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“...until an adequate theory of automata exists there is a limit to the complexity
and capacity of the automata we can fabricate”.
—Von Neumann.

Abstract

It is of interest to add more control and complexity to the processes of self-
assembly that we are just beginning to understand. Existing self-assembling
systems are essentially meso or macro-scale versions of crystallization. | wish to
expand the tool-box of self-assembly to include dynamic components that
emulate the behaviour of allostery exhibited in bio-macromolecules. An allosteric
molecule can be considered abstractly as a state machine where each stable
conformation is a state. Designing the components for self-assembly gets
increasingly complicated as part numbers increase, and as the components have
re-configurable ‘states’. Essentially the problem in designing self-assembling
components is to avoid undesirable meta-stable states, and to make the desired
assembled geometries the lowest energy conformations of the system. To that
end, this work describes the development of simulation tools for the modeling,
and eventual evolution of mechanical state machines for programmatic, or
predicated, self-assembly.

1.Introduction.

Biology uses many examples of programmed, and self, assembly processes to
achieve a remarkable array of structure and morphologies at many scales.
Whilst our understanding of self assembling processes is slowly proceeding,
there are no non-biological examples of onthe-fly programmable assembly
processes for three dimensional structure at any scale. Sub-cellular, uni-cellular,
and multi-cellular biological systems all display controlled programming of 3D
structure. Commonalities between these biological systems and a “mechanical
morphogenesis” are being sought. Self-assembly is oft touted as the route to
building next-next generation computers with components at the nanometer
scale. | would contend that without more adequate knowledge about more
complex self-assembly, and quantitative rules for system information, this will not
be possible.

1.Background and Goals.



la. Self Assembly.

The goal of this work is to expand the current knowledge of ‘self-assembly’ and
to introduce concepts of state and program size complexity into the components
such that aperiodic and non-crystalline structures can be produced
‘automatically’.
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Figure 3. Regular crystalline lattices by self assembly.
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Figure 2. Attractive and repulsive forces by meniscus shape.



The physical system employed borrows from the work of Whitesides et.al. and
comprises PDMS components at fluid/fluid interfaces and the minimization of
surface energies to converge on an assembled state. An illustration of the forces
involved and the menisci generated can be seen in figure 2. (Bowden et.al). The
typical self-assembling constructions from such parts can be seen in figure 3.To
date this type of self-assembling system has dominated the literature. | see it as
limited in some very important ways. Firstly all such systems have significant
‘program’ limitations in that the individual units have a set state determined prior
to assembly. In essence the only thing being programmed is the basic attractive
and repulsive forces between given faces. These systems all build periodic
crystalline type structures which have inherently limited complexity. In essence
all of these systems are seeking out a global energy minima and hence a static
equilibrium.

1b. Biology.

Biological systems do much more than this simple type of self-assembly, though
crystallization and periodic arrays are also within it's toolkit. Perhaps the most
important difference is that biological systems are capable of being non
equilibrium or dynamic systems, and that some biological components may also
be thought of to have more than one pre-programmed state. Biology employs
the allosteric function heavily in the control of self-assembly and morphogenesis,
particularly in sub-cellular (bio-macro-molecule) systems (Ptashne). A schematic
diagram of allostery can be seen in figure 1. The various allosteric configurations
of a part can in some respects be considered states of a simple state machine.
Biology also uses the concept of co-operative binding heavily, but | will not go
into much detail on that in this paper.
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Figure 1. Schematic of allosteric ‘state’. Ptashne.



By way of this introduction | have wanted to demonstrate how non-static, ‘state’
machine type components are an interesting topic of research in self-assembling
systems.

1c. Predicated, or programmatic self-assembly and my previous work.

Where the goal of this work is to programmatically assemble 3D structure from a
solution or collection of parts, two challenges can be identified.

The first is the set of questions that relate to system design: How many
components of what complexity are capable of manufacturing what collection of
assemblies with what complexity? How many states required at each node?
What is the assembly complexity space for a given set of components? | believe
we can borrow heavily from automata theory and CA’s in answering these
guestions, however the systems to be built are inherently non-digital and the
concepts of program and state as traditionally defined, are not entirely adequate.

The second set of questions relates to the individual component design: How
does one build the required number of states and inter-component interactions
into a unit.

| hope to make progress on questions in both of these statements, but in the
particular work described in this paper | will risk putting the egg before the
chicken and focus on the design of the individual components for assembly.

Every component could have a minimal micro-chip that controls electrostatic or
electro-wetting interactions with other parts, and given enough memory and
processor for each component an infinite number of assemblies could be
produced. Power, expense, and other reasons make this an undesirable method
of manufacturing our component parts, and in many ways the redundancy of
having a powerful processor in every unit is un-interesting. | have chosen
instead to focus on limited state machines as every unit can conceivably be
manufactured in very high numbers. This is more akin to sub-cellular assembly
of macro-molecules than to multi-cellular assembly.

Previous to this work | developed a 2 bit mechanical state machine that
programmatically self assembles at the interface between water and poly-fluro-
decalin (Figure 4). The mechanical state machine is a PDMS component with a
mechanical flexure that acts as the ‘switch’ in the state machine. The
components can be most easily envisaged as a mechanical allosteric enzyme.



Figure 4. PDMS parts at water/PFD interface, coming together and interacting due to
meniscus forces. The allosteric part is the horse-shoe shaped red component that is
‘opened’, or activated when the catalyst (4-lobed blue part) binds it's functional site. The
bound blue circular part can only fit into the horseshoe once the catalyst is bound.
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Figure 5. System energy design and component interactions.

I have quickly discovered that the extra complexity of designing state and flexible
parts into the self assembling systems dramatically increases the complexity of
their design. You will observe in figure 4. that there are no straight edges on the



components to avoid local energy minima on their collision. The essence of
designing mechanisms for assembly in this system is designing an energy
diagram of the different components geometric alignment with respect to one-
another, such that the desired states sit in the deepest possible local energy
minima. | have successfully done this for the 2 state system above and am
making progress on a 3 state system, however it is a problem of increasing
difficulty, and as more component types are added to a system the challenge is
to avoid any undesirable local energy minima.

Figure 5 illustrates this point. For the example of a 3 component system where
one component has two states, A & A’, and the other two components single
state, fixed parts, B & C, there are 8 possible combinations of parts. For each
combination of parts in a 2D surface interaction there is a continuum of rotational
orientations, with a subsequent bond energy relative to orientation curve. The
key is to design the components such that desirable interactions A:B and A:C
have stable conformations whilst the other bond energies are below the level of
the system agitation energy (akin to KT in chemical systems).

| believe there is utility in having modeling tools that can facilitate this design
process by automating the generation of the rotational energy diagram for any
pair of components. From here it is possible to imagine using genetic algorithms
or some other virtual evolutionary mechanism to evolve sets of parts with more
optimal interactions and more complex interactions by performing a mechanical
mutation on the part shapes at each generation. This paper describes the
development of some of these tools for modeling the self-assembly of simple
components at the interface of a liquid.

3.The Physical Model.

The goal for developing a working physical model of the self assembling systems
| am interested in is to have an engine for designing and analyzing components
and their interactions. | have employed heavily the excellent program ‘Surface
Evolver’ of Kenneth Brakke. This program was developed for modeling soap
films, mathematical geometries and solder wetting and bond formation. It uses
the gradient descent method to evolve the minimal energy surface for a given
and defined starting geometry. Surface Evolver may be found at:
http://www.susqu.edu/facstaff/b/brakke/evolver/evolver217.html There is
excellent documentation at that site and | refer those interested to read more.

3.1.Defining and importing geometry.

Surface evolver utilises a vertice, edge, face, body, hierarchy of geometric
definition. 2D, 3D cartesian, 3D polar, string, and 4 and higher dimensional co-
ordinate systems may be employed. Each edge, face, and body must carefully
be defined within a convention such that surface normals are aligned and faces
are oriented and bodies given mass. In the early part of this work | was able to



manually generate simple test geometries to execute in evolver. As part of the
project | developed MATLAB code for automatically importing geometry from 3D
cad programs (eg. Rhino) via the .raw (Raw Triangles) data export format. This
code generates vertices, edges, and faces, in a surface evolver readable format,
however the geometry files still require editing to constrain appropriate parts, and
to define interfacial surface energies, and body masses. This is further work to
do.

3.2.The datafile.

Surface evolver operates on a data file. This datafile includes the geometric
definition of the parts, constrained geometry, contact angles between faces (a
constraint), surface tensions, gravity, mass and centers of mass, optimizing
parameters for running, and calls for functions (.cmd files) that implement the
updating of position etc. as they file is run. An example datafile, duohex4.fe, can
be found in Appendix A.

3.3 The .cmd files.

The command file which is called from the datafile is essentially a subroutine for
recalculating the forces, volumes, geometric constraints, or other components of
the datafile. These command files look very much like the C programming
language. An example command file, xyztorque.cmd, can be found in Appendix
B. Inthis example (xyztorque.cmd is the file called from duohex4.fe), the x,y,and
z forces, and the torque, on the floating components, are calculated by the
central difference method. Each physical system being modeled requires an
appropriate command file which appropriately simulates the physical behaviour
that one is wishing to model.

3.4 Validating the Surface Evolver physical model.

Surface evolver is typically used to model the equilibrium surfaces of, for
example, a soap film on a wire frame. A lot of massaging of the datafiles and
especially the command files was required to model this system. Before using
the model as a predictive tool for designing components | have verified it by
modeling interactions in a simple well constrained case which | can compare to
physical experiments. For this simple case | am modeling the assembly of two
hexagonal components on a petri dish surface with different contact angles,
masses, and wetted faces.

Example 1 (figure 6) is the case of two parts which only wet on their bottom
surface (top surface is not shown in this model). The components can be seen
to come together iteration by iteration until their edges touch. Quantitatively the
resulting minimum energy surface of the petri dish appear similar to those for mm
sized hexagons at a water, air interface.



Example 2 (figure 7) is the same model modified slightly such that the sides of
the hexagonal prisms also wet and hence the top face is that in contact with the
air water interface. Again, the components can be seen to come together as the
surface iterates. This is again reflective qualitatively of a similarly patterned
system in a real dish.

Figure 8 is the same as example 1 except that the inter-component spacing has
been increased. These parts do not converge as their menisci do not interact.

Figure 9 is the same example again, with the mass of the component increased
beyond a point where surface tension will buoy it. It illustrates the point that the
model does not rebuild the surface after the component sinks. It can be used
however to model the scale vs weight issues for parts to get an idea of the
instabilities in real systems.

Changing the scale of the components has similar effects such that when they
are very large they converge slowly relative to their size and positions.

These examples are enough to give confidence in the physical model as
representative of the physical system and therefore as a useful engine in design
of more complicated parts.

Another detail of the model is illustrated well in figure 9. The facets between
parts do not disappear as the parts approach each-other in the current model. In
one respect this is good as it effectively does edge detection of the parts and
prevents them physically overlapping. The problem is that these facets are fixed
and end up pinning the parts at an orientation prematurely. In the real physical
system, these two parts will converge until these two faces line up. In future
iterations of the model | will regenerate these facets as they approach each-other
to allow them to converge further to the expected structure.

So far | have described the generation of dynamic models that allow the user to
observe the interactions as the model runs. | believe in retrospect that this is not
the optimal way to generate the energy diagrams that | wish to have for one
component relative to another as a function of total system energy vs. angular
orientation of the two parts. To do this | have generated MATLAB code for the
importing of raw triangle files from a 3D CAD program. (Appendix C). One can
generate a series of these files by rotating the parts automatically within the CAD
environment and upon import evolve them to an equilibrium point and sum the
energy over all facets in the system to get a quantitative measure of surface
energy for each orientation. These can be used to generate energy vs. theta
curves. So far | can implement this manually on hand coded geometries, but
have not as yet completely automated the import process.



4. Results, Conclusions.

Surface evolver was used as the scaffolding for building a physical model of self
assembly at a 2D interface by meniscus forces. Using a well studied system |
was able to produce qualitative results indicating that the model is valid and
representational of real systems. | determined the principal limitations in the
current system. In retrospect | think the dynamic model attempted is of less
utility than a static model that merely evolves and measures the equilibrium
energy for a system of components and their relative orientations. By running a
series of these models | will have energy vs. orientation diagrams for pairwise
part interactions that can either inform the manual design of the next generation
of components, or in the future for the computer evolution of these parts. In
summary useful tools were developed for modeling these systems and as aids to
design of future mechanical implementations of the ideas outlined earlier in this

paper.
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Figure 6: Example 1: Evolution of minimum energy surface for 2 hexagons floating on an
hexagonal petri dish with mass acting at their center of gravity, with one wetting face (in
contact with fluid) with a contact angle of 35 degrees. Hexagons are given an initial

orientation, position, and tilt angle relative to the absolute so-ordinate system. Sides and top
of hexagon are not shown.

a) Geometry of initial datafile.
b) Geometry after refinement of elements.
c) After 50 iterations of surface energy minimization.

d) Close-up of edge interactions after 120 iterations. The concave meniscus can be
seen.
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Figure 7: Example 2: Evolution of minimum energy surface for 2 hexagons floating on

an hexagonal petri dish with mass acting at their center of gravity

and tilt angle relative to the absolute so-ordinate

given an initial orientation, position

system.

d) Close-up of edge interactions after 120 iterations. In this case the convex

b) Geometry after refinement of elements.
c) After 50 iterations of surface energy minimization.

a) Geometry of initial datafile.

meniscus can be seen.
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Figure 8. Non converging hexagons at an interface due to large separation

distance.

or they become too

large, they sink into the bath. The model does not recaculate the reformation of a

Figure 9. When the mass of the floating objects is too high
clean surface once the parts have fallen through.
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Figure 9: Faces do not quite meet as small facets remain and are squeezed
between edges. This effectively pins the surfaces short of their real equilibrium
position.
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Figure 10: Geometry import direct from Rhino (3D CAD) via raw triangles into
Surface Evolver to facilitate fast iteration in design time.



Relevant and useful reading.

| have included a long list of papers that | have found useful as a general
introduction to the field of self assembly.
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Appendice A. : Example .FE datafile.

Duohex4.fe

/I duohex4.fe

/I convert to hex bath
// add a contact angle to surface of floating hex

/Isame as duohex.fe except parts are farther apart and do not converge (cool)

/I Circular, tilting, non-coaxial wetted pads. With gravity.
/I Same as bga-10.fe, but with 2D lateral movement of upper pad
/I and tilting as optimizing parameters.

/I Upper pad represented with boundary.
/I Liquid entirely bounded by facets.

evolver_version "2.11c" // minimum Evolver version needed

/I physical constants, in cgs units

parameter S_TENSION =480 // liquid solder surface tension, erg/cm”2
parameter SOLDER_DENSITY = 1 // grams/cm”3

gravity_constant 980  // cm/sec”2

/I configuration parameters

optimizing_parameter height = 0.02 // height of upper pad, cm
parameter radius = 0.10 /l radius of pads, cm
optimizing_parameter x_offset = .25 // offset in x of upper pad
optimizing_parameter y_offset = .25 // offset in y of upper pad
optimizing_parameter tilt = 6 scale=10000 // tilt about x-axis, degrees
parameter depth = 0.1 //depth of fluid

/I loads on upper pad, dynes

parameter pad_weight = 500 // weight of upper pad

parameter X_load = 0.0 // load in x direction on upper pad

parameter y load = 0.0 // load in y direction on upper pad

parameter cg_z = .02 // height of center of gravity of upper
/I chip above upper pad

/I for the second part:
optimizing_parameter x2_offset = -.25 // offset in x of upper pad
optimizing_parameter y2_offset = -.25 // offset in y of upper pad
optimizing_parameter tilt2 = -3 scale=10000 // tilt about x-axis, degrees
parameter pad_weight2 = 500 // weight of upper pad
parameter x2_load = 0.0 // load in x direction on upper pad
parameter y2_load = 0.0 // load in y direction on upper pad
parameter cg_z2 = .02 // height of center of gravity of upper

/I chip above upper pad

PARAMETER angle = 95 // interior angle between plane and surface, degrees



/I upper pad energy
quantity pad_energy energy method vertex_scalar_integral
scalar_integrand: pad_weight*z - x_load*x - y_load*y

/I lower pad
constraint 1
formula: z=0

/I upper pad
constraint 2
formula: sin(tilt*pi/180)*(y - y_offset) = cos(tilt*pi/180)*(z - height)

/I rim of lower pad
constraint 3
formula: x*2 + y*2 = (10*radius)"2

/I lower pad
constraint 4
formula: z = -depth

/I upper pad2
constraint 5
formula: sin(tilt2*pi/180)*(y - y2_offset) = cos(tilt2*pi/180)*(z - height)

/I upper pad rim

boundary 1 parameters 1

x1: x_offset + radius*cos(pl)

x2:y_offset + radius*sin(p1)*cos(tilt*pi/180)
x3: height + radius*sin(p1)*sin(tilt*pi/180)

/I upper pad center point
boundary 2 parameter 1

x1: x_offset

x2:y_offset + p1*sin(tilt*pi/180)
x3: height + p1*cos(tilt*pi/180)

/I 2nd upper pad rim

boundary 3 parameters 1

x1: x2_offset + radius*cos(pl)

x2: y2_offset + radius*sin(pl)*cos(tilt2*pi/180)
x3: height + radius*sin(p1)*sin(tilt2*pi/180)

/I upper pad center point
boundary 4 parameter 1

x1: x2_offset

x2: y2_offset + pl*sin(tilt2*pi/180)
x3: height + pl*cos(tilt2*pi/180)

vertices

/I liquid surface

1 10*radius*cos(0*pi/3) 10*radius*sin(0*pi/3) 0 constraints 1,3 fixed
2 10*radius*cos(1*pi/3) 10*radius*sin(1*pi/3) 0 constraints 1,3 fixed
3 10*radius*cos(2*pi/3) 10*radius*sin(2*pi/3) 0 constraints 1,3 fixed
4 10*radius*cos(3*pi/3) 10*radius*sin(3*pi/3) O constraints 1,3 fixed
5 10*radius*cos(4*pi/3) 10*radius*sin(4*pi/3) 0 constraints 1,3 fixed



6 10*radius*cos(5*pi/3) 10*radius*sin(5*pi/3) 0 constraints 1,3 fixed

/I floaty bit

7 0*pi/3 boundary 1 fixed
8 1*pi/3 boundary 1 fixed
9 2*pi/3 boundary 1 fixed
10 3*pi/3 boundary 1 fixed
11 4*pi/3 boundary 1 fixed
12 5*pi/3 boundary 1 fixed
/I center of upper pad

13 0 boundary 2 fixed

/I center of mass of upper pad, raised up a bit from pad surface
14 cg_z boundary 2 fixed bare pad_energy

/I bottom of dish

101
102
103
104
105
106

10*radius*cos(0*pi/3) 10*radius*sin(0*pi/3) -depth
10*radius*cos(1*pi/3) 10*radius*sin(1*pi/3) -depth
10*radius*cos(2*pi/3) 10*radius*sin(2*pi/3) -depth
10*radius*cos(3*pi/3) 10*radius*sin(3*pi/3) -depth
10*radius*cos(4*pi/3) 10*radius*sin(4*pi/3) -depth
10*radius*cos(5*pi/3) 10*radius*sin(5*pi/3) -depth

/I floaty bit2

207 0*pi/3 boundary 3 fixed
208 1*pi/3 boundary 3 fixed
209 2*pi/3 boundary 3 fixed
210 3*pi/3 boundary 3 fixed
211 4*pi/3 boundary 3 fixed
212 5*pi/3 boundary 3 fixed

/I center of upper pad

213 0 boundary 4 fixed
/I center of mass of upper pad, raised up a bit from pad surface
214 cg_z2 boundary 4 fixed bare pad_energy

edges /I defined by endpoints
/' liquid surface

OO, WNPE

OO WNPE

constraints 1,3 fixed no_refine
constraints 1,3 fixed no_refine
constraints 1,3 fixed no_refine
constraints 1,3 fixed no_refine
constraints 1,3 fixed no_refine
constraints 1,3 fixed no_refine

RPOoOOhwWN

/I upper pad edges

7 7 8 boundary 1 fixed no_refine
8 8 9 boundary 1 fixed no_refine
9 9 10 boundary 1 fixed no_refine
10 10 11 boundary 1 fixed no_refine
11 11 12 boundary 1 fixed no_refine
12 12 7 boundary 1 fixed no_refine

/I surface edges
112 1 12
113 17
114 2 8
115 2 9

constraints 3,4 fixed
constraints 3,4 fixed
constraints 3,4 fixed
constraints 3,4 fixed
constraints 3,4 fixed
constraints 3,4 fixed



116 3 10

117 3 209
118 4 210
119 5 211
120 6 212
121 1 207
122 207 11
123 208 10

/I upper pad radii

19 7 13 constraint 2 fixed no_refine
20 8 13 constraint 2 fixed no_refine
21 9 13 constraint 2 fixed no_refine
22 10 13 constraint 2 fixed no_refine
23 11 13 constraint 2 fixed no_refine
24 12 13 constraint 2 fixed no_refine

/I 2nd upper pad edges

307 207 208 boundary 3 fixed no_refine
308 208 209 boundary 3 fixed no_refine
309 209 210 boundary 3 fixed no_refine
310 210 211 boundary 3 fixed no_refine
311 211 212 boundary 3 fixed no_refine
312 212 207 boundary 3 fixed no_refine

/I upper pad2 radii

319 207 213 constraint 5 fixed no_refine
320 208 213 constraint 5 fixed no_refine
321 209 213 constraint 5 fixed no_refine
322 210 213 constraint 5 fixed no_refine
323 211 213 constraint 5 fixed no_refine
324 212 213 constraint 5 fixed no_refine

/I dishbottom

101 101 102 constraints 3,4 fixed no_refine
102 102 103 constraints 3,4 fixed no_refine
103 103 104 constraints 3,4 fixed no_refine
104 104 105 constraints 3,4 fixed no_refine
105 105 106 constraints 3,4 fixed no_refine
106 106 101 constraints 3,4 fixed no_refine

/ldish vertical edges
201 101 1 no_refine
202 102 2 no_refine
203 103 3 no_refine
204 104 4 no_refine
205 105 5 no_refine
206 106 6 no_refine

faces // defined by oriented edge loops to have outward normal
/I lateral faces

1 1114 -7-113tension S_TENSION

2 2116 -9-115tension S_TENSION

3 3118 -309 -117 tension S_TENSION

4 4119 -310 -118 tension S_TENSION



5 5120 -311 -119 tension S_TENSION

6 6121 -312 -120 tension S_TENSION
20 115 -8 -114 tension S_TENSION

21 117 -308 123 -116 tension S_TENSION
22 112 -11 -122 -121 tension S_TENSION
23 -123 -307 122 -10 tension S_TENSION
24 113 -12 -112 tension S_TENSION

/I upper pad

8 7 20 -19 fixed no_refine color green tension 0 constraint 2
9 821 -20 fixed no_refine color green tension 0 constraint 2
10 9 22 -21 fixed no_refine color green tension 0 constraint 2
11 10 23 -22 fixed no_refine color green tension 0 constraint 2
12 11 24 -23 fixed no_refine color green tension 0 constraint 2
13 12 19 -24 fixed no_refine color green tension O constraint 2

/I upper pad2

208 307 320 -319 fixed no_refine color red tension 0 constraint 5
209 308 321 -320 fixed no_refine color red tension 0 constraint 5
210 309 322 -321 fixed no_refine color red tension 0 constraint 5
211 310 323 -322 fixed no_refine color red tension 0 constraint 5
212 311 324 -323 fixed no_refine color red tension 0 constraint 5
213 312 319 -324 fixed no_refine color red tension 0 constraint 5

/I dish bottom
101 -106 -105 -104 -103 -102 -101 fixed no_refine color cyan tension O

/ dish sides

102 101 202 -1 -201 fixed no_refine color cyan tension O
103 102 203 -2 -202 fixed no_refine color cyan tension 0
104 103 204 -3 -203 fixed no_refine color cyan tension 0
105 104 205 -4 -204 fixed no_refine color cyan tension 0O
106 105 206 -5 -205 fixed no_refine color cyan tension 0
107 106 201 -6 -206 fixed no_refine color cyan tension 0

bodies // defined by oriented face list

1 101102 103104 105106 1071234568910 11 121320 21 22 23 24 208 209 210 211
212 213 volume pi*(10*radius)*2*depth density SOLDER_DENSITY

read

hessian_normal

read "xyztorque.cmd"

re := refine edges where on_constraint 2

/I Typical evolution
gogo :={r; u; u; w 0.01; r; u; g 150; w 0.005; r; u; g 20 }



Appendice B : Command file for datafile update.
Xyztorque.cmd

/I Commands to calculate x, y, and z forces, and tilt torque.

/I command to smoothly change x offset.
/I Use: set new_x_offset to desired value, then do do_x_offset.
new_x_offset := x_offset;
do_x_offset := { doff := new_x_offset - x_offset;
x_offset := new_x_offset;
slope := tan(tilt*pi/180);
set vertex x x + doff*z/(height + slope*(y - y_offset));
recalc;

/I Central difference, moving linearly
dx := le-5;
do_xforce :={
new_x_offset := x_offset + dx; // do this first so constraint in right place
do_x_offset;
new_energy 1 :=total_energy - body[1].pressure *
(body[1].volume - body[1].target);
new_x_offset := x_offset - 2*dx;
do_x_offset;
new_energy_2 := total_energy - body[1].pressure *
(body[1].volume - body[1].target);
xforce := -(new_energy_1 - new_energy_2)/2/dXx;
printf "xforce: %18.15f (central difference, linear move)\n", xforce;
new_x_offset := x_offset + dx; // restore original
do_x_offset;
}

/I command to smoothly change y offset.
/I Use: set new_y_offset to desired value, then do do_y_offset.
new_y offset :=y_offset;
do_y offset := { doff := new_y_offset - y_offset;
y_offset ;= new_y_offset;
set vertex y y + doff*z/(height + slope*(y - y_offset));
recalc;
}
/I Central difference, moving linearly
dy := le-5;
do_yforce :={
new_y offset :=y_offset + dy; // do this first so constraint in right place
do_y offset;
new_energy 1 :=total_energy - body[1].pressure *
(body[1].volume - body[1].target);
new_y_offset := y_offset - 2*dy;
do_y offset;
new_energy_2 := total_energy - body[1].pressure *
(body[1].volume - body[1].target);
yforce := -(new_energy_1 - new_energy_2)/2/dy;
printf "yforce: %18.15f (central difference, linear move)\n", yforce;
new_y offset :=y offset + dy; // restore original
do_y offset;



}

/I Central difference, moving linearly
dz := le-5;
do_zforce :={
set vertex z z + dz*z/height; // do this before changing height
height := height + dz;
recalc;
new_energy 1 :=total_energy - body[1].pressure *
(body[1].volume - body[1].target);
set vertex z z - 2*dz*z/(height + slope*(y - y_offset));
height := height - 2*dz;
recalc;
new_energy_2 :=total_energy - body[1].pressure *
(body[1].volume - body[1].target);
zforce := -(new_energy_1 - new_energy_2)/2/dz;
printf "zforce: %18.15f (central difference, linear move)\n",
zforce;
set vertex z z + dz*z/(height + slope*(y - y_offset));
height := height + dz; // restore original
recalc;

}

/I Torque
/I First, a smooth tilting
new_tilt := tilt;
do_tilt := { dtilt := (new._tilt - tilt)*pi/180;
slope := tan(tilt);
tilt := new._tilt;
foreach vertex vv do {
beta := z/(height + slope*(y - y_offset));
vv.y :=y_offset + cos(beta*dtilt)*(y - y_offset)
- sin(beta*dtilt)*(z - beta*height);
vv.z := beta*height + sin(beta*dtilt)*(y - y_offset)
+ cos(beta*dtilt)*(z - beta*height);
}

}

/I Torque by central difference, moving linearly
dangle := le-4; // degrees
do_torque :={
new_tilt := tilt + dangle; // do this first so constraint in right place
do_tilt;
new_energy 1 :=total_energy - body[1].pressure *
(body[1].volume - body[1].target);
new_tilt := tilt - 2*dangle;
do_tilt;
new_energy_ 2 :=total_energy - body[1].pressure *
(body[1].volume - body[1].target);
torque := -(new_energy_1 - new_energy_2)/2/(dangle*pi/180);
printf "torque: %18.15f (central difference, linear move)\n", torque;
new_tilt := tilt + dangle; // restore original
do _tilt;
}

forces ;= { do_xforce; do_yforce; do_zforce; do_torque; }



Appendix C: MATLAB code for *.raw CAD import.

clear all;

fid = fopen(‘import.fe','w")
fprintf(fid,'vertices\n")
fclose (fid);

fid = fopen (‘hexsg.raw");
a=fscanf(fid,'%g %g %g',[3 inf]);
fclose (fid);

a=a

[row,col]=size(a);

b=[1:row];

b=Db";

c=[b aJ;

c=c;

fid = fopen('import.fe','a")
fprintf(fid,'%i %8.6f %8.6f %8.6f fixed\n',c")
fclose (fid);

x=b;

for i=1:row;
X(i,2)=b(i);

end

for i=0:row/3-1;

x(i*3 + 1,3) = b(i*3 + 2);
x(i*3 + 2,3) = b(i*3 + 3);
x(i*3 + 3,3) = b(i*3 + 1);
end

fid = fopen(‘import.fe','a’);
fprintf(fid,'edges\n");

fprintf(fid,'%i %i %i fixed no_refine\n',x);
fclose(fid);

for i=1:row/3;
z(i,1)=i;
z(i,2)=3%i-2;
z(i,3)=3%-1;
z(i,4)=3%;
end

fid = fopen(‘import.fe','a’);
fprintf(fid,'faces\n’);
fprintf(fid,'%i %i %i %i color 4 backcolor 6 fixed no_refine\n',z’);

fclose(fid);



