropriate place to apply a 
predicate, and then apply it only once. (The 
coefficent-finding routine we use can find 
that the coefficient in (2*x)*(3*x+l) of x**2 
is 6; SCHATCHEN would fall to notice this.) 
There is an increase in efficiency since the 
programs produced by the match compiler are 
"straight-llne" code, and apply predicates 
(assuming success) only as many times as there 
are distinct variables in the pattern. In 
case the pattern fails, fewer predicates are 
applded. The number of times SCHATCHEN 
applies its predicates is much more dependent 
on the expression. While SCHATCHEN has 
certain types of iterative facilities within a 
single pattern, the programming language 
facility in MACSYMA can supply some of the 
same iterative machinery, as in section 5. 

There are some instances where SCHATCHEN 
is undeniably more thorough (within the scope 
of a single pattern): if the pattern is A**B 
and the expression is l, either B matching 0 
o__r (B's predicate failing) A matching i will 

318 



cause the pattern to succeed. We insist that 
A match 1 and B match 0. 

TELLSIMP gives essentially all the power 
of FAMOUS for flexibly altering an algebraic 
simplifier, yet allows one to have a quite 
competent "fall-back" facility. While using 
TELLSIMP excessively on commonly used 
operators might make the system run as slowly 
as did FAMOUS, it is unlikely that that point 
will be reached either frequently or quickly. 
Using TELLSIMP on new functions (e.g. SINH) 
does not affect the speed of the simplifier on 
old functions. The technique of compiling 
rules achieves a modest level of efficiency; 
using the LISP compiler further speeds up pro- 
cessing. Of course, advice requiring much 
computation (e.g., replace INV(A) where A is a 
square matrix, by its computed inverse) will 
slow up the simplifier in direct proportion to 
the length of the computation, and how often 
it is done. Easy advice, in this user's 
experience, has not caused a noticeable change 
in system response. More precise measurements 
can be made, of course, but very little 
unnecessary system degradation is introduced 
by the particular techniques used. (Some 
timing data appeared at the end of section 7) 
Furthermore, the TELLSIMPAFTER facility, 
potentially far more efficient than a last-in 
flrst-out rule organization, is available. 

It is clear that flexible pattern 
matching results in an enormous decrease in 
the number of rules required to achieve a 
given match. Consider the rules that would be 
required to define "quadratic in x" in a 
purely syntactic manner, as in FAMOUS or 
Formula Algol: 

x**2 a'x**2 
x**2 + x a'x**2 + x 
x**2 + b*x a'x**2 + b*x 
x**2 + c a'x**2 + c 
x**2 + x + c a'x**2 + x + c 
x**2 + b*x + c a'x**2 + b*x + c 

This also assumes 
(i) + and * are commutative with respect 

to the match; 
(2) a, b, and c may be declared free of x; 
(3) a, b, and c may each match more than 

one term; 
and (4) the minus sign is not a separate 

operator. 
This is not meant to imply, however, 

that restricted styles of matching are never 
appropriate. By using restricted matches, 
Fenichel was able to justify his contention 
that arbitrary and precisely specified 
algorithms could be constructed in FAMOUS. 
Itturiaga [9] used similar techniques in 
Formula Algol to produce somewhat more 
practical results, but the syntactic (rather 
than semantic) nature of Formula Algol pattern 
matching prevented the tackling of difficult 
problems in a natural fashion. FAMOUS and 
Formula Algol insist that expressions look 
very nearly like the pattern which is used to 
match against them. By contrast, our semantic 
approach can match quadratics which do not 
resemble any of the above twelve forms. 

Dependence on local syntactic 
transformations, another major thread in 
FAMOUS, has serious implications relative to 
efficiency. For example, the ad hoc treatment 
of "logsum" ([5] page 42) was necessary 
because local information, in some cases, has 
to be propagated outside of its immediate 

vicinity. (The logsum device separated sums 
into logarithmic terms and non-logarithmic 
terms. If the sum occurred in an exponent, 
the log term became a coefficient of the base. 
Thus e**(x+log(y)) =~ y*e**x. If the sum was 
not in an exponent, a great deal of time has 
been wasted.) Waste of this sort is avoided 
in MACSYMA (and no doubt in other algebraic 
manipulation systems not tied down to local 
syntactic transformations) by considering such 
analyses in a top-down fashion. This provides 
sufficient global context to distinguish sums 
occurring in exponents from sums occurring 
outside exponents. 

To the concept of spatial or syntactic 
adjacency must be added the concept of 
adjacency along semantic dimensions. For 
example, if the properties of an exponent are 
adjacent to its base, then an efficient local 
"logsum" device might be constructed. In the 
expression f + g + h, it is clear that f and h 
should be syntactically Just as adjacent as f 
and g. What is less clear is how one might 
note that f and g being integer-valued func- 
tions makes them adjacent along a semantic 
dimension. 

MACSYMA allows information to be stored 
at operator nodes in the internal tree 
representation of expressions (e.g. "this ex- 
pression and all its subexpressions are sim- 
plified") which has some aspects of this 
semantic dimension. This "property llst" of 
operators has turned out to be an extremely 
useful design decision, one with applications 
to many difficult implementation problems. 
The types of information stored on these nodes 
will no doubt become more varied as MACSYMA 
continues to grow. 

Another thread in FAMOUS is reliance on 
the Markov algorithm formalism. It is clear 
that some algorithms, (e.g. synthetic division 
of polynomials) are difficult to program in 
such a formalism. These algorithms benefit 
not only from a different style of program 
organization, but also from a radically 
different data representation. Fenichel, by 
not modeling any sophisticated polynomial 
manipulation capabilities, implicitly recog- 
nized this limitation. 

In summary, FAMOUS and Formula Algol 
cannot compete with MACSYMA with regard to ef- 
ficiency or ease of use in algebraic manipula- 
tion on several grounds: 
(1) the lack of a competent base simplifier 

(FAMOUS assumes nothing about the 
characteristics of its data, and cannot 
assume, therefore, that any particular simpli- 
fications would always be valid; Formula 
Algol has only trivial built-in simpli- 
fications.), 
(2) the inflexibility of the rifles (a 

consequence of their syntactic, rather than 
semantic, nature), 
(3) inefficient rule-sequencing techniques 

(they have no equivalent to TELLSIMPAFTER). 
FAMOUS has additional problems because 

of: 
(4) its requirement that the Markov algorithm 

formalism, and data types appropriate to it be 
used for all manipulations, 
(5) the absence of facilities for global 

communication. 
REDUCE has, in addition to objection (2) 

above, another problem. It considers the 
user-supplied rules only after it has done its 
own simplifications. Therefore a rule X**I 
==} 0 for all I will not prevent X**0 ==> i, 

319 



the action taken by the simplifier. 
Furthermore, REDUCE does not allow sums in 
rules at the top level. REDUCE, although pro- 
bably more efficient within its domain [6], 
would require considerable programming to 
extend it to the realm of non-rational func- 
tions, a domain treated routinely here. 

Finally, it is not certain that a closer 
model of SCHATCHEN, including back-up, but (of 
necessity) closely tied to the internal repre- 
sentation, would greatly aid a user (except 
perhaps a system programmer), considering the 
burden it would impose. The benefits of our 
implementation are clear: we give a user 
error and warning messages, the selector 
facility, and easy-to-use methods for 
declaring variables and defining patterns. 
For the most part, he can remain ignorant of 
the subtleties of LISP and the data 
representation (a sharp contrast with 
SCHATCHEN), and yet define powerful, flexible 
patterns. 

9. Differential Equations 

The following example of a dialogue with 
MACSYMA illustrates the usefulness of pattern 
matching in constructing more useful programs. 
We wish to program the solution of ordinary 
linear flrst-order differential equations. 
i.e. 

DY 
F(X) (--) + G(X)*Y + H(X) = 0 

DX 

where F, G, and H are functions of X, but not 
of Y. The solution can be written in terms of 
integrals, as demonstrated by the program 
defined on line C6, below. Note that commas 
are used instead of seml-colons to separate 
statements in a program, colons are used as 
assignment operators, and "DUMMY" is followed 
by a list of local (i.e., dummy) variables. 
The commands INTEGRATE and SOLVE are described 
in [10], but their intent should be clear. 
Also note that %E represents the base of the 
natural logarithms, and that D8 is correct, 
although in a somewhat unusual form. 

(C1) DECLARE(F,NONZEROANDFREEOF(Y))$ 
(C2) DECLARE(G,FREEOF(Y))$ 
(C3) DECLARE(H,FREEOF(Y))$ 
(C4) P : F*DERIVATIVE(Y,X,i)+G*Y+H$ 
(C5) DEFMATCH(PAT,P,Y,X)@ 

DY 
F (--) + G Y + H 

DX 

IS THE PATTERN 
(05) PAT 

(C6) LINDEP(EQ,Y,X) :=(DUMMY(F,G,H,P,Q,SOL), 
IF PAT(EQ,Y,X)=FALSE THEN FALSE 

ELSE 
P : %E**(INTEGRATE(G/F,X)), 
Q : H/F, 
SOL:Y*P+INTEGRATE(Q*P,X), 
EXPAND(SOLVE(SOL=CONST,Y)))$ 

(C7) DERIVATIVE(Y,X,i)+3*Y+4@ 

(D7) 
DY 
--+ 3Y+ 4 
DX 

(C8) LINDEP(%,Y,X)$ 

(D8) Y - 
CONST 4 

3x 3 
.%E 

The program on line C6 could easily be 
altered to account for other types of 
equations. If the PAT pattern fails, other 
patterns could be tried, each with its own 
method of solution. If none of the patterns 
succeed, other analytic or numerical methods 
could be tried. 

i0. Conclusions 

Although a pattern-dlrected interpreter 
(along the lines of SCHATCHEN or FAMOUS) could 
have been written to implement this algorithm, 
a compiler, which produces a LISP program from 
the pattern, was written instead. There are 
several advantages to this approach: 
i. Elaborate checking is done at compile-time 

to help insure that patterns make sense. 
An interpreter can provide this only at 
considerable cost at execution time. This 
makes interpretation unattractive to a user 
who needs as much error-checklng as 
possible. 

2. When the match compiler is no longer 
needed, it can be removed from core memory, 
and the space it occupies, reclaimed. 0nly 
the pattern programs themselves are 
required at execution time. An interpreter 
must be present any time a pattern is 
matched. It is possible that a large 
number of pattern programs could 
collectively take more space than some 
other pattern representlon, so that this 
advantage is not clear cut. However, 
Judging from the size of the match 
compiler, we suspect that an interpreter 
performing the same tasks is likely to be 
sufficiently large so as to be more space 
consuming than perhaps 40 pattern programs. 

3. With the exception of calls to the simpli- 
fier, the coefficient routines, and calls 
to subroutines to find exponents, bases, 
and unknown functions, the program produced 
by the DEFMATCH (or DEFRULE, TELLSIMP, 
etc.) command is self-contained. The 
application of predicates, the assignment 
of values, and sequencing of operations is 
rapid and efficient. Furthermore, each 
pattern program can be compiled into 
machine language by a LISP compiler, which 
(on the PDP-10) decreases the bulk of the 
program and may increase the speed by a 
factor of ten. It may appear that this 
possibility is independent of the question 
of compilation vs. interpretation, since 
the pattern-directed interpreter could also 
be compiled into machine code. This is not 
the point we are making. The patterns for 
the interpreter cannot be compiled since 
they are, of necessity, LISP data. On the 
other hand, the pattern programs of our 
system can be compiled completely into 
machine code. 

320 



Acknowledgements 

Work reported herein was supported in 
part by Project MAC, an M.I.T. research pro- 
ject sponsored by the Advanced Research 
Projects Agency (ARPA), Department of Defense, 
under Office of Naval Research Contract 
N00014-70-A-0362-0002, and by Harvard 
University sponsored by ARPA under Air Force 
contract F19628-68-0101, and by the National 
Science Foundation under their Graduate 
Traineeship program. 

I wish to thank Professor J. Moses for 
his continuing interest, comments, and sugges- 
tions, which have guided me in this work. I 
would also like to thank Professors A. G. 
Oettinger and B. F. Caviness for their careful 
reviewing of earlier drafts of this paper. 

References* 

1. Carraciolo di Forino, A. e_~ a_l, "PANON-IB 
-- A Programming Language for Symbol 
Manipulation," University of Pisa, Italy, 
1966. 

2. Christensen, C. "Examples of symbol 
manipulation in the AMBIT programming 
language," Proc. ACM 20th National 
Conference, Cleveland, Ohio, 1965. 247- 
261. 

. Farber, D. e._~ a_~, SNOBOL, A String 
Manipulation Language, JACM l_~., (1964), 
21-30. 

4. Fateman, R., "Essays 
Manipulation," doctoral 
Harvard University, 1971. 

in Algebraic 
dissertation, 

5. Fenichel, R. "An On-Line System for 
Algebraic Manipulation," doctoral 
dissertation, Harvard University, July 
1966, (also appeared as Report MAC-TR-35, 
Project MAC, MIT, Cambridge, Mass., Dec., 
1966). 

6. Hearn, A. "REDUCE, a Program for Symbolic 
Algebraic Computation," invited paper 
presented at SHARE XXXIV, Denver, 
Colorado, March, 1970. 

7. --. "REDUCE Users' Manual," Stanford 
Artificial Intelligence Project, Memo 50, 
Stanford University, Stanford, Calif., 
Feb., 1967. 

8. --. "The Problem of Substitution," 
Stanford Artificial Intelligence Report, 
Memo No. AI-70, Stanford University, 
Stanford Calif., Dec., 1968. (Also 
appears in Proceedinss of the 1968 Summer 
Institute __°n Symbolic Mathematical 
Computation, R. Tobey, editor, IBM Boston 

ll. Moses, J. "Symbolic Integration," (SIN) 
doctoral dissertation, MIT, 1967 (also 
appeared as Report MAC-TR-47, Project MAC, 
MIT, Cambridge, . Mass., Dec. ,1967; now 
available fromthe Clearinghouse, document 
AD-662-666.~V.'~iso see, --. "Symbolic 
Integration - the Stormy Decade," these 
proceedings. 

12. Perlis, A., Itturiaga, R., Standish, T. "A 
Definition of Formula Algol," a paper 
presented at the [first] Symposium on 
Symbolic and Algebraic Manipulation of the 
ACM, Wash., D.C., March, 1966. 

13. Slagle, J. "A Heuristic Program that 
Solves Symbolic Integration Problems in 
Freshman Calculus, Symbolic Automatic 
Integrator (SAINT)," doctoral disserta- 
tion, MIT, 1961 (a paper based on this 
thesis appears in Computers and Thought, 
McGraw-Hill, New York, 1963.) 

14. Teitelman, W. "PILOT: A Step Toward Man- 
Computer Symbiosis," doctoral disserta- 
tion, MIT, Sept., 1966,( Also appeared as 
MAC-TR-32, Project MAC, MIT, Cambridge, 
Mass., Sept., 1966, now available from the 
Clearinghouse, document AD-645-660.) 

*Government contractors may obtain MAC-TR 
reports from the Defense Documentation Center, 
Cameron Station, Alexandria, Va. 22314. 
Specify AD number. 

Others may obtain the reports from: Federal 
Clearinghouse, U°S Department of Commerce, 
Springfield, Va. 22151. Specify AD number. 
All copies are $3. 

Appendix I 

Detailed description of the MATCH processor. 

Up to this point we have tried to show 
mainly by examples, what kinds of patterns can 
be compiled. This section describes the 
algorithm used to compile patterns into pro- 
grams, and in so doing, explicates the nature 
of the semantic matching done by the resulting 
programs. Some details which are concerned 
only with "code optimization" are omitted -- 
as an example, the predicate "TRUE" is never 
actually called, since the result is known to 
the ma$ch compiler. However, the operation 
would be unaffected if a call to "TRUE" were 
actually used. 

Definition: An unmatched variable in a pat- 
tern is a variable which is declared and for 
which no value has yet been assigned during 
this matching process. A variable may be 
assigned a value either by being in the list 

9. 

Programming Center, Cambridge, Mass.,1969, of patternvar's, or by being successfully 
3-19.) compared to an expression. A pattern ~ i._~ 

compared to an expression e by attempting a 
Itturiaga, R. "Contributions to Mechanical match between ~ and e. If The match succeeds, 
Mathematics," doctoral dissertation, all unmatched variables in ~ will be assigned 
Carnegie-Mellon University, Pittsburgh, values. If the match fails, the value NIL, 
Pa., April, 1967. displayed (), is returned. 

i0. Martin, W., and Fateman, R. "The MACSYMA 
System," these proceedings. 

Definition: If a pattern ~ has no unmatched 
variables in it, it is called a fixed pattern, 
or is said to be fixed. 

321 



Remark: Any number is a fixed pattern. Any 
undeclared "atomic" name is a fixed pattern. 
A sum, product, (etc.) of fixed patterns is a 
fixed pattern. 

One of the basic design decisions 
concerning the internal format of MACSYMA ex- 
pressions pervades this algorithm. MACSYMA 
removes inessential operators such as division 
and negation: A/B is represented internally 
by A'B**(-1), and -A is represented by (-1)*A. 
Reducing all arithmetic operators to +, *, and 
** has the disadvantage of causing a moderate 
increase in the size of internal representa- 
tions, but has the overriding advantage Of 
erasing small differences in appearance which 
might tend to obscure the matching process. 
(The MACSYMA input and output routines, in 
order to improve readability, do make use of 
quotients, differences, and unary minuses.) 
Markov algorithms written in Formula Algol 
seem to be largely concerned with Juggling 
these redundant internal notations, a confir- 
mation of the suitability of our design 
decision. (see [9] PP. 172-174) 

With these preliminaries, we can define 
precisely what is meant when a pattern 
matches an expression e. 
I. If a pattern ~ is fixed , then it matches 
an expression e if and only if ~ - ~, when 
simplified and evaluated, is 0. Of the 
simplification routines in MACSYMA, the 
general ("advisable") one is usually used. 
When coefficients have been picked out of an 
expression in the previous step, canonical 
rational simplification [10], which expands 
expressions and combines similar terms, is 
used. Note the heavy dependence on the power 
of the simplifier. If the user has 
(presumably by mistake) told the simplifier to 
replace an expression A by a larger expression 
which has A as a subexpression, this defini- 
tion may become circular. We assume that no 
such errors have been committed. 
II. If ~ is a sum, ~ai, then all fixed ai 
are subtracted from ~, and then the rest of 
the ai are examined as follows: 

A. If ai is a product with more than one 
unmatched variable, it is ambiguous. Any 
of the variables might match the whole ex- 
pression. Processing such a pattern will 
cause a warning to be printed, and the pat- 
tern will be treated as in E below, as an 
occurrence of the specific function 
"MTIMES" with a fixed number of arguments. 
B. If ai is a product of a declared 
variable v and a fixed pattern f then v's 
predicate is applied to the coefficient --of 
f in e. (The definition of "coefficient" 
~sed he--re may be found in [i0].) If it 
fails, the match fails, otherwise it pro- 
ceeds. (That is, X is compared to the 
coefficient of f in e.) Coefficients are 
extracted by the--RATCOEF [i0] program. 
C. If ai is an unmatched variable, then it 
should be the only unmatched ai, since it 
will match the rest of the expression. If 
selectors are used, there might be more 
than one remaining ai, in which case they 
might correctly separate out the rest of 
the expression into several parts. A 
warning is printed in this situation. 
D. If ai is an exponentiatlon, one of 
three possibilities exists. Either the 
base is fixed, the exponent is fixed, or 
neither is fixed. (If both were fixed, ai 
would be fixed, and thus be treated under 

322 

I.) 
i. The base is fixed: A search is made 
for an exponential operator with the 
given base. If it succeeds, the pattern 
for the exponent is compared to ai's 
exponent. Here, as elsewhere, if the 
comparisons of subexpressions fail, the 
match fails. If the search fails, the 
base may occur to the first power. If 
the base is found in ~, then the pattern 
for the exponent is compared to the 
number 1. If the base is a sum itself, 
it is subtracted from ~, and the pattern 
for the exponent compared to 1. 
2. The exponent is fixed: A search is 
made for an exponential operator with 
the given exponent. If it succeeds, the 
pattern for the base is compared to ai's 
base. If the search fails and the 
exponent is a negative integer, 1 is 
subtracted from e and the pattern for 
the base is compared with 1 (the case of 
a missing denominator). Otherwise, (the 
exponent is not a negative integer) the 
pattern for the base is compared with 0. 
This means that the pattern a+l/b (with 
a and b declared TRUE) will match the 
expression X+l with a~X, b=l, and will 
match the expression X with a=X-1, b=l. 
The pattern a+b**2 will match the 
expression X with b=0, a=X. 
3. Neither is fixed: Any exponentla- 
tion is searched for. Exponentlation is 
treated as a two-argument function with 
name MEXPT as in E below. 
4. If an exponentlation being searched 
for in a sum is actually the only item 
left in the sum (e.g. y**x + A after A 
has been matched and removed) then other 
special cases are considered. If the 
base B is fixed, then B**E matches 1 if 
B @ 0 and E matches 0. If the exponent 
E is fixed, then B**E matches 0 if E is 
a number greater than 0 and B matches 0. 

E. If ai is a specific function (e.g. SIN) 
then the first occurrence of that function 
is searched for. The arguments of the 
pattern are compared with the corresponding 
arguments in the expression, and a check is 
made that the same number of arguments 
appears in the pattern and in the expres- 
sion. If all the component matches 
succeed, al, the pattern, (now fixed) is 
subtracted from e. 

m 

F. If ai is a function whose name is an 
unmatched variable, then any function, 
(possibly +, *, or **) is searched for, and 
treated as in E. 

III. If ~ is a product, 1-[ai then the sum 
operations (except for II-B) are duplicated, 
with "divide" replacing "subtract" and "pro- 
duct" replacing "sum." Since products within 
products are not possible with the MACSYMA 
simplifier, the action taken in II-A has a 
correlate in III only if the simplifier is 
turned off; in such situations, semantic 
pattern matches will not succeed anyway. 
IV. If ~ is an exponentiatlon, the ~ is 
treated as in II-D, l, 2, and 4. If neither 
the base nor the exponent is fixed, (the 
situation of II-D-3), e is treated as follows: 

A. If ~ is l, ~ is--compared to l**0. 
B. If e is 0, ~ is compared to 0**l. 
C. If-- e is not an exponentiation, ~ is 
compared To e**l. 
D. If e is an exponentiation, the 
respective bases and exponents of ~ and 



are compared. 
V. If ~ is some specific function, it is 
treated as follows: The function name in 
(e.g. SIN) must match the leading operator in 
e. The respective arguments of the pattern 
and expression are then compared and a check 
is made that the same number of arguments 
appears in the pattern and in the expression. 
If all the component matches succeed, the pat- 
tern succeeds. 
VI. If £ is an unspecified function whose 
name is unmatched, it is treated as in V, 
except that the unmatched function name of 
is compared to the leading operator of e. 
VII. If £ is an atomic unmatched variable, it 
is compared to e. 

These operations may be nested to an 
arbitrary depth, since comparing a pattern and 
an expression may invoke comparisons of sub- 
expressions. Furthermore, this algorithm is 
exhaustive, in the sense that given any 
syntactically valid MACSYMA expression, a pat- 
tern matching process will be defined for it. 

Appendix II 

The following LISP listing of QUAD uses 
several system conventions which can be 
briefly summarized as follows: 

All user varlable-names have a dollar 
sign prefixed to them. The *KAR[ERRSET[...]] 
construction serves only to catch illegal 
operations or ERR[]'s and return NIL in such 
instances. MATCOEF[X,Y] returns the coef- 
ficient of Y in X. The definition of "coef- 
ficient" used here may be found in [i0]. It 
corresponds to the usual intuitive notions, 
but supplies answers when intuition generally 
falters. MEVAL[X] is the MACSYMA evaluator. 
It substitutes values for variables in the ex- 
pression X, evaluates the result, and returns 
a simplified expression as an answer. 
RATSIMP[X] rationally simplifies X. RETLIST 
returns a llst of its arguments and their 
values. 

The G00n names are symbols produced to 

meet the need for unique new variable names. 

(DEFPROP SQUAD 
(LAMBDA (G0042 $X) 

(*KAR (ERRSET (PROG (G0043 G0044) 
(SETQ G0043 

(MATCOEF G0042 
(MEVAL (QUOTE ((MEXPT SIMP) 

Sx 
2) ) ) ) )  

(COND ((MEVAL (QUOTE (($NONZEROANDFREEOF) 
Sx 
G0043))) 

(SETQ $A G0043)) 
((ERR))) 

(SETQ G0042 (MEVAL (QUOTE (($RATSIMP) 
((MPLUS) 
G0042 
((MTIMES) 
-l 

G0043 
((MEXPT SIMP) 

Sx 
2))))))) 

(SETQ G0044 (MATCOEF G0042 $X)) 
(COND (($FREEOF $X G0044) (SETQ $B G0043)) 

((ERR))) 
(SETQ G0042 (MEVAL (QUOTE (($RATSIMP) 

((MPLUS) 
G0042 
((MTIMES) 
-I 
G0044 
Sx)))))) 

(COND (($FREEOF $X G0042) (SETQ $C G0042)) 
((ERR))) 

(RETURN (RETLIST $C $B $A $X)))))) 
EXPR) 

323 


