SR
lab

@ MIT

massachusetts institute of technology — artificial intelligence laboratory

Persistent Nodes for Reliable
Memory in Geographically
Local Networks

Jacob Beal

Al Memo 2003-011 April 2003

Abstract

A Persistent Node is a redundant distributed mechanism for storing a key/value pair reliably
in a geographically local network. In this paper, I develop a method of establishing Persistent
Nodes in an amorphous matrix. I address issues of construction, usage, atomicity guarantees
and reliability in the face of stopping failures. Applications include routing, congestion control,
and data storage in gigascale networks.

1 Introduction

I want to put pieces of data into a network and store them reliably by means of enormous re-
dundancy. That redundancy should be achieved by distributing a huge number of copies of the
data over a geographically local portion of the network, so that maintaining consistency can be
fast and cheap. Conversely, each node in the network should be able to help store many pieces
of data. Persistent Nodes are a mechanism for doing this, and I explore their implementation on
an amorphous matrix. Key results include atomicity for failure-free executions and for executions
with limited stopping failures, as well as experiments demonstrating atomicity in simulation.

2 Amorphous Computing Model

One useful model for studying this domain is two-dimensional amorphous computing.[2] An amor-
phous network is generated by distributing n particles uniformly randomly over a unit square (or
other 2D region) and placing edges between all pairs of particles less than distance d apart. The
resulting graph has spatially local connectivity but no long-distance links. The amorphous matriz
for a given network refers to the spatial embedding of the network graph.

Each particle has a clock which drifts at a rate |r| < e per tick, yielding timing uncertainty
L = %—J_f On each particle, we run an identical partially synchronous algorithm, subject to the
following restrictions:

1. Particles receive no geometric information or coordinates
2. Particles receive no time synchronization information
3. Each particle’s clock is initialized to a random time

Any of a wide variety of communication models may be applied. For purposes of this paper,
I assume send/recieve communication over links with reliable message delivery in maximum time

tm.

3 Technical Sketch of Persistent Nodes

A Persistent Node is, fundamentally, just a key/value pair that lives in a location: imagine that
we spray-paint a red circle on the amorphous matrix and declare that everything painted red will
remember a piece of data. More precisely, a node NN is a circular area of radius r hops on the
amorphous matrix in which the particles store value X and define operations READ(N, X) and
WRITE(N, X). Besides being a READ/WRITE object, however, a node has several other useful
properties.

= Amorphous Experiment [\ [/ |

Figure 1: A Persistent Node (red) on an amorphous matrix (grey). The particles composing the
node occupy a spherical region in space. The arrow shows direction of motion for the node, toward
a denser region of particles.

First and foremost, node state is local in extent. This is because we want the matrix’s capacity
scale linearly with its area, so nodes need to consume constant resources. Thus, information about
a node N is confined to 3r hops distance from its center.

In a geographically local network, failures are likely to be correlated in a region (loss of power
to an entire neighborhood, for example), wiping out regions of the amorphous matrix. Thus, a
node is designed to tolerate stopping failures of regions as well as points. Every particle of a node
contains a copy of the node’s value, and can serve as a seed to reconstruct the node. If any particle
in the node does not fail, and is connected to the rest of the network via non-failing particles,
then the surviving particles will recruit other particles to join the node, rapidly restoring its lost
redundancy.

Nodes can also move from place to place in the matrix. Nodes move by shifting their centers
incrementally, with the direction of motion determined by a potential function ®. ® can be varied
to obtain different effects: one application of this mobility is to scoot away from edges in the matrix
— such as the border of a failure region. Another example is congestion control, where nodes in a
heavily utilized area of the matrix diffuse toward less burdened areas.

Finally, a node is locally indistinguishable from a READ/WRITE atomic object,! and can be
transformed into a true READ/WRITE atomic object.[11] Many applications, such as routing, do
not need nodes to be atomic, and atomicity is costly, so by default persistent nodes fulfill only the
weaker condition of local atomicity. Atomic behavior is necessary for other applications, such as
data storage, so it is equally important that there be a reasonable method for transforming a node
into an atomic object.

In the subsequent sections, I will explain the PERSISTENTNODE algorithm in detail. In Section
4, I describe how a node is created and maintained, then how it moves. In Section 5, I describe how
nodes execute READ and WRITE operations. In Section 5.1 I prove local atomicity for the static
failure-free case and demonstrate how it can be converted to atomicity. In Section 5.2, I extend
the proofs to the dynamic case — moving nodes, and finally in Section 6 I discuss the algorithm’s

!Speaking informally, this extremely weak property looks to capture the benefits of both the eventually serializable
property in [7] and the weak sequential locking in [12].

Amotphous Experiment

Umbra

Reflector

O

Figure 2: Anatomy of a persistent node. The innermost circle is the node proper (red), where data
can be read or written. Every particle within middle circle is in the reflector, which holds data and
calculates which direction the node will move. The outermost circle is the umbra, which knows the
name of the node, but nothing else.

behavior under stopping failures and prove atomicity for limited region failures.

4 Building and Moving Nodes

To create a node, we invoke CREATE(N,r,®) on a particle. This particle becomes the center of
a node named N with radius r and potential function ®. It now begins the node life-cycle: search
outward to define the node, collect heuristic values inward to choose a successor, and hand off the
duty of being center to a successor.

The center of a node continually runs a depth-limited breadth first search to define the node (this
is essentially the gradients used by Nagpal and Coore [3][15][16]). The BFS labels all particles less
than 37 hops from the center with their hopcount from the center (particles with higher hopcounts
unlabel themselves). A particle p with hopcount h(p) equal to ¢ has a set parents(p) of neighbors
with hopcount ¢ — 1 and children(p) of neighbors with hopcount ¢ + 1. Particles with h(p) < r
are in the node proper. Particles with h(p) < 2r are in the reflector — the region which controls
movement direction, and particles with A(p) < 3r are in the umbra. (See Figure 2)

Every particle in the reflector (which includes all particles in the node) participates in calculating
the direction of a move. At every time step, each reflector particle calculates its current heuristic
value v(p) and transmits it to its parents. The heuristic is a sum of partial paths through p,
multiplied by ® (which is generally < 1):

i€children(p)

This heuristic has the effect of giving higher values to denser and more well-connected regions.
Particles at the edges of the reflector (where the graph approximates its underlying geometry well,
as shown in [9]) are counted the greatest number of times, but particles nearer the center go through
less ® reductions. With the function ®¢(p) = 1, particles in the direction of a nearby edge of the
matrix will receive smaller values than interior particles. (Figure 4)

v=1 v=3 v=1
Figure 3: The heuristic value of a particle is the 1 plus the sum of the values of its children,
multiplied by the potential function ®. In this example, ®(p) = 1, and every particle is labelled
Name(Distance from Center). Note that particle F is counted three times. The center (A) will
select C as its successor, since C has the highest heuristic value of its neighbors.

Amormphous Experiment Amomhous Experiment

@

(a) Start (n=0) (b) Finish (n=10)

Figure 4: The heuristic value function causes Persistent Nodes to move away from edges (or dam-
aged regions) toward regions with high particle density. In this example, a radius 4 node started
with its center at the edge moves rapidly towards the interior of the amorphous matrix, moving
more than a full diameter in 10 steps.

If a particle « is in the node, has no parents, and its heuristic value has not changed for 7%
rounds, then z chooses a good successor from its neighbors based on their heuristic values — in
failure-free executions, z will always be the current center, as it is the only particle naturally without
a parent, and convergence will take at most 4Lr rounds (time for a message to propagate to the
edge of the reflector and back). To combat local minima in ®, x randomly chooses the neighbor
with nth highest value with probability (1 — pk)pz_l.

The newly designated successor of £ now initiates a new round of searches as z becomes quies-
cent, replacing the results of the previous search? and beginning the process again, only with the

node’s center shifted slightly.

5 Read/Write Operations on Nodes

To be able to tolerate stopping failures, a persistent node storing value X keeps a copy of X at every
particle in the reflector (particles which leave the reflector dump their copies of X). Only particles
in the node will accept READ(N, X) and W RITE(N, X) operations,® though all particles in the
reflector store copies of the data — this is to allow the consistency properties to hold even in a
moving node.

The copies are kept consistent with a logical sequence of READ and WRITE operations by
means of a version tag of the data. The version tag is a pair V' = (v,) of version number and
particle ID, where the particle ID is used for tie-breaking. Every round, each particle sends its data
and tag to its neighbors; the neighbors compare the incoming state to their own and set their new
state to the copy with the greater tag.

Initially, every particle contains a null value with tag (0,0). A WRITE(X) on particle p sets
its data to X and its tag to (v + 1,p), then sends an ack immediately. This data propagates one
hop per round throughout the rest of the particles in the reflector, until either every particle shares
state (X,v+1,p) or it is replaced by a bigger version tag. Thus, for a node of radius r, the WRITE
will propagate throughout the node in < 2r rounds and throughout the reflector in < 3r. The
duplication makes READ operations simple: they just return the local copy of X immediately.
(If we wish, a READ operation can return the version tag as well, for use in building end-to-end
atomic systems.)

I now want to prove the logical atomicity property and show that it can be used to produce
atomicity. For now, I consider only failure-free executions.

5.1 Static Read/Write

We begin with the static case, in which the center of the node is not moving. This allows us to
assume a static set of participants in the algorithm and that the subgraph of those participants
is connected. First, we extend the version tags to be a logical time assignment, using the LAM-
PORTTIME transformation.[10] Note that since READ and WRITE operations are instantaneous,
we analyze them as single events rather than separating them into initiation and response.

Theorem 1: Let R be the node algorithm, and L(R) be the LAMPORTTIME transformation of R.

2Search instances are tagged with a monotonically increasing version number that uses the initiator’s heuristic
value and process ID as tie-breakers; this is used for resolution between competing successors as well as handing off
control to single successor.

3Henceforth, I will leave off the parameters for READ and WRITE operations, since operations on two nodes are
orthogonal and we thus need only discuss operations on a single node V.

X="C"
V=(3,946)

X="A"
V=(2,394)

Figure 5: WRITE operations add one to the current version and propagate. If more than one
WRITE operation is initiated with the same version, the particle ID where the operation was
invoked is used to disambiguate. In this example, the old value A is being overwritten by two
concurrent writes, B and C, with the same version number. When C and B encounter each other,
C will overwrite B because its particle ID is bigger.

The ith event E; occurs on particle p;. If t; is the logical time assignment assigned by L(R) for
event E; and V; is the version tag of the data at p; when E; occurs, then (Vi,t;) is a logical time
assignment under lexicographic order.
Proof: A logical time assignment has four properties:
1. No two events have the same logical time.

This property is inherited directly from LAMPORTTIME, since every ¢; is unique.
2. The logical times of a process’s events are strictly increasing.

The version V; of a process is non-decreasing. If the version is the same for two successive
events, then comparison falls to its ¢;, which LAMPORTTIME guarantees are strictly increasing.
3. The logical time of sends are smaller than receives.

There are three cases when E; and Ej are a send/receive pair (in that order):

1. If V; is less than V}, then the order is correct.
2. If V; is equal to Vj, then LAMPORTTIME guarantees that ¢; is less than ¢;
3. If V; is greater than V}, then R sets V; to V;, reducing it to case 2.

4. For any logical time t, only o finite number of events smaller than t are assigned.

For a logical time (V;,t;), LAMPORTTIME guarantees that there are only a finite number of
elements t; less than ¢;. We need only worry, then, about elements (V},¢;) where ¢; is less than
t; and V; is greater than V. In any fair execution on a connected graph, however, only a finite
number of events can occur before a sequence of sends and receives which chains to every particle
with version Vj, thereby increasing its version to V;.

Thus, (V;,t;) is a logical time assignment. O

We now show that, under this logical time assignment, reads follow writes, then use that to
demonstrate local atomicity.

Lemma 2: Consider a WRITE event E; with logical time (V;,t;) and READ event E; with logical
time (V;,t5). If V; =V;, then t; < t;.
Proof:

Data can’t be read from a particle before it arrives at that particle: thus either a WRITE or
a receive event of data with version V; occurs before the read. In the case of a WRITE event,
since versions are not duplicated it must be F;. Then E; and E; occur on the same particle, and
therefor ¢; > t; by the second property of logical time assignment. Similarly for data arriving via
receive event: the third property of logical time assignment means there is a chain of send and
receive events from the particle where E; occurs to the particle where E; occurs, all with strictly
increasing logical times t; < t5, < t;) < ... <t;, <t;. Thus in both cases t; < t;. O

Theorem 3: Every execution « of R is locally indistinguishable from an execution o which satisfies
the atomicity property.
Proof:

Since (V;,t;) is a logical time assignment, we can transform « into a locally indistinguishable
execution ' where events occur in the order of their logical times. Since the logical time of a
write is before that of any read sharing the same version, and all reads of a given version occur
between the write of that version and the write for the next (Lemma 2), then we can simply set the
serialization points at the invocation of each operation and produce a sequence with the atomicity
property. O

This local atomicity property can be transformed to make the node a READ/WRITE atomic
object by delaying the response events for READ and WRITE operations. This can be done in
the asynchronous case if every particle keeps a knowntime record for all other particles in the
node, and delays responses until its record indicates that no particle has a lower V; than it did at
invocation. This is very costly, however, and stronger than necessary.

If we weaken the algorithm to depend on partial synchrony, then it is much less expensive. In-
stead of maintaining group membership lists, the transform PSYNCHDELAY(A,R) delays responses
to READ and WRITE operations until 3Lr rounds have passed, where r is the radius of the node,
L is the timing uncertainty and a round is long enough for all messages to be delivered.

Theorem 4: PSYNCHDELAY(R,R) is atomic under a partially synchronous execution with time
uncertainty L.
Proof:

We will use Lemma 13.16 from Lynch[13] to prove this. For any execution S of PSYNCHDE-
LAY(R,R), let the ordering < of the operation sequence II be the invocation events’ logical time
assignment (V;,t;), as defined in Theorem 1, with the modification that precedence relations be-
tween pairs of READ operations with the same V; are omitted. We now show that it satisfies the
required properties:

1. For any operation x in 11, there are only finitely many operations which preceded it.

This is directly inherited from property 4 of logical time assignment.

2. If the response event for x precedes the invocation event for y in 3, then it cannot be the case
that y < x.

This is the case which the unmodified algorithm fails, requiring the delay imposed by PSYNCHDE-
LAY.

In all cases, the critical property is the time delay D = 3Lr, which is 3/2 the (skewed) maximum
time delay to propagate a message between any two particles in the node, and equals to the

maximum delay to propagate a message between a particle in the node and a particle in the
reflector. Because particles update their data to match neighbors on every receive, then it must
be the case that if a particle has version V; at time ¢, then after it counts an additional D cycles,
every other particle in the reflector must have a version of at least V;.

Thus, since z’s response occurs before y’s invocation, the delay guarantees that it must be the
case that V, < V,. If V; <V}, then x < y. If V; and V,, are equal, then if both operations are
READs, no precedence relation holds between them. If both operations are WRITEs, then V,, and
V, cannot be equal. If one is a READ and the other is a WRITE, then by Lemma 2 either V, and
V, are unequal or z < y.

3. If x is « WRITE in 11, and y is another operation in I1, then either x <y or y < x.

This is implied by the inequality of logical time assignments.

4. The value returned by a READ is the value written by the preceding WRITE.

By Lemma 2, we know that for every READ with invocation time (V;,t;), any WRITE with
invocation time (V;,t;) precedes it in <. Since V; is only increased by WRITE operations, and a
READ (V;,t;) returns the value associated with V;, this implies that each READ returns the value
written by the previous WRITE.

Thus S satisfies the atomicity property. O

5.2 Dynamic Read/Write

I now extend these results into the dynamic case, where the center of the node is moving. For
this case, the participation of the reflector becomes important: intuitively, this involves showing
that the node cannot move fast enough to overrun the area of the reflector in which the properties
proved above hold.

First, we need to formalize how the READ/WRITE portion of the node algorithm relates to
the mobility portion of the node algorithm. In both cases, each particles sends its neighbors a state
message every round. We will assume that these two state messages are sent as a single combined
message, thereby avoiding a number of messy race cases.

Next, we need to determine how fast the center of a node is capable of moving with respect to
its reflector: I find a general formula for the distortion of a node, and three correlates which apply
the general formula to produce convenient quantities.

Theorem 5: Let hy(p) be the minimum distance from the center of a moving node to some particle
p in its reflector. The difference of ho(p) from the hopcount h(p) stored at p is at most w
provided that Ts > L

We note that the center of a node moves at most once every Ty rounds (in practice, the rate
is actually more like 2r + T, but we are considering a worst case). To obtain the worst skew, we
run the center particle at maximum speed and the rest of the node at minimum speed, producing
a timing uncertainty of L between the center particle and every other particle. The hopcount h(p)
begins at ho(p), and the center is moving directly towards or away from it at its maximum rate of
one hop per change of center.

If the center has moved away from p, then propagating the BFS from the center takes h(p) + 1
rounds, for a maximum time delay of (h(p) + 1)L center rounds for a change at the center to
propagate to the edge. During this time, the center can move once every 7 rounds, for a maximum
displacement of w. If Ty > L, then subsequent changes do not stretch this bound any further,
because the propagation times overlap. O

2

Note that this property is only well-defined for nodes that have h(p) < 3r, which translates to
3rL

being guaranteed well-defined only for ho(p) < 3r — ==

Corollary 6: If Ts > 4L, then the maximum displacement of the center with respect to the node
will be ir, the mazimum displacement with respect to the reflector will be %r, and the mazimum
displacement with respect to the umbra will be %7".

Obtained by plugging in the reflector bound 2r — 1 for h(p). The property is well defined over
all nodes with ho(p) < 2r — 1 because % = 3/4. A similar calculation produces the node and
umbra bounds.

Corollary 7: Assuming Ts > 4L, the mazimum diameter of a node is
diameter of a reflector is %r

Obtained by plugging in the node radius bound » — 1 for h(p). Since this maximal movement
is in one direction, we only need to add ir once, not twice. A similar calculation produces the
reflector bound.

Corollary 8: Assuming Ts > 4L, every particle with hy(p) < %r—l 1s a member of the node, every
particle with ho(p) < %7“ — 1 is a member of the reflector, and every particle with hy(p) < %7“ —11s
a member of the umbra.

Applying a little algebra to the displacement formula, we obtain h(p) < %ho (p) + i. Setting
h(p) to the minimum distance no longer in the node, r, we determine that only particles with
ho > %r — % may be outside of the node. A similar calculation produces the reflector and umbra

bounds.

%r and the mazimum

We now augment our analysis of the static execution by adding two new serial operations,
REFLECTOR,; and NODE;, which model movement of the node in the PERSISTENTNODE algo-
rithm. Particle 4’s participation in the reflector is denoted by the REFLECTOR; operation, and
its participation in the node is denoted by the NODE; operation. Every NOD E; operation is con-
tained within a REFLECTOR; operation, and only one NODE; and REFLECTOR,; operation
can be in progress concurrently for a given particle.

All events for particle ¢ occur between the invocation and response events of a REFLECTOR;
operation, and all invocations of READ and WRITE operations occur between the invocation and
response events of a NOD E; operation.

Finally, since particles flush state when not in the reflector, we will analyze each REF LECTOR,;
operation as a different process on the particle. This is necessary to deal with a case when a particle
leaves and rejoins a node during a write, leaving with the new value and begin reinitialized with the
old, and need not introduce any inconsistency. We will call executions which obey these constraints
dynamic executions, and extend our previous proofs to cover them.

Theorem 9: Let « be a dynamic execution of R. The labelling (Vi,t;) defined in Theorem 1 is a
logical time assignment.
Proof: We follow the same proof sketch as for Theorem 1, showing the four properties of a logical
time assignment:
1. No two events have the same logical time.

Proof as for Theorem 1.
2.: The logical times of a process’s events are strictly increasing.

The proof in Theorem 1 requires some small augmentation. The invocation and response
events of a NODE; operation have no effect on V;, and therefor operate as for any other event.
For a REFLECTOR,; operation, the invocation and response events are labelled normally by
LAMPORTTIME, and have respectively the minimum and maximum versions V;, which is consistent

with a strictly increasing sequence.
3. The logical time of sends are smaller than receives.

Not all sends are paired with a receive: a message which arrives at a particle between REFLECTOR;
operations is dropped, which is consistent. Otherwise, the proof proceeds as for Theorem 1.

4. For any logical time t, only a finite number of events smaller than t are assigned.

The connectedness assumption no longer holds as per Theorem 1. By Corollary 8, however,
we know that at all times there is a connected region of reflector around the center with at least
radius %7" — 1. The maximum radius of the node is %7", which means that no particle in the node
can be disconnected from the center.* Within the connected region of the reflector, the chaining
from Theorem 1 applies, limiting the number of events occurring before (V;, ;).

Disconnected regions of the reflector cannot include any particles in the node, so no READ or
WRITE events can occur, leaving the only possibility of infinite events as message events. However,
the message events also carry updates to h(p), and thus, under partial synchrony, at most Lr rounds
of send and receives can occur in a disconnected particle before a chain of sends and receives from
the connected region of the reflector either updates its data or concludes its current REFLECTOR,;
operation. O

Lemma 10: In a dynamic execution of R, consider a WRITE event E; with logical time (V;,t;)
and READ event E; with logical time (Vj,t;). If V; =V, then t; < t;.

Proof: The proof used for Lemma 2 holds for dynamic executions as well, since V; = V; implies
the existence of a chain of send and receive events between the two particles.

Theorem 11: Every dynamic execution o of R is locally indistinguishable from an ezecution o
which satisfies the atomicity property.

Proof: The proof used for Theorem 3 holds, given the logical time assignment proved in Theorem
9, and the read/write ordering in Lemma 10.

Finally, we extend the atomicity proof for PSYNCHDELAY(R,R) to the dynamic case:

Theorem 12: PSYNCHDELAY(R,R) is atomic under a partially synchronous dynamic execution
with time uncertainty L and Ty > 4L,

Proof: To extend the proof in Theorem 4 to the dynamic case, we use Lemma 13.16 from Lynch
as before, and additionally show the well-formedness condition that READ and WRITE operations
respond during the REF LECTOR,; operation in which they were initiated.

Starting with the well-formedness condition: READ and WRITE operations can only be invoked
during a NODE; operation. To show well-formedness, then, we must show that the time between
the termination of a NODE; operation and its enclosing REF LECTOR; operation is at least 3L?r.
In order for a particle to leave the reflector, hA(p) must be at least 2r. In order for a particle to be
a part of the node, h(p) can be at most r — 1, meaning that ho(p) is at most 5r — 1 by Corollary
6, and that no more than %r increases in h(p) can be pending as the time of the invocation event.

Thus the center must move away from the particle an additional %7“ + 1 hops in order to drop
h(p) enough to remove the particle from the reflector. Since the center moves with maximum
velocity TLS = 4—i2, the time between the termination of a NODE; operation and its enclosing
REFLECTOR, operation is at least 3L?r. Thus, we have well-formedness.

“To allow disconnected particles in the node, the connected region of the reflector must be at least one hop smaller
than the maximum radius of the node.

10

Next, we prove the properties required by Lemma 13.16, for which we use the looser bound of
T, > 4L:

1. For any operation x in 11, there are only finitely many operations which preceded it.

Same as for Theorem 4.

2. If the response event for x precedes the invocation event for y in 3, then it cannot be the case
that y < x.

If 3Lr is sufficient time to propagate a message across the node, then the same proof as in
Theorem 4 will hold. Assuming Ts > 4L, the maximum diameter of a node is %r by Corollary
7, and the maximum velocity of its center is 1/T§, while the minimum velocity of a message is
1/L. If the direction of message travel is the same as the direction of travel of the center, then the
velocities will subtract, producing the minimum effective message velocity, % — T% = %. Plugging
in the distance and velocity equations, we find that in fact a message will travel across the node
in time 3Lr, thereby ensuring that every particle in the reflector has version at least V; before the
response event of z. The rest follows as in Theorem 4.

3. If x is « WRITE in 11, and y is another operation in I1, then either x <y or y < x.

Same as for Theorem 4.

4. The value returned by o READ is the value written by the preceding WRITE.
Same as for Theorem 4.
Thus PSYNCHDELAY is atomic for the dynamic case as well. O

6 Stopping Failures

Finally, we need to consider the effect of stopping failures on the system. Because of the spatial
embedding of the amorphous matrix, we need to consider region failure cases (e.g. a neighborhood
losing power) as well as standard f failure cases (which can be viewed as special cases of single-
particle regions failing)

Intuitively, the PERSISTENTNODE algorithm will deal well with most failures. If any particle
in the node survives a failure, then eventually it will choose a successor to become the new center,
which starts the node construction cycle again. Similarly, any failure which does not disconnect
the reflector will allow WRITE operations to propagate their values throughout the region, albeit
possibly slower than previously.

Problems arise when a failure disconnects two portions of the node. In these cases, we can end
up with two separated copies of the node maintaining different values. If this is due to a global
partition of the network, then consistent behavior is impossible since there is no way for information
to pass between the two copies of the node. Thus, we do not deal with this case.

If the partition is local in scope, however, then whether the node is duplicated depends on
whether its two halves are outside of the range of each others’ construction process. If the two
copies of the node are close enough, then their construction searches will touch and one will have
a larger tag, causing all of the particles in the other copy to be labelled with hopcounts greater
than 3r and thereby deleted. If, on the other hand, their are 6r distant, then the node will be
duplicated, which is not good.

For cases where the two copies are too far apart to resolve the conflict on their own, it is possible
to build a global infrastructure which detects and resolves duplication conflicts and guarantee
atomic behavior over a wider range of failures; I will not, however, describe such a system in this
paper other than to note that it can be constructed.

For local failures of small radius, however, PSYNCHDELAY(R,R) is atomic if we assume a slower
maximum velocity for the movement of the center:

11

Amorphous Experiment

Figure 6: Stopping failures which partition the node, but not the graph, are difficult to recover
from. In this example, the dark nodes have failed, partitioning the large red node into a left and
right half. Atomicity is not preserved by PSynchDelay in this case, although interim atomicity is,
because the partition is small enough for the umbras of the two halves to touch.

Theorem 13: Assume Ts; > 8L?. PSYNCHDELAY(R,R) is atomic under a partially synchronous
dynamic execution with time uncertainty L and stopping failures which increase the diameter of the
node subgraph by no more than %r and which displace the center by no more than %r
Proof: The proof for this theorem closely follows the proof for the dynamic case in Theorem 12.

First, we demonstrate well-formedness: the larger T reduces the distortion of the node so that
at the invocation of a READ or WRITE on particle p, its distance from the center is hg(p) < %r -1
(Theorem 5), and therefor no more than ir increases in h(p) can be pending at the time of the
invocation event, and the center must move away %r + 1 hops to drop h(p) enough to remove the
particle from the reflector. The center moves at maximum velocity TLS = 8% following a possible
initial leap outwards of displacement z if a region including the old center failed. Solving for z, we
obtain %r as the maximum displacement for which well-formedness is guaranteed.

Next, we wish to use Lemma 13.16 to prove atomicity (relaxing the bound to T > 8L), but
have executions which may include incomplete operations. To cope with this for an execution S,
we produce a transformed execution ' in which there are no incomplete WRITE operations. If
z is an incomplete WRITE in £, then if no receive event ever transmits the value of the write to
a particle in the node which does not fail before 3Lr has elapsed, then invocation event for z is
removed from S’. Otherwise, a response event for z is inserted in 8’ immediately before the failure
which terminated z.

In effect, this transformation assigns a serialization point to every incomplete WRITE event,
and removes the event from the operation sequence II' if the serialization point is after the particle
fails. If 8’ has the atomicity property, then 8 has the atomicity property as well. We now show
that Lemma 13.16 holds for /'

1. For any operation x in 1L, there are only finitely many operations which preceded it.

Same as for Theorem 12 and Theorem 4.

2. If the response event for x precedes the invocation event for y in 3, then it cannot be the case
that y < x.
This follows the same sketch as for Theorem 12.

12

Since Ts > 8L, the maximum velocity of the center is 1/8L, while the minimum velocity of
a message is 1/L. Minimum effective message velocity is SLL, and if the message travels across
the node in less than 3Lr, the well-formedness condition and the diameter limit guarantee that it
will able to reach every portion eventually. Multiplying velocity and time, we find that in 3Lr a
message will be able to reach every particle in a node with an effective diameter of at most %r. A
failure-free node has maximum diameter %7“ by Theorem 5, so if the diameter increase caused by
failures is bounded by %r, then a message will travel across the whole node within 3Lr. The rest
follows as in Theorem 12 and Theorem 4.
3. If x is a WRITE in 11, and y is another operation in 11, then either x <y ory < .

Same as for Theorem 12 and Theorem 4.
4. The value returned by o READ is the value written by the preceding WRITE.

If we can prove that a WRITE in 8 but not ' is never returned by any READ, then it reduces
to the case of Theorem 12 (incomplete READ operations may be ignored since they never return).

A WRITE invocation event in 8 does not appear in 8’ if no particle ever receives the value
which does not fail before 3Lr elapses following the invocation event. Any particle which fails
before 3Lr cannot have completed a READ event started after the WRITE operation was invoked,
and by assumption no particle which has time enough to complete a READ event can have ever
received the value. Thus, no READ event can ever return the value of a WRITE not in 5’

The rest follows the same proof as for Theorem 12 and Theorem 4.

Thus PSYNCHDELAY is atomic for failures which increase diameter by less than %r and displace
the center by less than %r. a

Corollary 14: Assuming Ts > 8L, PSYNCHDELAY(R,R) is atomic under a partially synchronous
dynamic execution with time uncertainty L and stopping failures confined to an n-sphere with radius

T
o The circumference of such an n-sphere is r, meaning that it must add less than %7“ to the
diameter of the node. If it causes maximum displacement of the center, that can be no farther than
its diameter, %r, which is also small enough to fit the requirement of Theorem 13. O

Finally, the weaker property of interim atomicity applies for all failures that do not result in
node duplication. Interim atomicity, as defined in [8], states that an algorithm is atomic except
during unstable periods (defined portions of the execution which contain failures) and for a finite
period of time following an unstable period.

Theorem 15: PSYNCHDELAY is interim atomic for failures which do not result in node duplica-
tion.

If any particle in the node survives, then the node exists in at least one place. If the node is
not duplicated, then no other copy exists within range of the node’s BFS. Since the construction
process is continuous, then within 3Lr the node will be reconstructed with precisely one center,
reducing it to the dynamic case, which is atomic. O

Theorem 16: PSYNCHDELAY is interim atomic for any execution in which, at the end of the
unstable period, the distance between any two particles in the node is less than gr.

Proof: Following an unstable period at real time t5, some k particles will anoint a successor. We
label these particles in order as pg,p1, ..., pr and they occur at times ¢, < ty < £ < ... < t. The
times are restricted by the convergence process, so Ty < tg—ts < ty —ts < 4Lr+Ts. Once a particle
has anointed a successor to become the node center, that successor can move at a maximum velocity

13

of 1/T.

From Corollary 8, assuming Ty > 4L we have that every particle with ho(p) < 37 — 1 is a
member of the umbra, and round this down to 2r for simplicity (valid for » > 3). This guarantees
that one of the two copies of the node will be eliminated if their centers are less than 4r apart.
The time for a BFS to reach the 2r threshold is at most 2Lr, so the maximum skew between when
po anoints a successor and pg’s first BFS reaches the threshold is 6Lr. Assuming Ts > 4L, then
the maximum distance that any p; can have traveled is %r when p;’s BFS reaches the threshold for
elimination. Thus, elimination of all duplicates will eventually occur whenever no pair of p; and p;
are more than %r hops apart, providing interim atomicity by Theorem 14. O

6.1 Adding Particles

In a large enough network, we should expect nodes to be added as well as removed. These additions
model both the addition of new particles and the rebooting or replacing of failed particles. Both
cases are handled simply and identically: since the construction process for a node is iterated
continuously, newly added particles join the node just as though it were being constructed for the
first time. Their addition can only cause pre-existing nodes to become closer to the center, so none
of the above results are threatened.

7 Experiments

I have implemented the PERSISTENTNODE algorithm and demonstrated that it behaves as expected
in an amorphous matrix with 2000 particles and communication radius 0.04 (Illustrations for this
paper are mainly screen-shots of the running simulation). Traces of experiments demonstrate that
when transformed by PSYNCHDELAY, the PERSISTENTNODE algorithm is in fact atomic.

Below is a typical trace output from a short experiment. In this experiment, the user creates
a node called “bob” with radius 3, then performs a series of six reads and six writes on the node,
some simultaneous, some not. In the course of this experiment, which set T5 = 10, the node “bob”
drifted approximately one diameter (6 hops) from its starting location, towards a denser area of
particles, and later operations were performed on particles which were not originally in the node.

Some notes to help interpret the trace: some logging output in the trace has been omitted or
reformatted for readability. Each line begins with the particle’s time, followed by its ID, a long
random number. Events are either invocations (denoted by recv UI msg) or responses. The first
command, init bob, corresponds to invoking C REAT E(bob, 3, ®y), the READ (bob, X) invocation
is get bob, and the W RITE(bob, X') invocation is set bob X. Finally, this run was performed with
L =1.0, r = 3, and two ticks per round, so responses generally follow invocations by 2(3Lr) = 18,
usually plus one from rounding.

Creating processors..
6: 0.26506592968033516 recv UL msg: init bob [radius=3, phi=default]

18: 0.26506592968033516 recv UI msg: set bob A [V=(1, 0.24924755367822515)]
21: 0.2040348104571721 recv UL msg: get bob

28: 0.4635829551108004 recv UI msg: set bob B [V=(2, 0.5452059103564912)]
37: 0.26506592968033516 Write completed

39: 0.2040348104571721 Value stored in bob: A

43: 0.26810208788636625 recv UL msg: get bob

47: 0.4635829551108004 Write completed

14

WRITE(A) | =«

Figure 7: Experiments simulating 2000 particles with communication radius 0.04 produce atomic
traces of PERSISTENTNODE executing. This diagram shows serialization of the operations in the
trace of node “bob”, with stars denoting serialization points.

61: 0.26810208788636625 Value stored in bob: B

70: 0.4792990984482649 recv UI msg: set bob C [V=(3, 0.7339613509923373)]
70: 0.866065471856458 recv UI msg: set bob D [V=(3, 0.9560773364739286)]
69: 0.17981477442603422 recv UI msg: set bob E [V=(3, 0.9065953621674531)]
75: 0.9542581800945625 recv UL msg: get bob

76: 0.4447567651928277 recv UL msg: get bob

75: 0.26506592968033516 recv UL msg: get bob

88: 0.17981477442603422 Write completed

89: 0.866065471856458 Write completed

89: 0.4792990984482649 Write completed

93: 0.9542581800945625 Value stored in bob: D

93: 0.26506592968033516 Value stored in bob: D

94: 0.4447567651928277 Value stored in bob: D

123: 0.26506592968033516 recv UI msg: set bob F [V=(4, 0.07794895150591896)]
142: 0.26506592968033516 Write completed

149: 0.17405900158905196 recv UI msg: get bob

167: 0.17405900158905196 Value stored in bob: F

Analysis of this sequence shows that it is, as expected, atomic. As shown in Figure 7, serial-
ization points can easily be set for the sequence of operations. This holds as well for experiments
where large regions of particles are killed off in such a way as to avoid duplicating the node — the
typically slower speed of the node means that many failure cases not covered by the above proofs
still evince atomicity.

8 Contributions

The PERSISTENTNODE algorithm creates distributed READ/WRITE objects that appear locally
atomic on an amorphous matrix using only local support within a given radius, and the PSYNCHDE-
LAY transform turns these nodes into atomic objects. When subject to stopping failures, a node
reconstructs itself if any member particle survives, and PSYNCHDELAY is atomic or interim atomic
if the disruption of the node stays within bounds. The nodes are mobile and move according to
a user-specified potential function. This is useful for many problems, including gigascale wireless
networking problems such as data storage, congestion control, and partitioning space.

15

8.1 Motivation: Gigascale Wireless Networking

Wireless networking is expanding rapidly with rising availability and plummeting costs. Consider a
scenario a few years hence in which a large city like Boston might have several wireless base stations
in every building — a number of nodes on the order of 10”. If most of the electrical devices in the
building are wirelessly networked too, then the total number of nodes could be as high as 1010, If
these nodes communicate peer to peer with nearby neighboring buildings, then one could envision
the entire city as connected into a packet radio network approximately 10® hops in diameter, in
which most of the nodes are stationary most of the time. How can one produce useful behavior in
this sort of gigascale localized organic network?

8.1.1 Congestion Control

If we set @ to be # where np is number of reflectors that a particle is participating in, then we
have a congestion control function. Nodes operating with this potential function will tend to diffuse
towards regions containing fewer nodes, while still avoiding edges of the matrix. Experiments in
simulation show that this rapidly converges to an evenly dispersed pattern.

8.1.2 Space Partitioning

Using nodes configured for congestion control, we can fill space evenly. If nodes suicide when a
particle is a member of another node simultaneously, and particles which are not in the umbra of any
node occasionally create new nodes, then the congestion control will result in a space-filling pattern
where every particle is within the umbra of at least one node, and nodes are at least 2r distant
from each other. If every particle declares membership with the closest node center, then space
is partitioned into roughly even units, and if particles use some hysteresis in the decision-making
process, the partitioning will change only slowly. If this process is run concurrently with nodes of
exponentially increasing radius, then the partitioning can be turned into a balanced hierarchical
tree. Experiments in simulation show that the tree thus produced changes extremely slowly at
more significant levels of the hierarchy.

8.1.3 Data Storage

With congestion control and space partitioning, data can be stored in the amorphous matrix dis-
persed along a balanced tree. Control structures in the tree can then allow elimination of duplicate
nodes for large disruptions, permitting wider guarantees of atomicity.

8.2 Related Work

Atomic objects are commonly implemented by quorum systems, as in the case of the ABD algorithm[1]
and the VITANYIAWERBUCH algorithm[18]. Geographically local networks are commonly dealt with
in the field of ad hoc networking, and recent research has intersected these two areas. The RAMBO
algorithms (Introduced by Lynch and Schvartsman in [14] and extended recently in [6]) manage
atomic objects in a (possibly changing) network, but do not directly deal with geographic locality
issues. Stojmenovic and Pena have built a geographically aware system[17], but make the strong
assumption of supplied coordinates. Dolev, Schiller and Welch[5] have a random-walk based system
for establishing groups, although scaling to large networks is impractical given the need for an agent
to traverse nodes one by one in a random walk.

16

9 Acknowledgements

Thank you to Tim Shepard for the idea of applying amorphous computing to gigascale wireless
and the Boston scenario. Thanks to Nancy Lynch for advice and support on distributed algorithms
theory and proofs, and Seth Gilbert for briefing on quorum systems. Last, but not least, thanks to
Hal Abelson and Gerry Sussman for editing and for challenging questions.

References

[1] Hagit Attiya, Amotz Bar-Noy, and Danny Dolen. Sharing memory robustly in message-passing
systems. Journal of the ACM, 42(1):124-142, 1995.

[2] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E. Rauch, G.
Sussman and R. Weiss. Amorphous Computing. Al Memo 1665, August 1999.

[3] Daniel Coore. Establishing a Coordinate System on an Amorphous Computer. MIT Student
Workshop on High Performance Computing, 1998.

[4] Daniel Coore, Radhika Nagpal and Ron Weiss. Paradigms for structure in an amorphous com-
puter. MIT AT Memo 1614.

[5] Shlomi Dolev, Elad Schiller, Jennifer L. Welch. Random walk for self-stabilitzing group com-
munication in ad hoc networks. PODC 2002: 259.

[6] Seth Gilbert, Nancy Lynch, and Alex Shvartsman. RAMBO II: Rapidly Reconfigurable Atomic
Memory for Dynamic Networks. To appear in Proceedings of the International Conference on
Dependable Systems and Networks (DSN), San Francisco, CA, June 22nd - 25th, 2003.

[7] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex Shvartsman. Eventually-
Serializable Data Services. Theoretical Computer Science, 220(1):113-156, June 1999. Special
Issue on Distributed Algorithms.

[8] Roger Khazan. Formal Design and Analysis of a New Virtually Synchronous Group Communi-
cation Service for Wide Area Networks. PhD Thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA, May 2002.

[9] L. Kleinrock and J. Silvester. Optimum transmission radii for packet radio networks or why six
is a magic number. Proc Natl. Telecomm. Conf. pp 4.3.1-4.3.5, 1978

[10] Leslie Lamport. Time, clocks and the ordering of events in a distributed system. Communica-
tions of the ACM, 21(7):558-565, July, 1978.

[11] Leslie Lamport. On interprocess communication — parts I and II. Distributed Computing,
1(2):77-101, April 1986.

[12] Victor Luchangco. Memory Consistency Models for High Performance Distributed Comput-
ing. PhD Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, September
2001.

[13] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc, San Francisco, Cal-
ifornia, 1996. Chapter 8, pages 199-234.

17

[14] Nancy Lynch and Alex Shvartsman. RAMBO: A Reconfigurable Atomic Memory Service for
Dynamic Networks. In D. Malkhi, editor, Distributed Computing (Proceedings of the 16th
International Symposium on DIStributed Computing (DISC) October 2002, Toulouse, France),
volume 2508 of Lecture Notes in Computer Science, pages 173-190, 2002. Springer-Verlag.

[15] Radhika Nagpal. Organizing a Global Coordinate System from Local Information on an Amor-
phous Computer. MIT AT Memo 1999

[16] Radhika Nagpal and Daniel Coore. An Algorithm for Group Formation in an Amorphous
Computer. Intl Conf on Parallel and Distributed Computing Systems (PDCS’98), 1998

[17] Ivan Stojmenovic and P.E.V. Pena, A scalable quorum based location update scheme for
routing in ad hoc wireless networks, SITE, University of Ottawa, TR-99-09, September 1999.

[18] P.M.B. Vitanyi, and B. Awerbuch. Atomic shared register access by asynchronous hardware.
Proceedings of the 27th IEEE Symposium on Foundations of Computer Science, 1986.

18

