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General Instructions

A problem set for this class generally asks you to do some programming. We usually give you a
program to read and extend. You should turn in your extensions, in the form of a paper illustrated
with clearly annotated code and executions that demonstrate its effectiveness. We may also ask for
short essays explaining an idea. Your answers to these questions must be clear and concise: good
logic expressed in good English is required. Thank you.

The purpose of this problem set is to help you get started. Since we will mostly use MIT/GNU
Scheme you should install MIT/GNU Scheme on your favorite computer. Scheme is available at
http://www.gnu.org/software/mit-scheme/. For a bit of help look at the “Don’t Panic” memo,
referred to by URL in the reading. You will also need to get experience with EDWIN, the EMACS-
derived editor that is included in MIT/GNU Scheme. Unless you are very familiar with EMACS we
highly recommend that you go through the tutorial that comes with the editor. (A small amount of
boring work that will save you enormous amounts of time later.) The exercises in this problem set
are designed to help you gain experience with writing and testing procedures and data abstractions
in Scheme.

For each problem below, include your code (with identification of the problem number being solved),
as well as comments and explanations of your code, and demonstrate your code’s functionality
against a set of test cases. On occasion, we may provide some example test cases, but you should
always create and include your own additional, meaningful test cases to ensure that your code
works not only on typical inputs, but also on more difficult cases. Get in the habit of writing and
running these test cases after every procedure you write—no matter how trivial the procedure
may seem to you.

Read the entire description before you start working. In this problem set every sentence in
boldface describes something that you should include in your paper—e.g., procedures to write,
test cases to run, or questions to answer. Usually the problem sets will be less formal than this
one, but we will hold your hand here to help you get started.

For this problem set, you need to make a directory (folder, in modern usage) on your computer
for the problem set (I would personally call it "∼/6.5150/ps00/") and a subdirectory called
"code" (so you would have the directory "∼/6.5150/ps00/code/". Download the problem set
text into "∼/6.5150/ps00/" and the code into "∼/6.5150/ps00/code/". There will be a file in
the code directory named "load.scm". You can load the code you need into the Scheme system
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by pointing the Scheme at the code directory, with executing (cd "∼/6.5150/ps00/code/") and
then executing (load "load"). The code files you load will contain some extra material, not in
the text, that support the problem set.

For example, this problem set includes some provided code in the file "p0utils.scm".

For later problem sets we will be using a more sophisiticated software manager system for getting
the code that you need and loading it into the Scheme system. This manager is introduced in
Appendix A of the textbook (Software Design for Flexibility). You will not need it for this problem
set.

Note: Loading of the support files for this problem set by loading "load.scm" reinitializes the top-
level environment of Scheme, so you will lose any definitions you have made in that environment.
But this will not lose buffers in your EMACS or EDWIN, so your code is not lost. Of course, you
should write out the files you are building regularly, probably in your directory "∼/6.5150/ps00/".
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Introduction

One of the longstanding problems in using encryption to encode messages is that the recipient of
the message needs to know the key in order to decrypt the message. Clearly we somehow have
to get the key to the participants so they can use it. We can’t send the key to them without
encrypting *it*, or someone might eavesdrop and get it. But this puts us in an infinite loop: the
person getting the key will need to know what second key was used to encrypt the first key, etc.

How can we break this cycle? One amazingly clever idea is called the Diffie-Hellman key agreement
protocol.1 This protocol enables two agents to share a secret, using completely open communication:
Alyssa and Ben,2 who have never interacted before, have an open conversation—anyone, including
Eve, the eavesdropper, may hear the complete conversation. At the end of the conversation Alyssa
and Ben will possess a shared secret that no one else, including Eve, can know. How is this possible?

The idea is very simple. It is amazing that it had not been thought of hundreds of years ago. Here
is the idea:

� Everyone knows two publicly advertised numbers a, p.3

� Alyssa chooses a secret number, Sa, that she remembers.

� Ben chooses a secret number, Sb, that he remembers.

� Alyssa computes Pa = aSa (modp) and announces Pa.

� Ben computes Pb = aSb (modp) and announces Pb.

� Alyssa computes x = Pb
Sa (modp) = aSbSa (modp).

� Ben computes y = Pa
Sb (modp) = aSaSb (modp).

� But x = y, so Alyssa and Ben share a secret.

The secret shared by Alyssa and Ben is the number x = y. The reason why Eve cannot obtain the
same secret is that for a sufficiently large prime number p, and sufficiently large secret numbers
Sa and Sb, given the public information, a, p, aSa (modp), and aSb (modp), there is no efficient
algorithm known to get aSaSb (modp).4 The secret shared by Alyssa and Ben can then be used as
a key for a cryptographic system to encrypt and decrypt messages that cannot be read by Eve.

1This discovery was the greatest advance in cryptography in 2000 years! See the breakthrough paper: Whitfield
Diffie and Martin E. Hellman, “New Directions in Cryptography,” in IEEE Transactions on Information Theory, vol.
IT-22, pp 644-654, November, 1976. Apparently, this idea had been thought of a bit earlier, by members of the
British intelligence service, but they did not publish it. Tough!

2Traditionally, in cryptographic literature, the participants are named Alice and Bob, but in our class they are
named Alyssa and Ben.

3For this to work p must be a prime number. Systems based on some primes are harder to crack than others. The
primes that are usually chosen are of the form p = 2q + 1, where q is itself a prime. Such a p is called a safe prime.
The value of the “primitive root”, a, is usually 2 or 5.

4The only known algorithm for cracking this depends on the discrete logarithm problem. As far as we know, if p,
Sa, and Sb are each only a few thousand decimal digits long, the time to crack this problem with classical computers,
however fast, is longer than the lifetime of the Earth. But, if quantum computers can be built, cryptosystems like
this one will be cracked easily. This was shown by Peter Shor in his landmark paper “Polynomial-time algorithms
for prime factorization and discrete logarithms on a quantum computer,” which appeared in the SIAM Journal of
Computing, 26, pp. 1484-1509 (1997).
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In this project you will implement a Diffie-Hellman key agreement protocol and a very simple
cryptosystem based on the Diffie-Hellman idea. Along the way, you will have to create procedural
and data abstractions for solving some subproblems, including:

� modular arithmetic (addition, subtraction, and multiplication mod n)

� fast exponentiation (computing an when n is very large)

� generating large random numbers

� testing whether a large number is prime

� picking a large prime number at random

� finding multiplicative inverses mod n

Problem 1: Modular Arithmetic

We will need operators for modular arithmetic. Modular arithmetic is arithmetic on a reduced
set of integers, in the range 0 to n − 1 for some fixed integer n > 0. The integer n is called the
modulus. To indicate that we are doing modular arithmetic, we write (mod n) after an expression:
for example, 5 + 8 (mod 12).

Addition, subtraction, and multiplication work mostly the same way as in integer arithmetic, except
that the result must always be in the range [0, n− 1]. We guarantee this by taking the remainder
of the result after dividing by n. For example, 5 + 8 = 13 in integer arithmetic, but in mod-12
arithmetic, we take the remainder after dividing 13 by 12, which is 1. Here are some other examples:

5 + 8 = 1 (mod 12)

2 + 3 = 5 (mod 12)

6 ∗ 5 = 6 (mod 12)

9− 18 = 3 (mod 12)

The last example may be somewhat mysterious, since 9− 18 = −9 in ordinary integer arithmetic.
To determine the correct value of −9 (mod 12), we need to add or subtract a multiple of 12 that
produces a result in the desired range [0, 11]. More formally, we need to find integers a and b such
that −9 = 12a+ b, where 0 ≤ b ≤ 11. By choosing a = −1, we have −9 = −12+ b which solves for
b = 3.

Scheme has two operators for computing remainders after division: remainder and modulo. Try
applying each operator to some integers. For example:

(modulo 13 8) ; -> ?

(remainder 13 8) ; -> ?

(modulo -13 8) ; -> ?

(remainder -13 8) ; -> ?

(modulo -13 -8) ; -> ?

(remainder -13 -8) ; -> ?
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What is the difference between remainder and modulo? Which one is the best choice
for implementing modular arithmetic as described above? Include your test results and
your answers to these questions in a comment in your solution.

Write procedures for addition, subtraction, and multiplication modulo n. Each procedure
should take three parameters: the values to combine, a and b, and the modulus n. For example,
the expression (+mod 7 5 8) should compute 7 + 5 (mod 8). Here are three skeleton procedures
to get you started:

(define +mod (define -mod (define *mod

(lambda (a b n) (lambda (a b n) (lambda (a b n)

YOUR-CODE-HERE)) YOUR-CODE-HERE)) YOUR-CODE-HERE))

Test your code for at least the following cases.

(+mod 7 5 8) ; -> 4

(+mod 10 10 3) ; -> 2

(-mod 5 12 2) ; -> 1

(*mod 6 6 9) ; -> 0

(+mod 99 99 100) ; -> ?

(*mod 50 -3 100) ; -> ?

Notice that the procedures you wrote for modular addition, subtraction, and multiplication are
almost all the same. Time for abstraction! Also, when working in modular arithmetic we often
do most of our work in a particular modulus. Thus it is helpful to be able to define particular
operators for each modulus. For example, we might define addition, subtraction and multiplication
modulo 12 as follows:

(define +m12 (modular 12 +))

(define -m12 (modular 12 -))

(define *m12 (modular 12 *))

And we would be able to use these operators:

(-m12 (*m12 (+m12 5 8) 3) 7) ; -> 8

Fill in the following code fragment to complete the procedure modular that allows us to
make the binary modular operators. modular should take a modulus and an ordinary
arithmetic procedure and produce a modular arithmetic procedure. For example,
((modular 8 +) 7 5) should compute (7 + 5) (mod 8) = 4.

(define modular

(lambda (modulus op)

(lambda (a1 a2)

YOUR-CODE-HERE)))

Test your code for at least the following cases.
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((modular 17 +) 13 11) ; -> 7

((modular 17 -) 13 11) ; -> 2

((modular 17 *) 13 11) ; -> 7

Quite often we will use an alternative syntax for defining procedures. The following definitions are
equivalent:

(define modular

(lambda (modulus op)

(lambda (a1 a2)

BODY OF THE PROCEDURE)))

(define (modular modulus op)

(lambda (a1 a2)

BODY OF THE PROCEDURE))

(define (modular modulus op)

(define (the-operator a1 a2)

BODY OF THE PROCEDURE)

the-operator)

(define ((modular modulus op) a1 a2)

BODY OF THE PROCEDURE)

The choice of definition syntax is a matter of style. You may want to emphasize some particular
aspect for the reader to notice. After all, much of the value of computer language is communicating
to human readers.

Note about preparing your submission

You should run the tutorial for the editor so you understand how to work in the MIT/GNU Scheme
environment. As you are working on your project, you may want to plan ahead for the document
that you will submit as your work. We assume that you will start a file for this problem set (ps00)
with some name like ps00.scm by typing the command C-x C-f ps00.scm to EDWIN. This will
make an editing buffer that will be in Scheme mode, helping you with balancing parentheses and
adjusting indentation. When you save the buffer (with C-x C-s) the buffer will be written out
as the file with name ps00.scm in your directory. You will also have a buffer named *scheme*,
which is running a read-eval-print loop. (You can show both buffers simultaneously as two windows
and move between them easily.) You will compose your answers to the problems in the ps00.scm

directory. You can comment out results of evaluation, explanations, and discussion with comment
brackets #| and |#. When you save the file, you get something you can read back and work on
again, or print and submit for us to read. If you comment out only the results and the commentary
text then you can execute the contents of the file directly. The Scheme interpreter will ignore the
commented material.

We will help you to get started.
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Problem 2: Raising a Number to a Power

This problem is easy if you’ve read Chapter 1 in SICP.

Recall that the basic operation in Diffie-Hellman key agreement is raising a number to a power
(modulo n).

Here’s a simple procedure that computes ab (mod n) by multiplying a by itself b times. Note that
it uses modular arithmetic operations, namely *mod, rather than *:

(define (slow-exptmod n)

(let ((*mod (modular n *)))

(define (em a b)

(if (= b 0)

1

(*mod a (em a (- b 1)))))

em))

Answer these questions in comments in your file: What is the order of growth in time of
slow-exptmod? What is its order of growth in space? Does slow-exptmod use an iterative
algorithm or a recursive algorithm? Measure time and space the same way we did in lecture:
time by counting the number of primitive operations that the computation uses, and space by
counting the maximum number of pending operations.

As its name suggests, slow-exptmod isn’t going to be fast enough for our purposes. We can make
a faster procedure using the trick of repeated squaring.5 Compare these two ways of computing
38. The left column shows how slow-exptmod would do it, and the right column uses repeated
squaring:

3^0 = 1 3^0 = 1

3^1 = 3^0*3 = 3 3^1 = 1 * 3 = 3

3^2 = 3^1*3 = 9 3^2 = (3^1)*(3^1) = 9

3^3 = 3^2*3 = 27 3^4 = (3^2)*(3^2) = 81

3^4 = 3^3*3 = 81 3^8 = (3^4)*(3^4) = 6561

3^5 = 3^4*3 = 243

3^6 = 3^5*3 = 729

3^7 = 3^6*3 = 2187

3^8 = 3^7*3 = 6561

5This technique is discussed in section 1.2.4 of SICP.
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Fill in the details of the procedure exptmod that computes ab (mod n) using repeated
squaring. You should use your modular arithmetic operations in your solution. Do not use expt

or slow-exptmod in your solution.

(define (exptmod p)

(let ((mod* (modular p *)))

(define (square x)

(mod* x x))

(define (em base exponent)

YOUR-CODE-HERE)

em))

Test your code for at least the following cases:

((exptmod 10) 2 0) ; -> 1

((exptmod 10) 2 3) ; -> 8

((exptmod 10) 3 4) ; -> 1

((exptmod 100) 2 15) ; -> 68

((exptmod 100) -5 3) ; -> 75

Answer these questions in comments in your file: What is the order of growth in time of your
implementation of exptmod? What is its order of growth in space? Does your exptmod

use an iterative algorithm or a recursive algorithm?

Problem 3: Large Random Numbers

We will need a source of random numbers for the modulus and for the individual secrets. Scheme
has a builtin procedure random that takes a single integer n > 0 and returns a random integer in
the range [0, n− 1]. For example, here are the results of a few calls to random:

(random 10) ; -> 1

(random 10) ; -> 6

(random 10) ; -> 6

(random 10) ; -> 0

(random 10) ; -> 7

Unfortunately, the implementation of random in some versions of Scheme is not sufficient for our
purposes, because its parameter n can be no larger than 231 − 1, which is only a couple billion.
(The random number generator in MIT/GNU Scheme does not have this limitation.) But we’re
going to want random numbers at least as large as 2128, if not larger.

Just for practice, let’s proceed as if we did not have a fully competent Scheme. So our goal for this
problem is to make a procedure big-random that behaves like random, taking a parameter n > 0
and returning a random number in [0, n− 1], but that doesn’t have any limit on the size of n.

Start by writing a procedure random-k-digit-number that takes an integer k > 0 and
returns a random k-digit number. You should choose each digit using the builtin procedure



6.5150, Spring 2025—Pset 0 9

random, then construct the k-digit number by putting those digits together. For example, if you
generate two digits a and b, then you can form a two-digit number by computing 10a+ b.

Test your procedure on at least the following test cases:

(random-k-digit-number 1) ; -> ? (1 digit)

(random-k-digit-number 3) ; -> ??? (1-3 digits)

(random-k-digit-number 3) ; -> ??? (is it different?)

(random-k-digit-number 50) ; -> ???... (1-50 digits)

Note that random-k-digit-number may return a number shorter than k digits, since the leading
digits of the number may turn out to be 0. The result will be a random number in the range
[0, 10k − 1].

With random-k-digit-number, we can now generate arbitrarily large random numbers. But we
want big-random to take a maximum n, not a digit count. So we need a way to use random-k-digit-number
to generate random numbers in the range [0, n − 1]. We’ll do this by first generating a random
number with the same number of digits as n, then ensuring that this number is less than n.

Write a procedure count-digits that takes an integer n > 0 and returns the number
of digits in its decimal representation. One way to do this is to count digits by repeatedly
dividing by 10. Test your procedure on at least the following test cases:

(count-digits 3) ; -> 1

(count-digits 2007) ; -> 4

(count-digits 123456789) ; -> 9

We’re almost ready to write big-random, but there’s one more problem. Suppose somebody calls
(big-random 500), expecting to get back a number between 0 and 499. We use count-digits

to determine that 500 has 3 digits, and then use random-k-digit-number to generate a random
3-digit number. If that number is less than 500, then great, we can return it as the result of
big-random. But what if the number is greater than or equal to 500? Then we just pick another
random 3-digit number. We repeat this process until we get a number that’s in the range we want.

This is a simple example of a probabilistic algorithm—an algorithm that depends on random chance.
A probabilistic algorithm isn’t guaranteed to succeed, but its probability of success can be made as
high as we need it to be. In this case, it’s possible for the algorithm to have a really bad string of
luck, and repeatedly pick 3-digit numbers higher than 500. But the chance of this happening, say,
1000 times in a row is the same as the chance of flipping heads on a coin 1000 times in a row, which
is less than the probability that cosmic rays will cause your computer to make an error in running
your Scheme code. So, in practice, as long as we keep picking random numbers (and assuming
random-k-digit-number really is random), this probabilistic algorithm is just as likely to succeed
as a deterministic algorithm.
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Use this approach to write a procedure big-random that takes an integer n > 0 and
returns a random number from 0 to n− 1. Your procedure should handle arbitrarily large n.

Since your procedure needs to generate a random number, test it for a property, and then return
it if it satisfies that property.

Test big-random on at least these test cases:

(big-random 100) ; -> ?? (1-2 digit number)

(big-random 100) ; -> ?? (is it different?)

(big-random 1) ; -> 0

(big-random 1) ; -> 0 (should be always 0)

(big-random (expt 10 40)) ; -> ????... (roughly 40-digit number)
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Problem 4: Prime Numbers

This problem is easy if you’ve read Chapter 1 in SICP.

In the Diffie-Hellman key agreement protocol we will need a very large prime number for the
modulus p. Let’s go!

We’ll start by developing a test for whether a number is prime. By definition, a prime number is
not divisible by any integer other than itself and 1. This leads directly to a simple way to test
whether n is prime, by testing every number less than n to see if it’s a factor of n:

(define (slow-prime? n)

(define (test-factors n k)

(cond ((>= k n) #t)

((= (remainder n k) 0) #f)

(else (test-factors n (+ k 1)))))

(if (< n 2)

#f

(test-factors n 2)))

Answer these questions in comments in your file: What is the order of growth in time of
slow-prime? What is its order of growth in space? Does slow-prime? use an iterative
algorithm or a recursive algorithm?

Unfortunately slow-prime? is too slow. Ben Bitdiddle proposes two optimizations:

� “We only have to check factors less than or equal to
√
n.” How would this affect the order

of growth in time? Note that we’re not asking you to write Scheme code implementing
Ben’s suggestion; just think about it and answer this question as a comment in your file.

� “We only have to check odd factors (and 2, as a special case).” How would this affect the
order of growth in time?

Ben’s improvements won’t be enough for us to test very large numbers for primality; we need a
completely different algorithm. For faster prime number testing, we turn to a beautiful result about
modular arithmetic. Fermat’s Little Theorem states that if p is prime, then ap = a (mod p) for
all a. In other words, if p is prime, then we can take any integer a, raise it to the power p, take
the remainder after dividing by p, and we’ll get a back again (modulo p). Test Fermat’s Little
Theorem using your exptmod procedure and a few suitable choices of a and p. Include
your tests in your answer file.
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The converse of the theorem doesn’t hold, unfortunately; if p is composite (not prime), then it isn’t
always true that ap ̸= a (mod p). But it’s true often enough that we can use this theorem as the
basis for a probabilistic algorithm that tests whether a number p is prime:

1. Pick a random integer a in the range [0, p− 1], using your big-random procedure.

2. Test whether ap = a (mod p).

3. If not, then p is definitely not prime, by Fermat’s Little Theorem.

4. If so, then p may or may not be prime. Repeat the test with a new random integer a.

If you pick enough random numbers a, and all of them pass the test of Fermat’s Little Theorem,
then you have strong confidence that p is prime.6

Write a procedure prime? that uses this technique to test whether its parameter p is
prime. Your procedure should test at least 20 random values of a before assuming that p is prime.
In fact, it’s good practice to define a name for this constant, prime-test-iterations, since it may
need to be adjusted later.

(define prime-test-iterations 20)

(define prime?

(lambda (p)

YOUR-CODE-HERE))

Test prime? on at least the following test cases:

(prime? 2) ; -> #t

(prime? 4) ; -> #f

(prime? 1) ; -> #f

(prime? 0) ; -> #f

(prime? 200) ; -> ?

(prime? 199) ; -> ?

Answer these questions in comments in your file: What is the order of growth in time of
your implementation of prime? What is its order of growth in space? Be sure to take the
calls to exptmod into account when answering these questions. Does prime? use an iterative
algorithm or a recursive algorithm?

6But not certainty. Some composite numbers p, called Carmichael numbers, pass the test for almost all a.
Fortunately Carmichael numbers are rare. See http://mathworld.wolfram.com/CarmichaelNumber.html for more
information.
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Problem 5: Random Primes

Fortunately, prime numbers are fairly common,7 so we can find them by a probabilistic generate
and test strategy. We’ll guess a number at random, and then test whether it’s prime. If not, we’ll
pick another random number, and repeat.

Write a procedure random-k-digit-prime that returns a random prime number with
about k digits.

(define random-k-digit-prime

(lambda (k)

YOUR-CODE-HERE))

Note that your procedure is probabilistic – i.e., most of the time it successfully returns a prime
number, but sometimes it may fail. In what ways can your random-prime procedure fail?
Answer this question in a comment. Some kinds of failure are better than others.

Test random-k-digit-prime on at least the test cases below.

(random-k-digit-prime 1)

(random-k-digit-prime 2)

(random-k-digit-prime 10)

(count-digits (random-k-digit-prime 100)) ; Not always 100.

(count-digits (random-k-digit-prime 100))

Problem 6: Multiplicative Inverses

We will also need a way to find multiplicative inverses in modular arithmetic. Given an integer e
and a modulus n, we want to find d such that ed = 1 (mod n). In rational or real arithmetic, d
would be 1/e, but we want an integer. The multiplicative inverse of e exists if and only if e and
n have no common factors; in other words, only if the greatest common divisor (GCD) of e and
n is 1. (The GCD algorithm is described in section 1.2.5 of the text, but you can use the Scheme
builtin procedure gcd for this project.)

Here’s how we find the multiplicative inverse d. We want ed = 1 (mod n), which means that
ed + nk = 1 for some integer k. So we’ll write a procedure that solves the general equation
ax + by = 1, where a and b are given, x and y are variables, and all of these values are integers.
We’ll use this procedure to solve ed+ nk = 1 for d and k. Then we can throw away k and simply
return d.

So we’ve reduced the problem to solving ax+by = 1 for x and y, given a and b. We assume that all
of these terms are integers, and that a and b are greater than 0. Let q be the quotient of dividing
a by b, and let r be the remainder. (Scheme has builtin procedures quotient and remainder for
this purpose.) Then a = qb+ r. Now consider the special case when r = 1: then a = qb+ 1, which
means a ·1+b(−q) = 1, so we have our solution; x = 1 and y = −q. Otherwise, if r ̸= 1, recursively

7Another famous result, the Prime Number Theorem, holds that the number of primes less than n is roughly
n/ lnn. For example, if we pick a random 40-digit number, then the probability that it’s prime is roughly 1/ ln 1040,
or 1/92. See http://mathworld.wolfram.com/PrimeNumberTheorem.html.
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solve the equation bx′ + ry′ = 1, and use the solution (x′, y′) to find the solution to the original
equation ax+ by = 1:

1 = bx′ + ry′ = bx′ + (a− qb)y′ = ay′ + b(x′ − qy′)

Write a procedure ax+by=1 that solves for x and y using the approach outlined above.
Your procedure should return (x, y) as a list.

(define ax+by=1

(lambda (a b)

YOUR-CODE-HERE))

Test ax+by=1 on at least the test cases below. Note that it will only succeed if gcd(a, b) = 1,
so don’t expect it to work otherwise.

(ax+by=1 17 13) ; -> (-3 4) 17*-3 + 13*4 = 1

(ax+by=1 7 3) ; -> (1 -2) 7*1 + 3*-2 = 1

(ax+by=1 10 27) ; -> (-8 3) 10*-8 + 3*27 = 1

Now write a procedure inversemod that finds the multiplicative inverse of e modulo n,
using ax+by=1. Note that before trying to invert e, your procedure should ensure that gcd(e, n) =
1. You can use the builtin Scheme procedure gcd to test this, and the Scheme builtin procedure
error to signal an error if the test fails.

(define (inversemod n)

(lambda (e)

YOUR-CODE-HERE))

Test inversemod on at least the test cases below.

((inversemod 11) 5) ; -> 9 5*9 = 45 = 1 (mod 11)

((inversemod 11) 9) ; -> 5

((inversemod 11) 7) ; -> 8 7*8 = 56 = 1 (mod 11)

((inversemod 12) 5) ; -> 5 5*5 = 25 = 1 (mod 12)

((inversemod 12) 8) ; -> error gcd(8,12)=4, so no inverse exists

((inversemod 101) (random-k-digit-prime 2))

-> ? (test your answer with *mod)

Problem 7: The ElGamal Public-Key Cryptosystem

The ElGamal public-key cryptosystem8 is based on the Diffie-Hellman key-agreement protocol. It
is used in PGP9 and other common cryptography applications.

8See: Taher ElGamal, “A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,” in
IEEE Transactions on Information Theory, vol. IT-31, no. 4, pp. 469–472, 1985.

9PGP was invented by Phil Zimmerman. It is best described in Simson Garfinkel, PGP: Pretty Good Privacy,
O’Reilly & Associates.



6.5150, Spring 2025—Pset 0 15

A public-key cryptosystem does not use the same key for both encrypting and decrypting messages.
There are two keys: a public key used for encrypting, and a secret private key for decrypting. The
public key can be known by anybody; in fact, it’s often put in a public directory, so that Alyssa
can send secret messages to Ben simply by looking up his public key in the directory. His private
key d must be known only to Ben, so that nobody else can decrypt messages sent to him. Your
MIT browser certificate contains a public-key/private-key pair.

Here is how the ElGamal system works: Each receiver chooses a secret private key, S. The receiver
publishes a public key, which gives a, p, and P = aS ( mod p). The receiver also supplies a procedure
that a sender can call with the ciphertext. Given a message, m, the sender chooses his own
secret, T , and sends a ciphertext that has two components, (x, y), where x = aT (modp) and
y = mP T (modp). The Diffie-Hellman shared secret is xS (modp) = aST (modp) = P T (modp).
So the receiver decrypts the message by computing m = y(xS)−1 (modp).

In the file p0utils.scm you will find code for making a receiver:

(define (eg-receiver dh-system)

(let ((k (dh-system-size dh-system))

(p (dh-system-prime dh-system)))

(let ((my-secret (random-k-digit-number k))

(mod-expt (exptmod p))

(mod-* (modular p *))

(mod-inv (inversemod p)))

(let ((advertised-number

(mod-expt (dh-system-primitive-root dh-system) my-secret)))

(let ((public-key

(eg-make-public-key dh-system advertised-number))

(decryption-procedure

(lambda (ciphertext)

(let ((x (eg-ciphertext-x ciphertext))

(y (eg-ciphertext-y ciphertext)))

(let ((m (mod-* y (mod-inv (mod-expt x my-secret)))))

(integer->string m))))))

(eg-make-receiver public-key decryption-procedure))))))

This program is intended to work with a procedure that you will write that sends messages to the
receiver:

(define (eg-send-message message receiver)

YOUR CODE HERE)

An example of the way this pair of procedures can be used is:

(define dh-system (public-dh-system 100))

(define Alyssa (eg-receiver dh-system))

(eg-send-message "Hi there." Alyssa)

;Value: "Hi there."
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In the file p0utils.scm you will also find definitions of all of the data abstractions that you will
need for this exercise, including the code that translates strings to integers and integers to strings.
For example:

(string->integer "hello") ; -> 1578072040808

(integer->string 1578072040808) ; -> "hello"

(string->integer "") ; -> 1

(integer->string 1) ; -> ""

In order to use the provided code in your own file without having to copy and paste it, put
the provided file p0utils.scm in the same folder as your own file and add the expression (load

"p0utils.scm") at the top of your file. The load procedure evaluates all the definitions and
expressions in p0utils.scm, so that you can use string->integer and integer->string in your
own code.

We represent the message we want to send as an integer.10

Write a procedure eg-send-message that takes a message string and a receiver and
calls the receiver’s decryption procedure, encrypted with the receiver’s public key.
The receiver we provided will decrypt the original message and return the string, if your sender is
correctly written.

Demonstrate your eg-send-message with a few short strings sent from Ben to Alyssa.

What is the longest string you can send that will be correctly decrypted with a 100
digit system? You will find that it is not too long!

Problem 8: “Man In The Middle” Attack

One way we can spy on a cryptosystem is by a ”man in the middle” attack. For example, Eve can
shadow Alyssa and observe all of the messages sent to her using the following code.

(define (Eve receiver)

(let ((receiver-public-key

(eg-receiver-public-key receiver))

(receiver-decryption-procedure

(eg-receiver-decryption-procedure receiver)))

(let ((my-spying-procedure

(lambda (ciphertext)

(write ciphertext)

(newline)

(receiver-decryption-procedure ciphertext))))

(eg-make-receiver receiver-public-key

my-spying-procedure))))

10There are several ways to do this. One way is to encrypt one byte of the message at a time, using its numeric
value as the integer representation. Another way is to treat the bytes of the message as digits in a base-256 number,
so that the entire message becomes the integer. We’ll use the latter approach in this project. Practical cryptosystems
do something in between, converting chunks of the message as integers and encrypting one chunk at a time.
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We provide you with this Eve code. You can try it as follows. After defining Alyssa, execute:

(define Alyssa (Eve Alyssa))

Thus Eve will catch and print every message that Ben tries to send to Alyssa. However, Eve will
not be able to interpret the message, because it is encrypted. However, Eve can still make trouble
for the Ben-Alyssa relationship using this trick. How?

Modify the Eve program to make it possible for Eve to make trouble in the relationship.
Explain and demonstrate your nasty trick.


