
6.5150, Spring 2025—Pset 2 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.5150/6.5151—Large-Scale Symbolic Systems
Spring 2025

Pset 2

Issued: 19 Feb. 2025 Due: 28 Feb. 2025

Reading:

SICP sections 2.4 and 2.5

SDF Chapter 3, Section 3.1

Documentation:

The MIT/GNU Scheme documentation, available online at
http://www.gnu.org/software/mit-scheme/

The Software Manager documentation, available online on the class website

Note: This and subsequent problem sets require you to read and understand a substantial amount
of code. Please be sure to start early and ask for help if you need guidance.

The code for this problem set is written in a professional style. It is broken up into many files, some
of which are quite small. There are many parts that are setups for future use in a larger system
(and in future problem sets!). Also, we use MIT/GNU Scheme record structures at the lowest level,
so you may need to read about them in the documentation.

The code base for 6.5150/6.5151 is available as a tarball sdf.tgz on the class website. You should
download it and expand it under an appropriate directory (I suggest ~/6.5150/). For my laptop
the appropriate shell command is:

gjs@gjs-x2:~/6.5150$ tar xzf sdf.tgz

This will make a subdirectory ~/6.5150/sdf/ that contains the code directories for the entire
term. There is a special directory ~/6.5150/sdf/manager this containing the software manager
code, that we will use to manipulate and load software for this class (RTFM!, it is short!). After
you start the MIT/GNU Scheme system, tell it to load the software manager with:

(load "~/6.5150/sdf/manager/load" )

For example, to load the files that are used in this problem set you will say:

(manage ’new ’combining-arithmetics)

You will see that many files are loaded into the Scheme system from various subdirectories of sdf.
Files from common are used for lots of stuff, whereas files from combining-arithmetics are just for
this work. The instructions for which files to load are in the sdf/combining-arithmetics/load-spec
file, which contains the following declaration:



6.5150, Spring 2025—Pset 2 2

(define-load-spec combining-arithmetics

("arith" from "common")

("numeric-arith" from "common")

"standard-arith"

"function-variants"

("stormer2" from "common" test-only? #t))

So, besides a bunch of stuff that is default loaded from the common directory there are two files that
are explicitly loaded from common and two files that are loaded from the combining-arithmetics
directory.

You can modify any files in your copy of the sdf directory structure, and you can make new ones,
which you may add to the appropriate load-spec file. Note that any files that you modify in
common may affect what happens in future problem sets!

In any case, please hand in only your modifications... We do not want to see huge amounts of code
that repeats what we have provided.

When creating new arithmetics, you do not need to write n-ary procedures—n-ary procedures
should be defined as binary procedures which are then extended to n-ary when they are installed.
See sdf/common/arith.scm for details on how this works.

One special note: after you execute an install-arithmetic! you will have modified the Scheme
arithmetic, so ordinary arithmetic may no longer work. You can fix this by (install-arithmetic!
numeric-arithmetic). If you are really confused, you can always do a reload by executing (manage
’new ’combining-arithmetics), which will get you an entirely new environment, in the state
described by your load-spec. This will lose the broken environment and all definitions made in
that environment. If you are using EDWIN this has no effect on your EDWIN buffers. In general,
it is almost never necessary to get a new Scheme system: it is a very tough system!

A note about workflow: If you are using Edwin (or running under Emacs) it is almost never to your
advantage to leave the Emacs or Edwin and start another one. Scheme and Emacs are interactive
systems. We do not need to go through the edit-compile-runprogram-debug loop that is common
with languages like C. When your Scheme program has a bug you can examine the stack and
evironment in Scheme. You can edit your code to fix the bug. You can then clear the bug state
with ctrl-C ctrl-C, and re-execute the parts of your code to effect the patch and retry your example.
This is the most efficient way to work in Scheme under Emacs or Edwin.

To Do

Exercise 3.1: Warmup with Boolean Arithmetic (SDF p. 84)

Exercise 3.2: Vectors (SDF p. 85–86)

Exercise 3.3: Ordering of Extensions (SDF p. 86–87)

Exercise 3.a: Again, to what extent is this kind of expansion of the power of arithmetic possible
in your favorite non-Lisp language? Can you overload simple operators, like + and *? Can you
overload arbitrary functions, like sin and sqrt? What is hard and what is easy? Pick your favorite
language and show examples of how to do what can be done easily and what is hard. For example,
in python there are “dunder methods” for some operators. Is there a moral to this story?


