Chapter 0O

Program Specialization using Input
Distribution Spectra

Egad, I think the interpreter is the hardest to be understood of the two!

— RICHARD BRINSLEY SHERIDAN (1751-1816)
The Critic, Act 1, Scene 2

Chapter Summary

This chapter presents background and technical detail for the first of three original contributions
of this dissertation, namely:

Spectral Specialization - source-to-source program specialization with respect to con-
text spectra, constituting dynamically adaptive, profile-driven, polyvariant on-line
partial evaluation grounded in statistical inference.

0.0 Preview

This chapter begins by establishing the formal foundations on which DESCARTES was built. It
outlines the formal methods and historical developments that constitute program specialization,
reviewing the traditional notational conventions that permeate the field. In passing, it also offers
copious references for those new to the topic and for those inclined toward rigorous review of
things fundamental and their provenance.

Having established this technical context, DESCARTES’ so-called spectral specialization can
then be related to existing work and the details of its novel aspects can be highlighted.

Specifically, spectral specialization in DESCARTES is a relatively straightforward generaliza-
tion of Erik Ruf’s techniques for polyvariant on-line partial evaluation [Ruf 93] to use dynamic
abstract contexts (as embedded within what I term context spectra). These context spectra are
described in detail in a subsequent chapter (Chapter 7?7, p. ??). They are, in essence, a general-
ization of the idea of “types” to “statistically inferred run-time distributions of sets of weighted
disjoint (non-intersecting) structural datatypes”. Program specialization with respect to these
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context spectra is therefore a small matter of presenting the standard traditional specialization
rules in this setting, being mindful of the total correctness® of the underlying partial evaluation
process.

Second, the information encapsulated within context spectra subsumes what is normally
evinced either: a) by incorporating a fixed-point induction engine into the on-line partial eval-
uator [Ashley & Consel 94], or b) by performing a pre-pass program annotation phase (called
binding time analysis [Christensen, Gliick & Laursen 2000]) for the off-line case. This means
that the termination conditions for the partial evaluator have a pleasingly simple, elegant flavor,
avoiding the obligatory concomitant esoteric machinery of traditional approaches.

Moreover, consideration of the efficacy of the resulting specialized code, as well as the time
and space efficiency of the specializer itself, leads to a natural generalization of Urs Holzle’s
polyvariant in-line caches (PICs) [Holzle, Chambers & Ungar 91] [Holzle 94]. That is, whereas
PICs cache fixed-numbers of simple type-based dispatch operations using random replacement,
DESCARTES employs an analogous mechanism to maintain variable-sized dispatch “trampo-
lines” (§ ??) to guide run-time polyvariant specialized code invocation while ensuring code
safety. This has the effect of rendering otherwise-unsafe specializations safe.

Finally, a few novel concepts and opportunities present themselves as a consequence of the
probabilistic weights (or, relative proportions) associated with the sub-nodes of the dynamic
abstract contexts of context spectra as well as the inferential empirical nature of of their discovery.

The chapter ends with a short reflection on the importance and relevance of this first original
contribution. It also briefly reiterates and reinforces the importance of formal methods (viz.,
denotational semantics) in the development of this approach.

0.1 Deep Background: Formal, Historical and Notational Con-
text

Program specialization in DESCARTES is achieved by means of partial evaluation, which is an
instance of denotational abstract interpretation grounded in Kleene’s S Theorem.

0.1.0 Kleene’s S;* Theorem

Historically, Kleene’s S;* Theorem [Kleene 50, § 65, Theorem XIII] formally established that a
procedure of m + n formal parameters can be refactored as two procedures, the first of which
is a procedure of m parameters whose body is, in turn, a (second) procedure of the remaining
n parameters. When the outer procedure is applied to m arguments and the resulting inner
procedure (closed over these m initial arguments) is then applied to n arguments, the result
corresponds exactly to applying the original unfactored procedure to all m + n arguments
simultaneously. That is:

Therefore, if one defines, say,

prl,...,ym 2 ¢,(y17 s ,ym)

OT.e., congruence and termination, defined below (p. 70).
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¢(y17"' 7ym’$17' .t 7In) = (¢I(y17' .- 7ym))($17' .- 7In)

Figure 0-0: The equational essence of Kleene’s S]' Theorem

then one can replace all instances of ¢(y1, ..., Ym, T1,.-.,Tn) wWithepy, o (21,...,2,) through-
out. Note that this replaces the (n+m)-argument invocations of ¢ with m-argument invocations
of Py, ...y, thereby effectively reducing by m the arity at each call site. This is traditionally
called arity reduction.

Moreover, this S} refactorization transformation can be defined as a general recursive
function ([Godel 34,65] [Kleene 50, Chapter XI, § 55]), so it therefore corresponds to an effec-
tively calculable procedure (courtesy of the seminal Church-Turing (Post) Thesis [Church 36,65]
[Turing 36-37,65] [Post 36,65]).

This last point (and the main consequence of Kleene’s theorem for our purposes) formally
established the feasibility of implementing partial evaluation as a meta-program.! Specifically,
although Kleene’s S;' Theorem merely established the definability of such computable refac-
torization procedures without committing to why one might wish to do so, partial evaluation
extends this to program transformers with the goal of program optimization via source-to-source
transformation (like, for example, the optimization transforms of [Burstall & Darlington 77]).

0.1.1 Partial Evaluation as 5]" Refactorization

Informally, partial evaluation [Jones, Gomard & Sestoft 93] [Jones 96] [Bender 2006] takes a
source-level program and an indication of which arguments and data are static or dynamic,
then produces a residual specialized program that has the static internals compile-time reduced
(folded). The resulting residual program, when given the withheld dynamic data, produces the
same result as the original program would have if given the static and dynamic data together.
This definition is traditionally represented equationally as in Figure 0-1.

PE[f,static_args](dynamic_args) = f(static_args, dynamic_args)

Figure 0-1: Traditional equational representation of partial evaluation

What distinguishes P& as a special class of S transformer is that, in addition to refactoring
the formal parameter list, it also employs denotational abstract interpretation to optimize the
original procedure’s body with respect to the fixed (static) parameters. Equationally, one might
express this as:

...where, in a slight abuse of traditional notation, [{s1,...,sn} —* static_args] denotes a

'Historical Note: The observation that partial evaluation is an instance of Kleene’s S™ Theorem was first
made by Ershov [Ershov 78], according to Futamura [Futamura & Nogi 88]. The first instance of its realization
appears to have been substantially earlier, however, as embodied by [Lombardi & Raphael 64/66] [Lombardi 67],
according to [Consel & Danvy 93].
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PE[(lambda (s1,...,Sm,d1,...,dy) €),static_args]

(lambda (dy,...,d,) PEle,[{s1,-..,Sm} —" static_args]])

Figure 0-2: Partial evaluation is S plus denotational abstract interpretation

partial evaluation “environment” in which the formal parameters sq, ..., s,, are associated with
the (set of) values denoted by static_args, each in turn.

The salient point here is that a partial evaluator, P&, transforms an (n + m)-argument
procedure into an m-argument procedure whose body is recursively descended and thus partially
evaluated in an environment where the static formal parameters are bound to the (known)
static arguments. If/when, say, a call to a primitive procedure is encountered in which all its
arguments are static, the procedure can be reduced to a concrete static result in the resulting
residual procedure’s body.

In this sense, partial evaluation can be thought of both as being an instance of partial
compilation of a program (given a subset of its inputs) as well as being just a highly aggressive
form of constant folding.

0.1.2 Partial Evaluation via Denotational Abstract Interpretation

Moreover, as we are about to see, partial evaluation is mathematically grounded in the formal
logic of denotational abstract interpretation [Cousot & Cousot 77|, lending its soundness and
correctness to formal verification (e.g., using denotational semantics to formally prove that the
program transformations preserve the semantics of the original source programs [Mulmuley 86)).

To wit, abstract interpretation is a modest generalization of normal program interpretation.
Specifically, a traditional language interpreter takes as input a syntactic expression and a val-
uation environment, p, mapping identifiers to concrete values in the concrete value domain. It
then produces a concrete value corresponding to the concrete execution of the source program
in the specified valuation environment using a concrete valuation function (£).

By contrast, a traditional abstract interpreter takes as input a syntactic expression and
an abstraction environment, p!, mapping identifiers to abstract values in the abstract value
domain. It then produces an abstract value corresponding to the abstract execution of the
source program in the specified abstraction environment using an abstract valuation function

(£9).

Language Interpreter (Standard Semantics)

For example (Figure 0-3), a traditional language interpreter [Abelson & Sussmans 96] for inte-
ger arithmetic might behave roughly as follows, based on standard semantics.
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E£[((lambda (a b) (+ a b)) 1 3)]p [call]
_
(6[(1ambda (a b) (+ a b))]p ]
EM]p [k]
&3] p) [k]
—3
(Az,y . (E[+ a B)] pla > z][b > y]) 13) [apply]
8
E[(+ a b)]pla+>1][b — 3] [call]
_—
(add 1 3) [primitive]
)
1+3 [deus ex machinal
4! [return]
4 g

Figure 0-3: A simple language interpreter (standard semantics) demonstration

Here, following long-standing convention [Stoy 77], the double bracket quasi-quotation op-
erator, [...], maps sequences of denotation characters (i.e., input syntaz) into corresponding
expressions in the (implicit) underlying syntax of source programs.?

This starts with the source program ((lambda (a b) (+ a b)) 1 3) and an initial valuation
environment, p, (presumably mapping + to the primitive addition procedure). Recognizing this
expression as a procedure call form, the operator and operand expressions are first evaluated
then the result is applied as per the S-reduction rule of the standard A-calculus [Church 51].
This results in a recursive call to the concrete valuation function (€) on the body of the lambda
expression in the valuation environment p extended to bind the formal parameter a to 1 and b
to 3. This, in turn, is recognized as another procedure call form, so the operator and operands
are first evaluated then the result is applied, in this case using the standard d-reduction rule
of the A-calculus since the operator is a base primitive procedure. Finally, this corresponds to
the arithmetic sum of 1 and 3, which is 4. The result is therefore the numeral (denotation) 4—
not the arithmetic number 4 from the concrete value domain.

This is also an (informal) example of denotational semantics [Stoy 77] [Gordon 79] [Schmidt 86],
which maps program source text (“denotations”) to their underlying mathematical meanings
(“semantics”) in an underlying recursive domain model of values [Scott 76]. As illustrated

2Historical Note: This traditional so-called “quasi-quote” double bracket notation derives from Quine’s
“canonical notation” [Quine 60]. Whereas Quine used single brackets or, at times, "...7, Stoy both unified
and generalized this notation slightly [Stoy 77] to admit meta-syntactic variables within source syntax (although
no such meta-syntactic variables appear in the present example). The resulting “[...]” notation is now standard,
if not ubiquitous, in the field of formal semantics.
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above, this reduction of syntactic expressions to elements of the concrete value domain is rooted
in Church’s A-calculus model of computation [Church 51]. This wedding of recursive domain
models with the A-calculus is the quintessence of denotational semantics [Scott 70] [Stoy 77].

In the particular case of a language interpreter, the denotational semantics guides the map-
ping of syntactic expressions into the domain of concrete values.

Abstract Interpreter (Non-Standard Semantics)

By contrast, a comparable traditional abstract interpreter [Nielson 86] corresponding to the
same source program might be constructed from the preceding standard (concrete) semantics
as an approximating (abstract) semantics, something like the following.

First, note that in the preceding denotational semantics for our traditional language inter-
preter, I implicitly defined recursive concrete value domains [Scott 76] comprised of integers
and (total) functions from values to values (where “+” below denotes disjoint union):

veV = Z + F [VALUES]
feF = (V'=YV) [FUNCTIONS]
Z2€ZL [INTEGERS]

I also assumed an initial valuation environment, p € E, to map the names of the primitive
procedures in the input syntax of source programs (viz., identifiers, v € I) to their corresponding
underlying integer arithmetic primitive base operators, ¢ € ®. I then presented a fragmentary
example of the (implied) standard concrete valuation function, £, which maps source text into
their concrete integer counterparts in this concrete value domain, V, using this initial valuation
environment.

Now, for the present traditional abstract interpreter, we extend this standard semantics with
an abstraction function to map concrete values to their abstract (approximate) counterparts in
an abstract value domain. We also must define abstract base operators to function on these
abstract inputs appropriately (i.e., as semantically faithful and congruent mirrors of their
concrete primitive procedure counterparts).® Appropriate abstract base operators are assumed.

First, of course, we must choose an abstraction.

Following tradition, I choose the integer parity function as our first example abstraction
function.* This projects elements of the integers, z € Z, onto appropriate elements of the set
{EVEN, ODD}, odd integers to ODD and even to EVEN. It also must project each concrete base
operator onto some appropriate corresponding abstract base operator.

Following traditional notation [Mycroft 81], this chosen abstraction function, denoted “a”,
maps elements of the concrete value domain, v € V, to corresponding elements of the abstract

3The terms faithful and congruent in this context have their usual formal meanings of, informally, being
“reasonable” and “well behaved” [Jones, Gomard & Sestoft 93]. Those details are not important for the present
informal discussion. (See page 70 for formal definitions.)

4 An alternative traditional first example might be the signum function, which maps zero to 0, positive integers
to +1, and negative integers to —1, but that tends to generate confusion when one sees, for example, that the
abstract base operator for addition is defined as per 1 + 1 = 1, and similar such apparent nonsense.
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value domain, v € VE. Formally:

alv) — of
a(f) = f*
alz) — 2

For our specific choice of the integer parity procedure as the core abstraction function, a, this
naturally induces the following abstract value domain:

eVt = 28 F
ffert = W7 5
e 2! = oDD + EVEN

The abstract base operators, ¢! € ®!, are then defined as appropriately well-behaved® abstract
functions from V¥ to V!. For instance, +* behaves as:5

EVEN +! EVEN = EVEN
EVEN +! opp = oDD
opp +! EVEN = ODD

opb +! opD = EVEN

Figure 0-4: Sample integer parity abstraction of the addition base operator

We now presume an initial abstraction environment, p* € Ef to map the names of the
primitive procedures in the input syntax of source programs (viz., identifiers, + € I) to their
corresponding underlying integer arithmetic function primitive abstract base operators, ¢* € ®F.

5That is, faithful and congruent, defined below (p. 70).
5Tt may amuse some to note that, if we encode EVEN as 0 and oDD as 1, then +* can be defined as straight-
forward addition modulo 2.
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E[((lambda (a b) (+ a b)) 1 3)]p [call]
.
(£*[(1ambda (a b) (+ a b))]pf [\
EF[1] p* [k]
£'13] o) [k]
.3
(Az,y - (E'[+ a D) p'la s 7)o = y]) (1) (3)) [apply]
B
E'[(+ a b)] pf[a — ODD][b — ODD] [call]
N
(e(add) oDD ODD) [primitive]
)
opp +f opp [deus ex machina)
[EVEN] [return]
even <

Figure 0-5: A simple abstract interpreter (non-standard semantics) demonstration

Finally, we’re now equipped to demonstrate the abstract valuation function, Sﬂ, as follows
(Figure 0-5). The result in this case is the syntactic symbol (denotation) even— not the domain
element EVEN from the abstract value domain.

Aside from the liberal sprinkling about of {’s, note the en passant appearance of the ab-
straction function, o, when binding the parameters to their (abstractly) evaluated arguments
in the abstraction environment of the S-reduction step. Contrast this with the like-labeled step
in the standard semantics of the preceding traditional language interpreter, where it tacitly
converted the syntactic numeral inputs (1 and 2) to their corresponding underlying arithmetic
concrete values (1 and 2) without fanfare. This exposes a minor subtlety where I’ve suppressed
an intermediate step that a more rigorous demonstration might have included, albeit at the
risk of obscuring the earlier example.

That intermediate step is the usual k rule, which projects literal constant input expressions
into the domain of concrete values, typically by invoking a projection operator named K. For
the standard semantics of language interpreters, this is an obvious and straightforward mapping
(albeit machine dependent in concrete implementations), so it is typically deemed “uninterest-
ing” and therefore not shown. For the non-standard semantics of abstract interpreters, however,
the en passant invocation of « is essential. It was better to have delayed it until now in order
to highlight its ultimate purpose, if only for dramatic effect.

This illustrates how, in an abstract interpreter, the denotational semantics guides the map-
ping of syntactic expressions into the domain of abstract values.
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Partial Evaluation as Abstract Interpretation

Extending abstract interpretation one step further, partial evaluation aggressively reduces all
static subexpressions of an expression to their underlying concrete values. Moreover, as we shall
see shortly, a partial evaluator maps expressions to expressions, not expressions to values like
the abstract interpreter shown above. Nonetheless, partial evaluation is a generalized instance
of abstract interpretation, albeit with non-traditional domain equations [Jones 97]. That is,
the mechanism of abstract interpretation is generalized with respect to both its abstraction
environment and its abstract value domain.

Specifically, whereas the traditional abstract interpretation rule for 1lambda forms demon-
strated above delayed the further (abstract) interpretation of the 1ambda body until it is invoked:

£'[(1ambda (a b) (+ a b))]p! Al
—
Az,y . (E [+ a B)] pila = z]b — y])

Figure 0-6: The lambda reduction rule for an abstract interpreter

..a partial evaluation rule for lambda would behave more like:

PE[(lambda (a b) (+ a b))]r [A]
E—
Let e, = PE[(+ a b)] 7
in

[Na,b.e ]!

Figure 0-7: The lambda reduction rule for partial evaluation

There are two main points to note here.

First, the normal valuation environment, p, of the standard semantics has been replaced by
a static/dynamic determination environment, 7, which maps identifiers to tuples of the form:
< vxb >, for value v € V and static/dynamic binding indicator b € B where:

b € B = {STATIC, DYNAMIC}

Just how these binding indicators get set is unimportant for now. Imagine a global program
analysis oracle to generate these appropriately, for example. I’ll come back to this later.
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Second, the “inverse” quasi-quotation operator, |[... ]]_1 was used to suggest that a concrete
A-value is generated and then immediately mapped back into a syntactic expression. Although
well intensioned [sic],” this is somewhat of an abuse of notation. A more standard notation
would be:

[(lambda (a b) e;)] 1S

... where the “t §” decoration indicates projection of the resulting quasi-quoted expression back
up into the syntactic ezpression domain of program source text. Without that bit of decoration,
the result would be an expression (an internal machine representation, if you prefer) rather than
syntax (program source code text, if you like).

To my taste, the slightly abusive “[...]™"” notation is less distracting, frankly, when com-
paring the traditional abstract interpretation rule with the comparable partial evaluation rule.
Henceforward, however, I'll use the projected quasi-quote form instead. That tends to corre-
spond more closely to the source code of the partial evaluator itself, which carries the additional
advantage of being far less onerous to typeset in the running text.

It should also be noted in passing that some authors use a distinguished 1ift operator for
the same purpose [Jones, Gomard & Sestoft 93]. Since this is a meta-operator used only to
project expressions into denotations, I prefer the “ §” decoration instead, as it more clearly
suggests a domain projection rather than an expression computation per se.

Partial Evaluation via Denotational Abstract Interpretation: Summary

To summarize this section, then, partial evaluation is essentially just a specific instance of the
broader notion of denotational abstract interpretation. In the particular instance of program
specialization, the objective is to partial evaluate program source code with an eye toward re-
ducing constituent subexpressions to their ultimate run-time values wherever possible and safe.
This task is enabled by viewing programs as having a semantics in the abstract domain of
known/static values as well as unknown/dynamic values. The goal, then, is to use this frame-
work to reduce the source code where possible with respect to the static/known information,
wrapping these fully reduced static components (“residues”) in appropriate dynamic/unknown
contextual code fragments in order to generate “residualized” specialized code that will behave
exactly as the original code would have, only with the fully and partially static subcomponents
somewhat optimized through code specialization.

The next section illustrates core variants on this theme with a few short examples. The one
following that then briefly addresses the off-line -v- on-line partial evaluation debate. Afterward,
following a brief section to narrow the language domain a bit, the partial evaluation rules for
DESCARTES are finally presented.

0.1.3 Partial Evaluation Variants: A Brief Illustration

Equipped now with the basic underpinnings of partial evaluation, consider the following sample
program:

"Pun and/or double entendre intended.
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(define square (lambda (n) (* n n)))
(define sum-of-squares (lambda (a b) (+ (square a) (square b))))

(define hypotenuse-3-4 (lambda () (sqrt (sum-of-squares 3 4))))

...a partial evaluation of a given lambda form would first scan the entire program file to
determine if any of its arguments are always known (static) values, generating equivalent lambda
forms with all static formal parameters removed from the formal parameter list and replaced
in the lambda’s body by their static associates. In so doing, a partial evaluator, in effect,
transforms expressions to (equivalent, presumably simpler) expressions rather than reducing
expressions to values.

Under strict monovariant partial evaluation, for instance, sum-of-squares (3,4} 18 generated
but not squareg nor squareg because sum-of-squares has a single call site (hence, monovari-
ant) while square has two incongruent call sites. The resulting system would look something
like:

(define square (lambda (n) (* n n)))
(define sum-of-squares (lambda (a b) (+ (square a) (square b))))

(define sum-of-squares_3x4 (lambda () (+ (square 3) (square 4))))

(define hypotenuse-3-4 (lambda () (sqrt (sum-of-squares_3x4))))

This is, of course, unsatisfying.

As an alternative, a strict monovariant partial evaluation could decide instead to “dynamize”
the two incongruent calls to square by, for example, specializing on the most specific general-
ization (least upper bound) of the distinct call sites. To wit:

(define square (lambda (n) (* n n)))
(define sum-of-squares (lambda (a b) (+ (square a) (square b))))

(define square_int (lambda (n) (int:* n n)))
(define sum-of-squares_3x4 (lambda () (+ (square_int 3) (square_int 4))))

(define hypotenuse-3-4 (lambda () (sqrt (sum-of-squares_3x4))))

...where int :* is the (non-generic) integer-only multiply primitive.

Thus, when doing specialization by types [Haraldsson 78] [Weise & Ruf 90'] [Danvy 96]
[Danvy 96p] [Danvy 98] rather than just specialization by concrete values, even in the mono-
variant case the partial evaluator could generate square to narrow the generic arithmetic
to the fixed input domain consistent with all call sites.®

INTEGER

8What T dub “call sites” are called “program points” by [Jones, Gomard & Sestoft 93] (who derive their
nomenclature from flow chart programs). These refer merely to distinct instances of invocation of a syntactically
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Alternatively, generalizing by disjoint union rather than by least upper bound in the type
domain, a type-driven monovariant partial evaluation could produce the following:

(define square (lambda (n) (x n n)))
(define sum-of-squares (lambda (a b) (+ (square a) (square b))))

(define square_3v4 (lambda (n) (case n
(3 9
((4) 16)

(else (error "Not 3 or 47!")))))
(define sum-of-squares_3x4 (lambda () (+ (square_3v4 3) (square_3v4 4))))

(define hypotenuse-3-4 (lambda () (sqrt (sum-of-squares_3x4))))

This capitalizes on the base case of allowing primitive procedures (like +) to be fully reduced
when all arguments are static/known. This strategy, however, might be maligned as being
merely a poorly-disguised “localized” approximation to polyvariant specialization.

Going one step further, therefore, under true polyvariant partial evaluation, the two variant
squares would be generated separately, as per:

(define square (lambda (n) (* n n)))
(define sum-of-squares (lambda (a b) (+ (square a) (square b))))

s

(define square_3 (lambda () 9)) e., (x 3 3)
(define square_4 (lambda () 16)) ;; Z.e., (x 4 4)

(define sum-of-squares_3x4 (lambda () 25)) ;;; Z.e., (+ (square_3) (square_4))

(define hypotenuse-3-4 (lambda () 5)) ;; t.e., (sqrt (sum-of-squares_3x4))

Note here that a knock-on effect has permitted the generation of a cavalcade of constant func-
tions. These intermediate specializations, like square_3 and even sum-of-squares_3x4, needn’t
be retained post-specialization, but they are shown here for clarity (and because they typically
are retained, at least temporarily, to afford opportunities for avoiding redundant regeneration
later [Ruf & Weise 92r]).

The liability in all this, in both the monovariant and polyvariant cases, however is the
dependence on whole-program analysis, which presumes that the whole program is available for
scrutiny. In a dynamic development environment, where new code is being written and/or new
programs modules are dynamically linked in, while deprecated code is retired (such as when
a fresh code patch is downloaded into a live system), this “closed world assumption” breaks
down.

Imagine, for example, adding a new definition to the original system:

identifiable operator within an expression, i.e., visually distinguishable places in the text where a given operator
is called.
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(define square (lambda (n) (* n n)))
(define sum-of-squares (lambda (a b) (+ (square a) (square b))))

(define hypotenuse-3-4 (lambda () (sqrt (sum-of-squares 3 4))))

(define mean-variance (lambda (mean)
(lambda (x y) (sum-of-squares (- x mean)
(- y mean)))))
(define norm-variance
(mean-variance 0))

A strict value-based monovariant approach would be rendered inert due to the incongruent call
sites for sum-of-squares: one cannot even assume that x and y are constrained to be integers,
for example.

The polyvariant case is less stymied: it can do as before with the old code but, by exploiting
the idempotence of 0 with respect to subtraction, generate new specializations as per:

(define mean-variance_0 (lambda ()
(lambda (x y) (sum-of-squares x y))))
(define norm-variance
(mean-variance_0))

(define square (lambda (n) (* n n)))
(define sum-of-squares (lambda (a b) (+ (square a) (square b))))

(define hypotenuse-3-4 (lambda () (norm-deviation 3 4))) ;;; <=

(define mean-variance (lambda (mean)
(lambda (x y) (sum-of-squares (- x mean)
(- y mean)))))
(define norm-variance
(mean-variance 0))

(define mean-deviation (lambda (mean)
(lambda (x y)
(sqrt ((mean-variance mean) x y)))))
(define norm-deviation
(mean-deviation 0))

I leave this for the reader to ponder. Suffice it to say, for now, that a dynamic program devel-
opment environment poses potentially severe challenges to non-incremental (“closed world”)
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specialization methodologies. DESCARTES therefore embodies an incremental, dynamically
adaptive approach, by contrast.

0.1.4 Partial Evaluation Strategies: On-Line -v- Off-Line

This still begs the question of exactly how the global program analysis is done. Specifically, how
exactly does an algorithm determine which formal parameters are static and which dynamic?
How are expressions and their subexpressions identified as static or dynamic? How does one
guarantee termination of this analysis for recursive function definitions?

All this is addressed by so-called binding time analysis [Jones & Schmidt 80] [Mogensen 89]
for off-line partial evaluation, where the analysis is done in a pre-pass over the whole program
text before partial evaluation proper is initiated. In on-line partial evaluation, this analysis is
done as part of the partial evaluation process itself.

Some controversy persists within the PE community as to which approach is to be pre-
ferred and for what reasons. It has been argued [Christensen & Gliick 2004], however, that
the two approaches are equipotent, at least in terms of accuracy, when using mazimally poly-
variant BTA [Christensen, Gliick & Laursen 2000]. Nonetheless, [Christensen & Gliick 2004]
further note that residualization/generalization decisions to ensure termination are naturally
flow-sensitive in on-line PE— not so for off-line PE— so on-line PE can use the specialization
history to make better generalization (“dynamization”) choices, ensuring termination while af-
fording more aggressive specialization. Ultimately, however, the difference may just boil down
to a matter of taste. De gustibus non est disputandum.

In DESCARTES, on-line partial evaluation is adopted since this tends to simplify the pre-
sentation while making comparison to related work (especially, [Ruf 93]) more immediate. It is
also more in keeping with the run-time/dynamic/on-the-fly profile-driven approach advocated
here.

0.1.5 Deep Background: Section Summary

This section covered a lot of ground. It briefly traced the mathematical foundations of partial
evaluation from formal logic, through denotational semantics to abstract interpretation. It then
touched briefly on design alternatives, such as monovariant -v- polyvariant approaches and off-
line -v- on-line approaches. Along the way, it also briefly touched on the idea of type-driven
partial evaluation and the notions of residualization based on a most specific generalization of
dynamic variants. We will revisit these issues as they arise later during the detailed discussion
of the DESCARTES prototype system.

In the meanwhile, the high-level picture to keep in mind is this: DESCARTES employs a
polyvariant, on-line approach to program specialization, continually adapting the collective set
of generated specializations based on emergent trends in program use and definition. The re-
mainder of this chapter details this approach to program specialization per se. Subsequent
chapters, in turn, address the type system on which this is based (viz., spectral type distribu-
tions), and then the statistical foundations on which that data representation is based, as well
as the statistical feedback tuning that makes the whole approach viable.
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We proceed now by first narrowing the domain of discourse then forging ahead with the
DESCARTES partial evaluation rules.

0.2 A Convenient Syntactic Preliminary: Grammatical Retract

This section reduces the source code input language, MIT SCHEME, into a small kernel dialect
with fortuitous annotations to support tag-directed dispatch and explicit syntactic disambigua-
tion within the source-to-source program specializer. The resulting dialect is still executable
as SCHEME code. It is generated at run time from live (compiled) code through a process
dubbed LERKS normalization, which re-writes source expressions into Let-Extracted Rufian
KMP ScHEME Normal Form.

The impatient reader may prefer to skip ahead to the summary LERKS BNF grammar on
page 31 of Section 0.3.0.

Otherwise, the retraction proceeds in several steps.

0. First, the full MIT SCHEME dialect is reduced to a small kernel subdialect of only a
handful of syntactic forms using the native run-time unsyntax procedure, perhaps more
familiar to most as the “pretty printer” (pp), its most popular incantation. This consti-
tutes simple syntactic retraction in its purest form. The resulting subdialect is commonly
referred to as “The Gang of Eight” (or “Nine”, depending on how you count).

1. Next, the resulting kernel subdialect is decorated such that all sub-forms are explicitly
tagged, including procedure calls and variable references. This is traditional LiSP retrac-
tion to so-called “KMP form” (or “CALL/LOOKUP” form). Self-evaluating constants are
also tagged, for universal consistency.

2. Afterward, a “de-nesting” transformation is performed such that all nested sub-forms are
explicitly named (¢ la LET wrappers). This reversible intermediate transformation allows
the specializer to annotate subexpressions during partial evaluation without resorting ei-
ther to an opaque internal annotated parse tree representation or to source-level conversion
into pervasive continuation passing style— two common internal compiler transformations
that, alas, either render the intermediate program representation non-executable (in the
former case) or else obfuscate and over-specify the source program (in the latter). This
de-nesting transformation has become known as “monadic normal form” or “administra-
tive normal form” or “CPS without continuations”, etc. (Citations below.) I prefer to
call it let-eztraction in this context.

3. Finally, a modest refinement of the coarse-grain CALL/LOOKUP tags of step 1 is performed
in order to distinguish variables according to binding category: local, global, formal pa-
rameter, or primitive. This is a slight elaboration of Erik Ruf’s tagging schema. E.g., it
renders trivial the ex post facto elicitation of the “free variables” of an expression.

Details, definitions and copious scholarly citation of attributions follow.

October 13, 2007 **DRAFT**



16 CHAPTER 0. PROGRAM SPECIALIZATION USING INPUT SPECTRA

0.2.0 Syntax Retraction

First, the full SCHEME language includes many superfluous macros which are convenient for
programming but a distraction for automated source manipulation. Therefore, it is standard
practice to implement only a kernel subdialect that spans the entire space of the full language.
Such a minimal kernel subdialect is called a (syntactic) retract of the full language grammar,
while the function that maps the full language to its retract is called a retraction [Stoy 77].°

This is normally where authors insert the phrase “without loss of generality” to indicate that
adding additional forms introduces no new interesting problems. In the case of DESCARTES,
since it retrieves the source code from live, running programs in order to specialize them, this is
more an argument of “without loss of functionality”. Specifically, the aim here is to re-write the
original source code associated with any live procedure into a kernel subdialect while avoiding
“throwing out the baby with the bath water”.

To that end, in MIT SCHEME, we get a fairly complete retraction of standard SCHEME
directly from using the built-in unsyntax procedure. With a few modest adjustments to elide
embedded comments and avoid showing internal DEFINEs as #!auxiliary parameters (neither
of which are standard SCHEME anyway) this retraction becomes standard SCHEME.!°

We can thankfully disregard all MIT SCHEME special form extensions to standard SCHEME—
namely, DEFAULT-0BJECT?, UNASSIGNED?, DECLARE, LOCAL-DECLARE, DEFINE-INTEGRABLE, and
such. All of these macros expand into innocuous procedures or equivalent standard SCHEME
forms or else they entirely evaporate when compiled.

Moreover, when the input program is standard SCHEME, then so too will be the retraction
output since no new MIT SCHEME-specific special forms are inserted by the un-syntaxer on
compiled code. . . except for the name-space extensions. I gleefully ignore those and imagine we
live in a world with one, flat, universal name space. Future work can sort that out.

In short, everything below the dotted waterline in the grammar below can be ignored in the
remainder of this dissertation without loss of functionality.

With a fluid re-binding of its internally defined collect-lambda to use collect-named-lambda
so that even anonymous LAMBDA expressions are canonicalized into NAMED-LAMBDAs (with unique
un-interned names), we get the following kernel dialect of MIT SCHEME from unsyntax:'!

9To paraphrase Stoy [Stoy 77], a retraction is a (continuous) function which maps elements of its input domain
to a subspace of that domain, with the restriction that it be the identity function on the elements of its range. Its
range is therefore a subspace its domain. Quoting, “its range and its fixed point set coincide, and it is therefore
idempotent: applying it more than once makes no difference.” [Op. cit., p. 133] Another way to view this is
as an injective mapping of domain elements to equivalence class representatives in the domain. Formally, again
borrowing from Stoy (ibid.):
f=Ffof

0This retraction does still support some MIT SCHEME arcana, like sequence and disjunction and other
backward compatible special forms.
"Depicted as a ubiquitous Backus Normal Form (BNF) [Backus 59] context-free grammar.
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<expr> ::= (QUOTE <datum-literal>)
| <self-evaling-literal>

| <identifier>
| (SET! <identifier> <expr>)
| (DEFINE <identifier> <expr>)

| (BEGIN >expr< <expr>)
| (BEGIN >expr< >expr< <expr>)

| (NAMED-LAMBDA (<name> <formals>) <expr>) : NB:

| (Kexpr> <expr>x*)

| (IF <expr> <expr> <expr>)
| (OR <expr> <expr>)

| (DELAY <expr>)

| (ACCESS <identifier> <expr>)
| (SET!
(ACCESS <identifier> <expr>)
<expr>)

| (IN-PACKAGE <expr> <expr>)

| (THE-ENVIRONMENT)

| (UNASSIGNED? <identifier>)

| ( DECLARE <declaration>)
| (LOCAL-DECLARE <declaration>
<expr>)

2.e., symbol, null, pair, vector, etc.
7.e., Boolean, number, char, string

: References (%i.e., identifier instance)
: Assignment
: Note:

<expr> may be a NAMED-LAMBDA

: Here >expr< is <expr> excluding BEGIN

(spec.,always 2 or 3 element chains)

MIT ScHEME-specific

: Combination/application/invocation

: No ‘‘one-armed’’ IFs
: Two-elt variant only (with nesting)

: Standard optional library extension

MIT ScHEME extension: name spaces

: MIT SCHEME extension
: MIT SCHEME extension

: MIT SCHEME extension

: MIT SCHEME extension

MIT SCHEME extension: interpreter

: MIT SCHEME extension
: MIT SCHEME extension

: MIT SCHEME extension

<formals> can be null, dotted, ‘‘#!rest’’ and/or ‘‘#!optional’’ params.

17

The forms below the solid waterline evaporate when compiled, due to macrology. The forms
below the dotted waterline are MIT SCHEME name-space extensions. Also, both OR and DELAY
are derived syntax that can be re-written in terms of the others above them. Finally, the three-
element BEGIN form can be trivially re-written as two two-element BEGIN forms. That leaves

nine core distinct forms total.

October 13, 2007
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18 CHAPTER 0. PROGRAM SPECIALIZATION USING INPUT SPECTRA

Note finally that:

0. This canonicalizes LAMBDA expressions to NAMED-LAMBDA (MIT SCHEME-ism). It just
stores a label in what would otherwise be an anonymous LAMBDA. It is helpful for debug-
ging. This carries no semantics beyond LAMBDA.'?

1. All macros are expanded so we needn’t worry about the various and sundry macrology
special forms (e.g., LET-SYNTAX, DEFINE-MACRO, etc.). By the time we look at the com-
piled code’s source, macros are gone.

2. The following all syntactically evaporate courtesy of de-sugaring:

AND, COND, CASE, DO, LAMBDA, named LET, LET, LET*, LETREC, FLUID-LET,
CONS-STREAM, DEFAULT-OBJECT?, DEFINE-INTEGRABLE, DEFINE-STRUCTURE,
MAKE-ENVIRONMENT, QUASIQUOTE, UNQUOTE, UNQUOTE-SPLICING

3. Moreover, these special forms all evaporate courtesy of the compiler:

UNASSIGNED?, DECLARE, LOCAL-DECLARE

The UNASSIGNED? form expands into a primitive with QUOTEd <identifier>.
The DECLARE forms both become QUOTEd declaration constants if compiled.

0.2.1 KMP Scheme: An Explicitly Tagged Kernel Subdialect

All the retraction into the preceding kernel subdialect is automatically provided by the MIT SCHEME
unsyntax procedure. For example:

1 ]=> (define (or-snark a b c) (or a b c))

1 1=> (unsyntax/truthfully or-snark)
:Value: (named-lambda (or-snark a b c) (or a (or b c)))

...where “1 1=>" is the default level-one, user-interaction input prompt in MIT SCHEME
(a.k.a. the so-called “rocket” prompt).

It is common to further transform these to make all expressions tagged. This involves in-
troducing vacuous “noise” wrappers around the presently untagged expressions: self-evaluating
literals, identifiers and combination/application/invocation forms.

128pecifically, the embedded <name> is not bound in the environment to this NAMED-LAMBDA form by mere
virtue of this label. Rather, the reverse holds: the <name> label appears in the NAMED-LAMBDA form by virtue
of the environment binding (when it was defined using the (DEFINE (<name> ...) ...) variant of the DEFINE
form).
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This is traditionally done as follows (although names vary among implementors):

(<CONSTANT> <self-evaling-literal>) : A1l capitalized tags here are
(<CALL> <expr> <expr>x*) : literal symbol constant, not
(<LOOKUP> <identifier>) : grammatical meta-variables.

For example:

(define (fib-x z)
(if (< z 2)
z
(+ (fib-x (-1+ z))
(fib-x (- z 2)))))
_
(define fib-x
(named-lambda (fib-x z)
(if (<call> (<lookup> <) (<lookup> z) (<constant> 2))
(<lookup> z)
(<call> (<lookup> +)
(<call> (<lookup> fib-x)
(<call> (<lookup> -1+)
(<lookup> z)))
(<call> (<lookup> fib-x)
(<call> (<lookup> -)
(<lookup> z)
(<constant> 2)))))))

This helps make various syntax walkers tag-driven by making all expressions be explicitly
tagged. It simplifies the grammar to be trivially left linear with one-token lookahead (LL(1))
[Aho & Ullman 72] [Rosenkrantz & Hunt 87).

The resulting explicitly tagged kernel subdialect of SCHEME is often called KMP SCHEME.!3

0.2.2 Subexpression De-nesting via Let-Extraction

Typically, the preceding transformation into an explicitly tagged kernel subdialect is the end
of the story. For our purposes, however, it is useful to arrange for all non-trivial nested subex-
pressions to be explicitly named. In essence, this transforms the source code parse tree into one
where every non-leaf node is labeled with a lexically non-colliding name. Specifically, this allows
the on-line partial evaluator to associate bundles of auxiliary information with each non-trivial
subexpression in the specialization environment as it walks the source code, while allowing
whole expressions to be “copied” or “duplicated” by name wherever desirable.

!3This is in honor of Kent M. Pitman, who first coined it. This is not to be confused with the KMP-test
used to benchmark partial evaluators: that “KMP” refers to the Knuth-Morris-Pratt algorithm for specializing
a simple pattern matcher for a given static pattern.
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20 CHAPTER 0. PROGRAM SPECIALIZATION USING INPUT SPECTRA

This is done through a process of (sub)ezpression de-nesting. Its aim is two-fold: 1) to
name every non-trivial nested subexpression; then, 2) to refer to them by name in the source
code. This is accomplished by a standard transformation technique called let-insertion'*
[Bondorf & Danvy 90/91] [Mogensen 88] [Danvy 96p] [Jones, Gomard & Sestoft 93, § 5.5.4],
where the “trivial” subexpressions are defined to be: self-evaluating literal data, identifiers,
and syntactic keywords. For example:

" Context: [Bondorf & Danvy 90/91] simplified, and thereby popularized, this now-common mechanism, which
they attributed to a technique in [Mogensen 88].

They also defined an elegant yet simple abstract occurrence counting analysis (an approximating abstract
interpretation) to eliminate (reduce) unnecessary insertions in the resulting residualized programs. Since their
input source programs were not assumed to be in canonical form, they could not distinguish programmer-authored
instances from specializer-injected occurrences. This abstract occurrence counting analysis was used subsequently
in [Danvy 96p] as well, but that work was stymied by not having access to the source code. There, he contrasts
this counting approach to Sestoft’s duplication risk analysis [Sestoft 88], which employs a similar analysis to
annotate expressions rather than transform them into native LET forms, in order to avoid duplicate calls and
duplicate code. The former is a correctness issue for the specializer; the later, a space issue for both the specializer
and the code it produces.

The technique of let-insertion is also mentioned in [Jones, Gomard & Sestoft 93, § 5.5.4], but there one is left
with the impression that this is done only for arguments of LAMBDA forms, much the way careful programmers
define their macros to avoid argument expression duplication, as in:

(define-macro (square expr) (let ((a expr)) (* a a)))

This is an instance of the restricted case of inserting identity LET ezpressions in the source code
[Bondorf & Danvy 90/91].

In all the preceding cases, however, let-insertion is used at specialization generation time, not as a pre-
processing input canonicalization. In this regard, let-eztraction in DESCARTES is more akin to what Danvy calls
“CPS without continuations” [Danvy 96p] and equates with monadic normal form [Hatcliff & Danvy 94] and
the Administrative Normal Form (A-normal form) of [Flanagan et al. 93] [Flanagan et al. 2003].

The crucial difference, however, is that previous work could not distinguish programmer-introduced LET forms
from those introduced by input canonicalization. By first re-writing all programmer introduced LET forms as
explicit LAMBDA applications, DESCARTES’ let-extraction makes this distinction clear: all LET forms in LERKS
normal form are use-once, specializer-introduced instances. Therefore, extracted LET forms can always be reduced
at partial evaluation time without the need for abstract occurrence counting analysis nor duplication risk analysis.

This seemingly small point will become critical when considering DESCARTES’ partial evaluation rules (§ 0.3,
p. 31).
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(define (fib-x z)
(if Kz 2)
z
(+ (fib-x (-1+ z))
(fib-x (- z 2)))))
.
(define (fib-x z)
(if (< z 2)
z
(let ((fib:z-1 (let ((z-1 (-1+ 2)))
(fib-x z-1)))
(fib:z-2 (let ((z-2 (- =z 2)))
(fib-x z-2))))
(+ fib:z-1
fib:z-2))))

This illustrates the basic idea but glosses over a few non-obvious details. The following subsec-
tions enumerate a few of the more important ones.!5

Generating Fresh Non-Colliding Names

The simplest among the non-obvious details is how to generate fresh, locally non-colliding
names for the newly introduced bindings.

Random name generation (gensym) could be used but it obfuscates the code. Since a
subsidiary goal of DESCARTES is that specializations be accessible to the programmer in a
comprehensible format, a more systematic (less arbitrary) naming convention is employed.

Instead, DESCARTES embeds de Bruijn numbers [de Bruijn 72,95 in syntactically distin-
guished positional names since they make explicit the lexical depth and offset of where a refer-
enced variable came from in the original nested expression. Such depth and offset annotations
should seem natural to programmers while simple syntactic decoration should easily visually
distinguish them from identifier names introduced in the original code. For example:

150ne such issue, for example, is why the non-trivial predicate and alternative sub-components of the above
IF expression were not also extracted out and named. In short, this could alter the semantics of the program
in light of non-termination or side effects. Section 0.2.2 addresses this and similar boundary cases— wviz., BEGIN
sequences and NAMED-LAMBDA scoping. Interestingly enough, these boundary cases are what make these syntactic
forms convenient to retain in the retracted kernel dialect: IF for conditional execution, BEGIN for serialization,
and NAMED-LAMBDA for lexical scoping. Of course, in the strictest sense, only NAMED-LAMBDA is essential, given
Church’s ingenious encoding of Booleans (and the natural numbers!) as A-expressions [Church 51], combined
with applicative order B-reduction [Barendregt 84]. Such a minimal kernel language would prove pragmatically
intolerable for our purposes, albeit theoretically equipotent, suggesting, perhaps, a certain “lack of theology and
geometry” [Toole 80,94].
When a true genius appears in the world, you may know him by this sign;
that the dunces are all in confederacy against him.

— JONATHAN SWIFT (1667-1745)
Thoughts on Various Subjects
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22 CHAPTER 0. PROGRAM SPECIALIZATION USING INPUT SPECTRA

3y __ e L bbbl im—————= depth of lexical contour line

(define (fib-x z) | .-————————-—————- | -:---- offset of occurrence w/in expr
(if (< z 2) (! [
V4 v v v v
(let ((_Arg_1_1_ (let ((LArg_2_1_ (-1+ z)))

(fib-x _Arg_2_1.)))
(LArg_1.2_ (let ((LArg 2_1_ (- z 2)))
(fib-x _Arg_2_1.))))

(+ _Arg 1_1_
_Arg_1.2.))))

Here the names are generated in mixed case— which users normally won’t do so it is a poor
man’s disjoint name space— with ugly underscore prefix, infix and suffix characters (to set
them apart visually from what reasonable SCHEME programmers would use). The buzz tag
“Arg” indicates argument position while “Rator” (or just “Rat”) indicates operator position
(in case the operator is ever itself a non-trivial subexpression or if we decide to extract all
subexpressions regardless of triviality, as below (p. 23)).

Slightly less obvious, the two numerals embedded within the names reflect the depth of the
subexpression nesting and the offset within the current expression. The obvious and straight-
forward recursive descent algorithm performs this bit of fluff.

To wit, the depth and offset start at zero. Each time a lexical contour line is crossed (e.g.,
LAMBDA, LET, and other binding forms) the depth is incremented in the descent. We do not
increment the depth count on entry into non-binding special forms (like IF).

In our fib-x example, + is at offset 0 and depth 1 inside the (implied) NAMED-LAMBDA
expression being DEFINEd. The two recursive calls to fib-x are nested inside the +’s appli-
cation so they are both at depth 1 with offsets 1 and 2, respectively. Their nested argument
subexpressions, in turn, are both at depth 2. They also happen both to be at offset 1.

As Guillermo J. Rozas has noted [Rozas 2007], one way to avoid changing the shape of
contours so that every variable is evaluated in an isomorphic context (isotropic contour line)—
hence simplifying the code that is ultimately generated— is to extract all components of an
application form if any component requires de-nesting extraction. For example, this would
result in the following isotropic de-nesting of fib-x:
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e it Pm————— depth of lexical contour line

29 eee———

(define (fib-x =z) | | -:---- offset of occurrence w/in expr
(if (< z 2) I |
z v v [
(let  ((_Rat_1_0_ +) v v
(LArg_1_1_ (let ((_Rat_2_0_ fib-x)
(LArg_2_1_ (-1+ z)))
(<CALL> _Rat_2_0_
_Arg_2_1)))

(LArg_1_2_ (let  ((_Rat_2_0_ fib-x)
(LArg 2_1_ (- z 2)))
(<CALL> _Rat_2_0_
_Arg_2_1.))))
(<CALL> _Rat_1_0_
_Arg 1_1_
_Arg_1.2))))

...where I've taken the liberty of using “Rat” instead of “Rator”, and I've inserted explicit
<CALL> markers in order to make the code more symmetric (nominally, funcall in standard
L1sp parlance [Steele 85/90]).

Amusingly enough, this may actually make the resulting de-nested code slightly more read-
able, at least to my eye, since it allows one to visually ignore the arguably ugly rats’ nest of
“Rat/Arg” clusters, as well as the interlaced regular sprinkling about of LET/CALL bracing, and
focus only on the code to the right of these clusters and braces. To the well trained eye, for
example, the above imprints my mind as if it read:

S - yadda yadda yadda

(define (fib-x z) | == |-:---- wacka wacka wacka
(if (< z 2) [ ] [
Z vV | |
O\\ (G +) v v

(#aapasgas (\\\  ((@#asaas £ib-x)
(##usassas (-1+ z)))
O\NNNNN\N #sd a4
#HEHBEHER)))
(##apaasat (\\\  ((#ed#a444 fib-x)
(s (- z 2)))
ONNNN\N s
#HtHHE#EE))))
QNN s
G HSEHSS
#HEH#ERER))))

In effect, therefore, the ‘4’ and ‘\’ noise serve only to inflate the already-present nesting
structure of the code.

At any rate, I declare by fiat that user programs are not allowed to introduce variable names
that would collide with this idiosyncratic naming scheme. More sophisticated machinery could
be used to ensure this but that would complicate the exposition whereas this simple method
suffices for our purposes.
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More importantly, once DESCARTES has specialized a chunk of source code in this form, it
is easy to identify which LET-bound identifiers can safely be substituted back into the resulting
specialized code (assuming they still appear only once each in the transformed (specialized)
residual code so that this de-nesting can be undone). This, for instance, defuses the objection
that inserting LETs where there were none before alters the environment contours of embedded
subexpressions and introduces gratuitous closures where none were needed before. Specifically,
think of de-nesting as a temporary intermediate form that is undone when it has served its
purpose. It just provides a labeled parse tree for the partial evaluator to hang its hat while in
flight.

This modest modification of standard let-insertion using disjoint naming to support sub-
sequent identification and reversal of the extractions I dub let-eztraction. The subsequent
re-nesting by removal of the inserted LETs is therefore dubbed let-projection. 1 tend to prefer
the terms de-nesting and re-nesting, however, since they emphasize the goal over the mechanism
by which it is accomplished.

Conditional Predicate Extraction

(if (< z 2)
z
(+ (fib-x (-1+ z))
(fib-x (-  z 2)))))

Note that in the de-nesting illustration, I was careful not to let-extract the non-trivial
subexpressions of the IF conditional special form. This is because it would be incorrect to hoist
either the consequent clause or the alternative clause from the predicate-guarded body of the
IF expression: one and only one of them must be executed at run time, never both in the same
invocation.

It is, however, correct (and very useful) to extract and name non-trivial predicate subex-
pressions. Witness:

(define (;;;Z; z)
(let ((<>pred<> (< z 2))) ;;; Name the non-trivial predicate,
(if <>pred<> ;;; and then use it by name.
V4
(+ (fib-x (-1+ z))
(fib-x (- z 2))))))

Note that no depth or offset embedding is needed for extracted IF predicate clauses since
there can be no collision among predicates of cascaded IF chains. This naming strategy does
however presume that the identifier <>pred<> never be used by programmers in the source
code, obviously. I declare it so: double diamond names are reserved.

This, then, allows the specializer to propagate useful information about the specialized pred-
icate expression by associating it with <>pred<> in the specialization environment during the
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recursive descent embodied by the partial evaluation process. For instance, in the consequent
clause, the partial evaluator “knows” that the predicate was satisfied (non-false), while in the
alternative clause it must have been false. By associating inferred spectral type information
with <>pred<>, this kind of constraint inference can bound the inferred spectrum that can be
in play along each branch path. This is discussed more formally and clearly later (§ 7).

The treatment of the two-armed kernel OR special form is similar:

(or <expr>_1 <expr>_2)
—
(let ((<>pred<> <expr>_1)) ;;; For <expr>_1 non-trivial
(or <>pred<> <expr>_2))
—
(let ((<>test<> <expr>_1)) ;;; For <expr>_1, regardless of triviality
(if <>test<>
<>test<> <expr>_2))

For that matter, as the second transformation shows, since we’re going to the trouble already
of extracting and naming the first subexpression, OR can be de-sugared into IF in the standard
way, using a distinctive name for the extracted first expression so it can be re-written back to
the original OR form after specialization (so as not to annoy the program inspector).

By always let-extracting and IF-desugaring all OR expressions regardless of whether or not
the first expression is trivial, we have one fewer special form to worry about in the specializer.
If the occasion ever arises where it might be useful to distinguish when the original code was
actually an OR or IF (e.g., for debugging or re-nesting), the distinctive <>test<> injected
identifier can easily decide the matter.

Summary: “To LET or not to LET?”'6

Finally, it is traditional within the partial evaluation community to raise an obligatory (if
perfunctory) objection to let-insertion of any sort.

Aside from the obvious complaint that it makes code difficult to read, it also introduces
an implied closure (LETs are just sugared LAMBDA applications, after all) thereby raising the
lexical contour depth of source expressions (which carries implications for various run-time
optimizations and compile-time peephole transformations). Another way to view this objection
is that it takes low-order straight expressions and makes them higher-order by embedding new
LAMBDA abstractions under the guise of LETs.!” Even though these implied LAMBDA liftings
are always immediately applied, it still makes the code higher order if the specializer cannot
recognize them and treat them specially.

'8 A corruption of [Shakespeare 1603, Hamlet, Act ITI, Scene 1, Line 56].

17Strictly speaking, this objection is a bit specious from the outset since introducing a fresh LET expression
as an explicit LAMBDA application does not so much raise the order of the source code (since the new LAMBDA
expression is immediately applied to the LET bindings) as it raises the order of the code analysis: whereas code
which contains no first-class LAMBDA procedures requires no higher-order analysis, one that naively introduces
LET forms as explicit LAMBDA applications might, at least if simply implemented. “You’ll pay dearly for your
foolishness, Mr.Bond.”
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Moreover, the target kernel language was free of all LET expressions up to this point, but
no sooner was this accomplished then de-nesting promptly inserted new instances. What then
was really accomplished?

DESCARTES sidesteps all these worries by injecting LETs that are easily distinguished from
any user-introduced LET/LAMBDA expressions of the original source code that will have been
retracted away. These newly injected LET expressions are therefore easily removed from the
specialized source before being compiled and loaded into the running system. That was the
whole point of let-projection/re-nesting mentioned earlier.

What this accomplishes is the de-nesting and labeling of the source code’s parse tree tem-
porarily to make specialization easier. It is trivially undone later, since each newly introduced
identifier will appear exactly once within the binding form, without the possibility of naming
collisions.'® Tt is a handy temporary intermediate form only: an ephemeral canonicalization.

One might have chosen, for example, not to call encode these extractions as “LET”s at all,
instead coining a new special keyword— like, say, BIND or CLOSE or even <LET> and such— as
a directive to the partial evaluator. Such embedded annotations are not uncommon, usually
being performed by a partial evaluation pre-pass that, not surprisingly, is traditionally known
as binding time analysis (normally abbreviate: BTA) [Jones & Schmidt 80] [Mogensen 89].

In fact, the only important way in which let-eztraction differs from typical binding time
analysis annotation of source code is that let-extracted code is directly executable whereas
source code annotated with BTA information typically is not.!?

In short, reversible let-extraction should not offend nor alarm the squeamish. It is as
harmless as it is handy, as we shall see soon (§ 0.2.2). In this instance, the concerns expressed
above really amount to just so much confusion between text (intensional) and executable (ez-
tensional) representations of programs. To wit, the let-extraction occurs as one goes from the
latter to the former (executable to source) while let-projection undoes this when going from the
former back to the latter (new specialized source to new specialized executable). Embedding
the one in the same language as the other (namely, SCHEME) invites this confusion but it aids
debugging and tracing of the specializer since all intermediate forms are well-formed SCHEME
programs.

This is fairly well known and understood but still haunts some in the community so I thought
it worth addressing outright. It’s subtle if not straighforward.

One final point is that, instead of embedding let-extraction wrappers in the code, one could
also opt for NAMED-LAMBDA explicit applications with distinctive reversible names (a syntactically
reversible generalization of the n-conversion rule of the standard A-calculus called eta expansion
[Danvy, Malmkjeer & Palsberg 94| [Danvy, Malmkjaer & Palsberg 95/96][Palsberg 98] or a sim-
ilar injection of a local definition block (using BEGIN and DEFINE). These, of course, merely
alter the textual appearance of the extraction without altering the semantics of the resulting

18This very useful property is exploited later (in the <CALL> form specialization rule (p. 67) as well as the LET
form specialization rule (p. 49)), allowing the specializer to seamlessly project let-eztracted forms back into the
specialized code in passing, obviating the need for an occurrence counting analysis [Bondorf & Danvy 90/91].

At least not without, for example, rtesorting to a two-level language [Nielson & Nielson 92]
[Nielson & Nielson 96] [Danvy 96, Appendix A], which SCHEME is not.
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code. That is to say, although intensionally distinguishable, they are extensionally equivalent.
Please do not confuse the conceptual mechanism with a specific implementation.

0.2.3 One Last Refinement: Rufian KMP Scheme

In passing, DESCARTES does one last further refinement of identifiers and combination/application/
invocation forms. It separates them into: a) four disjoint classes of identifier; and, 2) five dis-
joint classes of combination/application/invocation, as follows:

(<LOCAL> <identifier>) : Locally bound LET-extracted variable
(<GLOBAL> <identifier>) : Globally bound free variable
(<PARAMETER> <identifier>) : Formal parameter of a NAMED-LAMBDA
(<PRIMITIVE> <identifier>) : Primitive procedure

(<CALL_LOCAL> (<LOCAL> <identifier>) <expr>x*)
(<CALL_GLOBAL> (<GLOBAL> <identifier>) <expr>x*)

(<CALL_PARAMETER> (<PARAMETER> <identifier>) <expr>x*)
(<CALL_PRIMITIVE> (<PRIMITIVE> <identifier>) <expr>*)

(<CALL_NAMED-LAMBDA> (NAMED-LAMBDA ...stuff...) <expr>*)

Note: All capitalized tags here are literal symbol constants,
not grammatical meta-variables.

This further simplifies the internal dispatcher of the specializer. It also makes collecting the
set of global free variable names trivial. In fact, each tagged datum is inventoried as part of
this de-nesting process.

For example:

(pp/code (de-nesting-inventory/<GLOBAL>s
(de-nested-expr/inventory
(de-nest (unsyntax/truthfully fib-x)))))
—
((<global> fib-x) (<global> fib-x)) 5 It oceurs twice.

This last refinement was inspired by Eric Ruf’s doctoral dissertation [Ruf 93]. In tribute,
the resulting final retracted kernel subdialect of SCHEME used in DESCARTES I dub Rufian
KMP SCHEME.

On our running fib-x example, this retraction looks like the following:
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(if <z 2)
z
(+ (£fib-x (-1+ z))
(fib-x (- z 2)))))
.
(define fib-x
(named-lambda (fib-x z)
(if (<call_primitive> (<primitive> <) (<parameter> z) (<comnstant> 2))
(<parameter> z)
(Kcall_primitive> (<primitive> +)
(<call_global> (<global> fib-x)
(<call_primitive> (<primitive> -1+)
(<parameter> z)))
(<call_global> (<global> fib-x)
(<call_primitive> (<primitive> -)
(<parameter> z)
(<constant> 2)))))))

Figure 0-8: The Rufian KMP SCHEME rendition of fix-b
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0.2.4 Finally: Let-Extracted Rufian KMP Scheme (LERKS) Normal Form

The final fully de-nested Let-Extracted Rufian KMP ScHEME (LERKS) normal form for
fib-x produced by DESCARTES is:

(define fib-x
(named-lambda (fib-x z)
(let ((<>pred<>
(Kcall_prim> (<primitive> &<) (<parameter> z) (<comnstant> 2))))
(if (<local> <>pred<>)
(<parameter> z)
(let ((_Arg_1_2_
(let ((_Arg_2_1_
(<call_prim> (Kprimitive> &-)
(<parameter> z)
(<constant> 2))))
(<call_global> (<global> fib-x) (<local> _Arg_2_1_))))
(_Arg_1_1_
(let ((_Arg_2_1_
(<call_prim> (<primitive> -1+) (<parameter> z))))
(<call_global> (<global> fib-x) (<local> _Arg_2_1.)))))
(<call_prim> (<primitive> &+)
(<local> _Arg_1_1.)
(<local> _Arg_1_2.)))))))

Figure 0-9: The Let-Extracted Rufian KMP ScHEME (LERKS) Normal Form of fib-x

Its de-nesting inventory includes the following:

((<constant> 2) (<constant> 2)) ;;; This occurs twice in the body.
((<local> <>pred<>) (<local> _Arg_1_2)

(<local> _Arg_1_1_)

(<local> _Arg_2_1_)

(<local> _Arg_2_1))
((<global> fib-x) (<global> fib-x)) ;17 This occurs twice in the body.
((<parameter> z) (<parameter> z) (<parameter> z) (<parameter> z)) ;;; 4 times

((<primitive> &+) (<primitive> -1+) (<primitive> &-) (<primitive> &<))

((<call_global> (<global> fib-x) (<local> _Arg_2_1_)) ;;; This occurs twice.
(Kcall_global> (<global> fib-x) (<local> _Arg_2_1.)))

((<call_prim> (<primitive> &+) (<local> _Arg_1_1_) (<local> _Arg_1_2.))
(Kcall_prim> (<primitive> -1+) (<parameter> z))
(Kcall_prim> (<primitive> &-) (<parameter> z) (<constant> 2))

(Kcall_prim> (<primitive> &<) (<parameter> z) (<constant> 2)))
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From this inventory, we make the following observations:

1) The set of used formal parameters and free global variables occurring in fib-x (excluding
primitive procedures) is:
{z,fib-x}

2) The set of primitive procedures in operator position is:

{+,-1+,-,<}

3) The only other object in operator position is fib-x itself.
4) The only constants or other literals is the constant 2.

From the above facts, together with the proposition that parameter z is an integer and the
assumption that fib-x is well typed, one may conclude, using only the Peano Azioms (or
Peano Postulates) [Peano 1889,1967/1977] [Dedekind 1890,1967/1977], that this implementa-
ton of fib-x is closed on the integers [Dedekind 1888,1901/1963,1996,/1999] .20

20Technically, the Peano Axioms apply only to the natural numbers, but we already noted that fib-x is the
identity procedure on negative integers, so the extension of our claim of closure to the full set of the integers is
immediate.
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0.3 Spectral Specialization Rules for Descartes

0.3.0 Let-Extracted Rufian KMP Scheme (LERKS) Normal Form Grammar

To summarize, here is the Backus Normal Form (BNF) [Backus 59] context-free grammar for
SCHEME programs in Let-Extracted Rufian KMP ScHEME (LERKS) Normal Form:

<triv> ::= <tlit>
| <tref>
<tlit> ::= (QUOTE <datum-literal>) : ¢.e., symbol, null, pair, vector, etc.

| (<CONSTANT> <self-evaluating>) : %.e., Boolean, number, char, string

<tref> ::= (<LOCAL> <identifier>) : Locally bound LET-extracted variable
| (<GLOBAL> <identifier>) : Globally bound free variable
| (<PARAMETER> <identifier>) : Formal parameter of a NAMED-LAMBDA
| (KPRIMITIVE> <identifier>) : Primitive procedure
<lerk> ::= <triv> : Trivial cases
| (SET! <tref> <triv>) : Assignment of ‘‘trivial’’ references

| (DEFINE <identifier> <triv>*): Note: <triv>* may be a NAMED-LAMBDA
| (BEGIN >lerk< <lerk>) : Here >lerk< is <lerk> excluding BEGIN
| (NAMED-LAMBDA (<name> <formals>) <lerk>) : NB: MIT ScHEME-specific

| (KCALL> <triv> <triv>*) : Combination/application/invocation
| (IF <triv> <lerk> <lerk>) : No ‘‘one-armed’’ IFs

| (LET ((<identifier> <lerk>) : LET-Extraction (not user LET form)
)

<lerk>)

Note: All capitalized tags here are literal symbol constants,
not grammatical meta-variables.

Note the occurrence of LET forms introduced by LERKS normalization. These are not LET
forms introduced by the programmer, since those will all have been syntaxed out as explicit
NAMED-LAMBDA invocations (items 0 and 2 on page 18), as per:
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(LET ((<identifier>_1 <expr>_1)
(<identifier>_2 <expr>_2)
D)
<expr>_body)
—

((NAMED-LAMBDA (<>She-turned-me-into-a-newt!<>2!
<identifier>_1
<identifier>_2
)

<expr>_body)

<expr>_1

<expr>_2

That said, of the following specialization rules, all but those for the <CALL> and IF forms are
relatively straightforward.

0.3.1 Brief Preview of the Form of Spectral Specialization Rules

Before delving into specific rules, consider their general form.

Each rule takes as input the source code expression to be specialized and the specialization
bookkeep. This so-called “bookkeep” contains the relevance weight of the current specialization
task, the spectral context (as encoded within a specialization environment), the queue of pending
specialization sub-tasks in flight, and so on. Most of these components are ignored by most
of the rules. Those which are pertinent will be elucidated as needed within the rules that
manipulate them.

The specializer produces as output two results: the specialized code for this input in this
specialization context, and the inferred structural type of the resulting datum denoted by this
specialized code (hereafter referred to simply as the specialized type).2?

So what is a specialized type and how is it generated?

As we shall explore below, this computation of the type of the resulting specialized code is
rooted in the system (structural) type function, fulltype, denoted as domain function 7. For
example, in a specialization environment where variable two Pi is bound to a pair whose left
element is 2 and whose right element is 3.14:

T[twoPi] B £ (B[TYPE]) [twoPi] = fulltype((2.3.14)) = (fixnum . flonum)
T[6.022¢23]B £ fulltype(6.022¢23) = flonum

2 [Python 75).

22Technically, it also produces a possibly updated bookkeep to pass along, but that’s best ignored for now.
It becomes pertinent only when side-effects occur in the source code (viz., ¢ la SET! and DEFINE), since these
perturb the specialized code and specialized type and such associated with an identifier by the partial evaluation
process.

In the meantime, “I lied about the trees.” [Brachman 85]
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This depicts T as an abstract valuation function that maps syntactic identifiers to their (full)
structural types relative to the specialization environment of a specialization bookkeep, B (pre-
tending that identifiers are not tagged with their reference class (viz., <LOCAL>, <GLOBAL>,
etc.)). This is equivalent to computing the fulltype of the variable’s value, assuming its
concrete value is known. In this case, the fulltype of pair (2 . 3.14) is the type expression
(fixnum . flonum). Literal constants are mapped to their fulltype directly by 7. For exam-
ple, 6.022e23 is of type flonum. We will not extend 7 beyond these two trivial classes of input
expression: it’s just a base case abstract valuation function for the specializer to use to build
up return types of specialized code.

Note how the structural type conveniently mirrors the structure of the datum described,
i.e., the structural type of a pair is represented by a pair comprised of the structural types of
the pair’s constituents. This I call categorical isomorphism (between concrete values and their
attendant abstract type expressions). It will become handy later.

0.3.2 Function Symmetry between Partial Evaluation & Concrete Valuation

In summary, it is perhaps helpful to reflect briefly on the ways in which the partial evaluation
function. PE, mirrors the standard concrete valuation function, €.

Specifically, the concrete valuation function takes an input expression and an environment
and produces a value. When top-level DEFINE forms are permitted to extend the (global) input
environment, this might yield the following domain signature:

£: < EXPRESSION X ENVIRONMENT > — < VALUE X ENVIRONMENT >
Similarly, one might depict the partial evaluation function’s domain signature as:
PE: < EXPRESSION X BOOKKEEP > — < CODE X TYPE X BOOKKEEP >

Recall (p. 32) that the partial evaluation’s specialization bookkeep, B, is just a modest general-
ization of the analogous concrete valuation’s valuation environment, p.

The key difference here, then, is that the concrete valuation function, £, need not explicitly
generate a type expression, since the full structural type of the generated value is latently
manifest within the concrete value itself. The partial evaluation function, PE, by contrast,
must generate the (inferred) type of the specialized code explicitly, since the specialized code is
an abstraction, not a concrete value. For example, the specialized code might well be a <CALL>
form— like, say. (square x) in a spectral context where x has type real— for which it is not
immediately obvious (and therefore not trivially inferred) what the type of the result may be.
Valuable information is therefore lost should the partial evaluator return only the specialized
code and not also its concomitant specialized type.

An alternative domain model (and the one actually implemented in the DESCARTES proto-

type) is:
PE: < EXPRESSION X BOOKKEEP > — < SPECIALIZATION X BOOKKEEP >
where

SPECIALIZATION = < CODE X TYPE >
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This defines a SPECIALIZATION domain to be comprised of tuples consisting of a specialized
code instance (from domain CODE) and its companion specialized type (from domain TYPE).
The partial evaluation function, P&, is thus re-defined to map an expression and bookkeep to a
specialization and bookkeep.

This new domain model highlights the symmetry between £ and P&, while drawing attention
to the fact that the partial evaluation abstraction corresponding to a concrete valuation value
is not simply a code fragment— it is a pair of a code fragment and a type signature— that
type signature identifying what type of value is denoted by the code fragment in the context in
which it was generated.?3

That having been established, the spectral specialization rules embodied by the DESCARTES
prototype follow.

20ne final note: the hardcore language implementor may note that the above glosses over the control con-
tinuation, k, and persistent store, o, typically also included as inputs of a full concrete valuation function (e.g.,
[Stoy 77]). That’s true, of course, but I won’t dwell on that now (nor define just what these are), except to note
that the partial evaluation process never exposes their abstract equivalents within the result of a specialization,
so they are invisible to the outside observer.

That is, just as one typically suppresses explicit mention of the continuation and store for £ unless and until
they are reified (e.g., via capturing a control continuation or allocating a datum in the persistent store (a.k.a.,
the “heap”)), so too PE suppresses any such mention since they have no observable reification analogues in the
abstract domain of specializations.

Within the partial evaluator itself, however, these are inherited from the underlying SCHEME runtime system in
which the partial evaluation process is executed. In this setting, the bookkeep serves as a persistent store for any
global specializations that are spawned and registered for future re-use. Nevertheless, this specialization registry
(p- 60) is merely a device to avoid generating redundant specializations. It is therefore a pragmatic issue only,
not a semantic instrument with deep theoretical underpinnings. Still, one worth noting in passing. Otherwise,
nevermind.

**DRAFT** October 13, 2007



0.3. SPECTRAL SPECIALIZATION RULES FOR DESCARTES 35

0.3.3 Rule No. 0: Trivial Literal Forms

<tlit> ::= (QUOTE <datum-literal>) : 4.e., symbol, null, pair, vector, etc.
| (<CONSTANT> <self-evaluating>) : %.e., Boolean, number, char, string

Note: All capitalized tags here are literal symbol constants,
not grammatical meta-variables.

Explicitly QUOTEd forms (like symbols, constant pairs (including lists), constant vectors and
so on) are trivial to partial evaluate®* since they denote literal constant data. So too are the
self-evaluating literals (like the Booleans (#t and #f), numeric literals, character constants and
so on). Together, these constitute “trivial literals”, identified in the BNF grammar by the
terminal: <tlit>.?

They partial evaluate to themselves, and the resulting types of their code specializations are
straightforward to compute directly from the input source.

Formally:
Input PE bookkeep: B
Input source code: s := (QUOTE <datum-literal>) | (<CONSTANT> <self-evaluating>)
Specialized code: PE[s]B = s
Specialized type: 7[s|B £ fulltype([s])

Output bookkeep: B

Note that the specialization bookkeep input, B, is not consulted. Only the type wvaluation
function, T, is used, which ignores the bookkeep, since data literals denote context free constants.

In sum, one can characterize the code specialization and companion specialization type in-
ference computation sub-tasks for literal forms as:

Specialize code: ¢ (a.k.a.the identity function)
Specialize type: 7T (a.k.a.the fulltype function)

Simplicity itself: trivial literals are literally trivial to partial evaluate.

% Natural language purists might prefer “partially evaluate” but partial evaluate seems prevalent within the
partial evaluation community, so I follow that convention, albeit denoting such usage as a technical term.

%The distinction is made between these two forms merely in order to separate the quoted literals from the
non-quoted literals. Specifically, recall (p. 18) that all expressions are tagged in LERKS normal form, so non-
quoted literal expressions must be wrapped by a <CONSTANT> tag whereas quoted forms already sport the tag
QUOTE.
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0.3.4 Rule No. 1: Trivial Reference Forms

<tref> ::= (<LOCAL> <identifier>) : Locally bound LET-extracted variable
| (<GLOBAL> <identifier>) : Globally bound free variable
| (<PARAMETER> <identifier>) : Formal parameter of a NAMED-LAMBDA
| (<PRIMITIVE> <identifier>) : Primitive procedure

Note: All capitalized tags here are literal symbol constants,
not grammatical meta-variables.

Variable references are fairly trivial to partial evaluate. They simply look up their associated
specialized code and specialized type in the appropriate binding environment within the bookkeep.
Note the convenient class tags, courtesy of LERKS normal form.

Formally:

Input PE bookkeep: B

Input source code: s = (<tag> <identifier>) for <tag> ::= <LOCAL> | <PARAMETER>
| <GLOBAL> | <PRIMITIVE>

Specialized code: PE[s]B = (B[copE|[<tag>]) <identifier>

Specialized type: T[s]B = (B[TYPE|[<tag>]) <identifier>

Output bookkeep: B

In short, the bookkeep’s appropriate CODE and TYPE binding environments are consulted in a
straightforward lookup of the tagged <identifier>.?8

**This “(B[copE][<tag>]) <identifier>” notation is meant to suggest a two-level array dispatch to access the
appropriate specialization environment, followed by a dereference of the <identifier> within that environment.
This is not intended to connote any specific implementation of the bookkeep, however. For profiling purposes, for
example, it may well be a Curried function [Curry & Feys 58/68].%"

2TA “Curried function” is one which takes multiple parameters one at a time rather than taking multiple
arguments all at once, such as Curry’s famous combinators:

S 2 (. Q. (A2 ((z 2y 2))
K 2 (z.(\y.2)
I 2 (.o

S(KI) = (SK)K =1

This so-called “Currying” is commonly employed to restrict the domain of discourse to single-parameter functions
only, without loss of generality, in order to simplify logic systems.

This mechanism was first devised by Schonfinkel [Schonfinkel 24,67/77] then widely employed (and thus pop-
ularized) by Haskell Curry [Curry & Feys 58/68], after whom it is now traditionally named. A non-eponymous
synonymous term might be:

kathenometric function— a function taking multiple parameters, one at a time. This is a
largely syntactic device for expressing an otherwise polyadic/multi-argument parametric function
as an equivalent monadic/unary monometric function through the use of cascaded, nested function
closures. Synonym: Curried function.
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One can imagine either a single unified environment or separate environments for each kind
of reference (CODE, TYPE, etc.), mapping identifiers to their associated specialized code and
specialized type, either individually or as a tuple. Such details of the bookkeep representation
are immaterial here. For now, suffice it to say that the various binding forms (like NAMED-LAMBDA
and, by extension, LET and <CALL>) maintain a consistent mapping from identifiers to their
associated specialized code and type. The global variable map is likewise maintained by global
DEFINEs and SET!s to global identifiers.?® The primitive procedure map is maintained by the
SCHEME system internally.

In sum, one can characterize the code specialization and companion specialization type in-
ference computation sub-tasks for reference forms as mere bookkeep lookups. This is why I refer
to tagged identifiers as “trivial references”, identified in the BNF grammar by the terminal:
<tref>.

%L0cal DEFINEs do not appear in code in LERKS normal form, courtesy of the unsyntax procedure: they are
re-written in terms of, say, LET (and then NAMED-LAMBDA) and SET!, at least conceptually anyway (environment
contour issues notwithstanding).

For example,

(define (arithmetic-parity non-negative-integer)
;s Local definitions
(define (even-or-odd non-neg) (if (zero? non-neg) ’EVEN (odd-or-even (-1+ non-neg))))
(define (odd-or-even non-neg) (if (zero? non-neg) ’0DD (even-or-odd (-1+ non-neg))))
;; Body
(even-or-odd non-negative-integer)
)
Hg
(define (arithmetic-parity non-negative-integer)
;i Local bindings
(let ((even-or-odd ’:<To-Be-Assign!ed>)
(odd-or-even ’:<To-Be-Assign'!ed>))
;; Local assignments
(set! even-or-odd
(n\ (even-or-odd non-neg) (if (zero? non-neg) ’EVEN (odd-or-even (-1+ non-neg)))))
(set! odd-or-even
(n\ (odd-or-even non-neg) (if (zero? non-neg) ’0DD (even-or-odd (-1+ non-neg)))))
;; Body
(even-or-odd non-negative-integer)

)
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“What is it that hangs on the wall, is green, wet— and whistles?”?°

One subtle complication, in passing, however, concerns replication of aggregate data, such
as quoted pairs, if a variable binding instance is partial evaluated at several distinct textual
reference sites, as in:

(LET ((clowns (QUOTE ("Bozo" . "Krusty"))))
(EQ? clowns clowns))
= #t

It would violate identity semantics to partial evaluate this as:

(EQ? (QUOTE ("Bozo" . "Krusty"))
(QUOTE ("Bozo" . "Krusty")))
—> #f

.. .since the above original LET expression evaluates to #t while the (incorrect) partial evaluated
form shown evaluates to #f (since two distinct, though isomorphic, pairs are allocated in the
run-time heap: they look the same but are not the same object in memory).

Note that this is not merely an efficiency concern, either for the partial evaluator to avoid
duplicate effort at partial evaluation time or for the resulting specialized code to avoid allocating
redundant storage at run time: it is a correctness concern, as the resulting specialized code does
not properly preserve the semantics of the original source code.

This is a bit of a red herring, though, since the real issue is in LET-binding of identifiers
in the specialization environment during partial evaluation of the LET expression’s body, not a
problem with the specialization rule for references per se. So, although this is where the mistake
will manifest itself if made, this is not the root cause of the difficulty.

I mention this here as the question naturally arises here, but I defer details of its resolution
until later, where it is more naturally addressed.?"

2From [Rosen 68,2001]:

The first riddle I ever heard, one familiar to almost every Jewish child, was propounded to me by
my father:

“What is it that hangs on the wall, is green, wet— and whistles?”

I knit my brow and thought and thought, and in final perplexity gave up.
“A herring,” said my father.

“A herring,” I echoed. “A herring doesn’t hang on the wall!”

“So hang it there.”

“But a herring isn't green!” I protested.

“Paint it.”

“But a herring isn’t wet.”

“If it’s just painted it’s still wet.”

“But— ” I sputtered, summoning all my outrage, “— a herring doesn’t whistle!!”
“Right,” smiled my father. “I just put that in to make it hard.”

— Leo Rosten The Joys of Yiddish
Jokes Mailing List Archive, Joke Number 127 [http://www.hehe.at/funworld/archive/fundyou.php?joke=127].

143

39Gpecifically, the solution involves a delicate handling of LET as LERKSed manifest NAMED-LAMBDA calls. So
the real issue is one of NAMED-LAMBDA forms as operators to <CALL> expressions, as we’ll see below (p. 67).

**DRAFT** October 13, 2007



0.3. SPECTRAL SPECIALIZATION RULES FOR DESCARTES 39

0.3.5 Rule No. 2: SET! Forms

<tref> ::= (KLOCAL> <identifier>) : Locally bound LET-extracted variable
| (<GLOBAL> <identifier>) : Globally bound free variable
| (<PARAMETER> <identifier>) : Formal parameter of a NAMED-LAMBDA
| (<PRIMITIVE> <identifier>) : Primitive procedure

To partial evaluate an assignment statement, we first partial evaluate the value constituent,
<triv>, then generate a new, specialized assignment statement from the old by substituting
this new specialized code value for the old <triv> subexpression.?! In passing, we update the
binding associated with the specified target reference, <tref>, in the appropriate specialization
environment within the specialization bookkeep, to reflect the resulting specialized code and
specialized type of this specialized value.

Thankfully, LERKS normal form grammar conveniently makes this a fairly simple pair of
tasks, since the value constituent is either a trivial literal or trivial reference (courtesy of let-
extraction, p. 19). Likewise, the target reference is comparably trivial, having been LERKS
normalized to a <tref>.

Formally:

Input PE bookkeep: B

Input source code: s = (SET! (<tag> <identifier>) <triv>)
for <tag> ::= <LOCAL>|<GLOBAL> | <PARAMETER> | <PRIMITIVE>

Specialized code: PE[s]B = [(SET! (<tag> <identifier>) |PE[<triv>]|B|)] 1S

Specialized type: 7T[s]B £ uniT or (B[TYPE|[<tag)]) <identifier>

or (B'[rYpE][<tag>]) <identifier>

New bookkeep code: B' := (B[cODE|[<tag>])[<identifier> — PE[<triv>]B]

(B[TYPE|[<tag>]) [<identifier> — T[<triv>]B]

New bookkeep type: B’ :

Output bookkeep: B’

The specialized code for the SET! expression itself is thus just the original input expression

(since dynamic assignments cannot be statically eliminated, at least not in the general case),3?

#Le., [(PE[<triv]B)/<triv>]s, where “[new/old]expr” denotes the (prefix) substitution of new for old in
expr. This is the traditional notation from the field. I prefer instead to show the substitution outright, as seen
in the specialized code definition shown here.

32Standard program analysis techniques like liveness analysis, control flow analysis and dead code elimination
could be brought into play to, perhaps, eliminate provably non-observable assignments, but I prefer to defer that
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but with the value constituent replaced with its partial evaluated equivalent.

The only minor subtlety is that the specialized type of the overall SET! form is either UNIT
or the specialized type of the old or new value. depending on which dialect of SCHEME is being
specialized. That is, in standard SCHEME [IEEE 91], the value returned by a SET! form is
unspecified, so the specialized type of the overall SET! will vary, and may even be discarded,
depending on the underlying SCHEME dialect.

To summarize, the bookkeep’s appropriate CODE and TYPE binding environments are con-
sulted in a straightforward lookup of the tagged <identifier>. The old specialized code is
replaced and the old specialized type might be returned as the result of the specialization or,
depending on the language implementation, an unspecified “unit” semaphore type, UNIT, might
be returned (to merely signal completion), or even the specialized type of the now-specialized
new value.??

More important is the effect an assignment form has on the partial evaluation process itself.
Namely:

Input PE bookkeep: B
Input source code: s = (SET! (<tag> <identifier>) <triv>)
for <tag> = <LOCAL> | <GLOBAL> | <PARAMETER> | <PRIMITIVE>

New bookkeep code: B' := (B[coDE|[<tag>])[<identifier> — PE[<triv>]B]
New bookkeep type: B' := (B[TYPE|[<tag>])[<identifier> — T[<triv>]B]
Output bookkeep: B

In short, the “trivial” argument value constituent, <triv>, is partial evaluated in the specializa-
tion bookkeep and its resulting specialized code and specialized type replace the old associations
for this identifier within the specialization environment.3*

One can imagine doing this bookkeep update in (at least) one of three ways. The first and
most aggressive approach is to update the existing identifier binding frames in place within the
bookkeep data structure. On the other hand, a slightly less aggressive approach is to generate
fresh new frames to associate the identifier with its new code and type, then append these to
the head of the specialization environment(s), either “shadowing” (overriding) the old frame

sort of non-local “peep hole” optimization to the underlying SCHEME compiler.

33 Although the SCHEME language standard [IEEE 91] does not specify a return value for SET!, MIT SCHEME
returns the old (pre-SET!) value, in order to provide an atomic “test and set” [Ward & Halstead 90] operator
(called “atomic swap” on the left coast [Patterson & Hennessy 2006] [Hennessy & Patterson 2005/2007]). Other
SCHEME implementations return a distinguished “unit” object. Still others return arbitrage of various ilk. Though
possibly an amusing digression, and certainly the source of vigorous, if sometimes contentious, debate withing
the SCHEME community, this detail is not critical for our present purposes. I won't bring it up again but felt
obliged to at least acknowledge the issue in passing, if just this once.

%4 This “(B[copE][<tag>]) [<identifier> — PE[<triv>]B]” notation is meant to suggest a two-level array
dispatch to access the appropriate specialization environment, followed by a rebinding of the <identifier>
within that environment. This is not intended to connote any specific implementation of the bookkeep, however.
Cf., footnote (26), p. 36.

**DRAFT** October 13, 2007



0.3. SPECTRAL SPECIALIZATION RULES FOR DESCARTES 41

or actively removing the old frame to produce a new environment structure, possibly sharing
structure with the old environment if not just the old unaffected binding frames. The resulting
new environment could then either be installed directly in place of the old environment within
the overall bookkeep, or, on the third hand,?> a new bookkeep can be generated and passed along
as part of the result of the specialization (i.e., along with the specialized code and specialized
type).

Those familiar with fluid binding (e.g., as embodied by SCHEME’s FLUID-LET syntactic form)
may recognize this as an instance of deep binding versus shallow binding versus a functional
approach. This is a pragmatic implementation choice, but it carries implications for just what
sort of partial evaluation process is generated. Some are more easily proved correct (and made
self-specializing) than others. For the DESCARTES prototype, I've chosen a functional approach,
where new frames are added to shadow the old and the resulting new environment(s) are used
to construct a new bookkeep from the components of the old. This is then passed along as part
of the result of each specialization rule.

All told, whereas a normal language interpreter, in the general case, takes as input an ex-
pression, environment, and mutable store [Stoy 77] and produces as output a result expression,
environment and store, the DESCARTES specializer’s partial evaluation process in this functional
form needs no such mutable store. That is, mutation in the programs being specialized need
not entail side effects within the process being used to specialize them.

This may come as a mild surprise to those who may have assumed that a dynamic (run-
time) on-line specializer must at some point resort to running code “under the rug”, within the
underlying language SCHEME process, for example, and therefore may incur side effects in the
shared process space— that is, the process space of the specializer and the process space of the
code being run-time specialized. To simplify the system hygiene, (and to facilitate debugging
and profiling of the specializer itself), I opted to make the specializer process purely functional.

In sum, one can characterize the code specialization and companion specialization type in-
ference computation sub-tasks for SET! forms as a simple update of the specialization bookkeep,
replacing the specialized code and specialized type associated with the target <identifier> to
that of the trivial <triv> argument.

3%|Niven & Pournelle 74].
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0.3.6 Rule No. 3: DEFINE Forms

(DEFINE <identifier> <triv>}) : Note: <triv>* may be a NAMED-LAMBDA

Thankfully, internal DEFINEs will have been eliminated courtesy of LERKS normal form (cf.,
footnote (28), p. 37), so only global DEFINEs need be considered in this rule.

Given that, DEFINE forms are the equivalent of a SET! to the <GLOBAL> specialization en-
vironment. If no binding yet exists for the target <identifier>, one is created. The resulting
updated bookkeep is then propagated along with the returned specialized code and specialized
type.

The resulting specialized code for the DEFINE form itself is the result of substituting this
specialized <triv>* value into the DEFINE form. The specialized type is like that of SET! (§ 0.3.5,
p- 39-p. 40), only more so: since no previous value will exist for newly defined variables, the
returned value of a DEFINE form is unspecified, although some implementations return the name
of the variable (<identifier>).

Formally:

Input PE bookkeep:
Input source code: s := (DEFINE <identifier> <tr7l'u>)‘)

Specialized code: PE[s]B 2 [(DEFINE <identifier> | PE[<triv> ]|B]1S
A

Specialized type: T [s]B UNIT Or SYMBOL

(B[coDE|[<GLOBAL>]) [<identifier> +— PE[<triv>]B]
(B[TYPE][<GLOBAL>]) [<identifier> — T[<triv>*]B]

New bookkeep code: B’ :

New bookkeep type: B’ :

Output bookkeep: B

One minor grammatical quibble is the restriction of the value argument to <triv>*, denoting
either a <triv> or NAMED-LAMBDA form. This simplifies the termination proof for the partial
evaluation process. The admission of NAMED-LAMBDA is a concession to the native MIT SCHEME
unsyntaxing of “call template” procedure definitions into NAMED-LAMBDA forms (p. 16):

(DEFINE (<name> <formals>) <body>) ,;; Note the ‘‘(<name> <formals>)’’ parens

—MIT
(DEFINE <name> (NAMED-LAMBDA (<name> <formals>) <body>)) ;;; In MIT SCHEME

Here the second (rightmost) appearance of <name> is a noise marker of no semantic significance.
One could as well relax this to allow a general <lerk> in place of <triv>?*, but the current
restriction suffices since a general value can always be assigned to the defined identifier with a
subsequent SET! (of a possibly let-extracted value) once the binding has been established via
DEFINE.
In fact, given this observation, one could restrict, rather than relax, the DEFINE form in
LERKS normal form to admit only the MIT SCHEME non-binding form:
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(DEFINE <identifier>)

This merely establishes the <identifier> in the environment without ascribing a binding value
to it— a subsequent SET! accomplishes that.

The corresponding LERKS normalalization schema for “call template” procedure DEFINE
forms would then be:

(DEFINE (<name> <formals>) <body>) ;;; Note the “‘(<name> <formals>)'' parens.
—
(BEGIN
(DEFINE <name>)
(LET ((<>definiendum<> (NAMED-LAMBDA (<name> <formals>) <body>)))
(SET! <name> <>definiendum<>))
)

The current <triv>* schema, therefore, is a workable compromise between the two extremes
of a fully general <lerk> schema or a fully restricted non-binding DEFINE schema.

In sum, one can characterize the code specialization and companion specialization type in-
ference computation sub-tasks for (global) DEFINE forms as a minor variation on the SET! rule.
The only distinguishable difference occurs in the specialized type. Since the return value of a
DEFINE form— and, for that matter, SET! as well— is not specified by the language standard
anyway [IEEE 91], this is not a substantive difference. Still, it was a worthwhile digression all
the same, even if solely pragmatic,
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0.3.7 Rule No. 4: BEGIN Forms

This rule exposes a few subtleties with ensuing simplifications until, ultimately, it evaporates.
Thankfully, we needn’t worry about nested BEGINs, since LERKS normal form transforms
these into linear chains of cascaded dyadic BEGINs, as per:
(BEGIN (BEGIN a b) (BEGIN (BEGIN c (BEGIN d e) f) (BEGIN g))) ,;; ‘nested” polyadic

_>$
(BEGIN a (BEGIN b (BEGIN c (BEGIN d (BEGIN e (BEGIN f g)))))) ;;; “chained” dyadic

or, more to the point:

(BEGIN (BEGIN (foo bar) (baz quux)) (mumble frotz) (BEGIN (snark fnord)))

—

“ (BEGIN (foo bar) (BEGIN (baz quux) (BEGIN (mumble frotz) (snark fnord))))
Note that the resulting de-nested, chained dyadic forms are careful not to alter the evaluation
order of the original sub-forms. The point is that the first term of every (now-dyadic) BEGIN
form is never itself a manifest BEGIN form. These constituents, however, are not trivial: they
can be any class of <lerk> ezxcept a BEGIN form.36

The resulting specialization rule for LERKS-normal BEGINs is relatively straighforward.
The leading >1erk< is specialized, its specialized code is embedded into the resulting BEGIN form,
and its specialized type is discarded. The resulting (presumably updated) bookkeep is then used
to partial evaluate the subsequent <lerk>. The resulting specialized code is likewise embedded
into the resulting BEGIN form, and its specialized type and (potentially further updated) bookkeep
are then returned as the specialized type and bookkeep of the overall BEGIN form.

Formally:
Input PE bookkeep: B
Input source code: s := (BEGIN >lerk< <lerk>) for ‘‘>lerk<” a non-BEGIN
N
Specialized code: PE[s]B = [(BEGIN [775[>Zerk<]] B] [’P5|[<I,e'rk:>]] B'])]] TS
Specialized type: T[s]B £ T[<lerk>]B

where
B' «— [PE[>lerk<]B| <
B" «— |P&[<lerk>]B
Output bookkeep: B”

Note the connecting arrows in the above, which signify consumption dependency constraints
on the constituent partial evaluation subtasks. This complication can be avoided, as follows.

36This, for instance, allows the partial evaluator processes to linearly iterate over BEGIN forms rather than
worry about nested recursive tree descent. It’s a pragmatic issue.
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Rule No. 4': BEGIN Forms (Simplified)

Specifically, one could extend the specialization bookkeep to record not only the CODE and TYPE
associated with identifiers but also the resultant BOOKKEEP of their partial evaluated binding
forms. This then could exploit the underlying domain signature of PE (p. 33) to simplify both
the LERKS normal form grammar entry for BEGIN forms and the ensuing BEGIN specialization
rule, as follows.

First, in light of the fact that internal DEFINEs will have been eliminated courtesy of LERKS
normal form (cf., footnote (28), p. 37), LERKS normalization needn’t preserve the singular
lexical contour line of BEGIN chains. Specifically, the leading subexpression can be let-extracted.
Thus, the following new canonicalization schema can be added as part of LERKS normalization:

(BEGIN (foo bar) (BEGIN (baz quux) (mumble frotz)))
—r
(LET  ((<>!<> (foo bar)))

(BEGIN <>!<> (LET  ((<>!<> (bar quux)))
(BEGIN <>!<> (mumble frotz)))))

Note that the embedded “<>!<>” magic marker is a fixed, distinguished, locally LET-bound
identifier. 'This admits the simpler BEGIN entry in the LERKS normal form grammar, as
shown above.

Formally, the former BEGIN specialization rule now can be simplified to:

Input PE bookkeep: B

Input source code: s = (BEGIN (<LOCAL> <>!<>) <lerk>)
Specialized code: PE[s]B = [(BEGIN ¢' [PE[<lerk>]B' D] 1S
Specialized type: T[s]B 2 T[<lerk>]B
where

¢’ £ (B[copg|[LocaL]) <>!<>

B' £ (B[BOOKKEEP|[LOCAL]) <>!<>

B" — |P&[<lerk>]B
Output bookkeep: B"

Note that this hard-wires the bookkeep lookups for the local “<>!<>” magic marker’s CODE and
BOOKKEEP bindings. If we wanted to allow this identifier to range over fresh generated names
(say, for debugging purposes), the (<LOCAL> <>!<>) could be replaced in the above with, say,
<tref>, with commensurate changes.

Of course, by exploiting the underlying domain signature of PE (p. 33) in this way to
leverage the latent BOOKKEEP propagation, an even simpler rule is possible, as follows next.
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Rule No. 4”: BEGIN Forms (Overdrive)

(BEGIN (<LOCAL> <>this!<>) : Was ‘“(<LOCAL> <>!<>)’’ magic marker
(KLOCAL> <>that!<>)) : Was <lerk>

Taking this one step further, one can leverage to the hilt the applicative order semantics of
B-reduction [Barendregt 84] implicit in the LET form, as follows.

First, the following new canonicalization schema is added as part of LERKS normalization
of dyadic BEGIN forms:

(BEGIN (foo bar) (BEGIN (baz quux) (mumble frotz)))
—
(LET ((<>this!<> (foo bar)))
(LET ((<>that!<> (LET ((<>this!<> (baz quux)))
(LET ((<>that!<> (mumble frotz)))
(BEGIN <>this!<>
<>that!<>)))))
(BEGIN <>this!<>
<>that!<>)))

This admits the trivial BEGIN entry in the LERKS normal form grammar, as shown above.
Moreover, note that this is still trivially reversed back into the original source text, as per the
specialized code below. (More aggressive, further transformation could easily lose this property.)

Formally, the former BEGIN specialization rule now can be simplified to:
Input PE bookkeep: B

Input source code: s = (BEGIN (<LOCAL> <>this!<>)
(KLOCAL> <>that!<>))

Specialized code: PE[s]B £ [(BEGIN ¢' ¢')]1S
Specialized type: T[s]B £ T[<lerk>]B

where
¢' £ (B[copE|[LocAL]) <>this!<>
0" £ (B[copE][LocAL]) <>that!<>
B' £ (B[BoOKKEEP|[LOCAL]) <>this!<>
B” £ (B[BoOKKEEP|[LOCAL]) <>that!<>
Output bookkeep: B”

Note that this hard-wires the bookkeep lookups for both the local “<>this!<>” and “<>that!<>”
magic markers’ CODE and BOOKKEEP bindings. If we wanted to allow these identifiers to range
over fresh generated names (say, for debugging purposes), the (<LOCAL> <>hack!<>) could be
replaced in the above with, say, <tref>;, with commensurate changes.

But wait! There’s more!! ...
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Rule No. 4": BEGIN Forms (Redux)

“‘BEGINs!? I don’t have to show you any stinking BEGINs!’?’37

Given the preceding, one might be tempted simply to eliminate BEGIN forms entirely from the
LERKS normal form grammar, as follows.

(BEGIN (foo bar) (BEGIN (baz quux) (mumble frotz)))
—
(LET ((<>Fnord!<> (foo bar)))
(LET  ((<>Fnord!<> (baz quux)))
(mumble frotz)))

This exploits the observation that the intermediate <>Fnord!<> variables need not be retained
beyond their point of binding, so long as the LET rule is careful to propagate the (potentially
updated) BOOKKEEP latent in the underlying domain signature of PE (p. 33). In a phrase:
“Don’t see the Fnord!s!”38

Formally, this entirely supplants the BEGIN rule with the LET rule (which follows, p. 49).3°

The problem with this, however, is that it violates the invariant that let-extracted identi-
fiers always appear exactly once within the body of the generated LET form (§ 0.2.2, p. 26). I
emphasize the stipulation “exactly once” here since that’s crucial to the correctness of the LET
rule (which follows, p. 49). Specifically, each let-extracted identifier must occur at most one
time, but no fewer, in order for the resulting specialized code to be correct (as we shall see).

The key point is that, although valid for standard SCHEME semantics [IEEE 91], this elimi-
nation of let-extracted identifiers from the LET body is not valid for the LERKS normal form
dialect. Albeit executable as SCHEME source, LERKS normal form code is not “just SCHEME”:
it is a carefully constrained subdialect designed specifically for the partial evaluation rules.

For this reason, in order to satisfy this exactly once invariant, the above re-write would
instead have to introduce manifest NAMED-LAMBDA forms rather than LETs, as per:

(BEGIN (foo bar) (BEGIN (baz quux) (mumble frotz)))
—
((NAMED-LAMBDA (_Begun_ <>Fnord!<>)
((NAMED-LAMBDA (_Begun_ <>Fnord!<>)

(mumble frotz)) ;;; Invoked 3rd
(baz quux))) ;i; Invoked 2nd
(foo bar)) ;55 Invoked 1st

This avoids violating the LET invariant for code in LERKS normal form by injecting equivalent
explicit NAMED-LAMBDA invocations instead of LET forms.*? Alas, it also obfuscates the original

3TWith apologies to [Traven 27,35] and [Houston & Traven 48].

38[Shea & Wilson 76,84]!

39This, by the way, is why the ““Gang of Eight” (or “Nine”, depending on how you count)” qualifier appeared
in item 0 on page 15: if you include BEGIN then there are nine special forms in the final, minimal BNF grammar
on page 16; otherwise only eight distinct forms remain, apropos the concluding comment there.

40For clarity, I forgo the subsequent <CALL_NAMED-LAMBDA> decorations that would also be required for strict
LERKS normal form canonicalization here.
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BEGIN source code. By generating the NAMED-LAMBDA embedded names systematically, however,
this transformation is also reversible, as is a key feature of let-eztraction (as argued on earlier,
p. 26).41 Consider, for example:

(BEGIN (foo bar)
(baz quux)
(mumble frotz)
(grue bleen))

e
(BEGIN (foo bar)
(BEGIN (baz quux)
(BEGIN (mumble frotz)
(grue bleen))))
e

((NAMED-LAMBDA (_Begun_ <>Fnord!<>)
((NAMED-LAMBDA (_Begun_ <>Fnord!<>)
((NAMED-LAMBDA (_Begun_ <>Fnord!<>)

(grue bleen)) ;;; Invoked 4th

(mumble frotz)) ;;; Invoked 3rd

(baz quux))) 5 Invoked 2nd

(foo bar)) ;i1 Invoked 1st

This stratagem, therefore, has the advantage of totally obviating the need for a separate
BEGIN rule. The net result, then, is that only the IF and NAMED-LAMBDA forms (and, by exten-
sion, LET) contain fully general <lerk> sub-terms in the LERKS normalized grammar (p. 31).
All other grammatical elements are non-recursive. This is theoretically appealing since it sim-
plifies the termination analysis of the partial evaluation process by limiting it to only those
forms that require syntactic recursion.

Restricting grammatical recursion in this way to only the conditional and procedural cases
distills the issue to its core. Moreover, careful derivation of this result from the initial naive
BEGIN rule helped draw attention to the subtlety that the LERKS normal form sub-dialect is
delicately constructed to simplify the partial evaluation rules, which collectively are its only in-
tended direct consumer. It is hoped, therefore, that this BEGIN rule digression was pedagogically
justified.

In sum, one can characterize the code specialization and companion specialization type infer-
ence computation sub-tasks for BEGIN forms as altogether superfluous, given an appropriately
extended LERKS normal form that re-writes BEGIN forms into staged NAMED-LAMBDA explicit
applications.

This, however, is predicated on the delicate constraint that the LET partial evaluation rule
Do the Right Thing™ [Lee 89]. Which it does. ..as we shall see next.

“1Bven well-seasoned programmer’s don’t appreciate having their original source code transmogrified when
done solely to simplify an internal run-time tool; I being among them. Designing the intermediate, internal code
representation to be a trivially reversible transformation on the original syntax makes it possible to unobscure
the code should it become necesssary to display warnings or errors or admit interactive debugging, for example.

**DRAFT** October 13, 2007



0.3. SPECTRAL SPECIALIZATION RULES FOR DESCARTES 49

0.3.8 Rule No. 5: LET Forms

(LET ((<identifier>_1 <lerk>_1) : LET-Extraction (not user LET form)
(<identifier>_2 <lerk>_2)

D)
<lerk>_body)

Note that these are LET forms introduced by LERKS normalization, not those appearing in the
original source program. These are not general LET forms introduced by the programmer, since
those will all have been unsyntaxed out as explicit NAMED-LAMBDA invocations (as per items 0
and 2 on page 18), as illustrated on page 31.

Consequently, these are a very special case of NAMED-LAMBDA calls (since LETs in MIT SCHEME
desugar into manifest NAMED-LAMBDA [-redexes [Church 51]). Specifically, by careful design,
each of the <lerk> i binding forms will be referenced by their associated <identifier>_ i
name once and only once within the extracted LET body, <lerk>_body. Thankfully, this
makes LERKS normal form LET specialization a simple sub-case of the much more general
<CALL _NAMED-LAMBDA> form detailed later (p. 65).

The resulting specialization rule for LERKS-normal (hence, let-eztraction spawned) LET
forms is thus mercifully straighforward. To wit, each <lerk> i is partial evaluated and its
specialized code and specialized type associated with its companion <identifier>i in an
extension to the embedded <LOCAL> specialization environment component of the in-coming
specialization bookkeep. 'The general <lerk> body is then partial evaluated in this extended
specialization bookkeep, with the resulting specialized code and specialized type (and possibly
updated bookkeep) being returned as the results of the overall LERKS-normalized LET form.

Formally:
Input PE bookkeep: B
Input source code: s = (LET ((<identifier>_1 <lerk>_1)
(<identifier>_2 <lerk>_2)
D)

<lerk>_body)

Specialized code: PE[s]B [P5[<Zerk>_body]B*J

T[<lerk>_body] B*

A
4

Specialized type: T [s]B

where
B* £ (B[cODE|[<LOCAL>]) [<identsfier>_d H[’P5|[<I.erk>_i]]B]]:.L:1
B* £ (B[rvpE|[<LOCAL>]) [<identifier>_i —  T[<lerk>_i]B ]
Output bookkeep: B’ — [?75ﬂ<lerk>_body]B*]

This exploits the fact that let-extracted identifiers always appear exactly once within the body
of the generated LET form, without the possibility of naming collisions, as anticipated earlier
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(§ 0.2.2, p. 26). This, for example, obviates the need for an occurrence counting analysis
[Bondorf & Danvy 90/91] to avoid code duplication and/or unintended elimination of non-
dead code, since: a) no duplication can result from re-nesting the de-nested code back into
their original program points, and b) no inadvertant elimination can occur given that each
let-extracted identifier is guaranteed, by construction, to occur in the body.

This is the long-promised consequence of the insistence that let-extraction be trivially
reversible (p. 26). In particular, no common subexpression coalescence is performed during
let-extraction normalization, if only to make this argument transparent (and to make the
LERKS-normalized result executable without semantic alteration).

In sum, one can characterize the code specialization and companion specialization type in-
ference computation sub-tasks for LET forms as a simple forward substitution of the special-
ized bound forms back into their original program points, before let-extraction hoisted them
out. The validity of this trick, however, hinges on the crucial invariant that let-eztraction
be reversible in exactly this way. This is why user-introduced LET forms are separated out as
manifest NAMED-LAMBDA combination/application/invocation forms: for them, this simple rule
cannot apply in general.

But, just when you thought it was safe to go back in the water. ..*?

“The slings and arrows of outrageous code”*?

One subtle consideration does arise, however: potential run-time side effects within the code
being specialized force the partial evaluator to impose an ordering within the specialized code it
generates. This is necessary so that the order presumed at code specialization time corresponds
to the order actually executed at run time. Otherwise, the analytic assumptions won’t match
the emperical realization.

This exposes an underspecification in the SCHEME language’s formal semantics.

Note that the order of evaluation of LET bindings is not specified in standard SCHEME
[IEEE 91], nor is the order of evaluation of the constituents of the combination/application/
invocation forms from which they were let-eztracted (courtesy of LERKS normalization).
Consequently, it is poor practice for any of the <lerk> i expressions to incur any side effects
at run time. This implies that they likewise should never incur bookkeep alterations at partial
evaluation time. This behavior is readily verified by comparing the before-and-after bookkeeps
upon partial evaluating each of the <lerk>_i bound forms. Note carefully, though, that this is
not a problem exacerbated by let-eztraction: it is already inherent in the nested subexpressions
of the original source code.

That said, a properly semantics-preserving specialization must at least produce code that
correctly corresponds to some sequential evaluation of the extracted forms at run time. Special-
izing them all in the same initial bookkeep, assuming no cross-talk, could result in specializations
that violate this covenant. To that end, any bound forms found to potentially alter the book-
keep are queued to be re-specialized after all the other sibling forms have been specialized,

42 A dvertising poster tag line from the movie Jaws 2 [Gottlieb, Sackler & Tristan 78].
43 A corruption of [Shakespeare 1603, Hamlet, Act I1T, Scene 1, Line 58].
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all in the same initial in-coming bookkeep. Those miscreant forms that have been queued for
re-specialization are then re-processed using a “threaded” bookkeep passed from one through
the next, analogous to the run-time processing of sequential expressions in a BEGIN form.**

Worse, no particular ordering chosen for the code analysis at partial evaluation time can
be enforced in the resulting specialized code when it is later executed at run time without re-
writing the source code to impose a corresponding order (say, via injection of appropriately
nested LET forms, since these are guaranteed to be executed outermost first). Worse still, it
is not even decidable, in general, which forms will have side effects since not all procedure
variables’ bindings may be known. Even at run time, they may be dynamically re-defined, etc.
The sad reality, therefore, is that any form with a free or dynamic variable in operator position
must be assumed to potentially mutate the bookkeep, and thus must be serialized in some fixed
order in the generated specialized code. Otherwise, the program analysis on which the partial
evaluation was based might not correspond to the subsequent actual order of execution of the
specialized code at run time.

“Or to take arms against a sea of side-effects”*’

Therefore, the current DESCARTES prototype gleefully ignores this complication. Source code
that relies on the unspecified order of evaluation cannot be supported in general anyway.
Thus, this particular complication is not reflected in the formal semantics shown. Address-
ing this shortcoming in a satisfactory fashion is left as a challenge for future work. Meanwhile,
DESCARTES imposes an arbitrary order at random rather than attempt “to take arms against
a sea of troubles” [Shakespeare 1603, Hamlet, Act III, Scene 1, Line 59].

This position seems fair given that this unspecified order of evaluation is viewed by many
in the SCHEME community as a blemish on the otherwise-clean formal semantic specification
of the language. « C’est la guerre.”

410f course, the first such ill-behaved form need not be re-processed, so long as its resulting altered bookkeep is
remembered to initiate the threading of the rest, if any, or just returned as the final bookkeep, if not. Thus, only
those subsequent additional delinquents that occur, if any, need be re-specialized in threaded fashion (starting
with the updated bookkeep from the first miscreant) to preserve sequential semantics. This is a peephole opti-
mization, but one that always avoids at least some re-specialization effort. The alternative is to always bookkeep
thread all sub-form specializations, but that would necessitate always imposing a specific order on the run-time
execution of the resulting specialized code, which one should avoid whenever possible (for example, to permit
better resource management later, like register allocation during compilation of the specialized code).

45 A corruption of [Shakespeare 1603, Hamlet, Act I1T, Scene 1, Line 59].
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0.3.9 Rule No. 6: There is no Rule 6!“...only Residualization.

This is a good intermission point to mention residualization, as contrasted with specialization.

The Gist of Residualization

Up to this point, for example, all specialization rules have iteratively descended their com-
ponent subexpressions, substituting their resulting partial evaluated “residues” into copies of
the original form in a straightforward, bottom-up substitution. The non-recursive nature of
the rules so far has made it easy to argue that this process always terminates, generating a
finite specialized code and specialized type (and updated bookkeep). That happy circumstance,
however, is about to change.

The preceding LET rule was the first to introduce a fully recursive call to the partial evaluator,
by virtue of its general <lerk> sub-forms. There, however, one can easily argue that this
process terminates since, by construction, the let-eztracted forms that are being specialized
and forward-substituted were simply hoisted out of the original (finite) source code. So long as
only these rules presented so far are the only rules in play, this termination argument is sound.

With the remaining rules, however, things are about to get far more intricate. Specifically,
the remaining rules have the potential to expand sub-forms into their specialized equivalents
stored in the bookkeep, then recursively descend those expanded forms ad infinitum. In order
to bound this process, therefore, one must decide where and how to terminate the recursion.
Where to terminate is a very important issue— one that is addressed in the subsequent rules
and whose resolution is a fundamental result and original contribution of this work. Once
decided where to terminate, however, how to terminate the recursion, on the other hand, is
fairly simple. It’s called residualization and it’s the topic of this section.

Residualization as Uber Substitution

Simply put, residualization is a glorified substitution operator: it stipulates to the program
specializer that it not pursue any deeper the expansion/unfolding of the remaining sub-forms
of the partial evaluation recursive descent, but that it do forward substitute the accumulated
bindings of the locally bound variables in the specialization bookkeep for any free occurrences
in the remaining program source (to avoid lexical escape). That sounds like a lot, but the idea
is simple and easily illustrated with a brief examples.

A Simple Residualization Example

Consider the following random “coin flip fairness assessor” program. Conceptually, it flips a
presumably-fair 23-sided coin repeatedly until it comes up “heads”, then it returns how many
flips it took to get there, along with the odd/even parity of the number of trials (just for kicks).

4From the Bruces sketch [Python 70,73,99].
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(define (coin-faerie coin-sides flip-count p np)
(if (zero? (random coin-sides)) ;;; (random N) = n € [0,N—1]
(coin-fairness-assessment flip-count p np)
(coin-faerie coin-sides (1+ flip-count) np p))) ,;;; N.B.. p& np

(define (coin-fairness-assessment flip-count p np)
(quasiquote (,flip-count = ,p parity (mot ,np))))

(define (coin-trial)
(coin-faerie 23 1 ’odd ’even))

]=> (coin-trial)

;Value: (16 = even parity (not odd))
;Value: ( 4 = even parity (mot odd))
;Value: ( 9 = odd parity (not even))
;Value: (52 = even parity (nmot odd))
;Value: (20 = even parity (not odd))

Suppressing the LERKS normal form details, this might partial evaluate into the following,
after being unfolded twice and then residualized:
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(named-lambda (coin-faerie coin-sides flip-count p np)
(if (zero? (random coin-sides))
(coin-fairness-assessment flip-count p np)

(let ((flip-count_1 (1+ flip-count))
( p-1 np)
( np_1 p))
(if (zero? (random coin-sides))
(coin-fairness-assessment flip-count_1 p_1 np_1)

(let ((flip-count_2 (1+ flip-count_1))
( p_2 np_1)
( np_2 p_1 )
(if (zero? (random coin-sides))
(coin-fairness-assessment flip-count_2 p_2 np_2)

The interesting thing to note is how the source code at each recursive call is unfolded and
residualized.

Specifically, the first parameter (coin-sides) is always trivial and intransient so it needn’t
be wrapped via let-insertion, whereas the remaining parameters (flip-count, p and np) are
recursively passed non-trivial and/or transient arguments, so they are let-insertion wrapped.

Lexical Disambiguation upon Unfold Let-Insertion

Moreover, note carefully how a fresh name is generated at each new lexical unfold level—
hence the “_1” and “_2” suffixes— to avoid inadvertent capture upon unfolding. These fresh
names must be forward substituted into the residualized call as well, since simply returning
the source code to be residualized— viz., (coin-faerie coin-sides (1+ flip-count) np n)—
without substitution would result in inadvertent escape to the outermost lexical binding.

To be very clear: were the specializer simply to let-insertion-wrap these without sub-
scripting or otherwise disambiguating the bindings, it could produce ill-formed gibberish like:
(let ((p np) (np p)) ...). It is for this reason that the residualization process must be careful
to propagate local renamings into the residualized source code, not simply embed the residual
source directly as is.
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That’s All for Now... <CALL> Again Later

Other than that, residualization leaves matters much as they lie. We shall see in the <CALL>
rule (Rule No. 8, § 0.3.11, p. 59) that there is a bit more flexibility in how to residualize calls
(such as operator name specialization in lieu of unfolding/open coding), but this is enough
detail for now. The key issue is one of lexical name indexing upon unfold let-insertion and
the requisite subsequent forward name substitution even into residualized code, as the above
example dramatized.

Residualization: Section Summary

To summarize, therefore: modulo forward substitution, one might characterize residualization
as the bottom-up complement to the top-down, recursive descent of the specialization pro-
cess. By contrast with specialization, the residualization process, by design, always terminates,
returning a finite resulting residualized code fragment and residualized type.*”

“Number 8: The ear.”

47 Assuming, of course, that the source code (and its inferred type) being residualized are themselves finite to
begin with, which they are.
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0.3.10 Rule No. 7: NAMED-LAMBDA Forms

Note: <formals> can be null, dotted, ‘‘#!rest’’ and/or ‘‘#!optional’’ params.

This rule covers only the case where a NAMED-LAMBDA form appears in non-operator position—
that is, it is passed as an argument or returned as a result, not directly applied to arguments.
For the application case, refer to the <CALL_NAMED-LAMBDA> rule instead (Rule No. 8, p. 65).

To partial evaluate NAMED-LAMBDA forms in non-operator position, the <formals> are bound
in the bookkeep’s <PARAMETER> binding environment to “dummy” arguments (e.g., to themselves
with type UNKNOWN (a.k.a. Ly)). This is done so that residualizing them has no effect on the
resulting specialized code.*® The <lerk> body is then partial evaluated in this extended bookkeep
environment.

The resulting partial evaluated NAMED-LAMBDA form overall is thereafter generated by sub-
stituting the body’s specialized code into a new NAMED-LAMBDA form. The specialized type of the
NAMED-LAMBDA form is just that of the partial evaluated body, wrapped to mark it as a (partial)
type. These partial types are not currently used so no more will be said about them here: they
are for debugging purposes only (for now). Nevertheless, a concrete instance appears below.

Formally:

Input PE bookkeep: B
Input source code: s ::= (NAMED-LAMBDA (<name> <formals>) <lerk>)

Specialized code: PE&[s]B = [(NAMED-LAMBDA (<name> <formals>)

(Pelctenlo))] 1

(<PROCEDURE>?? (<name> <formals>) T[<lerk>]B*)

Il

Specialized type: T [s]B

where
B* £ (B[CODE|[<PARAMETER>]) [<formals> —* [],,... <formals>]
B* £ (B[TYPE|[<PARAMETER>)) [<formals> +* UNKNOWN]
for
[Tosnsn <formals> = { [(<PARAMETER> f)]1S | f€ <formals>}
Output bookkeep: B (mot B*, of course)

48 An alternative strategy would be to leave the formal parameters unbound in the specialization environment
then complicate the <tref> rule to check each reference and, if unbound, treat it as a “dummy” self-reference
of type UNKNOWN. This approach, however, ignores further complications should the parameter be shadowing a
lexically enclosing local or a global variable of the same name. That too can be overcome, e.g., by systematic
internal renaming of all NAMED-LAMBDA parameters to avoid shadow/capture naming collisions [de Bruijn 72,95],
but that piles hack atop of kludge. I therefore prefer instead to address this directly here in the NAMED-LAMBDA
rule, at each parameter’s point of introduction, rather than defer to the identifier (de-)reference rule, at their
point of use.

49 Although presently merely debugging/tracing scaffolding, an interesting area for future work would be to
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The trick here is in binding each NAMED-LAMBDA-bound <formal> to a special abstract bind-
ing rather than directly to any specific specialized code. This is just a one-level indirection
mechanism so that downstream lookups (viz., <tref> variable references) don’t directly in-line
substitute the abstract bindings (but they will still have access to these bindings “behind the
curtain”). In effect, this is tantamount to implicitly/in-flight inserting identity LET-expressions
in the source code [Bondorf & Danvy 90/91], as mentioned earlier (§ 14, p. 20).

De Facto Identity Let-Insertion in Non-Operator NAMED-LAMBDA Forms

To review that idea, this is the familiar device well-known among macro writers where one
captures macro arguments in a trivial LET wrapper immediately inside the body of the macro
form, like:

(define-macro (square expr) (let ((a expr)) (* a a)))

This explicit let-insertion on call entry, in effect, generates a one-step indirection between the
formal parameter reference in the body and the variable to which its evaluated value is bound at
run time. For DESCARTES’ partial evaluator, this entry-point identity let-insertion is implicitly
effected by binding NAMED-LAMBDA formal parameters to two-level, indirect “abstract bindings”
at partial evaluation time rather than re-writing the specialized code body to have the same
effect.

Obviously, LERKS normalization could explicitly insert these LETs too, but that decouples
the important constraint that the specializer treat local bindings specially, which seems a brittle
design choice to my taste. The best way to enforce this “abstract binding” invariant is to encode
it in the specialization rule where it is vital that it be respected.

As we shall see in the <CALL _NAMED-LAMBDA> rule, this will couple the <CALL> specialization
rule(s) to the otherwise trivial <tref> variable (de)reference specialization rule. Coupling
complementary specialization rules to one another rather than coupling special rules to input
invariants seems a more robust choice, pragmatically, and a more grounded choice from the
standpoint of trying to formally prove the correctness of the specializer (e.g., by transfinite
induction on the specialization rules).

Of course, LERKS normalization comes close to just this sort of brittleness, but there the
idea was to establish a uniform input invariance that all specialization rules could appreciate.
Notice, for example, how every non-trivial specialization rule’s description somewhere contains
the phrase, “Thankfully, LERKS normalization ensures that the mumble constituent is trivial”
or words to that effect. I wasn’t just being cute in repeating that template throughout. It’s
important. In fact, it’s essential.

replace these <PROCEDURE> type expressions with proper procedures. That is, given the type expressions for their
formal parameters (including abstract types UNKNOWN (a.k.a. Ly) and ANY (a.k.a. Ty)) and a type environment
mapping free variables to their types, these type-generating procedures would produce an appropriate type
expression for the NAMED-LAMBDA form’s return type in the given type environment. This would further the
categorical isomorphism between types and values, as alluded to earlier (p. 33), where the types of pairs are
represented as pairs of types, the types of vectors as vectors of types, and so on. Here, the types of procedures
would become procedures that compute types. This, for instance, naturally suggests the implementation of the
type inference operator, 7, as a straightforward, full and proper abstract interpreter of source-level expressions
rather than as an ad hoc fulltype procedure, as currently implemented and presented.

October 13, 2007 **DRAFT**



58 CHAPTER 0. PROGRAM SPECIALIZATION USING INPUT SPECTRA

Specialization of NAMED-LAMBDA Forms: Section Summary

In sum, one can characterize the code specialization and companion specialization type inference
computation sub-tasks for NAMED-LAMBDA forms in non-operator position as fairly sedate. In ef-
fect, the body of the NAMED-LAMBDA is specialized to whatever degree possible given the bindings
of its free and global variables in the specialization context within the specialization bookkeep,
but with the NAMED-LAMBDA’s formal parameters themselves being bound, effectively, to no-op
placeholders. This allows the specializer to aggressively penetrate into the NAMED-LAMBDA body
while, in effect, treating the unbound formal parameters as dynamic unknowns.

The next rule below (viz., <CALL>) clarifies how this situation differs for NAMED-LAMBDA
forms that are in operator position in a combination/application/invocation. That’s when
things really start to get exciting!

**DRAFT** October 13, 2007



0.3. SPECTRAL SPECIALIZATION RULES FOR DESCARTES 59

0.3.11 Rule No. 8: <CALL> Forms

(<CALL_LOCAL> (<LOCAL> <identifier>) <triv>x*)
(<CALL_GLOBAL> (<GLOBAL> <identifier>) <triv>x*)
(<CALL_PARAMETER> (<PARAMETER> <identifier>) <triv>*)
(<CALL_PRIMITIVE> (<PRIMITIVE> <identifier>) <triv>x)

(<CALL_NAMED-LAMBDA> (NAMED-LAMBDA ...stuff...) <triv>*)

Note: All capitalized tags here are literal symbol constants,
not grammatical meta-variables.

Thankfully, courtesy of LERKS normal form, each constituent of a <CALL> form is at least
guaranteed to be trivial, with the single modest exception of the NAMED-LAMBDA form. That is,
except for NAMED-LAMBDA calls, the operator is always a trivial variable reference whose class
tag matches the class tag of its <CALL tag> wrapper. Each argument expression is likewise
trivial (of the slightly more general class <triv>). The manifest NAMED-LAMBDA calls are almost
as simple, the only asymmetry with respect to the other call forms being that the operator is
an explicit (manifest) NAMED-LAMBDA form, not a trivial variable reference.

Finally, things start to get interesting. But not too interesting. This is the first specialization
rule in which the partial evaluator has a choice in how to proceed: either continue to recursively
specialize or terminate the recursion and residualize instead.

Decision point: the first step is to decide whether: a) to reduce this call by open coding
(unfolding) the operator’s body in line, or: b) to specialize the operator out of line (either by
name or by value) but leave the <CALL> form otherwise residualized, or: c¢) to just directly
residualize the constituents without generating any new specialized operator variants. By the
way, since this is the first rule where residualization arises as an alternative to further (recursive)
sub-component specialization, it’s convenient to have addressed that idea directly in the earlier
paraleiptic “Intermission” rule aside®® (Rule No. 6, § 0.3.9, p. 52).

That said, <CALL> form specialization proceeds as follows. In broad strokes, if the current
in situ statistical relevance weight is sufficiently high, we choose to open code/in-line the call
(assuming the operator’s value is known). Otherwise, if there are existing specializations for
the operator that match the current invocation signature, we can still partially-specialize the

50«Though this be madness, yet there is method in’t.” [Shakespeare 1603, Polonius, Act II, Scene 2, Line 206].
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invocation by at least directing it to the specialized operator out of line. If even that fails,
we can still remember the missing case and arrange to dynamically back-patch the call to the
appropriate specialized variant should it ever be generated downstream. Finally, if the relevance
weight for the call is sufficiently low, or if the operator’s value is not known, we simply residualize
the call form, generating a fresh call form from the specialized constituents.

Of these choices, by far the most interesting is when we choose to defer generating a fresh
variant specialization of the operator, arranging instead to adaptively back-patch an out-of-line
call stub should the desired variant ever be generated in the future. To wit, we generate a
stub (“trampoline”) that initially just relays directly to the generic, unspecialized operator. We
register this stub in the bookkeep, marking it with the variant it hopes to one day encounter. If/
when the desired specialization variant is ever generated, this registered stub will be updated (in
place) to jump directly to the target variant. This is an instance of dynamic call path swizzling,
akin to the execution cache internal to MIT SCHEME [Miller & Rozas 91] [Adams & Hanson 93,
§ 4.3 Efficiency Tips]. We'll return to this in due course but, for now, let’s focus instead on the
less exotic cases.

Specialization of <CALL> Forms: Each in Turn

In light of this general plan, consider now each distinct class of <CALL> form in turn, from
simplest to most intricate operator: spec., from <PARAMETER> to <LOCAL> to <GLOBAL> to
<PRIMITIVE> to NAMED-LAMBDA.

Parameter Calls. Parameter calls are essentially always residualized since their dynamic
operator values cannot be resolved at partial evaluation time. For example, consider:

(DEFINE (two-me f) (f 2))
—r
(DEFINE two-me
(NAMED-LAMBDA (two-me f) (<CALL_PARAMETER> (<PARAMETER> f) (<CONSTANT> 2))))

Note that this case refers only to those formal parameters that are not bound to a concrete
value, hence whose abstract bindings are tagged as being of class <PARAMETER> (as per the
preceding NAMED-LAMBDA rule, § 0.3.10, p. 56). When the parameter operator has been bound
to a concrete value, the call will ultimately reduce to one of the other call forms.

Thus, the initial <CALL_tag> is used only as a seed to initiate the call specialization. If,
for example, a <CALL PARAMETER>’s operator first specializes to, say, a <PRIMITIVE>, then
the <CALL _PARAMETER> specialization will immediately defer to <CALL PRIMITIVE> to proceed.
Only in instances where the specialized operator persists as an (unbound) <PARAMETER> does
the current case prevail, at which time the call is simply residualized.

In sum, then, a parameter call form is either residualized (in the unbound case) or else it
reduces to one of the other call forms, depending on the value to which the operator ultimately
resolves. Termination is therefore guaranteed either by virtue of residualization or by induction
over the other call forms.
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Local Calls. Local call operators are always bound to an associated specialized code and
specialized type. The operator’s specialized type is ignored (for now) but the specialized code will,
eventually, always resolve either: a) to one of the other operator forms (including, possibly, an
unbound parameter), or: b) to a residualized call form (as a consequence of operator nesting).>!
The former case is a simple deflection while the latter terminates the specialization recursion.

In sum, then, a local call form reduces either to a simple case of dereference then iterate
or to a trivial case of residualization. Therefore, no more need be said of them as they are
merely a “stutter step” intermediate en route to one of the other call forms or else a trivial
residualization instance. Termination is guaranteed in each case, either by induction or by fiat,
respectively.

Global Calls. Global call operators likewise always eventually resolve to an associated
specialized code and specialized type. Unlike the preceding cases, however, they never resolve
to an unbound parameter. Therefore, eventually they always resolve to a <PRIMITIVE> or
manifest NAMED-LAMBDA operator, never a <LOCAL> or (unbound) <PARAMETER> operator nor a
(higher-order) residualized <CALL_PARAMETER> operator.

The one special proviso for global call form specializations, however, is that any generated
specialized code for the call always first check the run-time validity of the specialization-time
global binding for the operator before dispatching to any generated specialized variant. For
instance, one might define global add to be an alias for an instrumented version of primitive
+, run a test suite to generate various specializations and profiling data, then re-assign add
to directly alias primitive + for subsequent execution. Any specialized calls to add must be
invalidated accordingly.

Therefore, at specialization time, the operator’s <PRIMITIVE> or manifest NAMED-LAMBDA
ultimately associated with the global identifier is used to generate a specialization dispatch
“trampoline” to redirect the call to an appropriate variant handler (as we’ll see below). At run
time, however, the actual dynamic binding of the global identifier may have changed from what
it was at specialization time, when this dispatcher was generated. If it has, the dispatch target
is invalid.

This issue is easily resolved, nonetheless, by caching the binding of the global identifier
that is discovered at specialization time then testing, at run time, that the global operator is
still bound to that same value. If not, the specialization dispatch “trampoline” is invalidated
(discarded) and the original non-specialized global call form is invoked instead.®?

In sum, then, a global call form ultimately reduces to a <PRIMITIVE> call or to a manifest
NAMED-LAMBDA call. Modulo this en passant caching consideration. no more need be said for

51Asin (lambda (finagle) (lambda (f g) (lambda (x) ((finagle f g) x)))), where the (finagle f g)
operator applied to x is residualized because it’s operator, finagle, is an unbound formal parameter. Higher-
order code like this arises, for example, when abstracting out procedural patterns like compose or derivative-wrt
in place of finagle.

52pragmatic Point: Note that these cached global values can be weakly held so that, if reassigned and the
old value is no longer referenced anywhere else in the run-time heap, they can be garbage collected. The cache
validity test would then simply test the run-time binding against the “released weak value” sentinel (viz., #£),
which will always test negative (since #f is not even a procedure). In this way, the system avoids bloating the
heap by unnecessarily retaining pointers to discarded, re-assigned, stale, former operator bindings.
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this case. Termination is assured by reduction to other cases.

Primitive Calls. All preceding cases either residualize the call form or directly deflect/
defer to one of the other forms.?® Not so for primitive call forms. Here the specialization
process finally “bottoms out in the bits” by reaching a natural terminus for semantic reduction.
Primitive procedures (and base data) therefore are the foundation on which the entire system
is build, along with the small number of kernel syntactic forms.>*

In broad strokes, a primitive procedure call must be residualized: 1) if any of the arguments
to the primitive procedure call are not statically known (i.e., do not partial evaluate to literal
constants), or 2) if the primitive incurs observable side effects when invoked, or 3) if the primitive

invocation might not halt.5® Still, if the primitive procedure operator can be narrowed given
the inferred specialized types of the arguments, some partial specialization may nonetheless be
possible by replacing the original primitive operator with a more-specific (perhaps machine-
dependent) variant. Finally, if all arguments to a primitive procedure call partial evaluate to
constants, and if the primitive procedure is known to always terminate without observable
side effects, then the call can be fully reduced to a constant using the J-reduction rule of
the A-calculus [Church 51]. That is, assuming the statistical relevance of the call site justifies
specialization in the first place; if not, operator partial specialization or residualization is done.

53That, while possibly accumulating a bit of state in the recursion, such as a trail of global identifier operator
bindings to be cache-validated at run time in the generated specialized code, or possibly other useful contextual
tidbits for profiling or debugging of the specializer itself.

54 One might, in fact, characterize the primitive procedures, base data and core syntactic forms as collectively
constituting a veritable Foundation Trilogy from which the system in toto is derived. That is, if one were so
inclined [Asimov 51/52/53,74/82,83/86/90/92].

55This first restriction is a correctness condition known as congruence. The second precondition is a correctness
stipulation called referential transparency. The third and final restriction is a totality restriction against potential
divergence. The remainder of this footnote informally defines these terms in context.

Informally. and to first approximation, congruence in the context of partial evaluation means that dynamic/
unknown constituents cannot give rise to static/known residues [Jones, Gomard & Sestoft 93]. This means, for
example, that call forms with dynamic/unknown constituents must be residualized, not unfolded/open coded.
Type-driven specialization relaxes this to a restriction against dynamic/unknown types (as abstract values). A
further relaxation comes from uniform congruence [Launchbury 91], which may allow unfolding across the arms
of a conditional branch despite a dynamic predicate (as we shall contemplate in the IF rule (§ 0.3.12, p. 70)).

The term referential transparency [Whitehead & Russell 10/12/13,25/27,62] means that evaluating the same
expression more than once always produces exactly the same result, including side effects on the run-time store
a dereferences of free variables. If these side effects (including dereferences) are always precisely the same, it
is therefore not observable that any side effect has in fact occurred. This is not to say, for example, that it
always reference or increment the same variables; rather, it is a much more stringent restriction that it not
depend on the value of free variables for its result and that it only assign variables to their pre-existing values.
Otherwise, an external observer would be able to detect that one, not two, separate invocations has occurred. A
slightly more general term from abstract algebra that captures the same idea (and may be more familiar to some
readers) is idempotence. The point is that only referentially transparent/idempotent call forms can be invoked
at specialization time. It is also true that only such forms can be safely duplicated in the specialized code, but
that’s a different matter altogether (and one that was addressed earlier (p. 49)).

Finally, restriction against potential divergence in this context ensures the proper termination of all
specialization-time invocations of primitive procedures [Nielson 87,88]. Examples of primitive procedures that
might not terminate include the ever-problematic EVAL primitive and length (when invoked on a cyclic linked
list, such as a ring) and other similar degenerate cases of divergent primitives.
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Equipped with this broad overview of primitive call form specialization, we are now ready
to consider each subcase in turn: i) residualization; ii) out-of-line, polyvariant operator partial
specialization; and iii) in-line, polyvariant primitive call full specialization.

Primitive Call: Residualization. This is trivial. The specialized constituents are re-
assembled into a fresh <CALL_PRIMITIVE> form to produce the specialized code. The inferred
specialized type is the result of performing type inference over the primitive operator given the
specialized type of each argument. This, for example, can be done directly or by table lookup.

For instance, primitive cons has an observable allocation side effect on the store when
executed, so calls to it must be residualized. The type of a cons call is a pair of the types of
its constituent arguments. Simple.

Primitive Call: Operator Partial Specialization. Alternatively, if the primitive pro-
cedure operator can be narrowed given the inferred specialized types of the arguments, some
partial specialization may nonetheless be possible by replacing the original primitive operator
with a more-specific (perhaps machine-dependent) variant, such as replacing + with flonum:+.

In the simple case, this requires only replacing the source operator with a more narrow
variant primitive. For instance, when two flonums are added, generic + can be specialized to
flo:+, like:

(+ x y) —pg (flo:+ x y) ;s N.B.: x and y both of type flonum

In the general case, this may require generating an argument-canonicalizing redirection stub
(an en passant “trampoline”, p. ??). For example, when a fixnum is added to a flonum, the
fixnum must first be coerced to flonum before flo:+ can be applied. Such a code situation
might give rise to a specialization variant like:

(define (+::fix-and-flo fix:a flo:b)
(flo:+ (fix:->flonum fix:a) flo:b))

. whence the specializer might generate the following specialization for ‘x’ an inferred fixnum
and ‘y’ an inferred flonum:

(+ x y) —pg (+::fix-and-flo x y) ;o NLB.: x:fixnum and y::flonum

In addition to type-coercion canonicalization, the specializer’s full trampoline menagerie
includes such exotic species as arity-reduction trampolines (for reducing, say, (+ x y z) to
(int:+ (int:+ x y) z), optionals default-ification trampolines (for handling #!optional and/
or #!rest “dotted” formal parameter list canonicalization), and a host of other such trivial
interface toreadors, many of which are generated by simple pattern based code generation.

More importantly, any such generated “trampoline” stub is registered in the specialization
bookkeep for potential re-use at future specialization call sites. When operator partial special-
ization is initiated, therefore, the specializer first looks for an existing “trampoline” stub with
a compatible type signature, generating new ones only as needed.
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Primitive Call: Full Specialization. Finally, if all arguments to a primitive procedure
call partial evaluate to constants, and if the primitive procedure is known to always terminate
without observable side effects, then the call can be fully reduced to a constant using the
d-reduction rule of the A-calculus [Church 51]. That is, assuming the statistical relevance of
the call site justifies specialization in the first place; if not, operator partial specialization or
residualization is done.

For example:

(expt 2.71828182845904523536 (* 2 3.14159265358979323846 0+i))
—PE ‘ '
1.0-2.4492127076447545e-161 ;; From Euler: €™ + 1 =0 . > =~ 1

Most SCHEME primitive procedures always halt on concrete inputs; few have side effects.?¢

For those with no observable run-time (dynamic) side effects, we can directly §-reduce those
when all arguments are wholly known (regardless of relevance weight). Otherwise, if even a
single argument is dynamic (unknown at specialization time), the <PRIMITIVE> operator call
form must be residualized.?”

Issues of strictness are not violated by such local optimizations since LERKS normalization
guarantees that all arguments will be trivial (i.e., <triv>). So eliding a primitive call will not
forgo the evaluation of any argument form: they will have been evaluated in the enclosing let-
extraction wrapper. Note, however, that those primitives that incur observable side-effects at
run time (like vector-set! etc.) must always be residualized, not directly d-reduced, although
they can be symbolically /abstractly “executed” at partial evaluation time if their result can be
statically determined, thereby enabling subsequent opportunities for specialization that might
otherwise go undetected.

Primitive Call: The Hidden Hand. That said, there is still the unresolved issue of
exactly how to choose whether and how to specialize a given primitive call form based on the
specialization context. In particular, the preceding glossed over the case where an argument’s
inferred specialized type is not a simple scalar type by, say, a heterogeneous distribution, like:

fixnum 80%
flonum 20%

% Except for EVAL (and, by extension, LOAD) and various I/O primitives (such as READ and the port operations
and the like), most primitive procedures always halt. To be precise, call those which do always halt determinate
primitives. Those which might not halt are then dubbed indeterminate. The determinate primitives may always
be safely invoked at partial evaluation time. The indeterminate primitives might not be (depending on their
arguments).

57That is, except for various peep-hole optimizations, like not bothering to residualize a call to, say, car if the
argument is provably known to be, say, a pair composed of a static (known) value and a dynamic (unknown) cdr.
Though not directly é-reducible in the conventional sense, such calls can be abstractly eliminated by knowing
that, say, car applied to the specialized value (x . unknown) is equivalent to x. This is a well-established
technique, called projection factorization [Launchbury 91].
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[To Do: Here we review the detailed fib-x example from the results chap-
ter, including the “primitives matrix” pattern-driven specialization lookup and
its commensurate type inference issues. .. like fiducial inference. For example, see
figures 0-10, 0-11 and 0-12 below. ]
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Figure 0-10: Primitive Arithmetic Type Matrix: Dyadic <

Manifest NAMED-LAMBDA Calls.  The final case, manifest NAMED-LAMBDA calls, is the really
interesting one. Here we fold in the global context spectrum for this procedure with the in situ
inferred specialized types of its arguments. Those, along with the relevance weight, determine
which, if any, existing variant specializations of the procedure should be used, or which news
ones to generate, if any. The resulting NAMED-LAMBDA specialized code is, in effect, a run-
time variant dispatch “trampoline”, analogous to the polyvariant in-line caches (PICs) of Ruf
[Ruf 93].
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Figure 0-11: Integer Arithmetic Type Matrix: Dyadic int:<
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Figure 0-12: Floating-Point Arithmetic Type Matrix: Dyadic flo:<

[To Do: Here we review the detailed fib-x example from the results chapter.

xxx-8: [To Do: Finish this rule.]
XXXZZZXXX
Formally:

Input PE bookkeep: B
Input source code: s = (<KCALL> <triv> <triv>*)

Specialized code: PE[s]B 2 [code]
Specialized type: T[s]|B 2 [type]

[To Do: Ignore the following personal annotation turds....
(§ 0.2.2, p. 26), obviating the need for an occurrence counting analysis
[Bondorf & Danvy 90/91]
Cf., footnote (14), p. 20. ]

xxx-8: [To Do: Finish this rule.]
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Specialization of <CALL> Forms: Section Summary

In sum, one can characterize the code specialization and companion specialization type inference
computation sub-tasks for <CALL> forms as:

Specialize code: []
Specialize type: []
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0.3.12 Rule No. 9: IF Forms

The IF form is fairly interesting too.

First, the conditional predicate is, thankfully, trivial, courtesy of LERKS normal form. Its
specialized type is consulted to determine which branch(es) to recursively partial evaluate. Also,
the current relevance weight is also consulted, to decide where to continue the partial evaluation
descent or just revert to residualization (which is why Rule No. 6 (Intermission: residualization)
was a good intermission point to consider that before we reached this point and need to know
about it).

More interesting is how this predicate’s specialized type is bifurcated to guide the subsequent
subexpressions’ partial evaluation(s). xxxzzzxxx

What’s more interesting is the propagation of T/F assertions accumulated within the spe-
cialization environment of the specialization bookkeep. This is a weak form of truth mainte-
nance (it’s really just forward propagation of simple F/non-F constraints), but it does involve
non-trivial “probabilistic conditioning” [Drake 67] along each branch. Still, DESCARTES is
not nearly as aggressive in this regard as, say, Futamura’s Generalized Partial Computation
[Futamura & Nogi 88]. Still, generalizing his underlying truth maintenance system to operate
on probabilistically weighted structural type spectra should prove an interesting area for future
work.

Here, again, a quick review of the fib-x example from the results section will help motivate
and focus the running text.
58

xxx-9: [To Do: Finish this rule.]

777

Formally:

*8Nomenclature: One might be tempted to use the terms true and false when speaking of the arms of a two-way
branch but this tends to be misleading in the LisP family of languages (of which SCHEME is a member). This
is because, in Lisp dialects, only the distinguished false object (#f) is treated as false for purposes of Boolean
predication, while all other values (not just true (#t) are treated as true. One might thus be tempted to use
the terms false and non-false but that is more cumbersome that affirmative and contradictory, which have the
added benefit of directly addressing the semantic intent while suppressing the underlying programming language
idiosyncrasies.
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Input PE bookkeep: B
Input source code: s = (IF <triv>_test <lerk>_then <lerk>_else)

Specialized code: PE[s]B £ Let Tpred = T [<triv>_test]B
in
If Tpred A FALSE
then
[’Pc‘:[[d. erk>_then] BJ

else
if Tpred = FALSE
then

[’PE[[G, erk>_else] BJ

else

[CIF

PE[<triv>_test] BJ

PE[<triv>_then] B+J
PE[<triv>_else] B~ ])]] TS

)

endif

where
B+
B

A
= TIXXZZZXXX
A

= TIXTXZZZIXTT

for

[Losnsy <formals> = { [(<PARAMETER> f)] 1S | f€ <formals>}

Specialized type: T[s[B £ Let Tpred = T [<triv>_test]B
in

If Tpred A FALSE

then
T[<lerk>_then]B

else

if Tpred = FALSE

then
Tl<lerk>_else]B

else

[(IF T[<triv>_test]B
T[<triv>_then] BT
Tl<triv>_else]B )] 1S

endif

Output bookkeep: B (not BT or B™, of course) XXXzzzXXX

[To Do: Note: Apropos assertion propagation, mention uniform congruence
from Launchbury [Launchbury 91]. This also plays into what I call uniquification.
To wit, congruence, especially Launchbury’s uniform congruence, & its prox-
imity to what I call uniquification, as well as its surface similarity to probabilistic
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conditioning of IF branches. Mention Futamura’s generalized partial computation
as a more general, formal truth maintenance system along these same lines, though
restricted to that which can be statically proven/deduced at partial evaluation time.
Dynamically generated distribution spectra would relax this to that which can be
empirically observed as well, which complements statically deduced information in
cases where it would have to revert to the more conservative, general case when,
perhaps, a hint about which unknowns are more likely to arise than others. FEtc.

Should define faithful, congruent and termination all on the same page (for
convenience of page citation). ]

xxx-9: [To Do: Finish this rule.]

In sum, one can characterize the code specialization and companion specialization type in-
ference computation sub-tasks for IF forms as:

Specialize code: []
Specialize type: []
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0.3.13 Summary of Spectral Specialization Rules for Descartes

[To Do: Finish this chapter by detailing Descartes’s “Specialization over Statistical
Spectra” as a modest but important generalization of Ruf [Ruf 93], including his
technique whereby the partial evaluator generates not just code but also an inferred
type for the specialized code generated.

Be sure to define specializer-generated run-time call dispatch stubs as “polyvari-
ant dispatch trampoline”s. % They guide polyvariant specialized code invocation
while ensuring code safety. These are an instance of en passant delegate verification
at run-time dispatch with a failsafe fallback to the original non-specialized code as
needed. These are analogous to Urs Hélzle’s method dispatch PICs (Polyvariant
In-line Caches).

]

Things to mention:

1. DONE: Section “Subexpression De-nesting via Let-Ezxtraction”.

What I call “fully de-nested form” looks equivalent to monadic normal form [Hatcliff & Danvy 94],
a.k.a. Administrative Normal Form (A-normal form) of [Flanagan et al. 93] [Flanagan et al. 2003].
It is a fairly straightforward device, really, so I'm not surprised it was independently dis-

covered by others in the field.

2. TODO: [] Mention somewhere that constant folding, copy propagation, strength reduc-
tion, dead code elimination, etc. all come for free by leveraging the underlying MIT SCHEME
compiler.

3. DONE: Well, I inserted the below text into Rule No. 9 (IF), anyway.

congruence, especially Launchbury’s uniform congruence, & its proximity to what I call
uniquification, as well as its surface similarity to probabilistic conditioning of IF branches.
Mention Futamura’s generalized partial computation as a more general, formal truth main-
tenance system along these same lines, though restricted to that which can be statically
proven/deduced at partial evaluation time. Dynamically generated distribution spectra
would relax this to that which can be empirically observed as well, which complements
statically deduced information in cases where it would have to revert to the more conser-
vative, general case when, perhaps, a hint about which unknowns are more likely to arise
than others. Ftc.

59This is an instance of what the (non-authoritative) English Wikipedia "Trampoline_(computers)"
entry might distinguish as a “delegation trampoline” [http://en.wikipedia.org]. Other plausible de-
scriptive adjectives might include: “deflection”, “jumpgate”, “redirection”, “stutter-step”, “tore-
ador”, etc. ad nauseum.

In the traditional (semi-authoritative) sense of the ubiquitous computer science “jargon file”

(published as The Hacker’s Dictionary [Raymond 96]), this is an instance of a “true trampoline”
(p. 7).
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4. TODO: [] Define strictness /termination: Argue inductive monotonicity, etc. [Nielson 87,88].

5. DONE: [] Define CPS-conversion [in overview chapter, not here.] [Plotkin 75] [Steele 78]
and cite Reynold’s nice history of the concept/term.

6. TODO: [] kathenosynthesis— a play on “kathenotheism”— means “one at a time” creation
(literally, “each, one at a time”). Use it.

7. DONE: See Rule No. 9 (IF).
assertions apropos Generalized Partial Computation [Futamura & Nogi 88]

expectations apropos conditioned probability [Drake 67, p. 50].

8. TODO: [] empirically observed, dynamic, opened distributions -v-
TODO: [] axiomatically derived, static, closed partitions,

... their implications for ELSE stop-gap failsafe emergency escape hatches.

9. TODO: [] Mogensen [Mogensen 88| then
TODO: [|] Launchbury [Launchbury 91],

TODO: [] they investigated partially static data. Compare that to spectral distribution
types.

End of Chapter 0.
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