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“...until an adequate theory of automata exists there is a limit to the complexity 
and capacity of the automata we can fabricate”. 

– Von Neumann. 
 
 
Abstract 
 
It is of interest to add more control and complexity to the processes of self-
assembly that we are just beginning to understand.  Existing self-assembling 
systems are essentially meso or macro-scale versions of crystallization.  I wish to 
expand the tool-box of self-assembly to include dynamic components that 
emulate the behaviour of allostery exhibited in bio-macromolecules.  An allosteric 
molecule can be considered abstractly as a state machine where each stable 
conformation is a state.  Designing the components for self-assembly gets 
increasingly complicated as part numbers increase, and as the components have 
re-configurable ‘states’.  Essentially the problem in designing self-assembling 
components is to avoid undesirable meta-stable states, and to make the desired 
assembled geometries the lowest energy conformations of the system.  To that 
end, this work describes the development of simulation tools for the modeling, 
and eventual evolution of mechanical state machines for programmatic, or 
predicated, self-assembly. 
 
1.Introduction. 

Biology uses many examples of programmed, and self, assembly processes to 
achieve a remarkable array of structure and morphologies at many scales.  
Whilst our understanding of self assembling processes is slowly proceeding, 
there are no non-biological examples of on-the-fly programmable assembly 
processes for three dimensional structure at any scale.  Sub-cellular, uni-cellular, 
and multi-cellular biological systems all display controlled programming of 3D 
structure.  Commonalities between these biological systems and a “mechanical 
morphogenesis” are being sought.  Self-assembly is oft touted as the route to 
building next-next generation computers with components at the nanometer 
scale.  I would contend that without more adequate knowledge about more 
complex self-assembly, and quantitative rules for system information, this will not 
be possible. 

1.Background and Goals. 



1a. Self Assembly. 

The goal of this work is to expand the current knowledge of ‘self-assembly’ and 
to introduce concepts of state and program size complexity into the components 
such that aperiodic and non-crystalline structures can be produced 
‘automatically’.   

 

Figure 3.  Regular crystalline lattices by self assembly. 

 

Figure 2. Attractive and repulsive forces by meniscus shape. 



The physical system employed borrows from the work of Whitesides et.al. and 
comprises PDMS components at fluid/fluid interfaces and the minimization of 
surface energies to converge on an assembled state.  An illustration of the forces 
involved and the menisci generated can be seen in figure 2.  (Bowden et.al).  The 
typical self-assembling constructions from such parts can be seen in figure 3.To 
date this type of self-assembling system has dominated the literature.  I see it as 
limited in some very important ways. Firstly all such systems have significant 
‘program’ limitations in that the individual units have a set state determined prior 
to assembly.  In essence the only thing being programmed is the basic attractive 
and repulsive forces between given faces.  These systems all build periodic 
crystalline type structures which have inherently limited complexity.  In essence 
all of these systems are seeking out a global energy minima and hence a static 
equilibrium. 

1b. Biology. 

Biological systems do much more than this simple type of self-assembly, though 
crystallization and periodic arrays are also within it’s toolkit.  Perhaps the most 
important difference is that biological systems are capable of being non-
equilibrium or dynamic systems, and that some biological components may also 
be thought of to have more than one pre-programmed state.  Biology employs 
the allosteric function heavily in the control of self-assembly and morphogenesis, 
particularly in sub-cellular (bio-macro-molecule) systems (Ptashne).  A schematic 
diagram of allostery can be seen in figure 1.  The various allosteric configurations 
of a part can in some respects be considered states of a simple state machine.  
Biology also uses the concept of co-operative binding heavily, but I will not go 
into much detail on that in this paper.   

 

Figure 1. Schematic of allosteric ‘state’.  Ptashne. 



By way of this introduction I have wanted to demonstrate how non-static, ‘state’ 
machine type components are an interesting topic of research in self-assembling 
systems. 

1c. Predicated, or programmatic self-assembly and my previous work. 

Where the goal of this work is to programmatically assemble 3D structure from a 
solution or collection of parts, two challenges can be identified.  

The first is the set of questions that relate to system design:  How many 
components of what complexity are capable of manufacturing what collection of 
assemblies with what complexity?  How many states required at each node?  
What is the assembly complexity space for a given set of components?  I believe 
we can borrow heavily from automata theory and CA’s in answering these 
questions, however the systems to be built are inherently non-digital and the 
concepts of program and state as traditionally defined, are not entirely adequate. 

The second set of questions relates to the individual component design: How 
does one build the required number of states and inter-component interactions 
into a unit.   

I hope to make progress on questions in both of these statements, but in the 
particular work described in this paper I will risk putting the egg before the 
chicken and focus on the design of the individual components for assembly. 

Every component could have a minimal micro-chip that controls electrostatic or 
electro-wetting interactions with other parts, and given enough memory and 
processor for each component an infinite number of assemblies could be 
produced.  Power, expense, and other reasons make this an undesirable method 
of manufacturing our component parts, and in many ways the redundancy of 
having a powerful processor in every unit is un-interesting.  I have chosen 
instead to focus on limited state machines as every unit can conceivably be 
manufactured in very high numbers.  This is more akin to sub-cellular assembly 
of macro-molecules than to multi-cellular assembly. 

Previous to this work I developed a 2 bit mechanical state machine that 
programmatically self assembles at the interface between water and poly-fluro-
decalin (Figure 4).  The mechanical state machine is a PDMS component with a 
mechanical flexure that acts as the ‘switch’ in the state machine.  The 
components can be most easily envisaged as a mechanical allosteric enzyme.   

 



    

Figure 4. PDMS parts at water/PFD interface, coming together and interacting due to 
meniscus forces.  The allosteric part is the horse-shoe shaped red component that is 
‘opened’, or activated when the catalyst (4-lobed blue part) binds it’s functional site. The 
bound blue circular part can only fit into the horseshoe once the catalyst is bound. 

 

Figure 5.  System energy design and component interactions. 

I have quickly discovered that the extra complexity of designing state and flexible 
parts into the self assembling systems dramatically increases the complexity of 
their design.  You will observe in figure 4. that there are no straight edges on the 



components to avoid local energy minima on their collision.  The essence of 
designing mechanisms for assembly in this system is designing an energy 
diagram of the different components geometric alignment with respect to one-
another, such that the desired states sit in the deepest possible local energy 
minima.  I have successfully done this for the 2 state system above and am 
making progress on a 3 state system, however it is a problem of increasing 
difficulty, and as more component types are added to a system the challenge is 
to avoid any undesirable local energy minima. 

Figure 5 illustrates this point.  For the example of a 3 component system where 
one component has two states, A & A’, and the other two components single 
state, fixed parts, B & C, there are 8 possible combinations of parts.  For each 
combination of parts in a 2D surface interaction there is a continuum of rotational 
orientations, with a subsequent bond energy relative to orientation curve.  The 
key is to design the components such that desirable interactions A:B and A:C 
have stable conformations whilst the other bond energies are below the level of 
the system agitation energy (akin to KT in chemical systems). 

I believe there is utility in having modeling tools that can facilitate this design 
process by automating the generation of the rotational energy diagram for any 
pair of components.  From here it is possible to imagine using genetic algorithms 
or some other virtual evo lutionary mechanism to evolve sets of parts with more 
optimal interactions and more complex interactions by performing a mechanical 
mutation on the part shapes at each generation.  This paper describes the 
development of some of these tools for modeling the self-assembly of simple 
components at the interface of a liquid. 

3.The Physical Model. 

The goal for developing a working physical model of the self assembling systems 
I am interested in is to have an engine for designing and analyzing components 
and their interactions.  I have employed heavily the excellent program ‘Surface 
Evolver’ of Kenneth Brakke.  This program was developed for modeling soap 
films, mathematical geometries and solder wetting and bond formation.  It uses 
the gradient descent method to evolve the minimal energy surface for a given 
and defined starting geometry.  Surface Evolver may be found at:  
http://www.susqu.edu/facstaff/b/brakke/evolver/evolver217.html  There is 
excellent documentation at that site and I refer those interested to read more. 

3.1.Defining and importing geometry. 

Surface evolver utilises a vertice, edge, face, body, hierarchy of geometric 
definition. 2D, 3D cartesian, 3D polar, string, and 4 and higher dimensional co-
ordinate systems may be employed.   Each edge, face, and body must carefully 
be defined within a convention such that surface normals are aligned and faces 
are oriented and bodies given mass.  In the early part of this work I was able to 



manually generate simple test geometries to execute in evolver.  As part of the 
project I developed MATLAB code for automatically importing geometry from 3D 
cad programs (eg. Rhino) via the .raw (Raw Triangles) data export format.  This 
code generates vertices, edges, and faces, in a surface evolver readable format, 
however the geometry files still require editing to constrain appropriate parts, and 
to define interfacial surface energies, and body masses.  This is further work to 
do. 

3.2.The datafile. 

Surface evolver operates on a data file.  This datafile includes the geometric 
definition of the parts, constrained geometry, contact angles between faces (a 
constraint), surface tensions, gravity, mass and centers of mass, optimizing 
parameters for running, and calls for functions (.cmd files) that implement the 
updating of position etc. as they file is run.  An example datafile, duohex4.fe, can 
be found in Appendix A. 

3.3 The .cmd files. 

The command file which is called from the datafile is essentially a subroutine for 
recalculating the forces, volumes, geometric constraints, or other components of 
the datafile.  These command files look very much like the C programming 
language.  An example command file, xyztorque.cmd, can be found in Appendix 
B.  In this example (xyztorque.cmd is the file called from duohex4.fe), the x,y,and 
z forces, and the torque, on the floating components, are calculated by the 
central difference method.  Each physical system being modeled requires an 
appropriate command file which appropriately simulates the physical behaviour 
that one is wishing to model. 

3.4 Validating the Surface Evolver physical model. 

Surface evolver is typically used to model the equilibrium surfaces of, for 
example, a soap film on a wire frame.  A lot of massaging of the datafiles and 
especially the command files was required to model this system.  Before using 
the model as a predictive tool for designing components I have verified it by 
modeling interactions in a simple well constrained case which I can compare to 
physical experiments.  For this simple case I am modeling the assembly of two 
hexagonal components on a petri dish surface with different contact angles, 
masses, and wetted faces. 

Example 1 (figure 6) is the case of two parts which only wet on their bottom 
surface (top surface is not shown in this model).  The components can be seen 
to come together iteration by iteration until their edges touch.  Quantitatively the 
resulting minimum energy surface of the petri dish appear similar to those for mm 
sized hexagons at a water, air interface. 



Example 2 (figure 7) is the same model modified slightly such that the sides of 
the hexagonal prisms also wet and hence the top face is that in contact with the 
air water interface.  Again, the components can be seen to come together as the 
surface iterates.  This is again reflective qualitatively of a similarly patterned 
system in a real dish. 

Figure 8 is the same as example 1 except that the inter-component spacing has 
been increased.  These parts do not converge as their menisci do not interact. 

Figure 9 is the same example again, with the mass of the component increased 
beyond a point where surface tension will buoy it.  It illustrates the point that the 
model does not  rebuild the surface after the component sinks.  It can be used 
however to model the scale vs weight issues for parts to get an idea of the 
instabilities in real systems. 

Changing the scale of the components has similar effects such that when they 
are very large they converge slowly relative to their size and positions. 

These examples are enough to give confidence in the physical model as 
representative of the physical system and therefore as a useful engine in design 
of more complicated parts. 

Another detail of the model is illustrated well in figure 9.  The facets between 
parts do not disappear as the parts approach each-other in the current model.  In 
one respect this is good as it effectively does edge detection of the parts and 
prevents them physically overlapping.  The problem is that these facets are fixed 
and end up pinning the parts at an orientation prematurely.   In the real physical 
system, these two parts will converge until these two faces line up.   In future 
iterations of the model I will regenerate these facets as they approach each-other 
to allow them to converge further to the expected structure. 

So far I have described the generation of dynamic models that allow the user to 
observe the interactions as the model runs.  I believe in retrospect that this is not 
the optimal way to generate the energy diagrams that I wish to have for one 
component relative to another as a function of total system energy vs. angular 
orientation of the two parts.  To do this I have generated MATLAB code for the 
importing of raw triangle files from a 3D CAD program.  (Appendix C).  One can 
generate a series of these files by rotating the parts automatically within the CAD 
environment and upon import evolve them to an equilibrium point and sum the 
energy over all facets in the system to get a quantitative measure of surface 
energy for each orientation.  These can be used to generate energy vs. theta 
curves.  So far I can implement this manually on hand coded geometries, but 
have not as yet completely automated the import process. 

 



4. Results, Conclusions. 

Surface evolver was used as the scaffolding for building a physical model of self 
assembly at a 2D interface by meniscus forces.  Using a well studied system I 
was able to produce qualitative results indicating that the model is valid and 
representational of real systems.  I determined the principal limitations in the 
current system.  In retrospect I think the dynamic model attempted is of less 
utility than a static model that merely evolves and measures the equilibrium 
energy for a system of components and their relative orientations.  By running a 
series of these models I will have energy vs. orientation diagrams for pairwise 
part interactions that can either inform the manual design of the next generation 
of components, or in the future for the computer evolution of these parts.  In 
summary useful tools were developed for modeling these systems and as aids to 
design of future mechanical implementations of the ideas outlined earlier in this 
paper. 

 

 



 

Figure 6:  Example 1:  Evolution of  minimum energy surface for 2 hexagons floating on an 
hexagonal petri dish with mass acting at their center of gravity, with one wetting face (in 
contact with fluid) with a contact angle of  35 degrees.  Hexagons are given an initial 
orientation, position, and tilt angle relative to the absolute so-ordinate system.  Sides and top 
of hexagon are not shown. 
 

a) Geometry of initial datafile. 
b) Geometry after refinement of elements. 
c) After 50 iterations of surface energy minimization. 
d) Close-up of edge interactions after 120 iterations.  The concave meniscus can be 

seen. 



 
 
 
 
 
 

Figure 7:  Example 2:  Evolution of  minimum energy surface for 2 hexagons floating on 
an hexagonal petri dish with mass acting at their center of gravity, with wetting sides and 
bottom surface (in contact with fluid) with a contact angle of  65 degrees.  Hexagons are 
given an initial orientation, position, and tilt angle relative to the absolute so-ordinate 
system. 
 

a) Geometry of initial datafile. 
b) Geometry after refinement of elements. 
c) After 50 iterations of surface energy minimization. 
d) Close-up of edge interactions after 120 iterations.  In this case the convex 

meniscus can be seen. 



 
 
Figure 8.  Non converging hexagons at an interface due to large separation 
distance. 
 

 
 
Figure 9.  When the mass of the floating objects is too high, or they become too 
large, they sink into the bath.  The model does not recaculate the reformation of a 
clean surface once the parts have fallen through. 



 

 
 

Figure 9:  Faces do not quite meet as small facets remain and are squeezed 
between edges.  This effectively pins the surfaces short of their real equilibrium 
position. 
 

 
 

Figure 10: Geometry import direct from Rhino (3D CAD) via raw triangles into 
Surface Evolver to facilitate fast iteration in design time.



Relevant and useful reading. 

I have included a long list of papers that I have found useful as a general 
introduction to the field of self assembly. 
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Appendice A. : Example .FE datafile. 
 

Duohex4.fe 
 
// duohex4.fe 
 
// convert to hex bath 
// add a contact angle to surface of floating hex  
 
//same as duohex.fe except parts are farther apart and do not converge (cool) 
 
// Circular, tilting, non-coaxial wetted pads. With gravity. 
// Same as bga-10.fe, but with 2D lateral movement of upper pad 
// and tilting as optimizing parameters. 
 
// Upper pad represented with boundary. 
// Liquid entirely bounded by facets. 
 
evolver_version "2.11c"  // minimum Evolver version needed 
 
// physical constants, in cgs units 
parameter S_TENSION = 480    // liquid solder surface tension, erg/cm^2 
parameter SOLDER_DENSITY = 1 // grams/cm^3 
gravity_constant 980     // cm/sec^2 
 
// configuration parameters 
optimizing_parameter height = 0.02   // height of upper pad, cm 
parameter radius = 0.10              // radius of pads, cm 
optimizing_parameter x_offset = .25    // offset in x of upper pad 
optimizing_parameter y_offset = .25    // offset in y of upper pad 
optimizing_parameter tilt = 6  scale=10000    // tilt about x-axis, degrees 
parameter depth = 0.1 //depth of fluid 
 
// loads on upper pad, dynes 
parameter pad_weight = 500  // weight of upper pad 
parameter x_load = 0.0  // load in x direction on upper pad 
parameter y_load = 0.0  // load in y direction on upper pad 
parameter cg_z = .02    // height of center of gravity of upper 
                        // chip above upper pad 
 
 
// for the second part: 
optimizing_parameter x2_offset = -.25    // offset in x of upper pad 
optimizing_parameter y2_offset = -.25    // offset in y of upper pad 
optimizing_parameter tilt2 = -3  scale=10000    // tilt about x-axis, degrees 
parameter pad_weight2 = 500  // weight of upper pad 
parameter x2_load = 0.0  // load in x direction on upper pad 
parameter y2_load = 0.0  // load in y direction on upper pad 
parameter cg_z2 = .02    // height of center of gravity of upper 
                        // chip above upper pad 
 
 
 
PARAMETER angle = 95   // interior angle between plane and surface, degrees 
 



 
// upper pad energy 
quantity pad_energy energy method vertex_scalar_integral 
scalar_integrand: pad_weight*z - x_load*x - y_load*y 
 
// lower pad 
constraint 1 
formula: z = 0 
 
// upper pad 
constraint 2 
formula: sin(tilt*pi/180)*(y - y_offset) = cos(tilt*pi/180)*(z - height)  
 
// rim of lower pad 
constraint 3 
formula: x^2 + y^2 = (10*radius)^2 
 
// lower pad 
constraint 4 
formula: z = -depth 
 
// upper pad2 
constraint 5 
formula: sin(tilt2*pi/180)*(y - y2_offset) = cos(tilt2*pi/180)*(z - height) 
 
// upper pad rim 
boundary 1 parameters 1 
x1: x_offset + radius*cos(p1) 
x2: y_offset + radius*sin(p1)*cos(tilt*pi/180) 
x3: height + radius*sin(p1)*sin(tilt*pi/180) 
 
// upper pad center point 
boundary 2 parameter 1 
x1: x_offset 
x2: y_offset + p1*sin(tilt*pi/180) 
x3: height + p1*cos(tilt*pi/180) 
 
// 2nd upper pad rim 
boundary 3 parameters 1 
x1: x2_offset + radius*cos(p1) 
x2: y2_offset + radius*sin(p1)*cos(tilt2*pi/180) 
x3: height + radius*sin(p1)*sin(tilt2*pi/180) 
 
// upper pad center point 
boundary 4 parameter 1 
x1: x2_offset 
x2: y2_offset + p1*sin(tilt2*pi/180) 
x3: height + p1*cos(tilt2*pi/180) 
 
vertices 
// liquid surface 
1  10*radius*cos(0*pi/3) 10*radius*sin(0*pi/3) 0   constraints 1,3 fixed 
2  10*radius*cos(1*pi/3) 10*radius*sin(1*pi/3) 0   constraints 1,3 fixed 
3  10*radius*cos(2*pi/3) 10*radius*sin(2*pi/3) 0   constraints 1,3 fixed 
4  10*radius*cos(3*pi/3) 10*radius*sin(3*pi/3) 0   constraints 1,3 fixed 
5  10*radius*cos(4*pi/3) 10*radius*sin(4*pi/3) 0   constraints 1,3 fixed 



6  10*radius*cos(5*pi/3) 10*radius*sin(5*pi/3) 0   constraints 1,3 fixed 
 
// floaty bit 
7  0*pi/3 boundary 1 fixed 
8  1*pi/3 boundary 1 fixed 
9  2*pi/3 boundary 1 fixed 
10 3*pi/3 boundary 1 fixed 
11 4*pi/3 boundary 1 fixed 
12 5*pi/3 boundary 1 fixed 
// center of upper pad 
13   0    boundary 2 fixed 
// center of mass of upper pad, raised up a bit from pad surface 
14   cg_z  boundary 2 fixed bare pad_energy 
 
// bottom of dish 
101  10*radius*cos(0*pi/3) 10*radius*sin(0*pi/3) -depth   constraints 3,4 fixed 
102  10*radius*cos(1*pi/3) 10*radius*sin(1*pi/3) -depth   constraints 3,4 fixed 
103  10*radius*cos(2*pi/3) 10*radius*sin(2*pi/3) -depth   constraints 3,4 fixed 
104  10*radius*cos(3*pi/3) 10*radius*sin(3*pi/3) -depth   constraints 3,4 fixed 
105  10*radius*cos(4*pi/3) 10*radius*sin(4*pi/3) -depth   constraints 3,4 fixed 
106  10*radius*cos(5*pi/3) 10*radius*sin(5*pi/3) -depth   constraints 3,4 fixed 
 
// floaty bit2 
207  0*pi/3 boundary 3 fixed 
208  1*pi/3 boundary 3 fixed 
209  2*pi/3 boundary 3 fixed 
210 3*pi/3 boundary 3 fixed 
211 4*pi/3 boundary 3 fixed 
212 5*pi/3 boundary 3 fixed 
// center of upper pad 
213   0    boundary 4 fixed 
// center of mass of upper pad, raised up a bit from pad surface 
214   cg_z2  boundary 4 fixed bare pad_energy 
 
edges  // defined by endpoints 
// liquid surface 
1    1  2  constraints 1,3   fixed no_refine 
2    2  3  constraints 1,3   fixed no_refine 
3    3  4  constraints 1,3   fixed no_refine 
4    4  5  constraints 1,3   fixed no_refine 
5    5  6  constraints 1,3   fixed no_refine 
6    6  1  constraints 1,3   fixed no_refine 
 
// upper pad edges 
7    7  8  boundary 1 fixed no_refine 
8    8  9  boundary 1 fixed no_refine 
9    9  10 boundary 1 fixed no_refine 
10   10 11 boundary 1 fixed no_refine 
11   11 12 boundary 1 fixed no_refine 
12   12 7  boundary 1 fixed no_refine 
 
// surface edges 
112   1  12  
113   1  7  
114   2  8 
115   2  9 



116   3  10 
117   3  209 
118   4  210 
119   5  211 
120   6  212 
121   1  207 
122   207 11 
123   208 10 
 
 
// upper pad radii 
19   7 13 constraint 2 fixed no_refine 
20   8 13 constraint 2 fixed no_refine 
21   9 13 constraint 2 fixed no_refine 
22  10 13 constraint 2 fixed no_refine 
23  11 13 constraint 2 fixed no_refine 
24  12 13 constraint 2 fixed no_refine 
 
// 2nd upper pad edges 
307    207  208  boundary 3 fixed no_refine 
308    208  209  boundary 3 fixed no_refine 
309    209  210 boundary 3 fixed no_refine 
310   210 211 boundary 3 fixed no_refine 
311   211 212 boundary 3 fixed no_refine 
312   212 207  boundary 3 fixed no_refine 
 
// upper pad2 radii 
319   207 213 constraint 5 fixed no_refine 
320   208 213 constraint 5 fixed no_refine 
321   209 213 constraint 5 fixed no_refine 
322  210 213 constraint 5 fixed no_refine 
323  211 213 constraint 5 fixed no_refine 
324  212 213 constraint 5 fixed no_refine 
 
// dishbottom 
101    101  102  constraints 3,4   fixed no_refine 
102    102  103  constraints 3,4   fixed no_refine 
103    103  104  constraints 3,4   fixed no_refine 
104    104  105  constraints 3,4   fixed no_refine 
105    105  106  constraints 3,4   fixed no_refine 
106    106  101  constraints 3,4   fixed no_refine 
 
//dish vertical edges 
201 101 1 no_refine 
202 102 2 no_refine 
203 103 3 no_refine 
204 104 4 no_refine 
205 105 5 no_refine 
206 106 6 no_refine 
 
faces // defined by oriented edge loops to have outward normal 
// lateral faces 
1   1 114  -7 -113 tension S_TENSION 
2   2 116  -9 -115 tension S_TENSION 
3   3 118  -309 -117 tension S_TENSION 
4   4 119 -310 -118 tension S_TENSION 



5   5 120 -311 -119 tension S_TENSION 
6   6 121 -312 -120 tension S_TENSION 
20  115 -8 -114 tension S_TENSION 
21  117 -308 123 -116 tension S_TENSION 
22  112 -11 -122 -121 tension S_TENSION 
23  -123 -307 122 -10 tension S_TENSION 
24  113 -12 -112 tension S_TENSION 
 
// upper pad 
8   7 20 -19 fixed no_refine color green tension 0 constraint 2 
9   8 21 -20 fixed no_refine color green tension 0 constraint 2 
10  9 22 -21 fixed no_refine color green tension 0 constraint 2 
11 10 23 -22 fixed no_refine color green tension 0 constraint 2 
12 11 24 -23 fixed no_refine color green tension 0 constraint 2 
13 12 19 -24 fixed no_refine color green tension 0 constraint 2 
 
// upper pad2 
208   307 320 -319 fixed no_refine color red tension 0 constraint 5 
209   308 321 -320 fixed no_refine color red tension 0 constraint 5 
210  309 322 -321 fixed no_refine color red tension 0 constraint 5 
211 310 323 -322 fixed no_refine color red tension 0 constraint 5 
212 311 324 -323 fixed no_refine color red tension 0 constraint 5 
213 312 319 -324 fixed no_refine color red tension 0 constraint 5 
 
 
// dish bottom 
101 -106 -105 -104 -103 -102 -101  fixed no_refine color cyan tension 0 
 
// dish sides 
102 101 202 -1 -201 fixed no_refine color cyan tension 0 
103 102 203 -2 -202 fixed no_refine color cyan tension 0 
104 103 204 -3 -203 fixed no_refine color cyan tension 0 
105 104 205 -4 -204 fixed no_refine color cyan tension 0 
106 105 206 -5 -205 fixed no_refine color cyan tension 0 
107 106 201 -6 -206 fixed no_refine color cyan tension 0 
 
bodies // defined by oriented face list 
1   101 102 103 104 105 106 107 1 2 3 4 5 6 8 9 10 11 12 13 20 21 22 23 24 208 209 210 211 
212 213  volume pi*(10*radius)^2*depth  density SOLDER_DENSITY 
 
read 
 
hessian_normal 
 
read "xyztorque.cmd" 
 
re := refine edges where on_constraint 2 
 
// Typical evolution 
gogo := {r; u; u; w 0.01; r; u; g 150; w 0.005; r; u; g 20 } 
 



Appendice B : Command file for datafile update. 
 
Xyztorque.cmd 
 
// Commands to calculate x, y, and z forces, and tilt torque. 
 
// command to smoothly change x offset. 
// Use: set new_x_offset to desired value, then do do_x_offset. 
new_x_offset := x_offset; 
do_x_offset := { doff := new_x_offset - x_offset; 
        x_offset := new_x_offset; 
               slope := tan(tilt*pi/180); 
        set vertex x x + doff*z/(height + slope*(y - y_offset)); 
        recalc; 
             } 
// Central difference, moving linearly 
dx := 1e-5; 
do_xforce := {  
             new_x_offset := x_offset + dx; // do this first so constraint in right place 
      do_x_offset; 
             new_energy_1 := total_energy - body[1].pressure * 
                      (body[1].volume - body[1].target); 
             new_x_offset := x_offset - 2*dx; 
      do_x_offset; 
             new_energy_2 := total_energy - body[1].pressure * 
                      (body[1].volume - body[1].target); 
             xforce := -(new_energy_1 - new_energy_2)/2/dx; 
             printf "xforce: %18.15f  (central difference, linear move)\n", xforce; 
             new_x_offset := x_offset + dx; // restore original 
      do_x_offset; 
           } 
 
// command to smoothly change y offset. 
// Use: set new_y_offset to desired value, then do do_y_offset. 
new_y_offset := y_offset; 
do_y_offset := { doff := new_y_offset - y_offset; 
        y_offset := new_y_offset; 
        set vertex y y + doff*z/(height + slope*(y - y_offset)); 
        recalc; 
             } 
// Central difference, moving linearly 
dy := 1e-5; 
do_yforce := {  
             new_y_offset := y_offset + dy; // do this first so constraint in right place 
      do_y_offset; 
             new_energy_1 := total_energy - body[1].pressure * 
                      (body[1].volume - body[1].target); 
             new_y_offset := y_offset - 2*dy; 
      do_y_offset; 
             new_energy_2 := total_energy - body[1].pressure * 
                      (body[1].volume - body[1].target); 
             yforce := -(new_energy_1 - new_energy_2)/2/dy; 
             printf "yforce: %18.15f  (central difference, linear move)\n", yforce; 
             new_y_offset := y_offset + dy; // restore original 
      do_y_offset; 



           } 
 
// Central difference, moving linearly 
dz := 1e-5; 
do_zforce := {  
      set vertex z z + dz*z/height; // do this before changing height 
             height := height + dz; 
             recalc; 
             new_energy_1 := total_energy - body[1].pressure * 
                      (body[1].volume - body[1].target); 
      set vertex z z - 2*dz*z/(height + slope*(y - y_offset));  
             height := height - 2*dz; 
             recalc; 
             new_energy_2 := total_energy - body[1].pressure * 
                      (body[1].volume - body[1].target); 
             zforce := -(new_energy_1 - new_energy_2)/2/dz; 
             printf "zforce: %18.15f  (central difference, linear move)\n", 
        zforce; 
      set vertex z z + dz*z/(height + slope*(y - y_offset));  
             height := height + dz; // restore original 
             recalc; 
           } 
 
// Torque 
// First, a smooth tilting 
new_tilt := tilt; 
do_tilt := { dtilt := (new_tilt - tilt)*pi/180; 
             slope := tan(tilt); 
      tilt := new_tilt; 
             foreach vertex vv do { 
        beta := z/(height + slope*(y - y_offset)); 
        vv.y := y_offset + cos(beta*dtilt)*(y - y_offset)  
     - sin(beta*dtilt)*(z - beta*height); 
        vv.z := beta*height + sin(beta*dtilt)*(y - y_offset)  
     + cos(beta*dtilt)*(z - beta*height); 
        } 
           } 
 
// Torque by central difference, moving linearly 
dangle := 1e-4; // degrees 
do_torque := {  
             new_tilt := tilt + dangle; // do this first so constraint in right place 
      do_tilt; 
             new_energy_1 := total_energy - body[1].pressure * 
                      (body[1].volume - body[1].target); 
             new_tilt := tilt - 2*dangle; 
      do_tilt; 
             new_energy_2 := total_energy - body[1].pressure * 
                      (body[1].volume - body[1].target); 
             torque := -(new_energy_1 - new_energy_2)/2/(dangle*pi/180); 
             printf "torque: %18.15f  (central difference, linear move)\n", torque; 
             new_tilt := tilt + dangle; // restore original 
      do_tilt; 
           } 
 
forces := { do_xforce; do_yforce; do_zforce; do_torque; }       



Appendix C:  MATLAB code for *.raw CAD import. 
 
clear all; 
 
fid = fopen('import.fe','w') 
fprintf(fid,'vertices\n') 
fclose (fid); 
 
fid = fopen ('hexsq.raw'); 
a=fscanf(fid,'%g %g %g',[3 inf]); 
fclose (fid); 
a=a'; 
[row,col]=size(a); 
b=[1:row]; 
b=b'; 
c=[b a]; 
c=c; 
fid = fopen('import.fe','a') 
fprintf(fid,'%i %8.6f %8.6f %8.6f fixed\n',c') 
fclose (fid); 
 
x=b; 
for i=1:row; 
    x(i,2)=b(i);  
end 
 
for i=0:row/3-1; 
x(i*3 + 1,3) = b(i*3 + 2); 
x(i*3 + 2,3) = b(i*3 + 3); 
x(i*3 + 3,3) = b(i*3 + 1); 
end 
 
fid = fopen('import.fe','a'); 
fprintf(fid,'edges\n'); 
fprintf(fid,'%i %i %i fixed no_refine\n',x'); 
fclose(fid); 
 
for i=1:row/3; 
z(i,1)=i; 
z(i,2)=3*i-2; 
z(i,3)=3*i-1; 
z(i,4)=3*i; 
end 
 
fid = fopen('import.fe','a'); 
fprintf(fid,'faces\n'); 
fprintf(fid,'%i %i %i %i color 4 backcolor 6 fixed no_refine\n',z'); 
fclose(fid); 


