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Issued: 11 September 2024 Due: 23 September 2024
Note: Friday 20 September is a student holiday, so due date was extended to 23 Septem-

ber for this problem set.

Reading: SICM2 Chapter 1 through section 1.7

Introduction

Hamilton’s Principle gives us a prescription for constructing appropriate Lagrangians for
systems of particles, and we have learned that the Lagrangians can be constructed for a
system in any convenient coordinate system. A Lagrangian for a system of particles with
rigid constraints can be constructed using a coordinate transformation that derives the
redundant rectangular coordinates from irredundant generalized coordinates. This makes
it easy! We find that there are many appropriate Lagrangians for any dynamical system.
They differ by a “total time derivative.” The Lagrange equations provide a way to compute
the trajectory given an initial state of generalized coordinates and generalized velocities.
We see that the trajectory of a driven pendulum is extremely sensitive to small variations
of the initial state. This is chaotic behavior.

Exercises

• Exercise 1.16: Central force motion. SICM2 page 47

• Exercise 1.22: Driven pendulum. SICM2 page 59

• Exercise 1.29: Galilean invariance of kinetic energy. SICM2 page 68

• Exercise: Velocity-dependence

Here we consider how the motion of a free particle is seen from a rotating frame of
reference.

A Lagrangian for a free particle is Lfree(t, x, v) =
1

2
mv · v:

(define ((Lfree m) s)

(let ((t (time s))

(q (coordinate s))

(v (velocity s)))

(* 1/2 m (dot-product v v))))



A coordinate transformation to a rotating frame of reference with angular velocity Ω
is:

(define ((rotate Omega) s)

(let ((t (time s))

(q (coordinate s)))

(let ((x (ref q 0))

(y (ref q 1)))

(up (- (* (cos (* Omega t)) x)

(* (sin (* Omega t)) y))

(+ (* (cos (* Omega t)) y)

(* (sin (* Omega t)) x))))))

We can extend that coordinate transformation to a local-tuple transformation using
F->C, to get a Lagrangian:

(define (Lrot m Omega)

(compose (Lfree m)

(F->C (rotate Omega))))

The Lagrange equations for this system are:

(((Lagrange-equations (Lrot ’m ’Omega))

(up (literal-function ’xprime)

(literal-function ’yprime)))

’t)

#|

(down

(+ (* m (((expt D 2) xprime) t))

(* -1 (expt Omega 2) m (xprime t)) ;Centrifugal force

(* -2 Omega m ((D yprime) t))) ;Coriolis force

(+ (* m (((expt D 2) yprime) t))

(* -1 (expt Omega 2) m (yprime t)) ;Centrifugal force

(* 2 Omega m ((D xprime) t)))) ;Coriolis force

|#

We see that the apparent force on the particle includes centrifugal and Coriolis terms.



1. Compute the Lagrangian (Lrot ’m ’Omega) and say which terms result in the
terms we see in the equations of motion. Notice that there are velocity-dependent
terms.

2. Construct the most general (time-varying) two-dimensional potential energy func-
tion that is time-independent in the rotating coordinates.

Make a new Lagrangian that incorporates this potential energy with the free
Lagrangian. Compute the Lagrange equations and observe how the forces derived
from this potential energy are rotated components of the spatial derivatives of
V ′.

Reminder

Project 1 (announced in Problem Set 0) will be due on Friday, 27 September 2024. So start
thinking about it!

Heads up

Project 2 will be due on Friday, 11 October 2024. You will be working on the problem of
the rotation of Mercury, Exercise 2.21 on page 193 of SICM2.


