
The Swarm Orchestra:
Temporal Synchronization and Spatial Division of Labor for

Large Swarms of Autonomous Robots

James McLurkin

MIT Artificial Intelligence Laboratory
200 Technology Square, Cambridge, MA 02139

jamesm@ai.mit.edu

iRobot
22 McGrath Highway Suite 6, Somerville, MA 02143, U.S.A.

jamesm@irobot.com

Abstract

There are many important and useful tasks you can do with a swarm of 100 autonomous
robots working together. Playing music in an orchestra is not one of these applications, but its
two main building blocks, temporal synchronization and spatial division of labor, can be used
to construct more serious applications. The robotic orchestra described in this paper is
comprised of 35 robots. Our distributed algorithms allow them to synchronize their internal
timers, and “clump” into groups based in the instrument they are currently playing. The net
result is a swarm of robots playing music together, spatially organized such that robots playing
the same instrument are near each other.

Table of Contents

1. Introduction...3
The SwarmBot...3
SwarmOS...3
Distributed Algorithm Behavior Library ..3
Hands-Off Operation: HIVE™ and the Robot Ecology™ ..4

2. The Swarm Orchestra ..4
Assumptions ...4

3. MIDI File Playback...5
4. Temporal Synchronization..5

Temporal Synchronization Algorithm ..5
Errors and Future Work ..7

5. Distributed Instrumentation...8
Initial Approaches ..8
Solution: Divide-n-Clump...9
“Spatial Simulated Annealing” ..9
Separating Clumps...11
Errors and Future Work ..12

6. Conclusion...12
7. References..12

 Page 3 of 12

1. Introduction
The goal of the iRobot Swarm project is to develop distributed algorithms for robotic

swarms composed of hundreds of individual robots. Ultimately, we want to be able to write
software for large number of robots at the group level. The software development system
would then compile these group programs into software for the individual robots to run. This
top-down problem is very difficult to solve, so we are approaching it from a bottom-up
perspective. By making group behavior building blocks that can be recombined and reused for
many different global applications, we will develop a swarm programming toolkit that can be
used to construct complex global behaviors.
The SwarmBot

The iRobot SwarmBot shown in Figure 2 has been designed from the ground up for
developing distributed algorithms on real hardware in large swarms. It has a high-performance
32-bit microprocessor, good mobility, and inter-robot communication and localization with the
ISIS™ infrared communication system. The ISIS system allows each robot to determine the
bearing, orientation, and range of its neighbors. Each robot is 5” on a side, and the total swarm
has 100 members.
SwarmOS

The Swarm Operating System (SwarmOS) provides the foundation for the distributed
algorithms. It provides low-level robot control, ISIS drivers, a virtual pheromone messaging
system, a set-based neighbor query system, and remote programming and debugging facilities.

Distributed Algorithm Behavior Library
Our distributed algorithms are

comprised of many behaviors working
together. Group actions result from the
interactions of the behaviors of each robot,
and the interactions of the robots with each
other. We have a large library of these
behaviors, and have used them to perform
group tasks such as: clustering to a location
of interest, dispersing to search a room,
surrounding an object to measure its
perimeter, and navigating long distances
using neighboring robots as landmarks.

Figure 1: The iRobot Swarm is composed of 100
individual robots that work together to accomplish
group goals. The swarm was developed with
grants from DARPA under the Software for
Distributed robots program.

 Page 4 of 12

Hands-Off Operation: HIVE™
and the Robot Ecology™

To work with a large
swarm of robots effectively, the
user cannot manually program,
charge, or even turn on the robots.
Software development,
debugging, and analysis must also
be performed in a centralized
fashion, without having to interact
with each robot. The Robot
Ecology™ provides resources the
robots need to keep themselves
running, and the HIVE user
interface provides centralized
command and control of the
swarm. For large swarms, these
are requirements, not luxuries.

2. The Swarm Orchestra
Each SwarmBot has a 1.1 watt audio system based on the Yamaha YM2413 FM-synthesis

sound chip. This devise has nine audio channels, 16 different instrument sounds, and five
percussion sounds. The SwarmOS has a general MIDI interpreter and patch table to play
standard MIDI files. This capability is usually used for debugging software. By using the
sound carefully, the software engineer can hear what the entire swarm is doing all at once, and
then focus her attention on robots of interest, or robots that are misbehaving. But all work and
no play make the SwarmBot a dull robot, so this debugging tool has been hijacked for our
amusement…
Assumptions

• The music will be in a MIDI file, which the robots can play using their standard sound
output drivers. All the robots have the same MIDI file. If there are multiple songs in the
repertoire, the robots will be explicitly told which one to play before hand. (no
improvisation!)

• The algorithms will only use local (r ≈ 3 feet) communications from robot to robot.
However, the user will be allowed to interact with the swarm as a whole to download
music and software.

• The user will be allowed to interact with one robot, the “mediumBot”, to initiate behaviors
(clumping, temporal synchronization, and music playback). However, this robot will only
be allowed to communicate with its immediate neighbors.

Figure 2:The iRobot SwarmBot™ has been designed from the
ground up for embodied distributed algorithm development.
It packs a comprehensive sensor suite, inter-robot
communication and localization with the ISIS™ system, a 32-
bit microprocessor, and a rugged low-maintenance design into
a 5” cube that can rest in the palm of your hand.

 Page 5 of 12

• The processor boards have reasonable crystal oscillators, which will limit drift in between
temporal synchronizations.

• Each robot has a unique identification number. This is used extensively to disambiguate
communications signals from neighboring robots.

3. MIDI File Playback
The SwarmOS has drivers for playing general MIDI files. The entire general MIDI spec

has not been implemented (Pitch bends, etc…) but the basic note messages are sufficient to play
most music. This playback mechanism was modified to play individual tracks masked by a 32-
bit bit vector to allow playback of specific tracks from the song. The LED outputs were tied to
the sound drivers, giving a display of the current audio output level.1 This is useful for
debugging, and for dramatic2 visualizations of the performance.

4. Temporal Synchronization
In order to play music together (that is pleasing to humans (in particular, this human)),

the robots will require some form of temporal synchronization. The direct approach, to
transmit a global sync signal to all the robots simultaneously, is disallowed by our assumptions,
so robots will have to propagate local sync signals from one to another. Distributed
synchronization has been studied in natural systems [Mirollo 90]. These systems share
information with sync pulses, and use the onset and frequency of these pulses to synchronize.
The SwarmBots transmit 64 bits of information in each communication packet, which is enough
space to encode the actual time from one source robot to share with the others.

Our algorithm relies on a temporal leader, whom all the other robots in the swarm
synchronize to. The leader becomes a source for the temporal sync pheromone. This leader can
be selected at random, but in our implementation, it is convenient to use the mediumBot,
because it is the only robot we are able to interact with. This lets us stop and start
synchronization for debugging, and read status updates from the swarm.

Because the propagation of the pheromone signal is a breadth-first search of the
communications graph, all other robots will have at least one neighbor that is one hop closer to
the source than they are. Each robot will sync to one of these neighbors. This ensures that all
the robots sync towards the source, and eliminates cycles that could lead to unbounded
accumulation of error.
Temporal Synchronization Algorithm

The robots all periodically broadcast neighbor information to each other. This is the ISIS
neighbor update cycle, and it occurs every 250 ms. The information is used to determine the

1 Special thanks to Jennifer Smith at iRobot for the modifications to the MIDI system and the LED output
drivers.
2 Only an engineer would call blinking lights “dramatic”…

 Page 6 of 12

positions of neighboring robots. The temporal sync information is also transmitted at this time.
Each temporal sync communications packet contains the following information:

• sourceID
• senderID
• time of transmit
• time of reception

When a non-source robot receives a temporal sync packet from any neighbor, it is

compared to its best sync packet received during its current ISIS neighbor cycle If the new
packet is from a robot that is closer to the source that your current packet, then keep it and
discard the current one. All packets are discarded at the end of the ISIS neighbor cycle. This
prevents robots from keeping stale data.

If the robot has received a valid sync packet over the last ISIS neighbor cycle, it adjusts
it’s own clock according to the information in the packet. For example, if this robot is one hop
from the source (i.e. it can communicate directly with the source), it’s current time is 231, and
the packet information is:

time of transmit = 5
time of reception = 31

Clock1 Event Clock2 Event Clock3 Event
5 xmit(5) - -

δ
5+δ 31 recv(5) @ t = 31 -

200

205+δ 231 New clock =
5 + (231 - 31) -

205+δ 205 Set Clock -
50 -

255+δ 255 xmit(255) -
δ

255+2δ 255+δ 522 recv(255) @ t = 522
100

355+2δ 355+δ 622 New clock =
255 + (622 - 522)

355+2d 355+d 355 Set Clock

Robot1 (Source) Robot2 Robot3

Figure 3: Temporal sync example. Each column represents a different robot. The robot on the left is the
temporal source. ISIS communications packets are represented by the red arrows. Temporal
synchronization flows from left to right. The gray rows represent the error for each transmit cycle.
Yellow rows represent arbitrary time between packet reception and packet processing.

 Page 7 of 12

Then it would adjust its clock from 231 to 5 + (231 – 31) = 205. This will make it’s clock

almost equal to that of the transmitting robot, with some potential errors from interrupt latency
and processing lag. Figure 3 presents an example that shows how error creeps into the system.
This error is analyzed in detail in the section below.

The time between synchronization events can vary from once per song to every
downbeat. Since the robots all use crystal oscillators and the music selections are short, the
skew across one song will be imperceptible to the human ear. Therefore, after the robots are
synchronized and the song is started on the same downbeat, the robots can rely on their internal
clocks to stay coordinated for the remainder of the song. While simple, this approach does not
allow for synchronization changes or long-term operation past the limits of oscillator drift.

An alternative is to sync at regular intervals. A real orchestra syncs with each downbeat,
which requires extensive local communication and musical interpretation (How to you explain
a “downbeat” to a robot?) We implement a simpler version of this, with sync packets being
transmitted from the temporal source every 250ms.
Errors and Future Work

A small error δ is introduced at each communication hop. Looking closely, we see that:

[] 3i21 ctEcc +++=δ

where:
=1c The time between the clock read and the IR packet xmit
=2c Packet transmit time

[] =itE The interrupt latency
=3c The time between interrupt start and time stamp read

All the ic ’s can be measured by counting instructions and measuring packet transmit

time. The interrupt latency is a function of operating system design. The SwarmOS running the
ThreadX Real-Time kernel locks out interrupts for about 6-10 µs, measured with a two-thread
text application running under controlled circumstances (no external interrupts, no serial
streams, etc..)

This error accumulates as a function of the diameter of the graph. This will be true in
any sync system that relies on a single source and local communications relaying to share

Figure 4:This is the worst case network for temporal synchronization. The sync signal must travel through n-1
robots before it reaches the last robot. Error is accumulated with each hop.

 Page 8 of 12

information. Figure 4 shows the worst case topology, where all the robots are arranged in a line.
The temporal error across a network like this can be as large as () n1n δ≈−δ . where n is the
number of robots in the network. However, since the signs of the error accumulated at each
hop are random, the mean of the error can be made to be close to zero, but the standard
deviation will grow as a function of nδ [Grachaw 2002]. For a large network, this can become
unacceptable. With these measurements and bounds, we can zero out most of the propagation
error. Fortunately, the average diameter of the Swarm orchestra graph is about three, so this
correction was not needed in the current implementation.

If the FPGA that is responsible for encoding and decoding the ISIS packets also time
stamps them, this would eliminate the probabilistic portion of the error, the interrupt latency.
Additionally, all of the constants could be explicitly measured from the logic synthesis. The
error now can be made to be smaller that one system clock tick. In a 40mz SwarmBot, this is
25ns, which is absurdly small, and should suffice for almost all application. Even in groups of
thousands of robots, this is still only 25µs in the worst case configuration

5. Distributed Instrumentation
Now that all the robots are playing the same song at the same time, the next step is to

get them to use different instruments. I will impose the additional constraints that the swarm
should divide evenly amongst the various instruments needed for a song, and robots playing
the same instrument should be physically near each other (sax section, drum section, etc…) We
will use the following variables in this section:

n = number of robots
i = number of instruments (tracks in the MIDI file)

Initial Approaches
The pheromone gradient system would allow us to pick i leaders easily with lateral

inhibition. However, once these leaderBots are selected, it becomes difficult to select an equal
number of minionBots in each group. If the minionBots pick the leaderBot that is closest in hop
counts or space, this could result in an unequal clump size. In order for the algorithm to vary
the clump size, it would have to be able to count the number of robots that are in each clump, or
measure some other parameter that is correlated to the number of robots in each clump. This
would allow the leaderBots to recruit or release minionBots using some kind of distributed
feedback loop (maybe competition?). This could result in all the groups becoming similarly
sized, but the two requisite pieces, a distributed counting algorithm and a competition-based
recruitment algorithm, were missing from the Swarm’s behavior repertoire at the time of
implementation.

A behavior that did exist was the ability to tessellate the swarm in the presence of a
several leader gradients. Each minionBot pledges allegiance to the leaderBot that it is closest to
in terms of hop counts, which results in a Voroni tessellation of the swarm. If the leaders could
carefully arrange themselves, it could be possible to divide the swarm evenly in this manner.

 Page 9 of 12

This is similar to K-Means clustering [Hastie 01], in which the center of a cluster is iterativly
moved closer to the center of mass of the data points [ref]. The missing algorithmic piece for
this approach is a distributed computation of the center of mass of each region, and the ability
to communicate this to the leaders so they can convert it to spatial coordinates (or gradients (or
some other kind of simple taxis)) and move towards it. A refinement of this would be to move
the leaders virtually by sending communications messages from robot to robot, but this requires
“conservation of leaders” and leads to an infinite handshake, which is a form of the Byzantine
Consensus problem, which is provably intractable [Lynch 1996]. Not good.
Solution: Divide-n-Clump

The Divide and clump algorithm takes advantage of the fact that all the robots are
mobile, not just the leaders.

Divide-n-Clump

Pick an instrument uniformly at random
Become a source of a gradient for that instrument

Gradient inhibition is based on robotID, sources with lower IDs
dominate. These robots are the leaderBots.

If your instrument gradient is being inhibited, move up the gradient
towards lowest ID for their instrument. When you get within a
predetermined range of the source, stop and become clumped.

This simple algorithm generates a large mess that eventually settles down into clumps of

robots more or less spatially grouped by instrument, as shown in Figure 5. Since all the robots
uniformly pick an instrument at the beginning of the execution, the sizes of the groups are fairly
equal.
“Spatial Simulated Annealing”

Settling time is a problem with the algorithm as described above. The robots jostle
around quite a bit, bumping into each other as they look for their clumps. Some amount of this
is good, as random noise helps get unclumped robots into their clumps, but it can also dislodge
other clumped robots. This process was damped by using ideas similar to simulated annealing.
The robots reduce their speed as they get closer to their clump leader. Once they are clumped,
they reduce their speed even further. These relations are shown in the equation below

()βα+= rvv min

where
=v behavior velocity

=minv minimum velocity
=r range to clump source
=α speed to range ratio
=β clumped slow down factor (1 if unclumped)

 Page 10 of 12

This reduction in speed helps clumped robots stay put as they are bumped by
unclumped robots, yet still lets the swarm move and flow to let unclumped robots reach their
destinations. The difference between this and simulated annealing is the use of spatial location
instead of time as the input to the energy (temperature) function. This lets individual robots
determine how much speed to use based only on their immediate sensor reading of their
location., which removes explicit state that must be shared globally, i.e. a global timer, and
allows the algorithm to be robust in the face of dramatic topology changes (e.g. when the user
moves 1/3 of the robots away from his feet as he is trying to write this paper).

 Page 11 of 12

Separating Clumps
Once the robots are clumped, a clumpAvoid()clumpAvoid()clumpAvoid()clumpAvoid() behavior separates clumps from each

other. Clumped robots avoids any other clumped robots that are part of a different group.
Unclumped robots are not avoided, as their presence is likely transitory and does not warrant
an avoidance reaction. The avoidance behavior is performed slowly relative to the overall

Figure 5: The Divide and Clump Algorithm generates a spatial division of labor. Robots select their
group (red, yellow, or green in the figure above) at random. Each robot then becomes a source for a
pheromone gradient corresponding to their group. This gradient is inhibitory, such that gradients from
robots with lower IDs override those from others. Eventually, the robot from each group with the lowest
ID is the only remaining active gradient source, and all the other robots follow the gradient towards it,
producing clumps. These clumps are made distinct by the avoidClumps()avoidClumps()avoidClumps()avoidClumps() behavior, which moves
clumped robots away from each other. Settling time is reduced with a “simulated annealing” behavior.

 Page 12 of 12

motion of the robots to allow the clumps to be maintained. This was simple to implement, and
is surprisingly effective at separating clumps.
Errors and Future Work

The main problem with the algorithm right now is settling time. The need to physically
move a large portion of the robots around the network simultaneously causes much chaos. The
more elegant solutions of only moving the leaders, or leaving all the robots stationary and
moving the clumps virtually with communications should offer large improvements. Also,
selecting clumps initially (i.e. once) does not let the swarm dynamically adjust the clump size.
Being able to count the robots in each clump and then recruit robots if your current clump is
small is needed for robustness.

6. Conclusion
As of this writing, the Swarm Orchestra can clump, sync, and play MIDI files with ten

parts. The overall effect is very endearing, especially with the lights flashing as different parts
come in and out of the song. The two distributed algorithms presented, temporal sync and can
be used as building blocks for other applications.

7. References
Coore, Daniel N., “Botanical Computing” Ph.D. Dissertation, MIT, 1999
Grochow, Joshua [personal communication]
Hastie, Trevor, Robert Tibshirani, Jerome Friedman, “The Elements of Statistical Learning”,

Springer-Verlag, New York, 2001
Lynch, Nancy, “Distributed Algorithms”, Morgan Kaufmann Publishers, San Francisco, CA

94104, 1996
McLurkin, James “Algorithms for Distributed Sensor Networks”, Master’s Thesis, U.C.

Berkeley, 1999
Mirollo, Renato E., Steven H. Strogatz, “Synchronization of Pulse-Coupled Biological

Oscillators”, Society for Industrual and Applied Mathmatics, Vol. 50, No. 6, pp. 1645-1662,
December, 1990

Schneider Fontan, Miguel, Maja J. Mataric, “A Study of Territoriality: The Role of Critical Mass
in Adaptive Task Division”

	A
	Introduction
	The SwarmBot
	SwarmOS
	Distributed Algorithm Behavior Library
	Hands-Off Operation: HIVE™ and the Robot Ecology™

	The Swarm Orchestra
	Assumptions

	MIDI File Playback
	Temporal Synchronization
	Temporal Synchronization Algorithm
	Errors and Future Work

	Distributed Instrumentation
	Initial Approaches
	Solution: Divide-n-Clump
	“Spatial Simulated Annealing”
	Separating Clumps
	Errors and Future Work

	Conclusion
	References

