Descartes: Dynamically Emergent Specialization
via
Contextually Adaptive Re-compilation
using
Task Execution Spectra
for
Profile-Driven Polyvariant On-Line Partial Evaluation
by
Michael Ross Blair

Master of Science, Computer Science & Engineering, M.I.T. (1990)
Bachelor of Science, Computer Science & Electrical Engineering, M.I.T. (1986)

Submitted to the
Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements
for the degree of

Doctor of Science
in the field of
Computer Science

at the
MASSACHVSETTS INSTITVTE OF TECHNOLOGY
February 2008
Copyright (© 2008 by Michael R. Blair. All rights reserved.

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author.
Department of Electrical Engineering and Computer Science
November 30, 2007

Certified Dy o
Thomas F. Knight, Jr.

Senior Research Scientist

Thesis Supervisor

Accepted Dy

Terry P. Orlando
Chairman, Departmental Committee on Graduate Students

v

DRAFT

[This page intentionally left very nearly blank.]

October 12, 2007

Descartes: Dynamically Emergent Specialization
via
Contextually Adaptive Re-compilation
using
Task Execution Spectra
for
Profile-Driven Polyvariant On-Line Partial Evaluation

by
Michael Ross Blair

Submitted to the
Department of Electrical Engineering and Computer Science
on November 30, 2007
in partial fulfillment of the requirements for the degree of
Doctor of Science

Abstract

Dynamically adaptive, profile-driven, spectral program specialization is an effective and
practical technique for building large, sophisticated, efficient software systems from high-
level, abstract, modular programs using type-driven polyvariant on-line partial evaluation
grounded in statistical inference.

In profiling-based methods of program optimization, one gathers dynamic information from
sample program runs in order to focus optimization efforts on those code fragments that stand
to benefit most. This ordinarily requires a programmer-crafted suite of program inputs from
which dynamic statistical data about a program’s behavior can be deduced. Moreover, this
profiling is usually done only once and, thereafter, the optimized code is frozen.

Unfortunately, improving a program’s average performance on some typical inputs does
not ensure optimal performance on any specific input. Worse, it is often difficult to ascertain
reliably what constitutes a typical input for highly general programs. For example: What is
a typical circuit for a circuit simulator? What constitutes a typical program for a compiler
or interpreter or operating system? The answers can vary wildly among different sites and
program users. They can even vary dramatically from day to day for a user with changing
needs and goals.

What is needed is a mechanism for programs to adapt themselves automatically to their
diverse and changing application environments.

To that end, the DESCARTES system marries a set of run-time profiling tools to a profile-
driven kernel-level source-to-source program specializer and an optimizing compiler for the
MIT C ScHEME dialect of Lisp. This yields on-the-fly identification and specialization of
performance-critical high-level, abstract program modules, selectively reducing them to stream-
lined equivalent code in a robust, disciplined, judicious and efficient manner.

October 12, 2007 **DRAFT**

vi

The principal original contributions of this work (excluding tools), include:

1) Spectral Specialization - source-to-source program specialization with respect to context spec-
tra, constituting dynamically adaptive, profile-driven, polyvariant on-line partial evaluation
grounded in statistical inference; where. ..

2) Context Spectra - robust, compact and efficient representations of the point estimates of dy-
namic execution contexts to profile each procedure’s dynamic data via weighted distributions
over generalized structural types; with...

3) Statistical Inference as Feedback - the use of statistically inferred data as a rigorous feedback
mechanism to focus, drive and throttle ongoing program optimization efforts while simul-
taneously regulating overhead through self-tuned parameters, thereby avoiding traditional
architectural ad hoc limits (a.k.a. “magic constants”).

Put simply, DESCARTES performs source-level code optimization by using dynamic profile in-
formation, all driven by statistical inference. The novelty lies in the nature of the optimization
performed, what data is used to do it, and how the overhead of this ongoing process is managed.
The original contributions listed above stake specific claims in each of these areas.

Experiments using this prototype have demonstrated that a handful of carefully chosen
principled specializations can dramatically improve code speed with only moderate profiling
overhead and modest code-space growth. For example, profile-driven automatic optimization
of a program to analyze genetic pedigrees (as Bayesian belief nets) has produced a speedup
factor of 5 over the original highly optimized code produced by the MIT C SCHEME compiler.
A thermal diffusion simulation was sped up by a factor of 8, and the tree- recursive Fibonacci
program was sped up by a factor of 2. These were achieved with less than a 2-fold increase in
code size and below 5% overhead in execution time for profiling.

This dissertation explores the design space for effective profile-driven adaptive program
specialization, under the practical constraint that the overall system must be efficient with
respect to the dynamic overhead.

Specifically, it details how the DESCARTES prototype decides what code to optimize, how to
optimize it, to what degree and at what cost. It concludes by considering how this prototype
system could be used as the foundation for a fully automated, continual, on-the-fly, dynamically
adaptive program optimization system.

Thesis Supervisor: Thomas F. Knight, Jr.
Title: Senior Research Scientist

DRAFT October 12, 2007

xiv

[This page intentionally left very nearly blank.]

DRAFT October 12, 2007

18

[This page intentionally left very nearly blank.]

DRAFT October 12, 2007

Part O

Prologue

19

Part 1

Examples

31

42

DRAFT

[This page intentionally left very nearly blank.]

October 12, 2007

Part 11

Details

43

Part 111

Conclusion

67

74

[This page intentionally left very nearly blank.]

DRAFT October 12, 2007

Part IV

Appendices

75

