How to Make a Self-Reconfigurab le Robot Run

K. Stay
The Maersk Mc-Kinney Moller
Institute for Production
Technology
Campusvej 55
DK-5230 Odense M, Denmark

ABSTRACT

In this paper we present role based control which is a multi-
agent based control algorithm for self-reconfigurable robots.
We use role based control to implement quadruped and
hexapod gaits in a real self-reconfigurable robot made from
up to nine independent autonomous modules. We show that
this implementation scales and argue that it is minimal, ro-
bust to module failures, to loss of communication signals,
and to interchange of modules.

In role based control all modules of the robot run iden-
tical programs, but may play different roles. The modules
decide what role to play based on their local configuration
and information propagated down to them through the con-
figuration tree. A role consists of a cyclic motion, the period
of this motion, and a set of delays. The delays specify the
phase delay of the cyclic motions of the child modules com-
pared to the parent. These delays are used to coordinate
the motions of the individual module to obtain a coordi-
nated global behavior.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence— Multiagent systems, coherence and coordination;
1.2.9 [Artificial Intelligence]: Robotics—Autonomous ve-
hicles

General Terms

Algorithms, Experimentation

1. INTRODUCTION

Reconfigurable robots are robots made from a possibly
large number of independent modules that are connected to
form a robot. If the modules from which the reconfigurable
robot is built are able to connect and disconnect without
human intervention the robot is a self-reconfigurable robot.

Permissionto make digital or hard copies of all or part of this work for
personaor classroomuseis grantd without fee provided that copies are
not madeor distributed for profit or commercid advantageandthat copies
bea this notice andthefull citation on thefirst page.To copy othemise,to
repubish, to poston senersor to redistibuteto lists, requiresprior specific
permissim andbr afee.

AAMAS 02 July 15-19,2002,Bologna, Italy.

Copyright 2002ACM 1-58113480-0/020007...$5.00.

W.-M. Shen
Information Sciences Institute
and Computer Science
Department
4676 Admiralty way
Marina del Rey, CA 90292,

kaspers@mip.sdu.dk USA
shen@isi.edu

P. Will
Information Sciences Institute
and Computer Science
Department
4676 Admiralty way
Marina del Rey, CA 90292,
USA

will@isi.edu

An example of a self-reconfigurable robot is the CONRO
robot. A module of the CONRO system is shown in Figure
1. Examples of other physically realized self-reconfigurable
robots can be found in [4, 6, 7, 8, 9, 10, 11, 13, 17, 19, 20].

Several potential advantages of self-reconfigurable robots
over traditional robots have been pointed out in literature:

e Versatility. The modules can be combined in dif-
ferent ways making the same robotic system able to
perform a wide range of tasks [8, 15].

e Adaptability. While the self-reconfigurable robot
performs its task it can change its physical shape to
adapt to changes in the environment [13].

e Robustness. Self-reconfigurable robots are made from
many identical modules and therefore if a module fails
it can be replaced by another [7, 19, 15].

e Cheap production. When the final design for the
basic module has been obtained it can be mass pro-
duced and thereby keep the cost of the individual mod-
ule low compared to its complexity. [7, 8, 19].

Self-reconfigurable robots can solve the same tasks as tra-
ditional robots, but as Yim et al [19] point out, in applica-
tions where the task and environment are given a priori it is
often cheaper to build a special purpose robot. Therefore,
the applications best suited for self-reconfigurable robots are
applications where some leverage can be gained from the
special abilities of self-reconfigurable robots.

The versatility of these robots make them suitable in sce-
narios where the robots have to handle a range of tasks. The
robots can also handle tasks in unknown or dynamic envi-
ronments, because they are able to adapt to these environ-
ment. In tasks where robustness is of importance it might be
desirable to use self-reconfigurable robots. Even though real
applications for self-reconfigurable robots still are to be seen,
a number of specific applications have been envisioned [13,
8, 19]: fire fighting, search and rescue after an earthquake,
battlefield reconnaissance, planetary exploration, undersea
mining, and space structure building. Other possible appli-
cations include entertainment and service robotics.

The potential of self-reconfigurable robots can be realized
if several challenges in terms of hardware and software can
be met. In this work we focus on one of the challenges in
software: how do we make a large number of connected mod-
ules perform a coordinated global behavior? Specifically we

address how to design algorithms that will make it possible
for self-reconfigurable robots to locomote efficiently. In or-
der for a locomotion algorithm to be useful it has to preserve
the special properties of these robots. From the advantages
and applications mentioned above we can extract a num-
ber of guidelines for the design of such a control algorithm.
The algorithm should be distributed to avoid having a single
point of failure. The performance of the algorithm should
scale with an increased number of modules. It has to be
robust to reconfiguration, because reconfiguration is a fun-
damental capability of self-reconfigurable robots. Finally,
it is desirable to have homogeneous software running on all
the modules, because it makes it possible for any module to
take over if another one fails.

It is an open question if a top-down or a bottom-up ap-
proach gives the best result. We find that it is difficult
to design the system at a global level and then later try
to distribute it, because often properties of the hardware
are ignored and a slow robotic system might be the result.
Therefore, we use a bottom-up approach where the single
module is the basic unit of design. That is, we move from
a global design perspective to a bottom-up one where the
important design element is the individual module and its
interactions with its neighbors. The global behavior of the
system then emerges from the local interaction between in-
dividual modules. This way each module plays the role of
an agent in a multiagent system. A similar approach is also
used by Bojinov et al [1, 2].

2. RELATED WORK

In the related work presented here we focus on control
algorithms for locomotion of self-reconfigurable robots.

Yim et al [18, 19] demonstrate among other types of lo-
comotion a four-legged spider like type of locomotion. In
their system each module has a gait control table where
each column represents the actions performed by one mod-
ule. Motion is then obtain by having a master synchronizing
the transition from one row to the next. The problem with
this approach is the need for a central controller, since it
gives the system a single point of failure. If there is no mas-
ter it is suggested that the modules can be assumed to be
synchronized in time and each module can execute its col-
umn of actions open-loop. However, since all the modules
are autonomous it is a questionable assumption to assume
that all the modules are and can stay synchronized. In or-
der to use the gait control table each module needs to know
what column it has to execute. This means that the mod-
ules need IDs. Furthermore, if the configuration changes or
the number of modules changes the gait control table has to
be rewritten.

Shen and Salemi propose to use artificial hormones to syn-
chronize the modules to achieve consistent global locomo-
tion. In earlier versions of the system a hormone is propa-
gated through the self-reconfigurable system to achieve syn-
chronization [13]. In later work the hormone is also propa-
gated backwards making all modules synchronized before a
new action is initiated [14, 12]. This synchronization takes
time O(n) where n is the number of modules. This slows
down the system considerably, because it has to be done
before each action. Also, the entire system stops working if
one hormone is lost. This can easily happen due to unre-
liable communication, a module disconnecting itself before
a response can be given, or a module failure. In fact, the

Figure 1: A CONRO module.

system has n-points of failure which is not desirable. The
earlier version is better in this sense, but still performance
remains low because a synchronization hormone is sent be-
fore each action.

In our system all modules repeatedly go through a cyclic
sequence of joint angles describing a motion. This sequence
could come from a column in a gait control table, but in our
implementation the joint angles are calculated using a cyclic
function. Every time a module reaches a specified position
p in the cycle a message is sent through a specified child
connector. If the signal is received the child module resets
its position in its cycle making it delayed p compared to the
parent. This way the actions of the individual module are
decoupled from the synchronization mechanism resulting in
a faster and more reliable system. Furthermore, there is
no need to make changes to the algorithm if the number of
modules changes.

3. ROLE BASED CONTROL

In our approach we acknowledge the need for each module
to be autonomous in order to obtain a robust and scalable
system. We also acknowledge the need for a tight coupling
between the modules to coordinate and produce the desired
global behavior. However it is not desirable to coordinate at
the level of the individual motor control command, because
involving other modules in low level control will produce a
less responsive system. Therefore, we abstract away the low
level control and coordinate at a higher level. We coordinate
at the level of roles. In the following we will define what a
role is. We will describe the algorithm a module uses to play
a role, and finally we will discus how modules can decide to
change roles over time.

3.1 ARoOle

A role consists of three components. The first component
is a function A(t) that specifies the joint angles of a module
given an integer t € [0 : T, where T" is the period of the
motion and the second component that needs to be specified.
The third component is a set of delays D. A delay d; € D
specifies the delay between the child connected to connector
¢ and the parent. That is, if the parent is at step tparent = t1
the child is at tchaua = (¢1 — di + ') modulus T'.

t =0
while (1)
if (t=d_1) then <send signal to child connector 1>

if (t=d_n) then <send signal to child connector n>

if <signal received from parent connector> then
t=0
endif

<perform action A(t)>
t = (t+1) modulus T
endwhile

Figure 2: The algorithm used to play a role. Refer
to section 3.2 for further explanation.

3.2 PlayingaRole

The algorithm that we are now about to describe is used
to make a module play a role. However first some assump-
tions need to be made: a parent connector is specified and
the remaining connectors are considered child connectors,
connections can only be made between a parent connector
and a child connector. These assumptions limit the con-
figuration the algorithm can handle to tree configurations.
Under these assumptions a role is played using the algorithm
shown in Figure 2.

Ignoring the if-statements in the beginning of the loop,
the module repeatedly goes through a sequence of actions
parameterized by t. This part of the algorithm alone makes
a single module repeatedly perform the sequence of actions
specified by A(t). However, in order to achieve coherent
global behavior the module needs to be synchronized with
neighbors. Therefore, at tparent = d; a signal is sent through
child connector ¢. Note that it does not matter to the parent
if a child module actually receives the signal, because in that
case the signal will just be lost. However, if child i receives
the signal it sets tcpizg—i = 0. This enforces that the child
is delayed d; compared to the parent.

A simple rule that will come in handy when we calculate
the delays for a specific locomotion pattern is that we can
calculate what step a child t.nia—s is at based on what step
the parent tparent is at:

tpa'rent =t = tehild—i =t1 — d; (1)
The other way:
tenild =t1 = tparent =1t + dz (2)

In terms of execution time we can see that from the time
the modules are connected, it takes time proportional to
the height of the tree for all the modules to synchronize.
However, once the modules are synchronized, the algorithm
keeps the modules synchronized using only constant time.
Below is an example of a caterpillar role.

aw = { el = GG
dnorth = % (4)

T = 180 (5)

r = <start role>
t =0
while (1)
if (t=d(r)_1) then
<send message M(r,1) to child connector 1>
<update r>
endif

if (t=d(r)_n) then
<send message M(r,n) to child connector n>
<update r>

endif

if <message m received from parent connector> then
t=0
<update r based on m>

endif

<perform action A(r,t)>
t = (t+1) modulus T(r)
endwhile

Figure 3: The algorithm used to enable modules
to play different roles depending on their position
in the configuration tree. Refer to section 3.3 for
further explanation.

In earlier work we have demonstrated that when the mod-
ules are connected in a chain and all play this role they
produce caterpillar like locomotion [15]. In this work we
also demonstrated a locomotion pattern similar to that of a
sidewinder snake.

3.3 Combining Roles

In simple locomotion gaits only one role is needed to ob-
tain the desired global behavior. However, in more complex
locomotion patterns more roles will be needed. For instance,
in a walking robot the following roles can be identified: left
leg, right leg, and spine. In order to handle these more com-
plex locomotion patterns we need to extend our algorithm.

It is obvious that we have to define each of the roles needed
to produce the desired global behavior. For each role r we
supply an action sequence A(r,t), a period T'(r), and a set
of delays D(r). We also need to define how a module decides
when to change role.

A module can change its role in two ways. One way is as a
reaction to changes in the local configuration. The other way
is in response to a message from the parent. We encode the
information needed to make these decisions into the commu-
nication signals that are already part of the synchronization
mechanism. It does not make sense to implement it as a
separate communication mechanism for two reasons. 1) It
is of no value to the module to know what role to play be-
fore it is synchronized. 2) It adds more complexity to the
system. The resulting algorithm is shown in Figure 3.

The algorithm looks very similar to the basic algorithm.
The main difference is that now the synchronization signal
contains a message that is a function M (r,i) of the role r
the module is playing and the connector i the message is
sent through. This function can be used to uniquely specify
what role each module in the system should play. The other
difference is that based on the success of communication
the module can detect its local configuration and use this
information to update its role appropriately.

Yaw

Figure 4: A schematic overview of the CONRO
module. The connectors are labeled with compass
directions. The arrows indicate the direction of in-
creasing angle.

4. THE CONRO MODULES

For our experiments we use a self-reconfigurable robot
made from the CONRO modules developed at University
of Southern California’s Information Sciences Institute [3,
5] (see figure 1). The modules are roughly shaped as rect-
angular boxes measuring 10cm x 4.5cm x 4.5cm and weigh
100grams. The modules have a female connector located
at one end facing south and three male connectors located
at the other end facing east, west, and north (see Figure
4). FEach connector has an infra-red transmitter and re-
ceiver used for local communication and sensing. The mod-
ules have two controllable degrees of freedom: pitch (up and
down) and yaw (side to side). Processing is taken care of
by an onboard Basic Stamp 2 processor. The modules have
onboard batteries, but these do not supply enough power for
the experiments reported here and therefore the modules are
powered through cables. Refer to http://www.isi.edu/conro
for more details and for videos of the experiments reported
later in this paper.

5. IMPLEMENTING A WALKING GAIT

Our goal is to implement a walking gait in the CONRO
self-reconfigurable robot configured as shown in Figure 6. In
order to do so we need to define three different roles: spine,
east leg, and west leg. The two main tasks are to specify
the action sequences and the delays for each role. We will
look at these two problems below.

5.1 Actions

We start out by specifying the actions for each role. Intu-
itively the legs should be lifted from the ground when mov-
ing forward and touching the ground when moving back-
wards. We use the following motion equation for the east
legs:

_ pitch(t) = 35°cos(2Et) — 55°
A(eastleg,t) = { yaw(t) = 40°sin(25t) (6)

The equation for the west legs is obtained by replacing
t by 2w — t giving the same motion, but in the opposite
direction. This motion is visualized in Figure 5.

20 + i

2
2 40t 1
&
=
2
£
60 4
-80 4
Leg
Spine -
-100 - : :
-40 -20 0 20 40

Yaw angle

Figure 5: The motion of a module playing the leg
role (top) and the spine role (bottom) visualized in
joint space.

The spine module between two pairs of legs should bend
from side to side to increase the length of each step. The
parameters for this motion are shown below and are also
visualized in Figure 5.

. B pitch(t) 0°
A(spine,t) = { yaw(t) = 25°cos(3t+m) @)

For simplicity we pick the same period T for all roles. The
parameter 7' can later be used to control the locomotion
speed.

5.2 Delays

What is left is to coordinate the motion of the modules.
The question is how do we get from a general description of
which modules should be coordinated to the delays needed
in our algorithm. In a walking robot the left front leg and
the rear right should be synchronized. The same goes for
the right front leg and the rear left leg. Also, it would result
in a more efficient locomotion pattern if the spine modules
bend to increase the length of each step.

We configure our modules as shown in Figure 6. We first
consider the spine module located in the top middle part
of the figure labeled spine-1. The question is now what
fraction of a period each child should be delayed. We first
turn our attention to the front legs: east-1 and west-1. It
is obvious that the motion of these legs should be half a
period apart. This way one leg will touch the ground when
the other is lifted and the other way around. Therefore, the
delay between the two legs should be T/2 (+nT where n €
[0 : oo] which we consistently omit from these calculations).
Given tegst—1 and tyest—1 We use equation 2 to calculate
what ¢ this corresponds to in the spine-1 module.

tspinefl = teast—1 + deast (8)
tspine—l = twest—1 + dwest

Setting the two expressions for tspine—1 equal to each other
we get:

teast—1 + deast = twest—1 + dwest (9)

Figure 6: The black boxes represent modules. The modules are connected to form a quadruped robot. All
the modules are named and labeled with compass directions. The expression next to a connector represents
the delay d across that connector. The delay is expressed in fractions of a period 7'. For instance, the delay
associated with the east connector of the spine module is de.s: = 7'/4. The expressions located in the center
of the modules represent the value of ¢t of that module when the spine module spine-1 is at tspine—1 = 0. The t
value of child is calculated using tchiia—i = tparent — di Where ¢ is the connector to which the child is connected.
Note that by using the delays shown here the top east leg and bottom west legs are synchronized. This also

goes for the top west and bottom east leg.

We exploit that we want the difference between teqsi—1
and twest—1 to be 1'/2 to find the following constraint:

deast - dwest = % (10)

A similar consideration leads to the conclusion that the
front west leg and the rear east leg should be synchronized.
However the signal to the rear east leg is delayed when it
goes though the north connector as well. Given teqst—2 and
twest—1 We again using rule 2 to transform into tspine—1-

tspine—l twest—l + dwest (11)
tspinefl = teast—2 + deast + dnorth (12)

Setting the two expressions for tspine—1 €qual to each other
we get:

twest—1 + dwest = teast—2 + deast + Anorth (13)

We exploit that we want twest—1 — teast—2 = 0 and equa-
tion 10 to obtain:

dnorth = % (14)

Using our knowledge about how the legs should be syn-
chronized we have come up with constraints for the delays.
We know that a module playing the spine role receives a mes-
sage from the parent at t = 0 and has to send one through
the north connector at ¢t = 7'/2. In order to spread out the

communication over a period we pick the following values
for deqst and dyest that satisfies constraint 10.

T

deast = Z (15)
3T

Awest = 1 (16)

Now all the delays are specified, but there is one piece
missing. We have to make sure that the spine also is coordi-
nated. We know from the spine motion defined in equation
7 that the spine is bent most to the east at tspine—2 = T'/2.
The east legs are closest together at teqst—2 = 1'/4 (see equa-
tion 6). We want the difference between tspine—2 and teqst—2
to be zero. Again applying equation 2 we transform teqst—2
into Tspine—2:

T
tspin672 = Z + teast—2 (17)
tspin672 = T/2 (18)

Setting the two equations equal to each other we in fact
see that our choice for t.qs: makes sure that the spine is
indeed making the robot take longer steps. These results
are summarized in Figure 6.

We have now calculated the delays for the spine module.
If feet-modules were connected to the legs we would have to
calculate delays for the legs as well. However, we are not
planning to connect any modules so for simplicity we just
give the leg modules the same delays as the spine modules.

5.3 Rolesdection

Now all the modules are synchronized and can play the
role of a spine, a east leg, or west leg. The question is now
how each module decides what part it plays. We have to de-
fine the function M (r,) that maps a role r and a connector
i to a message. In our simple configuration we define M as:

M(r,i) =i, wherei € {south, east, west} (19)

This intuitively means that a message contains informa-
tion about which connector it was sent through. Upon re-
ceiving a message m, the role selection is straight forward:

westleg, if m = west
eastleg, if m = east (20)
spine, if m = south

r(m) =

These role selection rules correctly assign the roles to mod-
ules, even if the modules are interchanged. There is one
notable exception. The root of the tree never receives any
messages, because it by definition does not have a parent.
Therefore we need to introduce rules that based on the local
configuration can detect if a module is the root and therefore
should play the spine role. In the quadruped configuration
this is easy. We simply say that if the module successfully
communicate with a child connected either to the west or
east connector, the module changes its role to a spine role
(if it is not already a spine module).

The role selection rules are arbitrary since many role se-
lection rules and functions M exist that would lead to the
same behavior. In systems where there are more roles more
effort has to be put into defining rules to make sure the rules
are not ambiguous.

6. EXPERIMENTS

In general, it is problematic to report performance of a
self-reconfigurable system, because there is such a tight cou-
pling between hardware and software. In this work we re-
port scalability of the algorithm. Furthermore we report the
length of our programs as a measure of the complexity of the
control algorithm. We also report the speed of the walking
gaits, but this should only be considered an example, the
reason being that in our system the limiting factors are how
robust the modules physically are, how powerful the mo-
tors are, and how much power we can pull from the power
source. To report a top speed is not meaningful before the
robot runs autonomously on batteries.

6.1 Quadruped Locomotion

In the first experiment we assembled the modules in the
quadruped configuration shown in Figure 7. We then mea-
sured the time it took for the robot to walk a distance of
150cm. We found that the average of ten trials was 10.9sec-
onds and the standard deviation was 0.57seconds. This cor-
responds to a speed of 13.8cm/second.

The main loop of the program excluding comments and
labels takes up 120 lines of code. The initialization part
contains 32 lines of code. The small size of the program
emphasizes the point that the control algorithm is simple
and minimal. In this system we can replace modules or
move them around as desired, because they will pick the
right role and synchronize correctly no matter where they
are placed in the configuration.

Figure 7: The robot performing quadruped loco-
motion. The wires connected to each module only
provide power.

6.2 Hexapod L ocomotion

We extended the quadruped with an extra pair of leg and a
spine module to obtain a hexapod robot. This configuration
can be seen in Figure 8. Note that the controllers of the
module do not need to be changed, because the delays make
sure that the third pair of legs is appropriately delayed. We
repeated the experiments another ten times and found that
the average time was 12.0seconds (12.5cm/sec.) and the
standard deviation was 0.57seconds.

Initially we tested the hypothesis that the speed of the
robot is independent of the number of modules. Unfortu-
nately Student’s t-test rejected this hypothesis (test proba-
bility 3.0 10_7). From close observation of the experiments
we found that the quadruped robot makes longer step, be-
cause it slides a little forward with each step due to its mo-
mentum. In the hexapod this is not the case, because of the
friction caused by the extra pair of legs. In order to remove
this difference from our data we returned to the videos of
the experiments and counted the number of steps taken by
the robot in each experiment. We divided the time with
the number of steps to produce a time per step measure.
We then tested the hypothesis that the time per step is the
same for both the quadruped and hexapod walker. This hy-
pothesis was accepted on the 5% confidence level with test
probability 0.78. This implies that the speed of the system
does not dependent on the number of modules and therefore
the algorithm scales. If we had more modules available we
could extend the robot to make a 2n-legged walker. The
algorithm can handle this because after the initial synchro-
nization it only takes constant time per period to keep the
modules synchronized.

7. DISCUSSION

The system achieves a high level of performance because
we use a less aggressive synchronization mechanism. In-
tuitively the idea is that as long as each module keeps its
children synchronized each period then all the modules will
become and stay synchronized over time. This idea only
works if it can be assumed that one period of motion takes

Figure 8: The robot performing hexapod locomo-
tion. The wires connected to each module only pro-
vide power.

the same amount of time for all modules otherwise the mod-
ules will keep getting out of synchronization. To insure that
the periods take the same amount of time is not a problem
in our simple system, but as the system grows more com-
plex and the module’s resources are needed for other tasks
it will be necessary to put some extra work into making the
timing of each period precise enough. Fortunately, this can
be achieved by using timers or interrupts.

When the modules are synchronized they can stay syn-
chronized for some cycles without communicating, because
the time to complete a cycle is approximately the same for
all modules. This means that it does not matter much if a
synchronization signal is lost as long as one makes it through
from time to time.

In the algorithm the root module of the configuration tree
emerges as the leader of the robot. This does not mean that
there is a single point of failure, because if the root module
fails its children will take over. In this situation each child
will become the root of its own sub-tree. However, it can of
course not be guaranteed that these sub-trees remain syn-
chronized. This simple implicit leader selection mechanism
is very powerful, but unfortunately it doesn’t work if the
configuration contains loops. In a loop synchronization sig-
nals can chase each other around without ever reaching each
other. In [15] we have solved this problem by introducing
IDs and combining a simple leader selection algorithm with
the basic role playing algorithm.

Another point to note is that the action sequences are just
open loop motor control commands. This is not desirable
if the robot is to operate in complex environments where
sensor feedback is essential to the survival of the robot. The
method can be extend to include this form of feedback. For
instance, the cyclic motion of a leg can be biased by feedback
from the environment. This way the legs can change the
motion to avoid obstacles or gaps. Including sensor feedback
at the level of the individual module will only make the robot
able to deal with problems that can be solved at the level of
the individual module. If the robot has to avoid an obstacle
it requires coordinated actions of all the modules to avoid
the obstacle. A basic approach we have investigated in [16]

is to let all the modules share sensor information through
propagation. Each module then changes its role locally to
react to this sensor information.

Finally another interesting question is: can this algorithm
be generalized to a system without a parent-child relation-
ship. In a real environment a single module should be able
to influence the control of the entire robot based on some
critical sensor information only that module has access to.
How to do that is the focus of our future research.

8. SUMMARY

We have introduced a general multiagent based algorithm
that can be used to implement locomotion patterns in a self-
reconfigurable robot. In this algorithm each module plays
a role. The role can be changed either by communication
from a parent module or by detecting changes in the local
configuration. It has been described how modules playing
roles are synchronized. We have used this general algorithm
to implement a walking gait in a self-reconfigurable robot
consisting of up to 9 modules. We show in experiments
that the implemented algorithm scales and is an efficient
implementation of both a quadruped and hexapod gait.

9. ACKNOWLEDGMENTS

This research is supported by the DARPA contract DAAN
02-98-C-4032, the AFOSR contract F49620-01-1-0020, the
EU-contract IST-20001-33060: HYDRA ”Living” Building
Blocks for Self-Designing Artifacts, and the Danish Techni-
cal Research Council contract 26-01-0088.

10. REFERENCES
[1] H. Bojinov, A. Casal, and T. Hogg. Emergent

structures in modular self-reconfigurable robots. In
Proceedings of the IEEE International Conference on
Robotics & Automation, volume 2, pages 1734 —1741,
San Francisco, California, USA, 2000.

[2] H. Bojinov, A. Casal, and T. Hogg. Multiagent control
of self-reconfigurable robots. In Proceedings of the
Fourth International Conference on MultiAgent
Systems, pages 143 —150, Boston, Massachusetts,
USA, 2000.

[3] A. Castano, R. Chokkalingam, and P. Will.
Autonomous and self-sufficient conro modules for
reconfigurable robots. In Proceedings of the 5th
International Symposium on Distributed Autonomous
Robotic Systems, pages 155-164, Knoxville, Texas,
USA, 2000.

[4] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu,

H. Asama, Y. Kuroda, and I. Endo. Self-organizing
collective robots with morphogenesis in a vertical
plane. In Proceedings of the IEEE International
Conference on Robotics € Automation, pages
28582863, Leuven, Belgium, 1998.

[5] B. Khoshnevis, B. Kovac, W.-M. Shen, and P. Will.
Reconnectable joints for self-reconfigurable robots. In
Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Maui,
Hawaii, USA, 2001.

[6] K. Kotay, D. Rus, M. Vona, and C. McGray. The
self-reconfiguring robotic molecule. In Proceedings of
the IEEE International Conference on Robotics &
Automation, pages 424-431, Leuven, Belgium, 1998.

[7]

(8]

[9]

[10]

[11]

[12]

[13]

S. Murata, H. Kurokawa, and S. Kokaji.
Self-assembling machine. In Proceedings of the IEEE
International Conference on Robotics & Automation,
pages 441-448, San Diego, USA, 1994.

S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and
S. Kokaji. A 3-d self-reconfigurable structure. In
Proceedings of the IEEE International Conference on
Robotics & Automation, pages 432 439, Leuven,
Belgium, 1998.

S. Murata, E. Yoshida, K. Tomita, H. Kurokawa,

A. Kamimura, and S. Kokaji. Hardware design of
modular robotic system. In Proceedings of the
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2210-2217, Takamatsu,
Japan, 2000.

A. Pamecha, C. Chiang, D. Stein, and G. Chirikjian.
Design and implementation of metamorphic robots. In
Proceedings of the ASME Design Engineering
Technical Conference and Computers in Engineering
Conference, pages 1-10, Irvine, USA, 1996.

D. Rus and M. Vona. A physical implementation of
the crystalline robot. In Proceedings of the IEEE
International Conference on Robotics & Automation,
pages 1726 1733, San Francisco, USA, 2000.

B. Salemi, W. Shen, and P. Will. Hormone controlled
metamorphic robots. In Proceedings of the IEEE
International Conference on Robotics €& Automation,
pages 4194-4199, Seoul, Korea, 2001.

W.-M. Shen, B. Salemi, and P. Will. Hormone-based
control for self-reconfigurable robots. In Proceedings of
the International Conference on Autonomous Agents,
pages 1-8, Barcelona, Spain, 2000.

[14]

[15]

[16]

[18]

[19]

W.-M. Shen, B. Salemi, and P. Will. Hormones for
self-reconfigurable robots. In Proceedings of the
International Conference on Intelligent Autonomous
Systems, pages 918-925, Venice, Italy, 2000.

K. Stay, W.-M. Shen, and P. Will. Global locomotion
from local interaction in self-reconfigurable robots. In
Proceedings of the 7th International Conference on
Intelligent Autonomous Systems IAS-7, Marina del
Rey, California, USA, 2002.

K. Stgy, W.-M. Shen, and P. Will. On the use of
sensors in self-reconfigurable robots. In Proceedings of
the Seventh International Conference on The
Simulation of Adaptive behavior SAB’02 (to appear),
Edinburgh, UK, 2002.

C. Unsal and P. Khosla. Mechatronic design of a
modular self-reconfiguring robotic system. In
Proceedings of the IEEE International Conference on
Robotics € Automation, pages 1742-1747, San
Francisco, USA, 2000.

M. Yim. Locomotion with a unit-modular
reconfigurable robot. PhD thesis, Department of
Mechanical Engineering, Stanford University, 1994.
M. Yim, D. Duff, and K. Roufas. Polybot: A modular
reconfigurable robot. In Proceedings of the IEEE
International Conference on Robotics € Automation,
pages 514-520, San Francisco, USA, 2000.

E. Yoshida, S. Murata, S. Kokaji, K. Tomita, and

H. Kurokawa. Micro self-reconfigurable robotic system
using shape memory alloy. In Distributed Autonomous
Robotic Systems 4, pages 145—154, Knoxville, USA,
2000.

