
Robust Methods of Synchronization
in Amorphous Networks

Josh Grochow

December, 2002

Abstract

“Amorphous computing is the development of organizational principles and programming languages for obtaining
coherent behavior from the cooperation of myriads of unreliable parts that are interconnected in unknown, irregular,
and time-varying ways [Abelson, et. al. Amorphous Computer. White Paper, 1999.].” One of these principles is
temporal control, and a very basic form of temporal control is synchronization. I present a method of synchronization
in an ad-hoc network (such as an amorphous computer) which is similar to the Network Time Protocol (used to
synchronize the internet) in its method of error estimation. The resulting error between any two processors in the
network is worst case

� �����
, where

�
is the diameter of the network and

�
is the standard deviation of error between

two adjacent processors.

1 Introduction

“Amorphous computing is the development of organizational principles and programming languages for obtaining
coherent behavior from the cooperation of myriads of unreliable parts that are interconnected in unknown, irregular,
and time-varying ways [2].” One of these principles is temporal control, and a very basic form of temporal control
is synchronization. I present a method of synchronization in an ad-hoc network (such as an amorphous computer)
which is similar to the Network Time Protocol (used to synchronize the internet) in its method of error estimation. The
resulting error between any two processors in the network is worst case � �	��
 , where � is the diameter of the network
and
 is the standard deviation of error between two adjacent processors.

Elson and Römer (2002) identify five application-specific variables which help to clarify the problem of synchro-
nization:

� Energy utilization. How much energy do the processors need? Do they need, for example, energy-intensive
GPS units? Do they have large external power supplies? How frequently do they have to communicate and how
much energy does it take?

� Precision. To what degree must synchronization be achieved? If the network serves some artistic purpose for
humans, then perhaps millisecond accuracy is acceptable, whereas if the system is a wireless sensor network it
may require much better accuracy.

� Lifetime. How long can the system stay in synchrony before needing to be resynchronized?

� Scope and Availability. Does synchronization have to occur across the whole network, or only locally?

� Physical cost and size. How big are the machines and how much do they cost to produce?

To which I would add

� Type of “synchronization.” Many behaviors fall under the term “synchronization:” phase-locking (phase
differences between nodes are constant but not necessarily close to zero), frequency-locking (constant frequency
differences), and constant average frequency (all nodes run at the same average frequency over time, but their
relations at any given instant are unimportant), to name a few.

1

A distinction also needs to be made between a priori and post facto synchronization. A priori synchronization
implies that the network is always synchronized, so any other processes running on the network can always assume
such synchronization. Post facto synchronization implies that any data recorded can be compared in a synchronized
timeframe after the fact, even if the data were not taken synchronously. Elson and Römer (2002) argue for post facto
synchronization in wireless sensor networks (and other systems), as it allows for greater precision and saves power by
only running when necessary. I will be focusing, however, on the a priori case.

The paper is organized as follows: in the next section I will enumerate some of the obstacles to synchronization at
the hardware and software level. In Section 3 I will briefly review NTP and the Reference Broadcast System (RBS)
[6], and why they are inappropriate in the amorphous, a priori setting. Additionally I will go over some algorithms I
tried which failed, revealing some higher-level obstacles to synchronization. In Section 4 I will present my algorithm
and prove two theorems about its running time and its precision.

2 Hardware and Software Obstacles

Nondeterministic delays are the main obstacles to synchronization. Compensation for deterministic delays can be hard
coded, or can be achieved through the use of timestamps. There are four main sources of nondeterministic delays in
an ad-hoc network:

� Send time. The time to construct the message and transfer it from the processor to it’s network device. If using
fixed-length packets, and if the network device doesn’t need an interrupt request, then this should be a fixed
delay.

� Access time. The time to get access to the network channel. This is dependent on the method used to compensate
for message collisions, e.g. TDMA or exponential back-off.

� Propagation time. The time between when the first bit of the message leaves the sender and the last bit is
received. If fixed-length packets are used, this is a fixed delay in a network with only local communications (no
message routing).

� Receive time. The time for the receiving host to process the message before it has access to it. If incoming
messages are timestamped early enough, this can be exactly determined and compensated for, even if it is a
probabilistic delay.

I am ignoring collisions in this paper (except for a possible collision avoidance algorithm in � 5.1); the delay I am most
concerned with is in the receive time, as it is rare for a system to be able to timestamp early enough to fully account
for this.

3 Related Work

3.1 The Network Time Protocol

The Network Time Protocol (NTP) is, in essence, a hierarchical system which minimizes error by pinging multiple
sources. Each tier of the hierarchy is called a stratum, and the stratum-1 servers are connected a global source of
time such as GPS or WWVB (NIST time). Stratum-2 servers synchronize to the stratum-1 servers, and so on down
to stratum-16. To synchronize, a server will ping servers in its parent stratum and use timestamps to compute the
roundtrip travel time of the packet, estimating the error of synchronization. This value can then be added to a received
time in order to reduce the actual error. Analysis in [3] reveals that the three main sources of error are (in increasing
order of magnitude): limited precision clocks and timestamps, clock skew, and network jitter (the difference in travel
time of a packet going and coming between two servers). Limited precision will be a problem in any digital system;
Bletsas (2001) presents linear programming methods to estimate and account for network jitter and clock skew.

The fact that NTP relies on a global clock makes it useless in any setting without such information. Also, while
NTP has many redundant servers at each stratum, selecting and synchronizing such “leaders” in an amorphous network
is not a simple task, and would also require a message routing system rather than only local communication.

2

3.2 The Reference Broadcast System

Figure 1: The intermediary node, 4, allows any two
nodes to reference each other’s data with appropriate time
conversions. Image from [6].

The Reference Broadcast System (RBS) [6] is designed to achieve
good post facto synchronization. The basic idea is to have a node A
transmit a reference packet to nodes 1 and 2 simultaneously (requir-
ing either a physical medium or parallel network devices for each
communication line). When 1 and 2 need to compare two datum,
they exchange the receive times of the packet from A and calculate
the offset. This can be improved to account for clock skew by keep-
ing a record of multiple packets from A and doing linear regression.
Note that there is nothing preventing 1 from sending A and 2 a ref-
erence packet, or 2 from doing similarly, allowing any two nodes
to reference data from one another. Also, since most networks are
greater than one hop, relative time scales can be established between
two distant nodes so long as there is a path of intermediary nodes
between them (see Figure 1).

While RBS is designed to achieve post facto synchronization,
one might suspect that a similar scheme could be used to attempt
synchronization a priori. This runs into a symmetry breaking prob-
lem: if we want 1 and 2 to actually think it is the same time, how do
we choose which one should adopt the other’s clock? If we choose
arbitrarily, we may get a cycle: 1 adopts 2’s clock, 2 then adopts A’s
clock, then A adopts 2’s clock, and so on, with increasing error in-
troduced each cycle. If instead we decide to average the two clocks,
then later, when a new node gets added to the network, the entire network will go through a period of re-averaging
during which it is asynchronous. This is an undesirable trait in a dynamic network.

3.3 Failed Algorithms

3.3.1 Basic Symmetry-Breaking

Figure 2: The two nodes in the middle cannot choose
between the phase of their three neighbors (the mode) and
that of the other node in the middle.

One very simple algorithm breaks symmetry by assigning each node
a unique ID with high probability. This can be done either at man-
ufacture time, or by selecting a sufficiently random number from a
sufficiently large set of integers. Then each node can synchronize to
the node with minimum ID by keeping track of, and broadcasting,
the node’s ID to which they are synching. (Note that node A syn-
chronizing to node B only means that there is a path of nodes from
A to B which are synchronizing to each other in order, not that A is
routing messages directly to and from B.) Once the entire network is
synchronized to the same node, however, all processors will listen to
any of their neighbors, as they will all be broadcasting the minimum
ID. Thus, there can still be cycles. Also, if a node with a new lowest
ID is introduced, then the whole network must resynchronize, one of
the problems associated with using RBS in this setting. One way to
avoid this is to synchronize to the mode time value of the neighbors,
and if there is no mode, then to the time value from the minimum ID
of the neighbors. This way, if a group of neighbors is already syn-
chronized, a node will stay with that group, even if a new node with lower ID is introduced. If there is ever a physical
bottleneck in the network, however, we run into the symmetry breaking problem all over again (see Figure 2).

3.3.2 Integrate-and-Fire

Another set of algorithms is based on the model of the integrate-and-fire neuron discussed in [8]. This attempts to
synchronize phase over the span of a few periods, rather than synchronizing to a “global” time (for example, say a

3

wireless sensor network takes a reading every 5 seconds and all we care is that the readings are taken synchronously,
even if the timestamps are off, then two nodes whose clocks are off by exactly 5 seconds are in synchrony). The ideas
behind integrate-and-fire are a bit messy for our purposes, but the overall effects are rather simple. All nodes share
an intrinsic frequency at which they send messages. When a node hears a message, it advances its phase, more so if
the message is heard near the end of its period than near the beginning. The end result of this weighting is that nodes
slowly average their clocks (it is not an exact average: the final time just ends up somewhere between the original two).
In situations without delays, this works perfectly, but that’s not saying much. This is actually how I got started on this
problem, but turns out to be much more complicated than necessary. A possible application to collision avoidance is
mentioned in � 5.1.

4 The Algorithm

4.1 Basics

So far we have run into five major obstacles to synchronization: probabilistic delays, clock skew, symmetry, cycles, and
the dynamics of the network (new nodes being introduced, to which we can add nodes dying and also general changes
in network topology). Once symmetry is no longer an issue, it might seem that cycles are no longer an issue. This is
not the case, however: there can still by cycles which propagate an increasing error. The basic idea of this algorithm is
to remove symmetry through the use of unique IDs, remove cycles and add robustness to network dynamics through
the use of active gradient trees (see Appendix A), and remove probabilistic delays through successive estimates based
on pinging.

The heart of the algorithm lies in a node’s response to a received message. In a LISP-like pseudocode, it will be:

(define (receive msg)
(timestamp msg my-time)
(maintain-nbrs msg) ;; Explained below
(maintain-gradient msg) ;; See Appendix A
(estimate-delay msg) ;; Explained below
(if (= my-count 1)
(detect-root-error msg)) ;; See Section 4.2

(if (= my-count 0)
(root-code msg))) ;; See Section 4.2

The two most relevant data structures I will be using in my pseudocode, message and statistic, are included in
Appendix B.

� Probabilistic delays. Similar to NTP, calculate the roundtrip time of a packet. Subtract off any known delays
and any delays calculated via timestamps. Keep a running average of these probabilistic delays, which will
eventually approach the mean.

(define (estimate-delay msg)
(let ((round-trip-time (- (end-time msg) (init-time msg)))

(travel-time (- round-trip-time
constant-delay ;; Known delays
(- (send-time msg) (rcv-time msg)))))

(include-in-stat travel-time delay)))

This is not affected by network jitter, one of the largest sources of error in NTP [3], because packets are only
exchanged locally: there is no message routing, and thus no network to delay the propagation of a packet. Over
long distances in a physical medium, there may be physical jitter, but I assume short enough distances that this
is insignificant.

4

� Clock skew. This is accounted for by frequent synchronization, an unfortunately necessary step in the a priori
case.

� Symmetry between nodes. Assign each node a unique ID, with high probability, as discussed in the basic
symmetry-breaking algorithm (� 3.3).

� Cycles. Once the network has unique IDs, we may select our leader (analogous to the stratum-1 servers of
NTP) as that node with the lowest ID, again as in � 3.3. The key difference between this and the basic symmetry
breaking method is that “strata” are then defined by hops from that leader, through the use of an active gradient
tree. This ensures that each node is only synchronizing to its (unique) “predecessor,” and thus no cycles can
occur. (See Appendix A for pseudocode: this is done automatically by the active gradient.)

� Changes in network topology. There are three possible types of changes: node death, node birth, and connec-
tion changes (e.g. brought about by node movement, if the network uses a physical broadcast layer). Once a
portion of the network has synchronized, node birth is accounted for by recognizing the new node as new, and
synchronizing it to the rest (by assigning it a higher ID than the current leader, for example), as shown here.
(Note that I explicitly check here whether this node is the pinger or responder: see Appendix B for discussion.)

(define (maintain-nbrs msg)
(let ((nbr-d (if (= (pinger-id? msg) my-id) ;; Choose whichever

(responder-id msg) ;; ID is not my-id
(pinger-id msg))))

(if (not (recognize-nbr? nbr)) (begin
(add-nbr nbr-id)
;; Ask the new neighbor if it is new, or if it should become
;; this node’s new leader
(if (and (not (= my-leader-id my-id)) ;; This node has a leader

(< nbr-id my-leader-id) ;; New node could be leader
(transmit (new-message nbr-id ’new)))))))

Note that whenever a new node is encountered, it will receive ’new messages from all its neighbors who have
selected other leaders. If several of its neighbors agree on another leader, it will set its ID to be higher than that
leader’s ID. This has the effect that if several nodes with very low IDs are all within one or two hops of one
another, one of them will become the leader, though not necessarily the on which initially had the lowest ID. By
the time this is done, though, the leader is still guaranteed to have the lowest ID.

Node death is accounted for through the use of an active gradient tree, including death of the leader. The active
gradient tree will continue to prevent cycles as long as connection changes happen slowly enough for the tree to
rebuild as the changes happen. (Again, see Appendix A for pseudocode.)

4.2 Malfunctions and error detection

In removing cycles with an active gradient tree, however, we have introduced a leader. Were the leader to malfunction
(for example, by resetting its clock), the entire network would have to resynchronize. To avoid this, we could have
each node synchronize first to the mode time of its neighbors, and then to its predecessor’s time. There is no bottleneck
situation here because the symmetry within the bottleneck is broken by the predecessor relationship. But this does
re-introduce cycles. Instead, we introduce a somewhat similar method of back-checking, but only on the root:

� Error detection (root malfunction). Say a node, “A,” is adjacent to the root and has already synchronized with
the root. Later, A receives a time from the root, corrects for delays, and this corrected time differs from A’s
time by a certain threshold (which we will return to in a minute). A then sends a message to the root containing
A’s time, and notifying it of this discrepancy. (Note that since the network is constantly synchronizing and thus
accounting for clock skew, clock skew should not contribute significantly to this error.) The root then listens
to all its neighbors’ times, and if the probability that they are distributed around A’s time is higher than the
probability that they are distributed around the root’s time, the root resynchronizes to the mean. If the root
cannot determine which is more likely (perhaps no other nodes have synchronized to the root), then the root
send a message to A which forces A to resynchronize to it.

5

(define (detect-root-error msg)
(if (= (id msg) my-pid) ;; Message is from the root

(if (> (abs (- my-time (+ (send-time msg) (mean delay)))) threshold)
(transmit (new-message my-pid ’error-detected)))))

(define (root-code msg)
(if (eq? (comment msg) ’error-detected)

(start-querying-nbrs)) ;; Starts a loop to ask neighbors
;; for their times, and stores
;; them in the nbr-time statistic

(if (> nbrs-queried (* .5 num-nbrs)) ;; Heard from half the neighbors
(if (> (abs (- my-time (mean nbr-time)))

(abs (- error-time (mean nbr-time)))) \
(begin

(set! my-time (+ error-time (mean delay)))
(transmit (new-message error-detecting-nbr ’error-corrected)))

(transmit (new-message error-detecting-nbr ’no-error)))))

As for error the threshold, this can be either hard coded as a multiple of the standard deviation of delays (if
known at manufacture time), or the nodes around the root can use the standard deviation of the ping times they
have received so far.

4.3 Results

Before going onto the results, it is important to note that bidirectional communications are absolutely necessary here:
since there is no message routing, pinging must take place directly between adjacent nodes. Another important as-
sumption is that the changes in network topology happen slowly enough for the active gradient tree to settle. While
analysis to determine the threshold frequency of changes in network topology may be difficult, numerical results are
forthcoming.

4.3.1 Precision

Although the network jitter discussed in [3] is effectively white Gaussian noise, network jitter does not affect networks
with strictly local communications. It is reasonable to assume that the receiver delay we are dealing with is normally
distributed, based on hardware tests in [6]. We are now ready to state and prove one of the main theorem’s of this
paper:

Theorem 4.1 In an amorphous network with bidirectional communications, normally distributed communication de-
lays between adjacent nodes, and network changes slow enough to accommodate an active gradient tree, estimating
synchronization error by successive pinging results in worst case error of � � �
 between any two nodes, where
 is
the standard deviation of error between two adjacent nodes, and � is the diameter of the network.

Proof In pinging, we are calculating an average of round-trip delays. Since these round-trip delays are normally
distributed (by assumption), this average is also normally distributed. Note that the average is of the magnitude of
error, while the error itself (from the receiver’s viewpoint) is distributed around a negative mean. We are thus adding
two normally distributed variables with opposite means. So the means cancel to � , and the variances add to �	
�� ,
yielding a standard deviation of � �	
 . By induction, we see that a node � hops from the root of the gradient will have
error distributed around � with standard deviation � �
 . Looking at the difference between two nodes, each possibly
� hops from the root, we see that their variances also add, giving us a maximum error of � �	��
 .

One might suspect that the longer this runs for, the better the synchronization, because the average delays calculated
become closer to the true average. On a small scale, this may be true, but on the larger scale of the entire network, it
is reasonable to look at the distributions, which are not affected by how long we synchronize for.

6

Note that this result is comparable to the degree of post facto synchronization achieved by RBS [6], which was
� �
 . The factor of � � is not a very large price to pay for a priori synchronization: the largest price is the energy cost
of frequent communications.

Additionally, we intuitively expect that synchronization better than ��� � ��� cannot be achieved if error between
adjacent nodes is normally distributed: even if it is distributed around � to begin with, information must get from one
end of the network to the other in order to have synchrony, and each hop adds to the variance.

4.3.2 Time to Synchronize

Theorem 4.2 Under the assumptions of Theorem 4.1, the above described method will achieve � � �
 synchronization
in worst-case ��� ��� time.

Proof The precision of � � �
 is the result of Theorem 4.1. The ��� ��� running time follows directly from the time
for the active gradient tree to settle, which is the same as a breadth-first search on a distributed system, ��� ��� . Once
the tree has settled, all parent nodes have transmitted synchronization information to the child nodes. The child nodes
still need to have at least one estimate of the delay before synchronization can be achieved. The nodes one hop from
the root can do this as soon as they ping the root, which takes ���	�
� . The nodes two hops from the root will not be
accurately synchronized until their predecessors have done so and they have pinged their predecessors. While the
pinging itself takes ���	��� , it must do so after the predecessors have pinged the root. This must happen � times before
the entire network is properly synchronized. Adding this new ��� ��� to the ��� ��� required for the gradient tree does not
affect the asymptotic running time, though we do expect it take roughly twice as long to synchronize as it does to set
up the gradient tree.

The constant in ��� ��� depends mostly on frequency of successful communications (which depends in turn on frequency
of collisions and packet loss), but also depends on propagation time and processing time, which are usually relatively
small.

4.3.3 Error Propagation

As mentioned above, using this method of error detection throughout the network would re-introduce cycles, so we
don’t. This means that an error not at the root could propagate down its subtree in a very localized fashion: each
time the error propagates one hop, the correct time will be propagating right behind it. (Since we do not account
for collisions, the correct time may actually be a few hops behind the incorrect time, depending on the frequency
of transmission and the packet loss rate.) If the network is arranged geometrically (and is dense enough so that it
approximates Euclidean geometry reasonably well), then the localized errors will travel on along a well-defined vector
away from the root, making them easy to spot by an outside observer.

5 Conclusions and Future Work

Through the application of an adapted NTP algorithm and active gradients, we can achieve � �	��
 synchronization in
an ad-hoc dynamic network such as an amorphous computer. One major cost of this algorithm, and indeed any a priori
synchronization algorithm, is the frequency of communication necessary to account for clock skew. One shortcoming
is the way in which malfunctions occurring at any node other than the root are handled: they create a localized error
which moves up the active gradient tree, away from the root. Ideally, we would like to detect and correct errors on
the spot, but “pushing” them to the edge of the network is still better than forcing the entire network to resynchronize.
Also, better delay estimation algorithms, such as those proposed and mentioned in [3], or perhaps a robust adaptation
of RBS, might provide better precision, though perhaps at the cost of speed of synchronization and processing of
information.

Finally, it has been suggested that rather than using a tree, we allow the active gradient to simply build a directed
acyclic graph, and have a node synchronize to the average of all of its predecessors. Based on some back-of-the-
envelope calculations, this looks like it should work significantly better, but I have not had time to test this theory.
One foreseeable problem with this is that a synchronization packet from one processor could interfere with the ping
timestamps being sent to another processor.

7

5.1 Integrate-and-fire for Collision Avoidance

One possible application of the integrate-and-fire algorithm (� 3.3.2) is collision avoidance. If the phase is retarded
by messages rather than advanced, the network tends to desynchronize. If this can be modified to ensure that every
subnetwork of hop count 2 is desynchronized, it would work extremely well for collision avoidance. [1], [4], [5], and
[9] are about the emergence and stability of desynchronization in networks of integrate-and-fire neurons, and would
be a good starting point towards this end.

A Active Gradient Trees

An active gradient tree spans some portion of the entire network (possibly all of it), and has the following properties:

� Once the tree has settled, there is only one root node.

� Once the tree has settled, every node in the the tree knows exactly how many hops it is from the root node.

� Once the tree has settled, every node in the tree (except the root) has exactly one parent, or “predecessor,” node,
which is exactly one hop closer to the root.

� When a portion of the tree is destroyed or disrupted, it rebuilds such that the above three properties again hold.
An inactive gradient tree does not have this property - it is only created once.

While leader (root) selection by minimum ID is not absolutely necessary, some form of symmetry breaking is. The
method of building and maintaining an active gradient tree described here uses the minimum ID symmetry breaking.

Every node stores the following data:

� Its own ID, id.

� Its current leader’s ID, lid, which starts as id.

� Its predecessors ID, pid.

� Its current hop count from its current leader, count.

(The adjective “current” is used to emphasize that these values may change before the tree settles, and may change
again if the tree is disrupted.) Every node transmits an (id,lid,count+1) triplet. Upon receiving a message, it
runs the following pseudocode (explained below):

0 (define (maintain-gradient msg)
1 (let ((r-id (id msg))
2 (r-lid (leader-id msg))
3 (r-count (count msg)))
4 (if (< r-lid my-lid) (begin ;; Change leaders?
5 (set! my-lid r-lid)
6 (set! my-count r-count)
7 (set! my-pid r-id)))

8 (if (and (= r-lid my-lid)
9 (< r-count my-count)) (begin ;; Update hop count?
10 (set! my-count r-count)
11 (set! my-pid r-id)))))

When a node receives a message, it must decide whether to change its own lid: if the received r-lid is less than
its own my-lid, then it does so (line 4). It must then decide whether to update my-count or not: if it accepted
the new r-lid, then it takes the received r-count as its own (line 6). Otherwise, it only updates my-count
if r-count � my-count, that is, if it is actually closer to its leader than it thought it was (line 10). Whenever
my-count is updated, it sets its predecessor to the transmitting node, (set! my-pid r-id) (lines 7,11). Since

8

it only does so when it actually updates its count, its predecessor ID will not oscillate between two possible predecessor
nodes with the same hop count.

The tree described above already repairs itself if any node other than the root is disrupted, so long as the network
continues to run this algorithm. If the root is disrupted, then some nodes will not hear from their predecessors, and
assume them dead. These nodes then send out their own, new gradients, which vie for stability based on minimum ID
again. Note that if the network is already synchronized, rebuilding a disrupted tree ensures that no cycles are present,
but does not affect the

B Data Structures Used in Pseudocode

B.1 Message data structure

The message data structure stores the information that will be communicated from one node to another. For each
datum stored in a message, there is an accessor by the same name which takes a single method as its argument. There
is also a single constructor (new-message to-id comment), where both arguments are optional: to-id is the
ID of the desired receiving node (all other nodes will ignore this message), and comment is used to denote particular
types of messages. The constructor adds the appropriate information (initial timestamps, node ID, leader ID, hop
count, etc.).

Note that a single message stores all information from a round trip ping, in addition to any other necessary
communications. All messages (except the very first) are the start of one ping and the end of another: when a node
A pings a node B, and B returns the ping, this returned ping from B is the beginning of a ping from B to A. So we
actually store two of each of the variables below, whose roles reverse each time the role of pinger reverses, but this is a
subtlety I ignore in the pseudocode, which is written from the pinger’s point of view (with one noted exception). (The
pseudocode from the responder’s point of view simply receives, timestamps, and returns the ping, and is not included.)

� pinger-id: The ID of the node which initiated the ping. Since communications are radially symmetric, we
need the pinger-id to make sure that multiple pings to the same node do not interfere.

� responder-id: The ID of the node which is responding to the ping.

� count, leader-id: The necessary information to maintain the active gradient tree (Appendix A), in con-
junction with the two previous IDs.

� init-time, end-time: The times at which the pinger sent out the ping and received the response, respec-
tively.

� rcv-time, send-time: The times at which the responder received the ping and sent the response, respec-
tively. Note that send-time is the time which the responder thinks it is, so if the responder is a node’s parent,
that node will synchronize to send-time.

B.2 Statistic data structure

The statistic data structure is used to calculate the mean and standard deviation of a set of numbers input over
time, and has the following methods:

(include-in-stat val stat-name) ;; Includes val in the statistic referenced
;; and recalculates the mean and variance;
;; creates the statistic if it does not exist.

(mean stat-name) ;; Retrieves the mean
(stddev stat-name) ;; Retrieves the standard deviation
(num-vals stat-name) ;; Returns the number of values included
(reset stat-name) ;; Removes all values previously included

9

References

[1] L. Abbott and C. van Vreeswijk. Asynchronous states in networks of pulse-coupled oscillators. Physical Review
E, Vol. 48, p. 1483, 1993.

[2] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E.
Rauch, G. Sussman, R. Weiss. Amorphous computing. White Paper, 1999. Available at
http://www.swiss.ai.mit.edu/projects/amorphous/papers/aim1665.pdf.

[3] A. Bletsas. Time keeping in myriad networks: theories, applications, and solutions. S.M., MIT Media Lab. May
2001.

[4] P. Bressloff and S. Coombes. Dynamics of strongly coupled spiking neurons. Neural Computation, Vol. 12, p. 91,
2000.

[5] S. Coombes and G. Lord. Desynchronization of pulse-coupled integrate-and-fire neurons. Physical Review E, Vol.
55, No. 3, pp. 2104-2017, March 1997.

[6] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using reference broadcasts. Pro-
ceedings of the Fifth Symposium on Operating Systems Design and Implementation (OSDI 2002), Boston, MA.
December 2002. Available at http://lecs.cs.ucla.edu/Publications/papers/broadcast-osdi.pdf.

[7] J. Elson and K. Römer. Wireless sensor networks: a new regime for time synchronization. Pro-
ceedings of the First Workshop on Hot Topics in Networks, pp. 28-29, October 2002. Available at
http://www.cs.washington.edu/hotnets/papers/elson.ps.

[8] R. Mirollo and S. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM Jour-
nal on Applied Mathematics, Vol. 50, No. 6, pp. 1645-1662, December, 1990. Available at
http://tam.cornell.edu/SStrogatz bio oscillators sync.pdf.

[9] C. van Vreeswijk. Analysis of the asynchronous state in networks of strongly coupled oscillators. Physical Review
Letters, Vol. 84, p. 5110, 2000.

10

