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Introduction

We have been using the Lagrangian formulation of mechanics in which the equations of
motion are expressed in terms of coordinates and velocities. Continuous symmetries corre-
spond to conserved quantities. By concentrating our attention on the potentially conserved
quantities, energy and momentum, we are led to the Hamiltonian formulation. We ob-
tain Hamilton’s canonical equations that give us the rates of change of coordinates and
momenta in terms of partial derivatives of the Hamiltonian function, which is the energy,
written as a function of coordinates and momenta. The Lagrangian formulation is equiva-
lent to the Hamiltonian formulation: each can be obtained from the other by a Legendre
transformation, if it is not singular.

Exercises
e Exercise 3.1: Deriving Hamilton’s equations. SICM2 page 201
e Exercise 3.3: Computing Hamilton’s equations. SICM2 page 205
e Exercise 3.4: Simple Legendre transforms, parts a and c. SICM2 page 209
e Exercise 3.5: Conservation of the Hamiltonian. SICM2 page 211

Exercise: Hamiltonian formulation of particles in an electromagnetic field.

Note: This problem requires loading some definitions of the vector calculus operators
Grad, Curl, Div, and Lap. These are online in the code subdirectory of the problem
set. Download the file "code/3vector-operators.scm" to your directory and then
execute (load "3vector-operators")

One way of formulating electromagnetic fields is by specifying a scalar potential (for
the electric component) and a vector potential (for the magnetic component). For
static fields the scalar potential ¢ is a real-valued function on the position and the
vector potential A is a vector-valued function of position, here represented by a tuple
of three component functions:



(define A
(literal-function ’A
(=> (UP Real Real Real) (UP Real Real Real))))

(define phi
(literal-function ’phi
(-> (UP Real Real Real) Real)))

In this formulation a Lagrangian for the motion of a particle of mass m and charge ¢,
with speed of light ¢ is:

(define ((L-em ¢ m q) s)
(let ((xyz (coordinate s))
(xyzdot (velocity s)))
(- (* 1/2 m (square xyzdot))
(x q
(- (phi xyz)
(dot-product (/ xyzdot c)
(A xyz)))))))

1. Compute the Lagrange equations for this Lagrangian. Identify the two forces
acting on the particle: the electric force and the magnetic force. Observe that the
magnetic force is four terms involving spatial derivatives of the vector potential.

2. The electric field E = —Grad¢. The magnetic field B = CurlA. Show, by adding
the Lorentz force ¢(E + (v/c) x B) to the Lagrange equations, that the Lagrange
equations correctly implement the Lorentz force law.

3. Now convert to a Hamiltonian formulation. We compute:

(define (Raise d)
(up (ref d 0) (ref d 1) (ref 4 2)))

(let ((s (up ’t (up ’x ’y ’z) (down ’p_x ’p_y ’p_2))))
(let ((xyz (coordinates s))
(pxyz (momenta s)))
(- ((Lagrangian->Hamiltonian (L-em ’c ’m ’q)) s)
(+ (/ (square (- (Raise pxyz)
(x (/ ’q ’c) (A xyz))))
(* 2 ’m))
(* ’q (phi xyz))))))

#| 0 |#

Why is this zero? The kinetic energy term of the Hamiltonian is usually p?/2m.
But here the momentum pxyz must be modified by subtracting (¢/c)A to get
this answer. Interpret this.



