
ps.txt Thu May 01 11:06:38 2025 1

 MASSACHVSETTS INSTITVTE OF TECHNOLOGY
 Department of Electrical Engineering and Computer Science

 6.5150 Spring 2025
 Problem Set 8

Issued: Wed. 9 April 2025 Due: Fri. 25 April 2025

This is the LAST PROBLEM SET for 6.5151! Whew!
 You have two weeks to work on this problem set.
 There will be one more problem set for 6.5150 students only.

Everybody: Please work on your projects. Draft project reports
 are due on Wednesday, 30 April 2025. You will present your
 projects on the week of May 5 through May 9. Final project
 reports are due Friday May 9.

 We cannot accept late problem sets or papers after the last
 class, which is Tuesday May 13.

Readings:
 Online MIT/GNU Scheme Documentation,
 Section 2.3: Dynamic Binding - parameterize and fluid-let
 Section 12.4: Continuations - call-with-current-continuation

 Here is a nice paper about continuations and threads:
 http://repository.readscheme.org/ftp/papers/sw2003/Threads.pdf
 In fact, there is an entire bibliography of stuff about this on:
 http://library.readscheme.org/page6.html

Code: load.scm utils.scm queue.scm schedule.scm actors.scm
 syntax.scm time-share.scm

 The Actor Model of Concurrency

We have examined traditional time-sharing in lecture, and the
propagator system we will be playing with is another way to think about
multiple computing agents acting in parallel: each propagator can be
thought of as an independent computing agent.

In 1973 Carl Hewitt came up with an idea for formulating concurrency,
based on message passing, called "actors." (Yes, that is the same
Carl Hewitt who had the idea of match combinators.) Very crudely,
Hewitt’s idea is that when you call an actor (send it a message) the
call immediately returns to the caller, but the message is put on a
queue of work for the actor to do. Each actor processes the elements
of its input queue, perhaps changing its local state as it does so.
In Hewitt’s actors the state update is accomplished by the actor
"replacing itself" with a new behavior. If the intention of the

ps.txt Thu May 01 11:06:38 2025 2

caller was to receive a reply it would have to pass its return
continuation as an argument to the called actor as part of its calling
message.

In Hewitt’s ideal system there were no computational objects that were
not actors, including integers. So to add "2" to "3" you send an
"add" message with a return address to "2". You then receive a
2-adder to which you send a "3" and a return address which will
receive "5". This made a very elegant object-oriented system, where
everything was implemented by message passing. See the article
http://en.wikipedia.org/wiki/Actor_model for more information.

Here I will be less orthodox and consider an actor-inspired system
that adds an actor-like procedure to an ordinary Scheme-like lambda-
calculus interpreter. This is more to my (GJS) liking, because it
does not require everything to be an actor -- I hate grand theories
and magic bullets that restrict a programmer to do things by someone’s
grand theory. The languages Erlang and Scala both provide mechanisms
to support actor-like behaviors.

So, let’s get into it. We provide an "actor" extension for MIT/GNU
Scheme: You can load it with (load "load"). We initialize it with
(init-actors). This is a work in progress. THERE ARE BUGS! However
there is much that we can learn from this system.

In this system we can run ordinary programs in the usual way:

 (define fib
 (lambda (n)
 (if (< n 2)
 n
 (+ (fib (- n 1))
 (fib (- n 2))))))
 ;Value: fib

 (fib 10)
 ;Value: 55

ps.txt Thu May 01 11:06:38 2025 3

But we can also define the Fibonacci computer in terms of actors,
using "alpha expressions" rather than "lambda expressions":

 (define fib1
 (alpha (n c)
 (if (< n 2)
 (c n)
 (let ((x ’not-ready) (y ’not-ready))
 (define wait-for-xy
 (alpha (k)
 (if (boolean/or
 (eq? x ’not-ready)
 (eq? y ’not-ready))
 (wait-for-xy k)
 (k (+ x y)))))
 (wait-for-xy c)
 (fib1 (- n 1)
 (lambda (v) (set! x v)))
 (fib1 (- n 2)
 (lambda (v) (set! y v)))))))
 ;Value: fib

 (fib1 10 write-line)
 ;Value: task-added

 55

Here fib1 is an actor that takes a number and a continuation to call
with the value. If the number is not less than 2 it sets up two state
variables, x and y, to capture the values of the recursive calls. It
also defines an actor procedure that busy-waits until x and y are
available. The continuations of the recursive calls are just
assignments to the capture variables. In cases where we don’t want to
start a concurrent process, we use lambda rather than alpha.

We see that the call (fib1 10 write-line) returns immediately with the
value task-added and later we see the answer 55 appearing. We also
see that this is very slow, because there are many calls to fib busy
waiting! The busy waiter should really yield instead of looping,
as follows:

ps.txt Thu May 01 11:06:38 2025 4

If we write:

 (define fib2
 (alpha (n c)
 (if (< n 2)
 (c n)
 (let ((x ’not-ready) (y ’not-ready))
 (define wait-for-xy
 (alpha (k)
 (if (boolean/or
 (eq? x ’not-ready)
 (eq? y ’not-ready))
 (begin (yield)
 (wait-for-xy k))
 (k (+ x y)))))
 (wait-for-xy c)
 (fib2 (- n 1)
 (lambda (v) (set! x v)))
 (fib2 (- n 2)
 (lambda (v) (set! y v)))))))

This code runs many times faster.

ps.txt Thu May 01 11:06:38 2025 5

 Implementation

The implementation is really quite simple. Each actor is an
executable to-do procedure, (an ordinary Scheme procedure) associated
with a data structure to hold it, its queue of tasks, and its
runnability. This association is an "apply hook" (see refrence manual
section 12.1). When called with arguments the apply-hook
procedure (not the to-do) adds a task to its queue of tasks. Each task
is a thunk that when called applies the to-do procedure to the
arguments supplied.

 (define-record-type <actor>
 (make-actor to-do task-queue runnable)
 actor?
 (to-do get-actor-to-do)
 (task-queue get-actor-task-queue set-actor-task-queue!)
 (runnable actor-runnable? set-actor-runnable!))

 (define (make-actor-procedure to-do)
 (let ((actor (make-actor to-do (queue:make) #f)))
 (let ((proc
 (make-apply-hook
 (lambda args
 (add-to-tasks! actor
 (lambda () (apply to-do args))))
 actor)))
 (set! all-actors (cons actor all-actors))
 proc)))

 (define (actor-procedure? x)
 (and (apply-hook? x)
 (actor? (apply-hook-extra x))))

Notice that we keep a list of all the actors, so we can initialze
them, as necessary.

ps.txt Thu May 01 11:06:38 2025 6

To add a task to an actor we must add it to the actor’s task
queue and we must make the actor runnable. This must all be
done atomically, because of concurrancy.

 (define (add-to-tasks! actor task)
 (atomically
 (lambda ()
 (queue:add-to-end! (get-actor-task-queue actor) task)
 (add-to-runnable! actor)))
 ’task-added)

 (define (add-to-runnable! actor)
 (if (actor-runnable? actor)
 ’already-runnable
 (begin (set-actor-runnable! actor #t)
 (queue:add-to-end! runnable-actors actor)
 ’made-runnable)))

The alpha expression syntax is implemented as a macro:

 (define-syntax alpha
 (er-macro-transformer
 (lambda (form rename compare)
 (let ((bound-variables (cadr form))
 (body (cddr form))
 (r-make-actor-procedure
 (rename ’make-actor-procedure))
 (r-lambda (rename ’lambda)))
 ‘(,r-make-actor-procedure
 (,r-lambda ,bound-variables ,@body))))))

There is some basic initialization:

 (define all-actors ’())
 (define runnable-actors)

 (define (init-actors)
 (for-each (lambda (actor)
 (set-actor-task-queue! actor
 (queue:make))
 (set-actor-runnable! actor #f))
 all-actors)
 (set! runnable-actors (queue:make))
 (start-time-sharing))

ps.txt Thu May 01 11:06:38 2025 7

So now all that is left is the scheduling and time sharing. To
schedule we find a runnable actor with task to be done: The procedure
switch-tasks is the scheduler. It either returns a task to be
performed or it signals that there are no tasks to be performed or
that a runnable actor actually has no work to do.

 (define (switch-tasks)
 (define (get-task)
 (if (queue:empty? runnable-actors)
 nothing-to-do
 (let ((actor (queue:get-first! runnable-actors)))
 (let ((actor-task-queue (get-actor-task-queue actor)))
 ;; If there are no more tasks for this actor,
 ;; it is not runnable.
 (if (queue:empty? actor-task-queue) ; Nothing
 (begin (set-actor-runnable! actor #f)
 ’try-again) ;perhaps another actor?
 (let ((task (queue:get-first! actor-task-queue)))
 ;; Got the first task, and removed it.
 ;; If there are no more tasks for this actor,
 ;; it is not runnable.
 ;; If there are more tasks for this actor,
 ;; requeue it.
 (if (queue:empty? actor-task-queue)
 (set-actor-runnable! actor #f)
 (queue:add-to-end! runnable-actors actor))
 ;; Return task to be executed.
 task))))))
 (let lp ((task (atomically get-task)))
 (if (eq? task ’try-again)
 (lp (atomically get-task))
 task)))

 (define nothing-to-do
 (list ’nothing-to-do))

 (define (nothing-to-do? task)
 (eq? task nothing-to-do))

ps.txt Thu May 01 11:06:38 2025 8

And now for the time-sharing of tasks. There is a preemptive timer
interrupt that runs this whole mess. There is an MIT/GNU Scheme
specific detail: register-timer-event is the MIT/GNU Scheme mechanism
for delivering a timer interrupt. When the time specified by its
first argument expires, it invokes the second argument. This part of
the system was very hard to get right: GJS was up all night debugging
it!

 ;;;; Preemptive scheduling for time-sharing.

 (define time-sharing:quantum 1)
 (define time-sharing-enabled? #t)
 (define time-sharing? #f)

 ;;; This is an MIT/GNU Scheme specific detail.
 ;;; register-timer-event is the MIT/GNU Scheme mechanism for
 ;;; delivering a timer interrupt. When the time specified
 ;;; by its first argument expires, it invokes the second
 ;;; argument.

 (define (start-time-sharing)
 (set! time-sharing? time-sharing-enabled?)
 (define (setup-interrupt)
 (if time-sharing?
 (register-timer-event time-sharing:quantum
 on-interrupt)))
 (define (on-interrupt)
 (setup-interrupt)
 (yield))

 (setup-interrupt)) ; Initialize interrupt

 (define (stop-time-sharing)
 (set! time-sharing? #f))

 ;;; SWITCH-TASKS can return either NOTHING-TO-DO or a
 ;;; thunk that represents a piece of work to be done.

 (define (yield)
 (let ((next-task (switch-tasks)))
 (if (not (nothing-to-do? next-task))
 (begin
 ;; The interrupt routine, including yield, is
 ;; not interruptable, but we must allow the
 ;; task to be run to be interruptable! A mess.
 (unblock-thread-events)
 (set-interrupt-enables! interrupt-mask/all)
 (next-task)))))

ps.txt Thu May 01 11:06:38 2025 9

 ;;; without-interrupts is an MIT Scheme mechanism that turns
 ;;; off all timer interrupts. It executes its thunk
 ;;; atomically.

 (define (atomically thunk)
 (without-interrupts thunk))

 (define (double-check-lock check do if-not)
 (let ((outside
 (atomically
 (lambda ()
 (if (check)
 (begin (do)
 (lambda () ’ok))
 if-not)))))
 (outside)))

ps.txt Thu May 01 11:06:38 2025 10

Problem 9.1:

Here is a simple program that is implemented with actors.

 (define (foo n)
 (define (buzz m)
 (if (not (= m 0)) (buzz (- m 1))))
 (define iter
 (alpha (l i)
 (if (not (= i 0))
 (begin
 (if (eq? l ’a) (buzz (* 100 i)) (buzz (* 100 (- n i))))
 (pp (list l i))
 (iter l (- i 1))))))
 (iter ’a n)
 (iter ’b n))

When I ran this program I got the following output:

 (foo 10)
 ;Value: task-added

 (b 10)
 (b 9)
 (a 10)
 (a 9)
 (a 8)
 (b 8)
 (b 7)
 (a 7)
 (a 6)
 (a 5)
 (b 6)
 (b 5)
 ((b 4)
 a 4)
 (a 3)
 (a 2)
 (b 3)
 (b 2)
 (b 1)
 (a 1)

You may get a different order than I got. Why do we get this output
in such a strange order?

Part a: Explain what you see here.

ps.txt Thu May 01 11:06:38 2025 11

Part b: The fact that the overlap of two printing (PP) calls appeared
here is due to the lack of locking of the output port, so each process
has exclusive access to it. An actor-like way to fix this is to make
PP an actor, so its commands are serialized as separate tasks. Write
the code to implement that, and dmonstrate it.

Problem 9.2:

Note that we have made a choice in the handler for application of
actor procedures: we defer only the execution of the body. Is this
choice a good one? Suppose we wanted to also defer the evaluation of
the operands?

Explain, in a short clear paragraph your opinion on this matter.

Problem 9.3:

The procedure double-check-lock is used in set-variable-value! and
define-variable!.

 (define (double-check-lock check do if-not)
 (let ((outside
 (atomically
 (lambda ()
 (if (check)
 (begin (do)
 (lambda () ’ok))
 if-not)))))
 (outside)))

Why is it needed? Explain both why it is needed and how it works.

ps.txt Thu May 01 11:06:38 2025 12

Problem 9.4:

The first "actor implementation" of the Fibonacci procedure was

 (define fib1
 (alpha (n c)
 (if (< n 2)
 (c n)
 (let ((x ’not-ready) (y ’not-ready))
 (define wait-for-xy
 (alpha (k)
 (if (boolean/or (eq? x ’not-ready)
 (eq? y ’not-ready))
 (wait-for-xy k)
 (k #t))))
 (fib1 (- n 1) (lambda (v) (set! x v)))
 (fib1 (- n 2) (lambda (v) (set! y v)))
 (wait-for-xy (lambda (ignore) (c (+ x y))))))))

a. We explained why is this so slow compared with the traditional
version of fib defined as a doubly-recursive Scheme function in the
same interpreter.

Perhaps it is worthwhile to consider the following alternative
implementation of Fibonnaci:

 (define fib3
 (alpha (n c)
 (if (< n 2)
 (c n)
 (let ((x ’not-ready) (y ’not-ready))
 (define check-if-done
 (lambda ()
 (if (boolean/or (eq? x ’not-ready)
 (eq? y ’not-ready))
 #f
 (c (+ x y)))))
 (fib3 (- n 1)
 (lambda (v) (set! x v) (check-if-done)))
 (fib3 (- n 2)
 (lambda (v) (set! y v) (check-if-done)))))))

The essential difference is that the end test in the first version is
implemented as an actor loop, whereas in the second version it is
implemented as a Scheme procedure that terminates by returning #f
rather than calling a continuation. This returns very fast.

ps.txt Thu May 01 11:06:38 2025 13

However, if we try to do the same with an actor version of
check-if-done, we get a weird result!

 (define fib4
 (alpha (n c)
 (if (< n 2)
 (c n)
 (let ((x ’not-ready) (y ’not-ready))
 (define check-if-done
 (alpha (c)
 (if (boolean/or (eq? x ’not-ready)
 (eq? y ’not-ready))
 #f
 (c (+ x y)))))
 (fib4 (- n 1)
 (lambda (v)
 (set! x v)
 (check-if-done c)))
 (fib4 (- n 2)
 (lambda (v)
 (set! y v)
 (check-if-done c)))))))

 (fib4 10 write-line)
 ;Value: task-added

 55
 55

b. Explain why we get two copies of 55. Can you fix this?

ps.txt Thu May 01 11:06:38 2025 14

 Futures

The procedures that were illustrated in Problem 9.4 share an idea. An
actor is started; when it finishes it sets a return value in the
caller. The caller must check when the results of pending
computations are completed for it to proceed to use those results.
This pattern should be abstracted. One way is by the introduction of
"future"s. (This abstraction was introduced by Robert H. Halstead,
Jr. in the early 1980’s. Sometimes futures are called "promises", but
this word usually refers to delay thunks.) With futures, the code for
Fibonacci looks like:

 (define fib
 (alpha (n c)
 (if (< n 2)
 (c n)
 (let ((xp (future (lambda (k) (fib (- n 1) k))))
 (yp (future (lambda (k) (fib (- n 2) k)))))
 (wait xp
 (lambda (x)
 (wait yp (lambda (y) (c (+ x y))))))))))

 (fib 10 write-line)
 ;Value: task-added
 55

Notice that the future converts the continuation into an object whose
fulfillment one can wait for.
A future is a mutable data structure. It contains a continuation, a
"done" flag, a value. When a future gets fulfilled, its value is
stored, and the done flag is set.

Problem 9.5:

Here we implement futures. The implementation should be added to the
guest interpreter.

a. Your first job is to construct the data structure for a future. We
 recommend using record structures for this.
b. Implement procedures FUTURE and WAIT. Make sure that your WAIT
 does not hang: it should return immediately but put a continuation
 on a queue of things to do. Assume here that a future is waited on
 only once. Make sure that you protect critical regions with
 ATOMICALLY.
c. What goes wrong with your implementation if the assumption is
 violated?
d. Improve your implementation to relax the assumption.
