
MIT Scheme User’s Manual
Edition 1.87

for Scheme Release 7.5.17
18 July 2001

by Stephen Adams
Chris Hanson
and the MIT Scheme Team

Copyright c© 1991-2001 Massachusetts Institute of Technology
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

Introduction 1

Introduction

This document describes how to install and use MIT Scheme, the UnCommon Lisp. It
gives installation instructions for all of the platforms that we support; complete documen-
tation of the command-line options and environment variables that control how Scheme
works; and rudimentary descriptions of how to interact with the evaluator, compile and
debug programs, and use the editor. The release notes are included as an appendix.

This document discusses many operating-system specific features of the MIT Scheme
implementation. In order to simplify the discussion, we use abbreviations to refer to some
operating systems. When the text uses the term unix, this means any of the unix systems
that we support, including GNU/Linux, *BSD, HP-UX, Ultrix, NeXT, and SunOS. The
term OS/2 means the IBM OS/2 operating system, version 2.1 or later. We use the term
Windows to collectively refer to the Microsoft Windows operating systems: Windows 95,
Windows 98, and Windows NT. We use the term PC to refer to any computer running
OS/2 or Windows. Thus we consider a PC to be a system with a dos-like file system, using
backslashes for directory separators, drive letters, cr-lf line termination, and (potentially)
the hideous 8.3 short filenames.

The primary distribution site for this software is
http://www.swiss.ai.mit.edu/ftpdir/scheme-7.5/
ftp://ftp.swiss.ai.mit.edu/pub/scheme-7.5/

Although our software is distributed from other sites and in other media, the complete
distribution and the most recent release is always available at our site.

To report bugs, send email to ‘bug-cscheme@zurich.ai.mit.edu’. Please include the
output of the identify-world procedure (see Section 2.1 [Basics of Starting Scheme],
page 9), so we know what version of the system you are using.

2 MIT Scheme User’s Manual

Chapter 1: Installation 3

1 Installation

This chapter describes how to install MIT Scheme release 7.5. The release is supported
under several different operating systems: unix, OS/2, and Windows. Read the section
detailing the installation for the operating system that you are using.

1.1 Unix Installation

We will use as an example the installation for GNU/Linux. The installation for other
unix systems is similar.

MIT Scheme is distributed as a compressed ‘tar’ file. The tar file contains two directories,
called ‘bin’ and ‘lib’. The ‘bin’ directory contains two executable files, ‘scheme’ and
‘bchscheme’. The ‘lib’ directory contains one subdirectory, ‘lib/mit-scheme’, that Scheme
uses while it is executing.

The goal of the installation is to put the executable files in a directory where they will be
executed as commands, and to put the library files in some convenient place where Scheme
can find them.

There are two ways to install this software: the conventional way in ‘/usr/local’, and
the alternative way, in locations of your choice. We encourage you to install this software
in ‘/usr/local’ if possible.

To install the software in ‘/usr/local’, do the following
cd /usr/local
rm -f bin/scheme bin/bchscheme
rm -rf lib/mit-scheme
gzip -cd scheme-7.5.17-ix86-gnu-linux.tar.gz | tar xvf -

After executing these commands, the executable files will be in ‘/usr/local/bin’, and the
library files will be in ‘/usr/local/lib/mit-scheme’. No further configuration is required.

To install the files in directories of your choice:
• First unpack the distribution:

mkdir temp
cd temp
gzip -cd scheme-7.5.17-ix86-gnu-linux.tar.gz | tar xvf -

• Next, move the contents of the ‘bin’ directory to somewhere convenient that is on your
execution path. For example, if you had a directory ‘~/bin’ on your path, you would
do this:

mv bin/* ~/bin/.

• Next, move or copy the ‘mit-scheme’ directory somewhere convenient. For example,
you could move it to your home directory:

mv lib/mit-scheme ~/.

Note that if you have unpacked the distribution on a different drive than the one you
plan to store the ‘mit-scheme’ directory on, you must use the command ‘cp -pr’ rather
than ‘mv’.

4 MIT Scheme User’s Manual

• Next, you must tell Scheme where to find the ‘mit-scheme’ directory. This can be
done in one of two ways. The first way is to bind the environment variable MITSCHEME_
LIBRARY_PATH to the full path to the directory, e.g. in bash you would do

export MITSCHEME_LIBRARY_PATH=~/mit-scheme

You should put this environment-variable binding in one of your shell init files, e.g. for
bash it might go in the ‘.bashrc’ file.

The second way is to use a command-line argument when invoking Scheme, e.g.
scheme -library ~/mit-scheme

• You should now be able to run MIT Scheme. See Chapter 2 [Running Scheme], page 9,
for more information.

1.2 Windows Installation

This section describes how to install MIT Scheme on Windows 95, Windows 98, or
Windows NT 4.0. The software should also work on older versions of Windows NT, but we
haven’t tested it there.

MIT Scheme is distributed as a self-installing executable. Installation of the software is
straightforward. Simply execute the downloaded file and answer the installer’s questions.
The installer will allow you to choose the directory in which MIT Scheme is to be installed,
and the name of the folder in which the shortcuts are to be placed.

To uninstall the software, open up the ‘Control Panel’, run ‘Add/Remove Programs’,
and double-click on ‘MIT Scheme 7.5’.

1.3 OS/2 Installation

This section describes how to install MIT Scheme on a machine running OS/2 2.1 or
later. This release of MIT Scheme has been tested only on OS/2 Warp 4.0. It was compiled
using IBM Visual Age C++ version 3.0 and the OS/2 Toolkit version 4.0.

1.3.1 OS/2 Installation Procedure

After unpacking the zip file, ‘os2.zip’, you will have these directories containing the
following files:

‘exe’ The executable programs ‘scheme.exe’ and ‘bchschem.exe’.

‘dll’ The dynamic link libraries ‘blowfish.dll’, ‘gdbm.dll’, and ‘md5.dll’.

‘doc’ Documentation files in html.

‘lib’ A directory containing the data files needed by Scheme when it is running.

Perform the following steps to install Scheme:

Chapter 1: Installation 5

1. Move the executable files ‘scheme.exe’ and ‘bchschem.exe’ from ‘exe’ to any directory
that appears in your PATH environment variable. You may either add the ‘exe’ directory
to your path by editing ‘config.sys’ and rebooting, or you may move the files in ‘exe’
to an existing directory that is already on your PATH.
Depending on your needs, you may want to keep only one of these files; chances are
you’ll only be using one of them. Of course, you may also keep both programs around
if you think you might use them both. See Section 2.3 [Memory Usage], page 10, for
more information about the tradeoffs between these two programs.

2. Move the dynamic link libraries from ‘dll’ to any directory that appears in your
LIBPATH environment variable. As above, you may either add ‘dll’ to your LIBPATH,
or move the files in ‘dll’ to a directory that is already on your LIBPATH.

3. You may move the ‘lib’ directory anywhere you like. You may rename it to anything
you like. (Here at MIT, we use ‘c:\scheme\lib’.) After you have chosen where it will
be located, set the MITSCHEME_LIBRARY_PATH environment variable in ‘config.sys’ to
be that location.
For example, if you decide to store the directory as ‘c:\schdata’, you would add the
following to ‘config.sys’:

SET MITSCHEME_LIBRARY_PATH=C:\SCHDATA

(Remember that you must reboot OS/2 after editing ‘config.sys’ in order for the
changes to take effect.)
You can override the setting of this environment variable with the -library command-
line option to Scheme, for example:

scheme -library d:\myscm\mylib

If you supply a -library option, it is not necessary to have the environment variable
defined. For example, instead of editing ‘config.sys’, you might create a ‘.cmd’ file
to invoke Scheme and pass it the -library option automatically.

4. Optional: Move the ‘doc’ directory anywhere you like, or delete it if you do not want
to keep the documentation.

5. Optional: Consider setting some of the environment variables described below.

1.3.2 Environment Variables

This section documents several of the environment variables that Scheme uses, and gives
an example for each one. These are the environment variables that must usually be defined
when installing Scheme under OS/2. For complete documentation of all of the environment
variables used by Scheme, see Section 2.6 [Environment Variables], page 16.

Note that environment variables are usually defined in the OS/2 ‘config.sys’ file. After
editing the ‘config.sys’ file, it is necessary to reboot OS/2 before the changes will take
effect.

MITSCHEME_LIBRARY_PATH
says where to find Scheme’s data files. This is the only required environ-
ment variable (but is not required when Scheme is invoked with the -library
command-line option).

6 MIT Scheme User’s Manual

SET MITSCHEME_LIBRARY_PATH=C:\SCHEME\LIB

MITSCHEME_INF_DIRECTORY
tells Scheme where to find debugging information for the runtime system. The
default value for this environment variable is a subdirectory ‘src’ located in the
directory specified by MITSCHEME_LIBRARY_PATH.

SET MITSCHEME_INF_DIRECTORY=C:\SCHEME\LIB\SRC

TMPDIR tells Scheme the name of a directory where it can store temporary files.
SET TMPDIR=C:\TMP

HOME tells Scheme where your “home” directory is located. This is where Scheme
looks for init files, and it is also what the ‘~/’ (or ‘~\\’) filename prefix expands
to. If not specified, Scheme uses the root directory of the current drive.

SET HOME=C:\CPH

USER tells Scheme your user name. This is used for several purposes, including the
name that will be used as your email address.

SET USER=cph

SHELL tells Edwin what shell program to use in shell buffers and for running shell
commands. If not specified, this defaults to the standard OS/2 shell, ‘cmd.exe’.

SET SHELL=C:\4OS2251\4OS2.EXE

1.4 Optional Configuration

As distributed, Scheme contains several large files. You might not need all of them, so
this section will tell you what each is for so that you can decide if you want to delete some
of them. Also, we will discuss the two different Scheme executables, which are each useful
in different situations; you should read this to decide which is right for you.

The Scheme runtime environment and associated tools are normally stored in bands,
which are large memory images stored in files (see Section 3.3 [World Images], page 28).
Scheme requires at least one band to work properly. The Scheme distribution contains
several bands. These bands are stored in the ‘lib/mit-scheme’ directory on unix systems,
and the ‘lib’ directory on PC systems.

‘runtime.com’
The is the basic world image, and the smallest. It contains just the runtime
files. This is the band that is chosen when Scheme is invoked with no special
command-line options.

‘compiler.com’
This contains the runtime files and the native-code Scheme compiler. This band
is chosen when the -compiler command-line option is supplied.

‘edwin.com’
This contains the runtime files and the Edwin text editor. This band is chosen
when the -edwin command-line option is supplied.

Chapter 1: Installation 7

‘all.com’ This contains the runtime files, the native-code compiler, and Edwin. This
band is chosen when both the -compiler and -edwin command-line options
are supplied.

Depending on your needs, you may not need all of these files. For example, if you always
want the full development environment, you might keep ‘all.com’ and delete the others.
Or if you will never use the compiler, you could delete ‘compiler.com’ and ‘all.com’.
Remember that you must keep at least one of these files to use Scheme.

In addition to bands, Scheme is distributed with two executable programs: ‘scheme’
(called ‘scheme.exe’ on PC systems), and ‘bchscheme’ (called ‘bchschem.exe’ on PC sys-
tems). Normally you will need only one of these files.

The only difference between these two programs is in how they handle garbage collection.
‘scheme’ allocates two memory heaps, and copies objects between the heaps to preserve
them. This means that most of the time the other heap is occupying valuable memory but
doesn’t hold any interesting data. ‘bchscheme’ allocates only one memory heap, creates a
disk file during garbage collection, copies objects into the file, then copies them back into
memory.

These programs provide you with some important performance trade-offs. If you have
plenty of memory and want the best performance, use ‘scheme’. If you don’t have enough
memory, or if you want to use less memory and will accept slower performance, use
‘bchscheme’. One way to tell that you don’t have enough memory is to run ‘scheme’ for a
while and see if your machine is paging during garbage collection.

You might consider trying to use ‘scheme’ and letting the operating system’s paging
handle the lack of ram. But usually you will find that using ‘bchscheme’ without paging is
much faster than using ‘scheme’ with paging. Of course, if you are using ‘bchscheme’ and
you’re still paging, the best solution is to install more ram.

8 MIT Scheme User’s Manual

Chapter 2: Running Scheme 9

2 Running Scheme

This chapter describes how to run MIT Scheme. It also describes how you can customize
the behavior of MIT Scheme using command-line options and environment variables.

2.1 Basics of Starting Scheme

Usually, MIT Scheme is invoked by typing
scheme

at your operating system’s command interpreter. Scheme will load itself, clear the screen,
and print something like this:

Scheme saved on Wednesday July 18, 2001 at 12:50:28 AM
Release 7.5.17
Microcode 14.4
Runtime 14.189

This information, which can be printed again by evaluating
(identify-world)

tells you the following version information. ‘Release’ is the release number for the entire
Scheme system. This number is changed each time a new version of Scheme is released.
‘Microcode’ is the version number for the part of the system that is written in C. ‘Runtime’
is the version number for the part of the system that is written in Scheme.

Following this there may be additional version numbers for specific subsystems. ‘SF’
refers to the scode optimization program sf, ‘Liar’ is the native-code compiler, ‘Edwin’ is
the Emacs-like text editor, and ‘6.001’ is the sicp compatibility package.

You can load the compiler by giving Scheme the -compiler option:
scheme -compiler

This option causes Scheme to use a larger constant space and heap, and to load the world
image containing the compiler.

2.2 Customizing Scheme

You can customize your setup by using a variety of tools:
• Command-line options. Many parameters, like memory usage and the location of

libraries, may be varied by command-line options. See Section 2.4 [Command-Line
Options], page 11.

• Command scripts or batch files. You might like to write scripts that invoke Scheme
with your favorite command-line options. For example, you might not have enough
memory to run Edwin or the compiler with its default memory parameters (it will print
something like “Not enough memory for this configuration” and halt when started), so
you can write a shell script (unix), ‘.bat’ file (Windows), or ‘.cmd’ file (OS/2) that
will invoke Scheme with the appropriate -heap and other parameters.

10 MIT Scheme User’s Manual

• Scheme supports init files: an init file is a file containing Scheme code that is loaded
when Scheme is started, immediately after the identification banner, and before the in-
put prompt is printed. This file is stored in your home directory, which is normally spec-
ified by the HOME environment variable. Under unix, the file is called ‘.scheme.init’;
on the PC it is called ‘scheme.ini’.
In addition, when Edwin starts up, it loads a separate init file from your home directory
into the Edwin environment. This file is called ‘.edwin’ under unix, and ‘edwin.ini’
on the PC (see Section 7.1 [Starting Edwin], page 61).
You can use both of these files to define new procedures or commands, or to change
defaults in the system.
The -no-init-file command-line option causes Scheme to ignore the
‘.scheme.init’ file (see Section 2.4 [Command-Line Options], page 11).

• Environment variables. Most microcode parameters, and some runtime system and
Edwin parameters, can be specified by means of environment variables. See Section 2.6
[Environment Variables], page 16.

• Icons. Under OS/2 and Windows, and with some window managers under X11, it is
possible to create icons that invoke Scheme with different parameters.

2.3 Memory Usage

Some of the parameters that can be customized determine how much memory Scheme
uses and how that memory is used. This section describes how Scheme’s memory is or-
ganized and used; subsequent sections describe command-line options and environment
variables that you can use to customize this usage for your needs.

Scheme uses four kinds of memory:
• A stack that is used for recursive procedure calls.
• A heap that is used for dynamically allocated objects, like ‘cons’ cells and strings.

Storage used for objects in the heap that become unreferenced is eventually reclaimed
by garbage collection.

• A constant space that is used for allocated objects, like the heap. Unlike the heap,
storage used for objects in constant space is not reclaimed by garbage collection. Con-
stant space is used for objects that are essentially permanent, like procedures in the
runtime system.

• Some extra storage that is used by the microcode (the part of the system that is
implemented in C).

All kinds of memory except the last may be controlled either by command-line options or
by environment variables.

MIT Scheme uses a two-space copying garbage collector for reclaiming storage in the
heap. There are two versions of Scheme which handle garbage collection differently. The
standard Scheme, called ‘scheme’ under unix and ‘scheme.exe’ on the PC, has two heaps,
one for each “space”. An alternative, called ‘bchscheme’ under unix and ‘bchschem.exe’
on the PC, has one heap and uses a disk file for the other “space”, thus trading memory
usage against garbage collection speed (see Section 1.4 [Optional Configuration], page 6).

Chapter 2: Running Scheme 11

The total storage required by ‘scheme’ is:
stack + (constant + 2*heap) + extra

where stack, constant and heap are parameters that are selected when ‘scheme’ starts. For
‘bchscheme’, which has only one heap in memory, the equation is

stack + (constant + heap) + extra

Once the storage is allocated for the constant space and the heap, Scheme will dynami-
cally adjust the proportion of the total that is used for constant space; the stack and extra
microcode storage is not included in this adjustment. Previous versions of MIT Scheme
needed to be told the amount of constant space that was required when loading bands with
the -band option. Dynamic adjustment of the heap and constant space avoids this problem.

If the size of the constant space is not specified, it is automatically set to the correct size
for the band being loaded. Thus, in general it is rarely necessary to explicitly set the size
of the constant space. Additionally, each band requires a small amount of heap space; this
amount is added to any specified heap size, so that the specified heap size is the amount of
free space available.

The Scheme expression ‘(print-gc-statistics)’ shows how much heap and constant
space is available (see Section 3.4 [Garbage Collection], page 29).

2.4 Command-Line Options

Scheme accepts the command-line options detailed in the following sections. The options
may appear in any order, with the restriction that the microcode options must appear before
the runtime options, and the runtime options must appear before any other arguments on
the command line. Any arguments other than these options will generate a warning message
when Scheme starts. If you want to define your own command-line options, see Section 2.5
[Custom Command-line Options], page 15.

These are the microcode options:

-compiler
This option specifies defaults appropriate for loading the compiler. It specifies
the use of large sizes, exactly like -large; if the -band option is also specified,
that is the only effect of this option. Otherwise, the default band’s filename is
the value of the environment variable MITSCHEME_COMPILER_BAND, if defined,
or ‘compiler.com’; the library directories are searched to locate this file.

-edwin This option specifies defaults appropriate for loading the editor. It specifies
the use of large sizes, exactly like -large; if the -band option is also specified,
that is the only effect of this option. Otherwise, the default band’s filename
is the value of the environment variable MITSCHEME_EDWIN_BAND, if defined, or
‘edwin.com’; the library directories are searched to locate this file.

-compiler -edwin
If both the -compiler and -edwin options are given, Scheme will load an en-
vironment containing both the compiler and the editor. The default band’s
filename is the value of the environment variable MITSCHEME_ALL_BAND, if de-
fined, or ‘all.com’; the library directories are searched to locate this file.

12 MIT Scheme User’s Manual

-band filename
Specifies the initial world image file (band) to be loaded. Searches for filename
in the working directory and the library directories, using the full pathname of
the first readable file of that name. If filename is an absolute pathname (on
unix, this means it starts with ‘/’), then no search occurs — filename is tested
for readability and then used directly. If this option isn’t given, the filename is
the value of the environment variable MITSCHEME_BAND, or if that isn’t defined,
‘runtime.com’; in these cases the library directories are searched, but not the
working directory.

-large Specifies that large heap, constant, and stack sizes should be used. These are
specified by the environment variables

MITSCHEME_LARGE_HEAP
MITSCHEME_LARGE_CONSTANT
MITSCHEME_LARGE_STACK

If this option isn’t given, the small sizes are used, specified by the environment
variables

MITSCHEME_SMALL_HEAP
MITSCHEME_SMALL_CONSTANT
MITSCHEME_SMALL_STACK

There are reasonable built-in defaults for all of these environment variables,
should any of them be undefined. Note that any or all of the defaults can be
individually overridden by the -heap, -constant, and -stack options.

Note: the Scheme expression ‘(print-gc-statistics)’ shows how much heap
and constant space is available and in use (see Section 3.4 [Garbage Collection],
page 29).

-heap blocks
Specifies the size of the heap in 1024-word blocks. Overrides any default. Nor-
mally two such heaps are allocated; ‘bchscheme’ allocates only one, and uses a
disk file for the other.

The size specified by this option is incremented by the amount of heap space
needed by the band being loaded. Consequently, -heap specifies how much
free space will be available in the heap when Scheme starts, independent of the
amount of heap already consumed by the band.

-constant blocks
Specifies the size of constant space in 1024-word blocks. Overrides any default.
Constant space holds the compiled code for the runtime system and other sub-
systems.

-stack blocks
Specifies the size of the stack in 1024-word blocks. Overrides any default. This
is Scheme’s stack, not the unix stack used by C programs.

-option-summary
Causes Scheme to write an option summary to standard error. This shows the
values of all of the settable microcode option variables.

Chapter 2: Running Scheme 13

-emacs Specifies that Scheme is running as a subprocess of GNU Emacs. This option
is automatically supplied by GNU Emacs, and should not be given under other
circumstances.

-interactive
If this option isn’t specified, and Scheme’s standard i/o is not a terminal,
Scheme will detach itself from its controlling terminal, which prevents it from
getting signals sent to the process group of that terminal. If this option is
specified, Scheme will not detach itself from the controlling terminal.
This detaching behavior is useful for running Scheme as a background job.
For example, using bash, the following will run Scheme as a background job,
redirecting its input and output to files, and preventing it from being killed by
keyboard interrupts or by logging out:

scheme < /usr/cph/foo.in > /usr/cph/foo.out 2>&1 &

This option is ignored under non-unix operating systems.

-nocore Specifies that Scheme should not generate a core dump under any circum-
stances. If this option is not given, and Scheme terminates abnormally, you
will be prompted to decide whether a core dump should be generated.
This option is ignored under non-unix operating systems.

-library path
Sets the library search path to path. This is a list of directories that is searched
to find various library files, such as bands. If this option is not given, the
value of the environment variable MITSCHEME_LIBRARY_PATH is used; if that
isn’t defined, the default is used.
On unix, the elements of the list are separated by colons, and the default value is
‘/usr/local/lib/mit-scheme’. On PCs, the elements of the list are separated
by semicolons, and the default value is ‘c:\scheme\lib’.

-utabmd filename
Specifies that filename contains the microcode tables (the microcode tables are
information that informs the runtime system about the microcode’s structure).
Filename is searched for in the working directory and the library directories.
If this option isn’t given, the filename is the value of the environment variable
MITSCHEME_UTABMD_FILE, or if that isn’t defined, ‘utabmd.bin’; in these cases
the library directories are searched, but not the working directory.
-utab is an alternate name for the -utabmd option; at most one of these options
may be given.

-fasl filename
Specifies that a cold load should be performed, using filename as the initial file
to be loaded. If this option isn’t given, a normal load is performed instead.
This option may not be used together with the -compiler, -edwin, or -band
options. This option is useful only for maintenance and development of the
MIT Scheme runtime system.

In addition to the above, ‘bchscheme’ recognizes the following command-line options, all
of which specify parameters affecting how ‘bchscheme’ uses disk storage to do garbage
collection:

14 MIT Scheme User’s Manual

-gc-directory directory
Specifies that directory should be used to create files for garbage collection.
If the option is not given, the value of environment variable MITSCHEME_GC_
DIRECTORY is used instead, and if that is not defined, a standard temporary
directory is used (see TMPDIR in see Section 2.6.3 [Runtime Environment Vari-
ables], page 18).

-gc-file filename
Specifies that filename should be used for garbage collection. If the option is
not given, the value of environment variable MITSCHEME_GC_FILE is used, and
if this is not defined, a unique filename is generated in the directory specified
with -gc-directory.
-gcfile is an alias for -gc-file; at most one of these options should be spec-
ified.

-gc-keep Specifies that the gc file used for garbage collection should not be deleted when
Scheme terminates. The gc file is deleted only if the file was created by this
invocation of Scheme, and this option is not set.

-gc-start-position number
Specifies the first byte position in the gc file at which the Scheme process
can write. If not given, the value of the environment variable MITSCHEME_GC_
START_POSITION is used, and if that is not defined, ‘0’ is used, meaning the
beginning of the file. The area of the file used (and locked if possible) is the
region between -gc-start-position and -gc-end-position.

-gc-end-position number
Specifies the last byte position in the gc file at which the Scheme process can
write. If not given, the value of the environment variable MITSCHEME_GC_END_
POSITION is used, and if that is not defined, the sum of the start position (as
specified by -gc-start-position) and the heap size is used. The area of the
file used (and locked if possible) is the region between -gc-start-position
and -gc-end-position.

-gc-window-size blocks
Specifies the size of the windows into new space during garbage collection.
If this option is not given, the value of environment variable MITSCHEME_GC_
WINDOW_SIZE is used instead, and if that is not defined, the value ‘16’ is used.

The following command-line options are only used by an experimental version of
‘bchscheme’ that uses unix System V-style shared memory, and then only if the ‘gcdrone’
program is installed in the library directory.

-gc-drone program
Specifies that program should be used as the drone program for overlapped
i/o during garbage collection. If the option is not given, the value of environ-
ment variable MITSCHEME_GC_DRONE is used instead, and if that is not defined,
‘gcdrone’ is used.

-gc-read-overlap n
Specifies that Scheme should delegate at most n simultaneous disk read op-
erations during garbage collection. If the option is not given, the value of

Chapter 2: Running Scheme 15

environment variable MITSCHEME_GC_READ_OVERLAP is used instead, and if that
is not defined, ‘0’ is used, disabling overlapped reads.

-gc-write-overlap n
Specifies that Scheme should delegate at most n simultaneous disk write oper-
ations during garbage collection. If the option is not given, the value of envi-
ronment variable MITSCHEME_GC_WRITE_OVERLAP is used instead, and if that is
not defined, ‘0’ is used, disabling overlapped writes.

The following options are runtime options. They are processed after the microcode options
and after the image file is loaded.

-no-init-file
This option causes Scheme to ignore the ‘~/.scheme.init’ or ‘scheme.ini’
file, normally loaded automatically when Scheme starts (if it exists).

-suspend-file
Under some circumstances Scheme can write out a file called ‘scheme_suspend’
in the user’s home directory.1 This file is a world image containing the complete
state of the Scheme process; restoring this file continues the computation that
Scheme was performing at the time the file was written.
Normally this file is never written, but the -suspend-file option enables writ-
ing of this file.

-eval expression ...
This option causes Scheme to evaluate the expressions following it on the com-
mand line, up to (but not including) the next option that starts with a hyphen.
The expressions are evaluated in the user-initial-environment. Unless ex-
plicitly handled, errors during evaluation are silently ignored.

-load file ...
This option causes Scheme to load the files (or lists of files) following it on
the command line, up to (but not including) the next option that starts with
a hyphen. The files are loaded in the user-initial-environment using the
default syntax table. Unless explicitly handled, errors during loading are silently
ignored.

The following option is supported only when Edwin is loaded.

-edit This option causes Edwin to start immediately when Scheme is started.

2.5 Custom Command-line Options

MIT Scheme provides a mechanism for you to define your own command-line options.
This is done by registering handlers to identify particular named options and to process them
when Scheme starts. Unfortunately, because of the way this mechanism is implemented,
you must define the options and then save a world image containing your definitions (see

1 Under unix, this file is written when Scheme is terminated by the ‘SIGUSR1’, ‘SIGHUP’,
or ‘SIGPWR’ signals. Under other operating systems, this file is never written.

16 MIT Scheme User’s Manual

Section 3.3 [World Images], page 28). Later, when you start Scheme using that world image,
your options will be recognized.

The following procedures define command-line parsers. In each, the argument keyword
defines the option that will be recognized on the command line. The keyword must be a
string starting with a hyphen and containing at least one additional character.

procedure+simple-command-line-parser keyword thunk
Defines keyword to be a simple command-line option. When this keyword is seen on
the command line, it causes thunk to be executed.

procedure+argument-command-line-parser keyword multiple? procedure
Defines keyword to be a command-line option that is followed by one or more
command-line arguments. Procedure is a procedure that accepts one argument;
when keyword is seen, it is called once for each argument.

Multiple?, if true, says that keyword may be followed by more than one argument
on the command line. In this case, procedure is called once for each argument that
follows keyword and does not start with a hyphen. If multiple? is #f, procedure is
called once, with the command-line argument following keyword. In this case, it does
not matter if the following argument starts with a hyphen.

procedure+set-command-line-parser! keyword procedure
This low-level procedure defines keyword to be a command-line option that is defined
by procedure. When keyword is seen, procedure is called with all of the command-line
arguments, starting with keyword, as a single list argument. Procedure must return
two values (using the values procedure): the unused command-line arguments (as a
list), and a thunk that is executed to implement the behavior of the option.

2.6 Environment Variables

Scheme refers to many environment variables. This section lists these variables and
describes how each is used. The environment variables are organized according to the parts
of MIT Scheme that they affect.

Environment variables that affect the microcode must be defined before you start
Scheme; under unix or Windows, others can be defined or overwritten within Scheme by
using the set-environment-variable! procedure, e.g.

(set-environment-variable! "EDWIN_FOREGROUND" "32")

2.6.1 Environment Variables for the Microcode

These environment variables are referred to by the microcode (the executable C programs
called ‘scheme’ and ‘bchscheme’ under unix, and ‘scheme.exe’ and ‘bchschem.exe’ on the
PC).

Chapter 2: Running Scheme 17

MITSCHEME_ALL_BAND (default: ‘all.com’ on the library path)
The initial band to be loaded if both the -compiler and -edwin options are
given. Overridden by -band.

MITSCHEME_BAND (default: ‘runtime.com’ on the library path)
The initial band to be loaded. Overridden by -band, -compiler, or -edwin.

MITSCHEME_COMPILER_BAND (default: ‘compiler.com’ on the library path)
The initial band to be loaded if the -compiler option is given. Overridden by
-band.

MITSCHEME_EDWIN_BAND (default: ‘edwin.com’ on the library path)
The initial band to be loaded if the -edwin option is given. Overridden by
-band.

MITSCHEME_LARGE_CONSTANT (default: as needed)
The size of constant space, in 1024-word blocks, if the -large, -compiler,
or -edwin options are given. Overridden by -constant. Note: the default is
computed to be the correct size for the band being loaded.

MITSCHEME_LARGE_HEAP (default: ‘1000’)
The size of the heap, in 1024-word blocks, if the -large, -compiler, or -edwin
options are given. Overridden by -heap.

MITSCHEME_LARGE_STACK (default: ‘100’)
The size of the stack, in 1024-word blocks, if the -large, -compiler, or -edwin
options are given. Overridden by -stack.

MITSCHEME_LIBRARY_PATH
A list of directories. These directories are searched, left to right, to find bands
and various other files. On unix systems the list is colon-separated, with the
default ‘/usr/local/lib/mit-scheme’. On PC systems the list is semicolon-
separated with the default ‘c:\scheme\lib’.

MITSCHEME_SMALL_CONSTANT (default: as needed)
The size of constant space, in 1024-word blocks, if the size options are not given.
Overridden by -constant, -large, -compiler, or -edwin. Note: the default
is computed to be the correct size for the band being loaded.

MITSCHEME_SMALL_HEAP (default: ‘250’)
The size of the heap, in 1024-word blocks, if the size options are not given.
Overridden by -heap, -large, -compiler, or -edwin.

MITSCHEME_SMALL_STACK (default: ‘100’)
The size of the stack, in 1024-word blocks, if the size options are not given.
Overridden by -stack, -large, -compiler, or -edwin.

MITSCHEME_UTABMD_FILE (default: ‘utabmd.bin’ in the library path)
The file containing the microcode tables. Overridden by -utabmd and -utab.

2.6.2 Environment Variables for ‘bchscheme’

These environment variables are referred to by ‘bchscheme’ (not by ‘scheme’).

18 MIT Scheme User’s Manual

MITSCHEME_GC_DIRECTORY
The directory in which gc files are written. Overridden by -gc-directory.
The default for this variable is the standard temporary directory (see TMPDIR
in see Section 2.6.3 [Runtime Environment Variables], page 18).

MITSCHEME_GC_FILE (default: ‘GCXXXXXX’)
The name of the file to use for garbage collection. If it ends in 6 Xs, the Xs
are replaced by a letter and process id of the scheme process, thus generating
a unique name. Overridden by -gc-file.

MITSCHEME_GC_START_POSITION (default: ‘0’)
The first position in the gc file to use. Overridden by -gc-start-position.

MITSCHEME_GC_END_POSITION (default: start-position+heap-size)
The last position in the gc file to use. Overridden by -gc-end-position.

MITSCHEME_GC_WINDOW_SIZE (default: ‘16’)
The size in blocks of windows into new space (in the gc file).
Overridden by -gc-window-size.

The following environment variables are only used by an experimental version of Bchscheme
that uses unix System V-style shared memory, and then only if the ‘gcdrone’ program is
installed:

MITSCHEME_GC_DRONE (default: ‘gcdrone’)
The program to use as the i/o drone during garbage collection.
Overridden by -gc-drone.

MITSCHEME_GC_READ_OVERLAP (default: ‘0’)
The maximum number of simultaneous read operations.
Overridden by -gc-read-overlap.

MITSCHEME_GC_WRITE_OVERLAP (default: ‘0’)
The maximum number of simultaneous write operations.
Overridden by -gc-write-overlap.

2.6.3 Environment Variables for the Runtime System

These environment variables are referred to by the runtime system.

HOME Directory in which to look for init files. E.g. ‘c:\users\joe’ or ‘/home/joe’.
This variable needs to be set on OS/2 and Windows 9x. Under Windows
NT, the environment variables HOMEDRIVE and HOMEPATH, set by the operating
system, are used instead. Under unix, HOME is set by the login shell.

TMPDIR
TEMP
TMP Directory for various temporary files. The variables are tried in the given order.

If none of them is suitable, built-in defaults are used: under unix, ‘/var/tmp’,
‘/usr/tmp’, ‘/tmp’; under OS/2 and Windows, ‘\temp’, ‘\tmp’, and ‘\’ (all on
the system drive).

Chapter 2: Running Scheme 19

MITSCHEME_INF_DIRECTORY (default: ‘SRC’ on the library path)
Directory containing the debugging information files for the Scheme system.
Should contain subdirectories corresponding to the subdirectories in the source
tree. For example, if its value is ‘f:\random’, runtime system debugging files
will be expected in ‘f:\random\runtime’, while Edwin debugging files will be
expected in ‘f:\random\edwin’.

MITSCHEME_LOAD_OPTIONS (default: ‘optiondb.scm’ on the library path)
Specifies the location of the options database file used by the load-option
procedure.

2.6.4 Environment Variables for Edwin

These environment variables are referred to by Edwin.

EDWIN_BINARY_DIRECTORY (default: ‘edwin/autoload’ on the library path)
Directory where Edwin expects to find files providing autoloaded facilities.

EDWIN_INFO_DIRECTORY (default: ‘edwin/info’ on the library path)
Directory where Edwin expects to find files for the ‘info’ documentation sub-
system.

EDWIN_ETC_DIRECTORY (default: ‘edwin/etc’ on the library path)
Directory where Edwin expects to find utility programs and documentation
strings.

ESHELL Filename of the shell program to use in shell buffers. If not defined, the SHELL
environment variable is used instead.

SHELL (default: ‘/bin/sh’ (unix), ‘cmd.exe’ (PC))
Filename of the shell program to use in shell buffers and when executing shell
commands. Used to initialize the shell-path-name editor variable.

PATH Used to initialize the exec-path editor variable, which is subsequently used for
finding programs to be run as subprocesses.

DISPLAY Used when Edwin runs under unix and uses X11. Specifies the display on which
Edwin will create windows.

TERM Used when Edwin runs under unix on a terminal. Terminal type.

LINES (default: auto-sense)
Used when Edwin runs under unix on a terminal. Number of text lines on the
screen, for systems that don’t support ‘TIOCGWINSZ’.

COLUMNS (default: auto-sense)
Used when Edwin runs under unix on a terminal. Number of text columns on
the screen, for systems that don’t support ‘TIOCGWINSZ’.

2.6.5 Environment Variables for Microsoft Windows

These environment variables are specific to the Microsoft Windows implementation.

20 MIT Scheme User’s Manual

MITSCHEME_FONT (default: determined by operating system)
A string specifying a font name and characteristics, for example ‘Courier New
16 bold’. Allowed characteristics are integer, specifying the font size in points,
and the following style modifiers: ‘bold’, ‘italic’, ‘regular’, ‘underline’ and
‘strikeout’. You should specify only fixed-width fonts as variable-width fonts
are not drawn correctly.
Once in Edwin, the font can be changed with the set-font and set-default-
font commands.

MITSCHEME_GEOMETRY (default: ‘-1,-1,-1,-1’)
Four integers separated by commas or spaces that specify the placement and size
of the MIT Scheme window as a left,top,width,height quadruple. The units are
screen pixels, and ‘-1’ means allow the system to choose this parameter. E.g.
‘-1,-1,500,300’ places a 500 by 300 pixel window at some system-determined
position on the screen. The width and height include the window border and
title.

MITSCHEME_FOREGROUND (default: according to desktop color scheme)
A value specifying the window text color. The color is specified as hex blue,
green and red values (not RGB): e.g. 0xff0000 for blue.

MITSCHEME_BACKGROUND (default: according to desktop color scheme)
A value specifying the window background color. See MITSCHEME_FOREGROUND.

HOMEDRIVE
HOMEPATH These variables are used together to indicate the user’s home directory. This is

the preferred way to specify the home directory.

USERNAME
USER Specifies the login name of the user running Scheme. This is used for several

different purposes. USERNAME is preferred; USER is used if USERNAME is not
defined. If neither of these variables is defined, an error is signalled when the
username is required.

USERDIR Specifies a directory that contains the home directories of users. One of the
places in which Scheme looks for the user’s home directory, by searching for a
subdirectory with the user’s login name.

2.6.6 Environment Variables for OS/2

These environment variables are specific to the OS/2 implementation.

USER Specifies the login name of the user running Scheme. This is used for several
different purposes. If this variable is undefined, an error is signalled when the
username is required.

USERDIR Specifies a directory that contains the home directories of users. One of the
places in which Scheme looks for the user’s home directory, by searching for a
subdirectory with the user’s login name. This variable is used only when HOME
is not defined; we recommend using HOME rather than USERDIR.

Chapter 2: Running Scheme 21

COMSPEC Specifies the command shell. This is set in all versions of OS/2 (and is required
for proper operation of the operating system). Scheme uses this to determine
the user’s shell if the environment variable SHELL is not defined.

2.7 Starting Scheme from Microsoft Windows

The Microsoft Windows version of MIT Scheme runs as a graphics-based application.
Scheme can be started from the command line as described at the beginning of this chapter.

Shortcuts are a convenient way to start Scheme. The rest of this section gives some tips
on how to set up shortcuts that run Scheme. If you are unfamiliar with this concept you
should read about it in the system help.
• Under Windows NT shortcuts can be common or personal. When setting common

shortcuts it is important to make the shortcut properties independent of the vagaries
of the environment of the user who is running them.

• Give the shortcut an accurate Description.
• Include absolute pathnames to ‘scheme.exe’ and ‘bchscheme.exe’ in the shortcut

Command line.
• If you specify the -library command-line option then you do not have to worry about

the MITSCHEME_LIBRARY_PATH environment variable.
• Set the shortcut’s Working Directory to something sensible. On Windows NT you can

use ‘%HOMEDRIVE%%HOMEPATH%’ to make Scheme start up in the user’s home directory.
On Windows 9x you can use ‘%HOME%’ to achieve the same effect, provided that you
have set the HOME environment variable as we recommend.

• There are several icons available in the Scheme executable — choose one that best
represents the options given on the command line.

• Specifying a band that contains Edwin is not sufficient to invoke the editor. You also
have to put -edit at the end of the command line.

2.8 Leaving Scheme

There are several ways that you can leave Scheme: there are two Scheme procedures
that you can call; there are several Edwin commands that you can execute; and there are
are graphical-interface buttons (and their associated keyboard accelerators) that you can
activate.
• Two Scheme procedures that you can call. The first is to evaluate

(exit)

which will halt the Scheme system, after first requesting confirmation. Any information
that was in the environment is lost, so this should not be done lightly.
The second procedure suspends Scheme; when this is done you may later restart where
you left off. Unfortunately this is not possible in all operating systems; currently it
works under unix versions that support job control (i.e. all of the unix versions for
which we distribute Scheme). To suspend Scheme, evaluate

22 MIT Scheme User’s Manual

(quit)

If your system supports suspension, this will cause Scheme to stop, and you will be
returned to the shell. Scheme remains stopped, and can be continued using the job-
control commands of your shell. If your system doesn’t support suspension, this pro-
cedure does nothing. (Calling the quit procedure is analogous to typing C-z, but it
allows Scheme to respond by typing a prompt when it is unsuspended.)

• Several Edwin commands that you can execute, including save-buffers-kill-scheme,
normally bound to C-x C-c, and suspend-scheme, normally bound to C-x C-z. These
two commands correspond to the procedures exit and quit, respectively.

• Graphical-interface buttons that you can activate. Under OS/2 and Windows, closing
the console window (Scheme’s main window) causes Scheme to be terminated. Under
any operating system, closing an Edwin window causes that window to go away, and
if it is the only Edwin window, it terminates Scheme as well.
Under OS/2, there are two distinct ways to close the console window. The first is to
use any of the usual window-closing methods, such as the ‘Close’ system-menu item
or double-clicking on the system-menu icon. When this is done, you will be presented
with a dialog that gives you the option to close the window with or without termating
Scheme. The second way is to select the ‘Exit’ item from the ‘File’ menu, which
terminates Scheme immediately with no dialog.

Chapter 3: Using Scheme 23

3 Using Scheme

This chapter describes how to use Scheme to evaluate expressions and load programs. It
also describes how to save custom “world images”, and how to control the garbage collector.
Subsequent chapters will describe how to use the compiler, and how to debug your programs.

3.1 The Read-Eval-Print Loop

When you first start up Scheme from the command line, you will be typing at a program
called the Read-Eval-Print Loop (abbreviated REPL). It displays a prompt at the left hand
side of the screen whenever it is waiting for input. You then type an expression (terminating
it with 〈RET〉). Scheme evaluates the expression, prints the result, and gives you another
prompt.

3.1.1 The Prompt and Level Number

The repl prompt normally has the form
1]=>

The ‘1’ in the prompt is a level number, which is always a positive integer. This number is
incremented under certain circumstances, the most common being an error. For example,
here is what you will see if you type f o o 〈RET〉 after starting Scheme:

;Unbound variable: foo
;To continue, call RESTART with an option number:
; (RESTART 3) => Specify a value to use instead of foo.
; (RESTART 2) => Define foo to a given value.
; (RESTART 1) => Return to read-eval-print level 1.

2 error>

In this case, the level number has been incremented to ‘2’, which indicates that a new repl

has been started (also the prompt string has been changed to remind you that the repl

was started because of an error). The ‘2’ means that this new repl is “over” the old one.
The original repl still exists, and is waiting for you to return to it, for example, by entering
(restart 1). Furthermore, if an error occurs while you are in this repl, yet another repl

will be started, and the level number will be increased to ‘3’. This can continue ad infinitum,
but normally it is rare to use more than a few levels.

The normal way to get out of an error repl and back to the top level repl is to use the
C-g interrupt. This is a single-keystroke command executed by holding down the 〈CTRL〉
key and pressing the 〈G〉 key. C-g always terminates whatever is running and returns you
to the top level repl immediately.

Note: The appearance of the ‘error>’ prompt does not mean that Scheme is in some
weird inconsistent state that you should avoid. It is merely a reminder that your program
was in error: an illegal operation was attempted, but it was detected and avoided. Often

24 MIT Scheme User’s Manual

the best way to find out what is in error is to do some poking around in the error repl. If
you abort out of it, the context of the error will be destroyed, and you may not be able to
find out what happened.

3.1.2 Interrupting

Scheme has several interrupt keys, which vary depending on the underlying operating
system: under unix, C-g and C-c; under OS/2 and Windows, C-g, C-b, C-x and C-u. The
C-g key stops any Scheme evaluation that is running and returns you to the top level repl.
C-c prompts you for another character and performs some action based on that character.
It is not necessary to type 〈RET〉 after C-g or C-c, nor is it needed after the character that
C-c will ask you for.

Here are the definitions of the more common interrupt keys; on unix, type C-c ? for
more possibilities. Note that in any given implementation, only a subset of the following
keys is available.

C-c C-c

C-g Abort whatever Scheme evaluation is currently running and return to the top-
level repl. If no evaluation is running, this is equivalent to evaluating

(cmdl-interrupt/abort-top-level)

C-c C-x

C-x Abort whatever Scheme evaluation is currently running and return to the “cur-
rent” repl. If no evaluation is running, this is equivalent to evaluating

(cmdl-interrupt/abort-nearest)

C-c C-u

C-u Abort whatever Scheme evaluation is running and go up one level. If you are
already at level number 1, the evaluation is aborted, leaving you at level 1. If
no evaluation is running, this is equivalent to evaluating

(cmdl-interrupt/abort-previous)

C-c C-b

C-b Suspend whatever Scheme evaluation is running and start a breakpoint repl.
The evaluation can be resumed by evaluating

(continue)

in that repl at any time.

C-c q Similar to typing (exit) at the repl, except that it works even if Scheme is
running an evaluation, and does not request confirmation.

C-c z Similar to typing (quit) at the repl, except that it works even if Scheme is
running an evaluation.

C-c i Ignore the interrupt. Type this if you made a mistake and didn’t really mean
to type C-c.

C-c ? Print help information. This will describe any other options not documented
here.

Chapter 3: Using Scheme 25

3.1.3 Restarting

Another way to exit a repl is to use the restart procedure:

procedure+restart [k]
This procedure selects and invokes a restart method. The list of restart methods is
different for each repl and for each error; in the case of an error repl, this list is
printed when the repl is started:

;Unbound variable: foo
;To continue, call RESTART with an option number:
; (RESTART 3) => Specify a value to use instead of foo.
; (RESTART 2) => Define foo to a given value.
; (RESTART 1) => Return to read-eval-print level 1.

2 error>

If the k argument is given, it must be a positive integer index into the list (in the
example it must be between one and three inclusive). The integer k selects an item
from the list and invokes it. If k is not given, restart prints the list and prompts for
the integer index:

2 error> (restart)
;Choose an option by number:
; 3: Specify a value to use instead of foo.
; 2: Define foo to a given value.
; 1: Return to read-eval-print level 1.

Option number:

The simplest restart methods just perform their actions. For example:

2 error> (restart 1)
;Abort!

1]=>

Other methods will prompt for more input before continuing:

2 error> (restart)
;Choose an option by number:
; 3: Specify a value to use instead of foo.
; 2: Define foo to a given value.
; 1: Return to read-eval-print level 1.

Option number: 3

Value to use instead of foo: ’(a b)
;Value: (a b)

1]=>

26 MIT Scheme User’s Manual

3.1.4 The Current REPL Environment

Every repl has a current environment, which is the place where expressions are evaluated
and definitions are stored. When Scheme is started, this environment is the value of the
variable user-initial-environment. There are a number of other environments in the
system, for example system-global-environment, where the runtime system’s bindings
are stored.

You can get the current repl environment by evaluating
(nearest-repl/environment)

There are several other ways to obtain environments. For example, if you have a proce-
dure object, you can get a pointer to the environment in which it was closed by evaluating

(procedure-environment procedure)

Here is the procedure that changes the repl’s environment:

procedure+ge environment
Changes the current repl environment to be environment (ge stands for “Goto En-
vironment”). Environment is allowed to be a procedure as well as an environment
object. If it is a procedure, then the closing environment of that procedure is used in
its place.

procedure+pe
This procedure is useful for finding out which environment you are in (pe stands for
“Print Environment”). If the current repl environment belongs to a package, then
pe returns the package name (a list of symbols). If the current repl environment
does not belong to a package then the environment is returned.

procedure+gst syntax-table
In addition to the current environment, each repl maintains a current syntax table.
The current syntax table tells the repl which keywords are used to identify special
forms (e.g. if, lambda). If you write macros, you may want to make your own syntax
table, in which case it is useful to be able to make that syntax table be the current
one; gst allows you to do that.

3.2 Loading Files

To load files of Scheme code, use the procedure load:

procedureload filename [environment [syntax-table [purify?]]]
Filename may be a string naming a file, or a list of strings naming multiple files.
Environment, if given, is the environment to evaluate the file in; if not given the
current repl environment is used. Likewise syntax-table is the syntax table to use.
The optional argument purify? is a boolean that says whether to move the contents
of the file into constant space after it is loaded but before it is evaluated. This is

Chapter 3: Using Scheme 27

performed by calling the procedure purify (see Section 3.4 [Garbage Collection],
page 29). If purify? is given and true, this is done; otherwise it is not.
load determines whether the file to be loaded is binary or source code, and performs
the appropriate action. By convention, files of source code have a pathname type
of "scm", and files of binary SCode have pathname type "bin". Native-code bina-
ries have pathname type "com". (See the description of pathname-type in section
“Components of Pathnames” in MIT Scheme Reference Manual.)

variable+load-noisily?
If load-noisily? is set to #t, load will print the value of each expression in the
file as it is evaluated. Otherwise, nothing is printed except for the value of the last
expression in the file. (Note: the noisy loading feature is implemented for source-code
files only.)

variable+load/default-types
When load is given a pathname without a type, it uses the value of this variable to
determine what pathname types to look for and how to load the file. load/default-
types is a list of associations that maps pathname types (strings) to loader proce-
dures. load tries the pathname types in the order that they appear in the list. The
initial value of this variable has pathname types in this order:

"com" "so" "sl" "bin" "scm"

This means that, for example, (load "foo") will try to load ‘foo.com’ first, and
‘foo.scm’ only after looking for and failing to find the other pathname types.

All pathnames are interpreted relative to a working directory, which is initialized when
Scheme is started. The working directory can be obtained by calling the procedure pwd
or modified by calling the procedure cd; see section “Working Directory” in MIT Scheme
Reference Manual. Files may be loaded when Scheme first starts; see the -load command-
line option for details.

procedure+load-option symbol [no-error?]
Loads the option specified by symbol; if already loaded, does nothing. Returns sym-
bol; if there is no such option, an error is signalled. However, if no-error? is specified
and true, no error is signalled in this case, and #f is returned.
A number of built-in options are defined:

compress Support to compress and uncompress files. Undocumented; see the source
file ‘runtime/cpress.scm’. Used by the runtime system for compression
of compiled-code debugging information.

format The format procedure. See section “Format” in MIT Scheme Reference
Manual.

gdbm Support to access gdbm databases. Undocumented; see the source files
‘runtime/gdbm.scm’ and ‘microcode/prgdbm.c’.

hash-table
The hash-table data type. See section “Hash Tables” in MIT Scheme
Reference Manual.

28 MIT Scheme User’s Manual

ordered-vector
Support to search and do completion on vectors of ordered elements.
Undocumented; see the source file ‘runtime/ordvec.scm’.

rb-tree The red-black tree data type. See section “Red-Black Trees” in MIT
Scheme Reference Manual.

regular-expression
Support to search and match strings for regular expressions. See section
“Regular Expressions” in MIT Scheme Reference Manual.

stepper Support to step through the evaluation of Scheme expressions. Undoc-
umented; see the source file ‘runtime/ystep.scm’. Used by the Edwin
command step-expression.

subprocess
Support to run other programs as subprocesses of the Scheme process.
Undocumented; see the source file ‘runtime/process.scm’. Used exten-
sively by Edwin.

synchronous-subprocess
Support to run synchronous subprocesses. See section “Subprocesses” in
MIT Scheme Reference Manual.

wt-tree The weight-balanced tree data type. See section “Weight-Balanced Trees”
in MIT Scheme Reference Manual.

In addition to the built-in options, you may define other options to be loaded by load-
options by modifying the file ‘optiondb.scm’ on the library path. An example file is
included with the distribution; normally this file consists of a series of calls to the procedure
define-load-option, terminated by the expression

(further-load-options standard-load-options)

procedure+define-load-option symbol thunk . . .
Each thunk must be a procedure of no arguments. Defines the load option named
symbol. When the procedure load-option is called with symbol as an argument, the
thunk arguments are executed in order from left to right.

3.3 World Images

A world image, also called a band, is a file that contains a complete Scheme system,
perhaps additionally including user application code. Scheme provides a method for saving
and restoring world images. The method writes a file containing all of the Scheme code and
data in the running process. The file ‘runtime.com’ that is loaded by the microcode is just
such a band. To make your own band, use the procedure disk-save.

procedure+disk-save filename [identify]
Causes a band to be written to the file specified by filename. The optional argument
identify controls what happens when that band is restored, as follows:

Chapter 3: Using Scheme 29

not specified
Start up in the top-level repl, identifying the world in the normal way.

a string Do the same thing except print that string instead of ‘Scheme’ when
restarting.

the constant #t
Restart exactly where you were when the call to disk-save was per-
formed. This is especially useful for saving your state when an error has
occurred and you are not in the top-level repl.

the constant #f
Just like #t, except that the runtime system will not perform normal
restart initializations; in particular, it will not load your init file.

To restore a saved band, give the -band option when starting Scheme. Alternatively,
evaluate (disk-restore filename), which will destroy the current world, replacing it with
the saved world. The argument to disk-restore may be omitted, in which case it defaults
to the filename from which the current world was last restored.

3.4 Garbage Collection

This section describes procedures that control garbage collection. See Section 2.3 [Mem-
ory Usage], page 10, for a discussion of how MIT Scheme uses memory.

procedure+gc-flip [safety-margin]
Forces a garbage collection to occur. Returns the number of words of storage available
after collection, an exact non-negative integer.
Safety-margin determines the number of words of storage available to system tasks
after the need for a garbage collection is detected and before the garbage collector is
started. (An example of such a system task is changing the run-light to show “gc”
when scheme is running under Emacs.) Note well: you should not specify safety-
margin unless you know what you are doing. If you specify a value that is too small,
you can put Scheme in an unusable state.

procedure+purify object [pure-space? [queue?]]
Moves object from the heap into constant space. Has no effect if object is already
stored in constant space. Object is moved in its entirety; if it is a compound object
such as a list, a vector, or a record, then all of the objects that object points to are
also moved to constant space.
There are three important effects associated with moving an object to constant space.
The first and most important effect is that the object takes up half as much space,
because when in the heap, the system must reserve space for the object in both the
active heap and the inactive heap; if the object is in constant space it is not copied
and therefore no extra space is required. The second effect is that garbage collection
will take less time, because object will no longer be copied. The third effect is that the

30 MIT Scheme User’s Manual

space allocated to object is permanently allocated, because constant space is never
cleaned; any unreachable objects in constant space remain there until the Scheme
process is terminated.
The optional argument pure-space? is obsolete; it defaults to #t and when explicitly
specified should always be #t.
The optional argument queue?, if #f, specifies that object should be moved to constant
space immediately; otherwise object is queued to be moved during the next garbage
collection. This argument defaults to #t. The reason for queuing these requests is
that moving an object to constant space requires a garbage collection to occur, a
relatively slow process. By queuing the requests, this overhead is avoided, because
moving an object during a garbage collection has no effect on the time of the garbage
collection. Furthermore, if several requests are queued, they can all be processed
together in one garbage collection, while if done separately they would each require
their own garbage collection.

procedure+flush-purification-queue!
Forces any pending queued purification requests to be processed. This examines the
purify queue, and if it contains any requests, forces a garbage collection to process
them. If the queue is empty, does nothing.

procedure+print-gc-statistics
Prints out information about memory allocation and the garbage collector. The
information is printed to the current output port. Shows how much space is “in use”
and how much is “free”, separately for the heap and constant space. The amounts are
shown in words, and also in 1024-word blocks; the block figures make it convenient
to use these numbers to adjust the arguments given to the -heap and -constant
command-line options. Following the allocation figures, information about the most
recent 8 garbage collections is shown, in the same format as a gc notification.
Note that these numbers are accurate at the time that print-gc-statistics is
called. In the case of the heap, the “in use” figure shows how much memory has
been used since the last garbage collection, and includes all live objects as well as
any uncollected garbage that has accumulated since then. The only accurate way to
determine the size of live storage is to subtract the value of ‘(gc-flip)’ from the
size of the heap. The size of the heap can be determined by adding the “in use” and
“free” figures reported by print-gc-statistics.

(print-gc-statistics)
constant in use: 534121 words = 521 blocks + 617 words
constant free: 128 words = 0 blocks + 128 words
heap in use: 34845 words = 34 blocks + 29 words
heap free: 205530 words = 200 blocks + 730 words
GC #1: took: 0.13 (81%) CPU time, 0.15 (1%) real time; free: 207210
;No value

procedure+set-gc-notification! [on?]
Controls whether the user is notified of garbage collections. If on? is true, notification
is enabled; otherwise notification is disabled. If on? is not given, it defaults to #t.
When Scheme starts, notification is disabled.

Chapter 3: Using Scheme 31

The notification appears as a single line like the following, showing how many garbage
collections have occurred, the time taken to perform the garbage collection and the
free storage remaining (in words) after collection.

GC #5: took: 0.50 (8%) CPU time, 0.70 (2%) real time; free: 364346

To operate comfortably, the amount of free storage after garbage collection should be
a substantial proportion of the heap size. If the CPU time percentage is consistently
high (over 20%), you should consider running with a larger heap. A rough rule of
thumb to halve the gc overhead is to take the amount of free storage, divide by 1000,
and add this figure to the current value used for the -heap command-line option.
Unfortunately there is no way to adjust the heap size without restarting Scheme.

procedure+toggle-gc-notification!
Toggles gc notification on and off. If gc notification is turned on, turns it off;
otherwise turns it on.

32 MIT Scheme User’s Manual

Chapter 4: Compiling Programs 33

4 Compiling Programs

Note: the procedures described in this section are only available when the -compiler
command-line option is specified.

4.1 Compilation Procedures

procedure+cf filename [destination]
This is the program that transforms a source-code file into native-code binary form.
If destination is not given, as in

(cf "foo")

cf compiles the file ‘foo.scm’, producing the file ‘foo.com’ (incidentally it will also
produce ‘foo.bin’, ‘foo.bci’, and possibly ‘foo.ext’). If you later evaluate

(load "foo")

‘foo.com’ will be loaded rather than ‘foo.scm’.
If destination is given, it says where the output files should go. If this argument is a
directory, they go in that directory, e.g.:

(cf "foo" "../bar/")

will take ‘foo.scm’ and generate the file ‘../bar/foo.com’. If destination is not a
directory, it is the root name of the output:

(cf "foo" "bar")

takes ‘foo.scm’ and generates ‘bar.com’.

About the ‘.bci’ files: these files contain the debugging information that Scheme uses
when you call debug to examine compiled code. When you load a ‘.com’ file, Scheme
remembers where it was loaded from, and when the debugger (or pp) looks at the compiled
code from that file, it attempts to find the ‘.bci’ file in the same directory from which the
‘.com’ file was loaded. Thus it is a good idea to leave these files together.

‘.bci’ files are stored in a compressed format. The debugger has to uncompress the
files when it looks at them, and on a slow machine this can take a noticeable time. The
system takes steps to reduce the impact of this behavior: debugging information is cached
in memory, and uncompressed versions of ‘.bci’ files are kept around. The default behavior
is that a temporary file is created and the ‘.bci’ file is uncompressed into it. The temporary
file is kept around for a while afterwards, and during that time if the uncompressed ‘.bci’
file is needed the temporary file is used. Each such reference updates an ‘access time’ that
is associated with the temporary file. The garbage collector checks the access times of all
such temporary files, and deletes any that have not been accessed in five minutes or more.
All of the temporaries are deleted automatically when the Scheme process is killed.

Two other behaviors are available. One of them uncompresses the ‘.bci’ file each time
it is referenced, and the other uncompresses the ‘.bci’ file and writes it back out as a ‘.bif’
file. The ‘.bif’ file remains after Scheme exits. The time interval and the behavior are
controlled by the following variables.

34 MIT Scheme User’s Manual

variable+*save-uncompressed-files?*
This variable affects what happens when ‘.bci’ files are uncompressed. It allows a
trade-off between performance and disk space. There are three possible values:

#f The uncompressed versions of ‘.bci’ files are never saved. Each time
the information is needed the ‘.bci’ file is uncompressed. This option
requires the minimum amount of disk space and is the slowest.

automatic
Uncompressed versions of ‘.bci’ files are kept as temporary files. The
temporary files are deleted when Scheme exits, or if they have not been
used for a while. This is the default.

#t The ‘.bci’ files are uncompressed to permanent ‘.bif’ files. These files
remain on disk after Scheme exits, and are rather large - about twice the
size of the corresponding ‘.bci’ files. If you choose this option and you
are running out of disk space you may delete the ‘.bif’ files. They will
be regenerated as needed.

variable+*uncompressed-file-lifetime*
The minimum length of time that a temporary uncompressed version of a ‘.bci’ file
will stay on disk after it is last used. The time is in milliseconds; the default is
‘300000’ (five minutes).

variable+load-debugging-info-on-demand?
If this variable is ‘#f’, then printing a compiled procedure will print the procedure’s
name only if the debugging information for that procedure is already loaded. Other-
wise, it will force loading of the debugging information. The default value is #f.

procedure+sf filename [destination]
sf is the program that transforms a source-code file into binary SCode form; it is
used on machines that do not support native-code compilation. It performs numerous
optimizations that can make your programs run considerably faster than unoptimized
interpreted code. Also, the binary files that it generates load very quickly compared
to source-code files.

The simplest way to use sf is just to say:

(sf filename)

This will cause your file to be transformed, and the resulting binary file to be written
out with the same name, but with pathname type "bin". If you do not specify a
pathname type on the input file, "scm" is assumed.

Like load, the first argument to sf may be a list of filenames rather than a single
filename.

sf takes an optional second argument, which is the filename of the output file. If this
argument is a directory, then the output file has its normal name but is put in that
directory instead.

Chapter 4: Compiling Programs 35

4.2 Declarations

Several declarations can be added to your programs to help cf and sf make them more
efficient.

4.2.1 Standard Names

Normally, all files have a line
(declare (usual-integrations))

near their beginning, which tells the compiler that free variables whose names are defined in
system-global-environment will not be shadowed by other definitions when the program
is loaded. If you redefine some global name in your code, for example car, cdr, and cons,
you should indicate it in the declaration:

(declare (usual-integrations car cdr cons))

You can obtain an alphabetically-sorted list of the names that the usual-integrations
declaration affects by evaluating the following expression:

(eval ’(sort (append usual-integrations/constant-names
usual-integrations/expansion-names)

(lambda (x y)
(string<=? (symbol->string x)

(symbol->string y))))
(->environment ’(scode-optimizer)))

4.2.2 In-line Coding

Another useful facility is the ability to in-line code procedure definitions. In fact, the
compiler will perform full beta conversion, with automatic renaming, if you request it. Here
are the relevant declarations:

declaration+integrate name . . .
The variables names must be defined in the same file as this declaration. Any reference
to one of the named variables that appears in the same block as the declaration, or
one of its descendant blocks, will be replaced by the corresponding binding’s value
expression.

declaration+integrate-operator name . . .
Similar to the integrate declaration, except that it only substitutes for references
that appear in the operator position of a combination. All other references are ignored.

declaration+integrate-external filename
Causes the compiler to use the top-level integrations provided by filename. filename
should not specify a file type, and the source-code file that it names must have been
previously processed by the compiler.

36 MIT Scheme User’s Manual

If filename is a relative filename (the normal case), it is interpreted as being rela-
tive to the file in which the declaration appears. Thus if the declaration appears in file
‘/usr/cph/foo.scm’, then the compiler looks for a file called ‘/usr/cph/filename.ext’.
Note: When the compiler finds top-level integrations, it collects them and out-
puts them into an auxiliary file with extension ‘.ext’. This ‘.ext’ file is what the
integrate-external declaration refers to.

Note that the most common use of this facility, in-line coding of procedure definitions,
requires a somewhat complicated use of these declarations. Because this is so common, there
is a special form, define-integrable, which is like define but performs the appropriate
declarations. For example:

(define-integrable (foo-bar foo bar)
(vector-ref (vector-ref foo bar) 3))

Here is how you do the same thing without this special form: there should be an
integrate-operator declaration for the procedure’s name, and (internal to the proce-
dure’s definition) an integrate declaration for each of the procedure’s parameters, like
this:

(declare (integrate-operator foo-bar))

(define foo-bar
(lambda (foo bar)

(declare (integrate foo bar))
(vector-ref (vector-ref foo bar) 3)))

The reason for this complication is as follows: the integrate-operator declaration
finds all the references to foo-bar and replaces them with the lambda expression from the
definition. Then, the integrate declarations take effect because the combination in which
the reference to foo-bar occurred supplies code that is substituted throughout the body of
the procedure definition. For example:

(foo-bar (car baz) (cdr baz))

First use the integrate-operator declaration:
((lambda (foo bar)

(declare (integrate foo bar))
(vector-ref (vector-ref foo bar) 3))

(car baz)
(cdr baz))

Next use the internal integrate declaration:
((lambda (foo bar)

(vector-ref (vector-ref (car baz) (cdr baz)) 3))
(car baz)
(cdr baz))

Next notice that the variables foo and bar are not used, and eliminate them:
((lambda ()

(vector-ref (vector-ref (car baz) (cdr baz)) 3)))

Finally, remove the ((lambda () ...)) to produce
(vector-ref (vector-ref (car baz) (cdr baz)) 3)

Chapter 4: Compiling Programs 37

Useful tip

To see the effect of integration declarations (and of macros) on a source file, pretty-print
the ‘.bin’ file like this (be prepared for a lot of output).

(sf "foo.scm")
(pp (fasload "foo.bin"))

4.2.3 Operator Replacement

The replace-operator declaration is provided to inform the compiler that certain op-
erators may be replaced by other operators depending on the number of arguments. For
example:
Declaration:

(declare (replace-operator (map (2 map-2) (3 map-3))))

Replacements:
(map f x y z) 7→ (map f x y z)
(map f x y) 7→ (map-3 f x y)
(map f x) 7→ (map-2 f x)
(map f) 7→ (map f)
(map) 7→ (map)

Presumably map-2 and map-3 are efficient versions of map that are written for exactly two
and three arguments respectively. All the other cases are not expanded but are handled by
the original, general map procedure, which is less efficient because it must handle a variable
number of arguments.

declaration+replace-operator name ...
The syntax of this declaration is

(replace-operator
(name
(nargs1 value1)
(nargs2 value2)
...))

where
• name is a symbol.
• nargs1, nargs2 etc. are non-negative integers, or one of the following symbols:

any, else or otherwise.
• value1, value2 etc. are simple expressions in one of these forms:

’constant A constant.

variable A variable.

(primitive primitive-name [arity])
The primitive procedure named primitive-name. The optional ele-
ment arity, a non-negative integer, specifies the number of arguments
that the primitive accepts.

38 MIT Scheme User’s Manual

(global var)
A global variable.

The meanings of these fields are:

• name is the name of the operator to be reduced. If is is not shadowed (for
example, by a let) then it may be replaced according to the following rules.

• If the operator has nargsN arguments then it is replaced with a call to valueN
with the same arguments.

• If the number of arguments is not listed, and one of the nargsN is any, else
or otherwise, then the operation is replaced with a call to the corresponding
valueN. Only one of the nargsN may be of this form.

• If the number of arguments is not listed and none of the nargsN is any, else or
otherwise, then the operation is not replaced.

4.2.4 Operator Reduction

The reduce-operator declaration is provided to inform the compiler that certain names
are n-ary versions of binary operators. Here are some examples:

Declaration:
(declare (reduce-operator (cons* cons)))

Replacements:
(cons* x y z w) 7→ (cons x (cons y (cons z w))),
(cons* x y) 7→ (cons x y)
(cons* x) 7→ x
(cons*) error too few arguments

Declaration:
(declare (reduce-operator (list cons (null-value ’() any))))

Replacements:
(list x y z w) 7→ (cons x (cons y (cons z (cons w ’()))))
(list x y) 7→ (cons x (cons y ’()))
(list x) 7→ (cons x ’())
(list) 7→ ’()

Declaration:
(declare (reduce-operator (- %- (null-value 0 single) (group left))))

Replacements:
(- x y z w) 7→ (%- (%- (%- x y) z) w)
(- x y) 7→ (%- x y)
(- x) 7→ (%- 0 x)
(-) 7→ 0

Declaration:
(declare (reduce-operator (+ %+ (null-value 0 none) (group right))))

Replacements:

Chapter 4: Compiling Programs 39

(+ x y z w) 7→ (%+ x (%+ y (%+ z w)))
(+ x y) 7→ (%+ x y)
(+ x) 7→ x
(+) 7→ 0

Note: This declaration does not cause an appropriate definition of %+ (in the last ex-
ample) to appear in your code. It merely informs the compiler that certain optimizations
can be performed on calls to + by replacing them with calls to %+. You should provide a
definition of %+ as well, although it is not required.
Declaration:

(declare (reduce-operator (apply (primitive cons)
(group right)
(wrapper (global apply) 1))))

Replacements:
(apply f x y z w)
7→ ((access apply ()) f (cons x (cons y (cons z w))))

(apply f x y)
7→ ((access apply ()) f (cons x y))

(apply f x) 7→ (apply f x)
(apply f) 7→ (apply f)
(apply) 7→ (apply)

declaration+reduce-operator name ...
The general format of the declaration is (brackets denote optional elements):

(reduce-operator
(name

binop
[(group ordering)]
[(null-value value null-option)]
[(singleton unop)]
[(wrapper wrap [n])]
[(maximum m)]

))

where
• n and m are non-negative integers.
• name is a symbol.
• binop, value, unop, and wrap are simple expressions in one of these forms:

’constant A constant.

variable A variable.

(primitive primitive-name [arity])
The primitive procedure named primitive-name. The optional el-
ement arity specifies the number of arguments that the primitive
accepts.

(global var)
A global variable.

40 MIT Scheme User’s Manual

• null-option is either always, any, one, single, none, or empty.

• ordering is either left, right, or associative.

The meaning of these fields is:

• name is the name of the n-ary operation to be reduced.

• binop is the binary operation into which the n-ary operation is to be reduced.

• The group option specifies whether name associates to the right or left.

• The null-value option specifies a value to use in the following cases:

none
empty When no arguments are supplied to name, value is returned.

one
single When a single argument is provided to name, value becomes the

second argument to binop.

any
always binop is used on the “last” argument, and value provides the remain-

ing argument to binop.

In the above options, when value is supplied to binop, it is supplied on the left
if grouping to the left, otherwise it is supplied on the right.

• The singleton option specifies a function, unop, to be invoked on the single
argument given. This option supersedes the null-value option, which can only
take the value none.

• The wrapper option specifies a function, wrap, to be invoked on the result of the
outermost call to binop after the expansion. If n is provided it must be a non-
negative integer indicating a number of arguments that are transferred verbatim
from the original call to the wrapper. They are passed to the left of the reduction.

• The maximum option specifies that calls with more than m arguments should
not be reduced.

4.3 Efficiency Tips

How you write your programs can have a large impact on how efficiently the compiled
program runs. The most important thing to do, after choosing suitable data structures, is
to put the following declaration near the beginning of the file.

(declare (usual-integrations))

Without this declaration the compiler cannot recognize any of the common operators
and compile them efficiently.

The usual-integrations declaration is usually sufficient to get good quality compiled
code.

If you really need to squeeze more performance out of your code then we hope that you
find the following grab-bag of tips, hints and explanations useful.

Chapter 4: Compiling Programs 41

4.3.1 Coding style

Scheme is a rich language, in which there are usually several ways to say the same
thing. A coding style is a set of rules that a programmer uses for choosing an expressive
form to use in a given situation. Usually these rules are aesthetic, but sometimes there
are efficiency issues involved; this section describes a few choices that have non-obvious
efficiency consequences.

Better predicates

Consider the following implementation of map as might be found in any introductory
book on Scheme:

(define (map f lst)
(if (null? lst)

’()
(cons (f (car lst)) (map f (cdr lst)))))

The problem with this definition is that at the points where car and cdr are called
we still do not know that lst is a pair. The compiler must insert a type check, or if type
checks are disabled, the program might give wrong results. Since one of the fundamental
properties of map is that it transforms lists, we should make the relationship between the
input pairs and the result pairs more apparent in the code:

(define (map f lst)
(cond ((pair? lst)

(cons (f (car lst)) (map f (cdr lst))))
((null? lst)
’())
(else
(error "Not a proper list:" lst))))

Note also that the pair? case comes first because we expect that map will be called on
lists which have, on average, length greater that one.

Internal procedures

Calls to internal procedures are faster than calls to global procedures. There are two
things that make internal procedures faster: First, the procedure call is compiled to a
direct jump to a known location, which is more efficient that jumping ‘via’ a global binding.
Second, there is a knock-on effect: since the compiler can see the internal procedure, the
compiler can analyze it and possibly produce better code for other expressions in the body
of the loop too:

(define (map f original-lst)
(let walk ((lst original-lst))

(cond ((pair? lst)
(cons (f (car lst)) (walk (cdr lst))))
((null? lst)
’())
(else
(error "Not a proper list:" original-lst)))))

42 MIT Scheme User’s Manual

Internal defines

Internal definitions are a useful tool for structuring larger procedures. However, certain
internal definitions can thwart compiler optimizations. Consider the following two proce-
dures, where compute-100 is some unknown procedure that we just know returns ‘100’.

(define (f1)
(define v 100)
(lambda () v))

(define (f2)
(define v (compute-100))
(lambda () v))

The procedure returned by f1 will always give the same result and the compiler can
prove this. The procedure returned by f2 may return different results, even if f2 is only
called once. Because of this, the compiler has to allocate a memory cell to v. How can the
procedure return different results?

The fundamental reason is that the continuation may escape during the evaluation of
(compute-100), allowing the rest of the body of f2 to be executed again:

(define keep)

(define (compute-100)
(call-with-current-continuation
(lambda (k)
(set! keep k)
100)))

(define p (f2))

(p) ⇒ 100
(keep -999) ⇒ p re-define v and p
(p) ⇒ -999

To avoid the inefficiency introduced to handle the general case, the compiler must prove
that the continuation cannot possibly escape. The compiler knows that lambda expressions
and constants do not let their continuations escape, so order the internal definitions so that
definitions of the following forms come first:

(define x ’something)
(define x (lambda (...) ...))
(define (f u v) ...)

Note: The ieee Scheme standard permits only lambda expressions and constants as
the value of internal defines. Furthermore, all internal definitions must appear before any
other expressions in the body. Following the standard simultaneously assures portability
and avoids the implementation inefficiencies described in this section.

4.3.2 Global variables

Compiled code usually accesses variables in top-level first-class environments via variable
caches. Each compiled procedure has a set of variable caches for the global variables that

Chapter 4: Compiling Programs 43

it uses. There are three kinds of variable cache - read caches for getting the value of a
variable (referencing the variable), write caches for changing the value, and execute caches
for calling the procedure assigned to that variable.

Sometimes the variable caches contain special objects, called reference traps, that in-
dicate that the operation cannot proceed normally and must either be completed by the
system (in order to keep the caches coherent) or must signal an error. For example, the
assignment

(set! newline my-better-newline)

will cause the system to go to each compiled procedure that calls newline and update its
execute cache to call the new procedure. Obviously you want to avoid updating hundreds
of execute caches in a critical loop. Using fluid-let to temporarily redefine a procedure
has the same inefficiency (but twice!).

To behave correctly in all situations, each variable reference or assignment must check
for the reference traps.

Sometimes you can prove that the variable (a) will always be bound, (b) will never be
unassigned, and (c) there will never be any compiled calls to that variable. The compiler
can’t prove this because it assumes that other independently compiled files might be loaded
that invalidate these assumptions. If you know that these conditions hold, the following
declarations can speed up and reduce the size of a program that uses global variables.

declaration+ignore-reference-traps variables
This declaration tells the compiler that it need not check for reference-trap objects
when referring to the given variables. If any of the variables is unbound or unassigned
then a variable reference will yield a reference-trap object rather than signaling an
error. This declaration is relatively safe: the worst that can happen is that a reference-
trap object finds its way into a data structure (e.g. a list) or into interpreted code, in
which case it will probably cause some ‘unrelated’ variable to mysteriously become
unbound or unassigned.

declaration+ignore-assignment-traps variables
This declaration tells the compiler that it need not check for reference-trap objects
when assigning to the given variables. An assignment to a variable that ignores
assignment traps can cause a great deal of trouble. If there is a compiled procedure
call anywhere in the system to this variable, the execute caches will not be updated,
causing an inconsistency between the value used for the procedure call and the value
seen by reading the variable. This mischief is compounded by the fact that the
assignment can cause other assignments that were compiled with checks to behave
this way too.

The variables are specified with expressions from the following set language:

variable-specificationset name ...
All of the explicitly listed names.

44 MIT Scheme User’s Manual

variable-specificationall
variable-specificationnone
variable-specificationfree
variable-specificationbound
variable-specificationassigned

These expressions name sets of variables. all is the set of all variables, none is the
empty set, free is all of the variables bound outside the current block, bound is all
of the variables bound in the current block and assigned is all of the variables for
which there exists an assignment (i.e. set!).

variable-specificationunion set1 set2
variable-specificationintersection set1 set2
variable-specificationdifference set1 set2

For example, to ignore reference traps on all the variables except x, y and any variable
that is assigned to

(declare (ignore-reference-traps
(difference all (union assigned (set x y)))))

4.3.3 Fixnum arithmetic

The usual arithmetic operations like + and < are called generic arithmetic operations
because they work for all (appropriate) kinds of number.

A fixnum is an exact integer that is small enough to fit in a machine word. In MIT
Scheme, fixnums are 26 bits on 32-bit machines, and 56 bits on 64-bit machines; it is
reasonable to assume that fixnums are at least 24 bits. Fixnums are signed; they are
encoded using 2’s complement.

All exact integers that are small enough to be encoded as fixnums are always encoded as
fixnums — in other words, any exact integer that is not a fixnum is too big to be encoded
as such. For this reason, small constants such as 0 or 1 are guaranteed to be fixnums. In
addition, the lengths of and valid indexes into strings and vectors are also always fixnums.

If you know that a value is always a small fixnum, you can substitute the equivalent
fixnum operation for the generic operation. However, care should be exercised: if used
improperly, these operations can return incorrect answers, or even malformed objects that
confuse the garbage collector. For a listing of all fixnum operations, see section “Fixnum
Operations” in MIT Scheme Reference Manual.

A fruitful area for inserting fixnum operations is in the index operations in tight loops.

4.3.4 Flonum arithmetic

Getting efficient flonum arithmetic is much more complicated and harder than getting
efficient fixnum arithmetic.

Chapter 4: Compiling Programs 45

Flonum consing

One of the main disadvantages of generic arithmetic is that not all kinds of number
fit in a machine register. Flonums have to be boxed because a 64-bit ieee floating-point
number (the representation that MIT Scheme uses) does not fit in a regular machine word.
This is true even on 64-bit architectures because some extra bits are needed to distinguish
floating-point numbers from other objects like pairs and strings. Values are boxed by storing
them in a small record in the heap. Every floating-point value that you see at the repl is
boxed. Floating-point values are unboxed only for short periods of time when they are in
the machine’s floating-point unit and actual floating-point operations are being performed.

Numerical calculations that happen to be using floating-point numbers cause many tem-
porary floating-point numbers to be allocated. It is not uncommon for numerical programs
to spend over half of their time creating and garbage collecting the boxed flonums.

Consider the following procedure for computing the distance of a point (x,y) from the
origin.

(define (distance x y)
(sqrt (+ (* x x) (* y y))))

The call (distance 0.3 0.4) returns a new, boxed flonum, 0.5. The calculation also
generates three intermediate boxed flonums. This next version works only for flonum inputs,
generates only one boxed flonum (the result) and runs eight times faster:

(define (flo:distance x y)
(flo:sqrt (flo:+ (flo:* x x) (flo:* y y))))

Note that flo: operations are usually effective only within a single arithmetic expression.
If the expression contains conditionals or calls to procedures then the values tend to get
boxed anyway.

Flonum vectors

Flonum vectors are vectors that contain only floating-point values, in much the same
way as a string is a ‘vector’ containing only character values.

Flonum vectors have the advantages of compact storage (about half that of a conventional
vector of flonums) and judicious use of flonum vectors can decrease flonum consing.

The disadvantages are that flonum vectors are incompatible with ordinary vectors, and
if not used carefully, can increase flonum consing. Flonum vectors are a pain to use because
they require you to make a decision about the representation and stick with it, and it might
not be easy to ascertain whether the advantages in one part of the program outweigh the
disadvantages in another.

The flonum vector operations are:

procedure+flo:vector-cons n
Create a flonum vector of length n. The contents of the vector are arbitrary and
might not be valid floating-point numbers. The contents should not be used until
initialized.

46 MIT Scheme User’s Manual

procedure+flo:vector-ref flonum-vector index
procedure+flo:vector-set! flonum-vector index value
procedure+flo:vector-length flonum-vector

These operations are analogous to the ordinary vector operations.

Examples

The following operation causes no flonum consing because the flonum is loaded directly
from the flonum vector into a floating-point machine register, added, and stored again.
There is no need for a temporary boxed flonum.

(flo:vector-set! v 0 (flo:+ (flo:vector-ref v 0) 1.2))

In this next example, every time g is called, a new boxed flonum has to be created so
that a valid Scheme object can be returned. If g is called more often than the elements of
v are changed then an ordinary vector might be more efficient.

(define (g i)
(flo:vector-ref v i))

Common pitfalls

Pitfall 1: Make sure that your literals are floating-point constants:
(define (f1 a) (flo:+ a 1))
(define (f2 a) (flo:+ a 1.))

f1 will most likely cause a hardware error, and certainly give the wrong answer. f2 is
correct.

Pitfall 2: It is tempting to insert calls to exact->inexact to coerce values into flonums.
This does not always work because complex numbers may be exact or inexact too. Also,
the current implementation of exact->inexact is slow.

Pitfall 3: A great deal of care has to be taken with the standard math procedures. For
example, when called with a flonum, both sqrt and asin can return a complex number
(e.g with argument -1.5).

Chapter 5: Debugging 47

5 Debugging

Parts of this chapter are adapted from Don’t Panic: A 6.001 User’s Guide to the Chip-
munk System, by Arthur A. Gleckler.

Even computer software that has been carefully planned and well written may not always
work correctly. Mysterious creatures called bugs may creep in and wreak havoc, leaving the
programmer to clean up the mess. Some have theorized that a program fails only because its
author made a mistake, but experienced computer programmers know that bugs are always
to blame. This is why the task of fixing broken computer software is called debugging.

It is impossible to prove the correctness of any non-trivial program; hence the Cynic’s
First Law of Debugging:

Programs don’t become more reliable as they are debugged; the bugs just get
harder to find.

Scheme is equipped with a variety of special software for finding and removing bugs.
The debugging tools include facilities for tracing a program’s use of specified procedures,
for examining Scheme environments, and for setting breakpoints, places where the program
will pause for inspection.

Many bugs are detected when programs try to do something that is impossible, like
adding a number to a symbol, or using a variable that does not exist; this type of mistake
is called an error. Whenever an error occurs, Scheme prints an error message and starts a
new repl. For example, using a nonexistent variable foo will cause Scheme to respond

1]=> foo

;Unbound variable: foo
;To continue, call RESTART with an option number:
; (RESTART 3) => Specify a value to use instead of foo.
; (RESTART 2) => Define foo to a given value.
; (RESTART 1) => Return to read-eval-print level 1.

2 error>

Sometimes, a bug will never cause an error, but will still cause the program to operate
incorrectly. For instance,

(prime? 7) ⇒ #f

In this situation, Scheme does not know that the program is misbehaving. The program-
mer must notice the problem and, if necessary, start the debugging tools manually.

There are several approaches to finding bugs in a Scheme program:

• Inspect the original Scheme program.
• Use the debugging tools to follow your program’s progress.
• Edit the program to insert checks and breakpoints.

Only experience can teach how to debug programs, so be sure to experiment with all these
approaches while doing your own debugging. Planning ahead is the best way to ward off
bugs, but when bugs do appear, be prepared to attack them with all the tools available.

48 MIT Scheme User’s Manual

5.1 Subproblems and Reductions

Understanding the concepts of reduction and subproblem is essential to good use of
the debugging tools. The Scheme interpreter evaluates an expression by reducing it to a
simpler expression. In general, Scheme’s evaluation rules designate that evaluation proceeds
from one expression to the next by either starting to work on a subexpression of the given
expression, or by reducing the entire expression to a new (simpler, or reduced) form. Thus,
a history of the successive forms processed during the evaluation of an expression will show
a sequence of subproblems, where each subproblem may consist of a sequence of reductions.

For example, both (+ 5 6) and (+ 7 9) are subproblems of the following combination:
(* (+ 5 6) (+ 7 9))

If (prime? n) is true, then (cons ’prime n) is a reduction for the following expression:
(if (prime? n)

(cons ’prime n)
(cons ’not-prime n))

This is because the entire subproblem of the if expression can be reduced to the problem
(cons ’prime n), once we know that (prime? n) is true; the (cons ’not-prime n) can be
ignored, because it will never be needed. On the other hand, if (prime? n) were false, then
(cons ’not-prime n) would be the reduction for the if expression.

The subproblem level is a number representing how far back in the history of the current
computation a particular evaluation is. Consider factorial:

(define (factorial n)
(if (< n 2)

1
(* n (factorial (- n 1)))))

If we stop factorial in the middle of evaluating (- n 1), the (- n 1) is at subproblem
level 0. Following the history of the computation “upwards,” (factorial (- n 1)) is at
subproblem level 1, and (* n (factorial (- n 1))) is at subproblem level 2. These ex-
pressions all have reduction number 0. Continuing upwards, the if expression has reduction
number 1.

Moving backwards in the history of a computation, subproblem levels and reduction
numbers increase, starting from zero at the expression currently being evaluated. Reduction
numbers increase until the next subproblem, where they start over at zero. The best way to
get a feel for subproblem levels and reduction numbers is to experiment with the debugging
tools, especially debug.

5.2 The Command-Line Debugger

There are two debuggers available with MIT Scheme. One of them runs under Ed-
win, and is described in that section of this document (see Section 7.6 [Edwin Debugger],
page 65). The other is command-line oriented, does not require Edwin, and is described
here.

Chapter 5: Debugging 49

The command-line debugger, called debug, is the tool you should use when Scheme
signals an error and you want to find out what caused the error. When Scheme signals an
error, it records all the information necessary to continue running the Scheme program that
caused the error; the debugger provides you with the means to inspect this information.
For this reason, the debugger is sometimes called a continuation browser.

Here is the transcript of a typical Scheme session, showing a user evaluating the expres-
sion (fib 10), Scheme responding with an unbound variable error for the variable fob, and
the user starting the debugger:

1]=> (fib 10)

;Unbound variable: fob
;To continue, call RESTART with an option number:
; (RESTART 3) => Specify a value to use instead of fob.
; (RESTART 2) => Define fob to a given value.
; (RESTART 1) => Return to read-eval-print level 1.

2 error> (debug)

There are 6 subproblems on the stack.

Subproblem level: 0 (this is the lowest subproblem level)
Expression (from stack):

fob
Environment created by the procedure: FIB
applied to: (10)
The execution history for this subproblem contains 1 reduction.
You are now in the debugger. Type q to quit, ? for commands.

3 debug>

This tells us that the error occurred while trying to evaluate the expression ‘fob’ while
running ‘(fib 10)’. It also tells us this is subproblem level 0, the first of 6 subproblems
that are available for us to examine. The expression shown is marked ‘(from stack)’,
which tells us that this expression was reconstructed from the interpreter’s internal data
structures. Another source of information is the execution history, which keeps a record
of expressions evaluated by the interpreter. The debugger informs us that the execution
history has recorded some information for this subproblem, specifically a description of one
reduction.

What follows is a description of the commands available in the debugger. To understand
how the debugger works, you need to understand that the debugger has an implicit state that
is examined and modified by commands. The state consists of three pieces of information: a
subproblem, a reduction, and an environment frame. Each of these parts of the implicit state
is said to be selected; thus one refers to the selected subproblem, and so forth. The debugger
provides commands that examine the selected state, and allow you to select different states.

Here are the debugger commands. Each of these commands consists of a single letter,
which is to be typed by itself at the debugger prompt. It is not necessary to type 〈RET〉
after these commands.

50 MIT Scheme User’s Manual

Traversing subproblems
The debugger has several commands for traversing the structure of the contin-
uation. It is useful to think of the continuation as a two-dimensional structure:
a backbone consisting of subproblems, and associated ribs consisting of reduc-
tions. The bottom of the backbone is the most recent point in time; that is
where the debugger is positioned when it starts. Each subproblem is numbered,
with 0 representing the most recent time point, and ascending integers number-
ing older time points. The u command moves up to older points in time, and
the d command moves down to newer points in time. The g command allows
you to select a subproblem by number, and the h command will show you a
brief summary of all of the subproblems.

Traversing reductions
If the subproblem description says that ‘The execution history for this
subproblem contains N reductions’, then there is a “rib” of reductions for
this subproblem. You can see a summary of the reductions for this subproblem
using the r command. You can move to the next reduction using the b com-
mand; this moves you to the next older reduction. The f command moves in
the opposite direction, to newer reductions. If you are at the oldest reduction
for a given subproblem and use the b command, you will move to the next
older subproblem. Likewise, if you are at the newest reduction and use f, you’ll
move to the next newer subproblem.

Examining subproblems and reductions
The following commands will show you additional information about the cur-
rently selected subproblem or reduction. The t command will reprint the stan-
dard description (in case it has scrolled off the screen). The l command will
pretty-print (using pp) the subproblem’s expression.

Traversing environments
Nearly all subproblems and all reductions have associated environments. Select-
ing a subproblem or reduction also selects the associated environment. However,
environments are structured as a sequence of frames, where each frame corre-
sponds to a block of environment variables, as bound by lambda or let. These
frames collectively represent the block structure of a given environment.
Once an environment frame is selected by the debugger, it is possible to select
the parent frame of that frame (in other words, the enclosing block) using the
p command. You can subsequently return to the original child frame using the
s command. The s command works because the p command keeps track of the
frames that you step through as you move up the environment hierarchy; the
s command just retraces the path of saved frames. Note that selecting a frame
using p or s will print the bindings of the newly selected frame.

Examining environments
The following commands allow you to examine the contents of the selected
frame. The c command prints the bindings of the current frame. The a com-
mand prints the bindings of the current frame and each of its ancestor frames.
The e command enters a read-eval-print loop in the selected environment frame;
expressions typed at that repl will be evaluated in the selected environment.

Chapter 5: Debugging 51

To exit the repl and return to the debugger, evaluate (abort->previous) or
use restart. The v command prompts for a single expression and evaluates
it in the selected environment. The w command invokes the environment in-
spector (where); quitting the environment inspector returns to the debugger.
Finally, the o command pretty-prints the procedure that was called to create
the selected environment frame.

Continuing the computation
There are three commands that can be used to restart the computation that
you are examining. The first is the k command, which shows the currently
active restarts, prompts you to select one, and passes control to the it. It is
very similar to evaluating ‘(restart)’.
The other two commands allow you to invoke internal continuations. This
should not be done lightly; invoking an internal continuation can violate as-
sumptions that the programmer made and cause unexpected results. Each of
these commands works in the same way: it prompts you for an expression, which
is evaluated in the selected environment to produce a value. The appropriate
internal continuation is then invoked with that value as its sole argument. The
two commands differ only in which internal continuation is to be invoked.
The j command invokes the continuation associated with the selected subprob-
lem. What this means is as follows: when the description of a subproblem is
printed, it consists of two parts, and “expression” and a “subproblem being
executed”. The latter is usually marked in the former by the specific character
sequence ‘###’. The internal continuation of the subproblem is the code that
is waiting for the “subproblem being executed” to return a value. So, in effect,
you are telling the program what the “subproblem being executed” will evaluate
to, and bypassing further execution of that code.
The z command is slightly different. It instead invokes the continuation that is
waiting for the outer “expression” to finish. In other words, it is the same as
invoking the j command in the next frame up. So you can think of this as an
abbreviation for the u command followed by the j command.

Wizard commands
The m, x, and y commands are for Scheme wizards. They are used to debug
the MIT Scheme implementation. If you want to find out what they do, read
the source code.

Miscellaneous commands
The i command will reprint the error message for the error that was in effect
immediately before the debugger started. The q command quits the debugger,
returning to the caller. And the ? command prints a brief summary of the
debugger’s commands.

5.3 Debugging Aids

This section describes additional commands that are useful for debugging.

52 MIT Scheme User’s Manual

procedure+bkpt datum argument . . .
Sets a breakpoint. When the breakpoint is encountered, datum and the arguments
are typed (just as for error) and a read-eval-print loop is entered. The environment
of the read-eval-print loop is derived by examining the continuation of the call to
bkpt; if the call appears in a non-tail-recursive position, the environment will be that
of the call site. To exit from the breakpoint and proceed with the interrupted process,
call the procedure continue. Sample usage:

1]=> (begin (write-line ’foo)
(bkpt ’test-2 ’test-3)
(write-line ’bar)
’done)

foo
test-2 test-3
;To continue, call RESTART with an option number:
; (RESTART 2) => Return from BKPT.
; (RESTART 1) => Return to read-eval-print level 1.

2 bkpt> (+ 3 3)

;Value: 6

2 bkpt> (continue)

bar
;Value: done

procedure+pp object [output-port [as-code?]]
The pp procedure is described in section “Output Procedures” in MIT Scheme Ref-
erence Manual. However, since this is a very useful debugging tool, we also mention
it here. pp provides two very useful functions:

1. pp will print the source code of a given procedure. Often, when debugging, you
will have a procedure object but will not know exactly what procedure it is.
Printing the procedure using pp will show you the source code, which greatly
aids identification.

2. pp will print the fields of a record structure. If you have a compound object
pointer, print it using pp to see the component fields, like this:

(pp (->pathname "~"))
a #[pathname 14 "/usr/home/cph"]
a (host #[host 15])
a (device unspecific)
a (directory (absolute "usr" "home"))
a (name "cph")
a (type ())
a (version unspecific)

Chapter 5: Debugging 53

When combined with use of the #@ syntax, pp provides the functionality of a
simple object inspector. For example, let’s look at the fields of the host object
from the above example:

(pp #@15)
a #[host 15]
a (type-index 0)
a (name ())

procedure+pa procedure
pa prints the arguments of procedure. This can be used to remind yourself, for
example, of the correct order of the arguments to a procedure.

for-all?
⇒ #[compiled-procedure 40 ("boole" #x6) #xC #x20ECB0]

(pa for-all?)
a (items predicate)

(pp for-all?)
a (named-lambda (for-all? items predicate)
a (let loop ((items items))
a (or (null? items)
a (and (predicate (car items))
a (loop (cdr items))))))

procedure+where [obj]
The procedure where enters the environment examination system. This allows en-
vironments and variable bindings to be examined and modified. where accepts one-
letter commands. The commands can be found by typing ? to the ‘where>’ prompt.
The optional argument, obj, is an object with an associated environment: an environ-
ment, a procedure, or a promise. If obj is omitted, the environment examined is the
read-eval-print environment from which where was called (or an error or breakpoint
environment if called from the debugger). If a procedure is supplied, where lets the
user examine the closing environment of the procedure. This is useful for debugging
procedure arguments and values.

procedure+apropos string [environment [search-parents?]]
Search an environment for bound names containing string and print out the matching
bound names. If environment is specified, it must be an environment or package name,
and it defaults to the current repl environment. The flag search-parents? specifies
whether the environment’s parents should be included in the search. The default is
#f if environment is specified, and #t if environment is not specified.

(apropos "search")
a #[package 47 (user)]
a #[package 48 ()]
a list-search-negative
a list-search-positive
a nt-fs-flag/case-sensitive-search

54 MIT Scheme User’s Manual

a re-string-search-backward
a re-string-search-forward
a re-substring-search-backward
a re-substring-search-forward
a search-ordered-subvector
a search-ordered-vector
a search-protection-list
a string-search-all
a string-search-backward
a string-search-forward
a substring-search-all
a substring-search-backward
a substring-search-forward
a vector-binary-search

5.4 Advising Procedures

Giving advice to procedures is a powerful debugging technique. trace and break are
useful examples of advice-giving procedures. Note that the advice system only works for
interpreted procedures.

procedure+trace-entry procedure
Causes an informative message to be printed whenever procedure is entered. The
message is of the form

[Entering #[compound-procedure 1 foo]
Args: val1

val2
...]

where val1, val2 etc. are the evaluated arguments supplied to the procedure.
(trace-entry fib)
(fib 3)
a [Entering #[compound-procedure 19 fib]
a Args: 3]
a [Entering #[compound-procedure 19 fib]
a Args: 1]
a [Entering #[compound-procedure 19 fib]
a Args: 2]
⇒ 3

procedure+trace-exit procedure
Causes an informative message to be printed when procedure terminates. The mes-
sage contains the procedure, its argument values, and the value returned by the
procedure.

(trace-exit fib)
(fib 3)
a [1

Chapter 5: Debugging 55

a <== #[compound-procedure 19 fib]
a Args: 1]
a [2
a <== #[compound-procedure 19 fib]
a Args: 2]
a [3
a <== #[compound-procedure 19 fib]
a Args: 3]
⇒ 3

procedure+trace-both procedure
procedure+trace procedure

Equivalent to calling both trace-entry and trace-exit on procedure. trace is the
same as trace-both.

(trace-both fib)
(fib 3)
a [Entering #[compound-procedure 19 fib]
a Args: 3]
a [Entering #[compound-procedure 19 fib]
a Args: 1]
a [1
a <== #[compound-procedure 19 fib]
a Args: 1]
a [Entering #[compound-procedure 19 fib]
a Args: 2]
a [2
a <== #[compound-procedure 19 fib]
a Args: 2]
a [3
a <== #[compound-procedure 19 fib]
a Args: 3]
⇒ 3

procedure+untrace-entry [procedure]
Stops tracing the entry of procedure. If procedure is not given, the default is to stop
tracing the entry of all entry-traced procedures.

procedure+untrace-exit [procedure]
Stops tracing the exit of procedure. If procedure is not given, the default is all
exit-traced procedures.

procedure+untrace [procedure]
Stops tracing both the entry to and the exit from procedure. If procedure is not
given, the default is all traced procedures.

procedure+break-entry procedure
Like trace-entry with the additional effect that a breakpoint is entered when pro-
cedure is invoked. Both procedure and its arguments can be accessed by calling the

56 MIT Scheme User’s Manual

procedures *proc* and *args*, respectively. Use restart or continue to continue
from a breakpoint.

procedure+break-exit procedure
Like trace-exit, except that a breakpoint is entered just prior to leaving procedure.
Procedure, its arguments, and the result can be accessed by calling the procedures
proc, *args*, and *result*, respectively. Use restart or continue to continue
from a breakpoint.

procedure+break-both procedure
procedure+break procedure

Sets a breakpoint at the beginning and end of procedure. This is break-entry and
break-exit combined.

procedure+unbreak [procedure]
Discontinues the entering of a breakpoint on the entry to and exit from procedure. If
procedure is not given, the default is all breakpointed procedures.

procedure+unbreak-entry [procedure]
Discontinues the entering of a breakpoint on the entry to procedure. If procedure is
not given, the default is all entry-breakpointed procedures.

procedure+unbreak-exit [procedure]
Discontinues the entering of a breakpoint on the exit from procedure. If procedure is
not given, the default is all exit-breakpointed procedures.

The following three procedures are valid only within the dynamic extent of a breakpoint.
In other words, don’t call them unless you are stopped inside a breakpoint.

procedure+*proc*
Returns the procedure in which the breakpoint has stopped.

procedure+*args*
Returns the arguments to the procedure in which the breakpoint has stopped. The
arguments are returned as a newly allocated list.

procedure+*result*
Returns the result yielded by the procedure in which the breakpoint has stopped.
This is valid only when in an exit breakpoint.

The following procedures install advice procedures that are called when the advised
procedure is entered or exited. An entry-advice procedure must accept three arguments:
the advised procedure, a list of the advised procedure’s arguments, and the advised proce-
dure’s application environment (that is, the environment in which the procedure’s formal
parameters are bound). An exit-advice procedure must accept four arguments: the advised
procedure, a list of the advised procedure’s arguments, the result yielded by the advised
procedure, and the advised procedure’s application environment.

Chapter 5: Debugging 57

Note that the trace and breakpoint procedures described above are all implemented by
means of the more general advice procedures, so removing advice from an advised procedure
will also remove traces and breakpoints.

procedure+advise-entry procedure advice
Advice must be an entry-advice procedure. Advice is attached to procedure, so that
whenever procedure is entered, advice is called.

procedure+advise-exit procedure advice
Advice must be an exit-advice procedure. Advice is attached to procedure, so that
whenever procedure returns, advice is called.

procedure+advice procedure
Returns the advice procedures, if any, that are attached to procedure. This is returned
as a list of two lists: the first list is all of the entry-advice procedures attached to
procedure, and the second is all of the exit-advice procedures.

procedure+unadvise-entry [procedure]
Removes all entry-advice procedures from procedure. If procedure is not given, the
default is all entry-advised procedures.

procedure+unadvise-exit [procedure]
Removes exit-advice procedures from procedure. If procedure is not given, the default
is all exit-advised procedures.

procedure+unadvise [procedure]
Removes all advice procedures from procedure. This is a combination of unadvise-
entry and unadvise-exit. If procedure is not given, the default is all advised pro-
cedures.

58 MIT Scheme User’s Manual

Chapter 6: GNU Emacs Interface 59

6 GNU Emacs Interface

There is an interface library, called ‘xscheme’, distributed with MIT Scheme and GNU
Emacs, which facilitates running Scheme as a subprocess of Emacs. If you wish to use this
interface, please install the version of ‘xscheme.el’ that comes with MIT Scheme, as it is
guaranteed to be correct for your version of Scheme.

This interface works under unix only, because it requires unix signals for its operation.
Porting it to either OS/2 or Windows would require reimplementing the interface to elimi-
nate the use of signals. We have no plans to do this.

To invoke Scheme from Emacs, load the ‘xscheme’ library, then use M-x run-scheme.
You may give run-scheme a prefix argument, in which case it will allow you to edit the
command line that is used to invoke Scheme. Do not remove the -emacs option!

Note carefully: In Emacs 19 and later, the run-scheme command exists, but is different
from the one described here! In order to get this interface, you must load the ‘xscheme’
library before executing run-scheme.

Scheme will be started up as a subprocess in a buffer called ‘*scheme*’. This buffer will
be in scheme-interaction-mode and all output from the Scheme process will go there.
The mode line for the ‘*scheme*’ buffer will have this form:

--**-*scheme*: 1 [Evaluator] (Scheme Interaction: input)------

The first field, showing ‘1’ in this example, is the level number.
The second field, showing ‘[Evaluator]’ in this example, describes the type of repl that
is running. Other values include:

[Debugger]
[Where]

The mode after ‘Scheme Interaction’ is one of:

‘input’ Scheme is waiting for input.

‘run’ Scheme is running an evaluation.

‘gc’ Scheme is garbage collecting.

When ‘xscheme’ is loaded, scheme-mode is extended to include commands for evaluating
expressions (do C-h m in any scheme-mode buffer for the most up-to-date information):

M-o Evaluates the current buffer (xscheme-send-buffer).

M-z Evaluates the current definition (xscheme-send-definition). This is also
bound to C-M-x.

C-M-z Evaluates the current region (xscheme-send-region).

C-x C-e Evaluates the expression to the left of point
(xscheme-send-previous-expression). This is also bound to M-〈RET〉.

C-c C-s Selects the ‘*scheme*’ buffer and places you at its end (xscheme-select-
process-buffer).

C-c C-y Yanks the most recently evaluated expression, placing it at point (xscheme-
yank-previous-send). This works only in the ‘*scheme*’ buffer.

60 MIT Scheme User’s Manual

The following commands provide interrupt capability:

C-c C-c Like typing C-g when running Scheme without Emacs.
(xscheme-send-control-g-interrupt)

C-c C-x Like typing C-c C-x when running Scheme without Emacs.
(xscheme-send-control-x-interrupt)

C-c C-u Like typing C-c C-u when running Scheme without Emacs.
(xscheme-send-control-u-interrupt)

C-c C-b Like typing C-c C-b when running Scheme without Emacs.
(xscheme-send-breakpoint-interrupt)

C-c C-p Like evaluating (continue). (xscheme-send-proceed)

Chapter 7: Edwin 61

7 Edwin

This chapter describes how to start Edwin, the MIT Scheme text editor. Edwin is very
similar to GNU Emacs — you should refer to the GNU Emacs manual for information
about Edwin’s commands and key bindings — except that Edwin’s extension language is
MIT Scheme, while GNU Emacs extensions are written in Emacs Lisp. This manual does
not discuss customization of Edwin.

7.1 Starting Edwin

To use Edwin, start Scheme with the following command-line options:
scheme -edwin -edit

Alternatively, you can load Edwin by giving the -edwin command-line option and then
calling the procedure edit:

procedure+edit
procedure+edwin

Enter the Edwin text editor. If entering for the first time, the editor is initialized
(by calling create-editor with no arguments). Otherwise, the previously-initialized
editor is reentered.

The procedure edwin is an alias for edit.

variable+inhibit-editor-init-file?
When Edwin is first initialized, it loads your init file (called ‘~/.edwin’ under unix,
‘edwin.ini’ on PCs) if you have one. If the Scheme variable inhibit-editor-init-
file? is true, however, your init file will not be loaded even if it exists. By default,
this variable is false.

Note that you can set this variable in your Scheme init file (see Section 2.2 [Customiz-
ing Scheme], page 9).

procedure+create-editor arg . . .
Initializes Edwin, or reinitializes it if already initialized. create-editor is normally
invoked automatically by edit.

If no args are given, the value of create-editor-args is used instead. In other
words, the following are equivalent:

(create-editor)
(apply create-editor create-editor-args)

On the other hand, if args are given, they are used to update create-editor-args,
making the following equivalent:

(apply create-editor args)
(begin (set! create-editor-args args) (create-editor))

62 MIT Scheme User’s Manual

variable+create-editor-args
This variable controls the initialization of Edwin. The following values are defined:

(#f) This is the default. Creates a window of some default size, and uses that
window as Edwin’s main window. Under unix, if X11 is not available
or if the DISPLAY environment variable is undefined, Edwin will run on
Scheme’s console.

(x) Unix only. Creates an X window and uses it as Edwin’s main window.
This requires the DISPLAY environment variable to have been set to the
appropriate value before Scheme was started.

(x geometry)
Unix only. Like (x) except that geometry specifies the window’s geome-
try in the usual way. Geometry must be a character string whose contents
is an X geometry specification.

(console)
Unix only. Causes Edwin to run on Scheme’s console, or in unix termi-
nology, the standard input and output. If the console is not a terminal
device, or is not powerful enough to run Edwin, an error will be signalled
at initialization time.

(pm) OS/2 only. Creates a Presentation Manager window and uses it as Ed-
win’s main window.

(win32) Windows only. Creates a window and uses it as Edwin’s main window.

7.2 Leaving Edwin

Once Edwin has been entered, it can be exited in the following ways:

C-x z Stop Edwin and return to Scheme (suspend-edwin). The call to the procedure
edit that entered Edwin returns normally. A subsequent call to edit will
resume Edwin where it was stopped.

C-x c Offer to save any modified buffers, then kill Edwin, returning to Scheme (save-
buffers-kill-edwin). This is like the suspend-edwin command, except that
a subsequent call to edit will reinitialize the editor.

C-x C-z Stop Edwin and suspend Scheme, returning control to the operating system’s
command interpreter (suspend-scheme). When Scheme is resumed (using
the command interpreter’s job-control commands), Edwin is automatically
restarted where it was stopped. This command is identical to the C-x C-z

command of GNU Emacs.

C-x C-c Offer to save any modified buffers, then kill both Edwin and Scheme (save-
buffers-kill-scheme). Control is returned to the operating system’s com-
mand interpreter, and the Scheme process is terminated. This command is
identical to the C-x C-c command of GNU Emacs.

Chapter 7: Edwin 63

7.3 Scheme Mode

As you might expect, Edwin has special support for editing and evaluating Scheme
code. This section describes Scheme Mode, the appropriate mode for editing MIT Scheme
programs.

Scheme mode is normally entered automatically by visiting a file whose file name ends
in ‘.scm’. You can also mark a file as Scheme code by placing the string ‘-*-Scheme-*-’
on the first line of the file. Finally, you can put any buffer in Scheme mode by executing
the command M-x scheme-mode.

Scheme mode is similar to the Emacs modes that edit Lisp code. So, for example, C-i
indents the current line, and C-M-q indents the expression to the right of point. The close
parenthesis will temporarily flash the matching open parenthesis. Most Scheme constructs
requiring special indentation are recognized by Scheme mode, for example, begin, do, and
let.

Scheme mode also provides support that is specific to Scheme programs, much as Emacs-
Lisp mode does in Emacs. Completion of global variable names is provided: type the first
few characters of a variable, then type C-M-i, and Edwin will attempt to complete the
variable name using the current set of bound variables. If C-M-i is given a prefix argument,
it will complete the name using the current set of interned symbols (which includes the
bound variables as a subset).

The M-A command (note the uppercase A) will show the parameters of a procedure when
point is inside a procedure call. For example, type the string ‘(quotient’, then press M-A,
and the command will echo ‘(n d)’ in the echo area. With a prefix argument, M-A will insert
the parameter names in the buffer at point, so in this example, the buffer would contain
‘(quotient n d’ after running C-u M-A.

7.4 Evaluation

Scheme mode also provides commands for evaluating Scheme expressions. The simplest
evaluation command is C-x C-e, which evaluates the expression to the left of point. (This
key is bound in all buffers, even if they don’t contain Scheme code.) The command M-z

evaluates the definition that point is in (a definition is an expression starting with a left
parenthesis in the leftmost column). The command M-: prompts for an expression in the
minibuffer, evaluates it, and prints the value in the echo area.

Other commands that evaluate larger amounts of code are C-M-z, which evaluates all
of the expressions in the region, and M-o, which evaluates the entire buffer. Both of these
commands are potentially dangerous in that they will evaluate anything that appears to be
an expression, even if it isn’t intended to be.

Normally, these commands evaluate expressions by sending them to a repl buffer, which
performs the evaluations in a separate thread. This has two advantages: it allows you to
continue editing while the evaluation is happening, and it keeps a record of each evaluation
and its printed output. If you wish to stop a running evaluation and to erase any pending
expressions, use the C-c C-c command from any Scheme buffer. (Note that by default,
Edwin starts up with one repl buffer, called ‘*scheme*’.)

64 MIT Scheme User’s Manual

If you would prefer to have Scheme mode evaluation commands evaluate directly,
rather than sending expressions to the repl buffer, set the Edwin variable evaluate-in-
inferior-repl to #f. In this case, you will not be able to use Edwin while evaluation
is occurring; any output from the evaluation will be shown in a pop-up buffer when the
evaluation finishes; and you abort the evaluation using C-g.

7.5 REPL Mode

Edwin provides a special mechanism for interacting with Scheme read-eval-print loops:
repl buffers. A repl buffer is associated with a Scheme repl running in a separate
thread of execution; because of this, expressions may be evaluated in this buffer while you
simultaneously do other things with the editor. A repl buffer captures all printed output
from an evaluated expression, as well as supporting interactive programs such as debug.
For these and other reasons, repl buffers are the preferred means for interacting with the
Scheme interpreter.

When Edwin starts, it has one buffer: a repl buffer called ‘*scheme*’. The command
M-x repl selects this buffer, if it exists; otherwise it creates a new repl buffer. If you want
two repl buffers, just rename the ‘*scheme*’ buffer to something else and run M-x repl

again.

repl buffers support all the same evaluation commands that Scheme mode does; in fact,
repl buffers use a special mode called repl mode that inherits from Scheme mode. Thus,
any key bindings defined in Scheme mode are also defined in repl mode. One exception to
this is the M-o command, which is deliberately undefined in repl mode; otherwise it would
be too easy to re-evaluate all the previously evaluated expressions in the repl buffer.

In addition to evaluation commands, repl mode provides a handful of special commands
for controlling the repl itself. The commands C-c C-x and C-c C-u abort the current
evaluation, returning to the current or previous repl levels, respectively. The command
C-c C-b interrupts the current evaluation, entering a breakpoint.

Each repl buffer maintains a history of the expressions that were typed into it. Sev-
eral commands allow you to access the contents of this history. The command M-p moves
backwards through the history, inserting previously evaluated expressions at point. Like-
wise, M-n moves forward through the history. The commands C-c C-r and C-c C-s search
backward and forward through the history for a particular string. The command C-c C-o

deletes any output from the previous evaluation; use this command with care since it cannot
be undone. The command C-c C-l finds the most recent expression in the buffer and moves
point there.

When an expression that you evaluate signals an error, the repl buffer notices this and
offers to run the debugger for you. Answer this question with a ‘y’ or ‘n’ response. You can
start the debugger whenever the repl buffer is listening by executing the C-c C-d command.
In either case, this starts the Edwin debugger, which pops up a new window containing the
debugger. Your repl buffer remains in the error state, allowing you to examine it further
if you wish.

Chapter 7: Edwin 65

7.6 The Edwin Debugger

The Edwin debugger is similar to the command-line debugger, except that it takes
advantage of multiple windows and Edwin’s command structure to provide a more intuitive
interface. The debugger operates as a browser, much like Dired, presenting you with an
overview of the subproblem structure, and allowing you to examine parts of that structure
in more detail by selecting the parts. When started, the debugger creates a buffer ‘*debug*’
showing the subproblem structure, and selects the first line.

Each line beginning with ‘S’ represents either a subproblem or stack frame. A subproblem
line may be followed by one or more indented lines (beginning with the letter ‘R’) which
represent reductions associated with that subproblem. The subproblems are indexed with
the natural numbers. To obtain a more complete description of a subproblem or reduction,
click the mouse on the desired line or move the cursor to the line using the arrow keys (or
C-n and C-p). The description buffer will display the additional information.

The description buffer contains three major regions. The first region contains a pretty-
printed version of the current expression. The current subproblem within the expression is
highlighted. The second region contains a representation of the frames of the environment
of the current expression. The bindings of each frame are listed below the frame header. If
there are no bindings in the frame, none will be listed. The frame of the current expression
is preceded with ‘==>’.

The bottom of the description buffer contains a third region for evaluating expressions
in the environment of the selected subproblem or reduction. This is the only portion of
the buffer where editing is possible. This region can be used to find the values of variables
in different environments, or even to modify variable values or data structures (note that
variables in compiled code cannot usually be modified).

Typing e creates a new buffer in which you may browse through the current environment.
In this new buffer, you can use the mouse, the arrows, or C-n and C-p to select lines and view
different environments. The environments listed are the same as those in the description
buffer. If the selected environment structure is too large to display (i.e. if the number of
bindings in the environment exceeds the value of the editor variable environment-package-
limit) a message to that effect is displayed. To display the environment in this case, use
M-x set-variable to set environment-package-limit to #f. At the bottom of the new
buffer is a region for evaluating expressions, similar to that of the description buffer.

The appearance of environment displays is controlled by the editor variables debugger-
show-inner-frame-topmost? and debugger-compact-display? which affect the ordering
of environment frames and the line spacing respectively.

Type q to quit the debugger, killing its primary buffer, any others that it has created,
and the window that was popped up to show the debugger.

Note: The description buffers created by the debugger are given names beginning with
spaces so that they do not appear in the buffer list; these buffers are automatically deleted
when you quit the debugger. If you wish to keep one of these buffers, simply rename it
using M-x rename-buffer: once it has been renamed, it will not be automatically deleted.

66 MIT Scheme User’s Manual

7.7 Last Resorts

When Scheme exits abnormally it tries to save any unsaved Edwin buffers. The buffers
are saved in an auto-save file in case the original is more valuable than the unsaved version.
You can use the editor command M-x recover-file to recover the auto-saved version. The
name used to specify an auto-save file is operating-system dependent: under unix, and on
PC file systems with long file names, ‘foo.scm’ will be saved as ‘#foo.scm#’; on PC file
systems with short file names, it will be saved as ‘foo.sav’.

The following Scheme procedures are useful for recovering from bugs in Edwin’s imple-
mentation. All of them are designed for use when Edwin is not running — they should
not be used when Edwin is running. These procedures are designed to help Edwin’s imple-
mentors deal with bugs during the implementation of the editor; they are not intended for
casual use, but as a means of recovering from bugs that would otherwise require reloading
the editor’s world image from the disk.

procedure+save-editor-files
Examines Edwin, offering to save any unsaved buffers. This is useful if some bug
caused Edwin to die while there were unsaved buffers, and you want to save the
information without restarting the editor.

procedure+reset-editor
Resets Edwin, causing it to be reinitialized the next time that edit is called. If you
encounter a fatal bug in Edwin, a good way to recover is to first call save-editor-
files, and then to call reset-editor. That should completely reset the editor to
its initial state.

procedure+reset-editor-windows
Resets Edwin’s display structures, without affecting any of the buffers or their con-
tents. This is useful if a bug in the display code causes Edwin’s internal display data
structures to get into an inconsistent state that prevents Edwin from running.

Appendix A: Release Notes 67

Appendix A Release Notes

The previous full release of MIT Scheme was version 7.4.7 in 1998. This section describes
major changes that have occurred since that time. For more detailed information, see the
‘RCS.log’ files in the source code.

Note that MIT Scheme still conforms to the Revised^4 Report on the Algorithmic Lan-
guage Scheme, but not to the Revised^5 Report on The Algorithmic Language Scheme.

A.1 Recent Changes

These are the changes since release 7.5.0:
• Release 7.5.17 includes enhancements to imail and many bug fixes. imail now has a

Dired-like browser for folders; the ‘rmail:’ and ‘umail:’ folder types have been retired
in favor of a more uniform ‘file:’ type; and some problems using imail with Microsoft
Exchange have been fixed. Many people experienced trouble trying to compile release
7.5.16 from source code; a number of bugs have been fixed and this release should now
build cleanly on most unix systems. Finally, the representation of character-set ob-
jects has been changed; unfortunately this requires recompiling any code that refers to
the procedures substring-find-next-char-in-set or substring-find-previous-
char-in-set.

• Release 7.5.16 fixes two limitations in email support. First, the mail-sending interface
has been reworked to generate the formatted message to a temporary file rather than
a buffer. This allows sending very large attachments. Second, imail’s handling of
file-based folders has been reworked to store a copy of the file in an "external string"
The in-heap data structures no longer contain excerpts from the file, but instead keep
indexes into the file and extract the excerpts on demand. This allows reading very large
mail files with reasonably-sized heaps (however it does require enough virtual memory
to hold an image of the file). The actual in-heap storage is quite small, approximately
100 bytes per message.

• Release 7.5.15 has no user-visible changes. The crypto code in the system has been re-
engineered so that it can be dynamically loaded on GNU/Linux systems, thus avoiding
a direct dependence on crypto libraries. This allows Scheme to be used without crypto
libraries (except for the crypto support, of course).

• Release 7.5.14 has changed the way that the crypto libraries are handled. We now
support OpenSSL and mcrypt in addition to mhash and the older, more custom libraries
we were using. Additional bug fixes: transcript files now record output as they are
supposed to; Edwin Info mode doesn’t complain if Scheme’s private Info directory is
missing; termcap support has been reworked to eliminate compilation errors on Red
Hat 7.0.

• Release 7.5.13 finishes the source-tree reorganization; this software is now packaged for
Debian. A fatal bug in the bchscheme garbage collector has been fixed. X graphics
procedures now accept any coordinate argument that satisfies the real? predicate;
previously it did not accept exact rational numbers or complex numbers with inexact

68 MIT Scheme User’s Manual

imaginary zero. Quite a few bugs have been fixed in imail, including some changes
needed to interact properly with uw imap. imail’s user interface has been tweaked a
bit. Edwin now has a debian-changelog mode.

• Release 7.5.12 is a complete reorganization of the source tree to use modern configura-
tion techniques based on Autoconf. The purpose of this reorganization is to simplify
maintenance, porting, and the generation of binary packages (e.g. Debian ‘.deb’ pack-
ages). The C code has been extensively modified to support this, and a lot of general
cleanup has been done. There should be no user-visible changes due to the reorganiza-
tion, aside from the usual crop of bug fixes.

• Release 7.5.11 includes unencumbered support for Blowfish encryption, reflecting recent
changes to us export controls. More bug fixes, including a fatal bug in the purify
procedure when running bchscheme, which has been around for many years and never
noticed.

• Release 7.5.10 fixes numerous bugs, and offers significant speed improvements to the
basic operation of imail. This release also provides a shell script to build the system
from source code (works on GNU/Linux and FreeBSD systems only).

• Release 7.5.9 adds the imail mail reader; imail is a new Rmail-like mail reader that
supports imap and mime. Edwin’s mail-sending support has also been enhanced to
understand mime, so that it is now possible to send mime attachments. Numerous
changes to the runtime system and to Edwin have been made to support these changes.
Additional changes:
• Edwin now has rudimentary support for a mouse wheel.
• Edwin buffer-menu now does better job aligning its columns.
• In Edwin, M-x vc-version-other-window now defaults the version if unspecified.
• string->decoded-time (and consequently other procedures that convert rfc-822

time strings) now accepts two-digit years, pivoting around 1970. This is a crock,
but we have seen recent email messages utilizing such strings.

• New procedure set-string-maximum-length!.
• Release 7.5.8 fixes a nasty uninitialized-memory bug in the Win32 event-handling code.

No other system is affected.
• Release 7.5.7 changes: add support for the mhash library under GNU/Linux; fix bug in

international keyboard support under Windows (thanks to Jacques Herry); beep now
works properly in Edwin under Windows 9x; fix a fatal Edwin bug triggered by deleting
a continued line at the top of the window; fix assorted bugs in Edwin’s VC mode.

• Release 7.5.6 has a number of changes mostly having to do with cvs: sources converted
from rcs to cvs; change logs converted to GNU ChangeLog format; vc now supports
cvs; vc program logic cleaned up; several bugs fixed in abbrev support; new procedures
convert times to/from iso C ctime() format.

• Release 7.5.5 changes the implementation of sort (and merge-sort) when applied to
lists: previously this procedure was recursive to a depth of half the length of the list
being sorted; the new implementation recurses only to a depth of lg(N). Additionally,
this release provides new procedures flo:<=, flo:>=, flo:max and flo:min.

• Release 7.5.4 fixes some bugs in the sos object instantiation code (reported by Joe
Marshall). It also includes several improvements to Edwin: implementation of abbrevs;

Appendix A: Release Notes 69

implementation of adaptive fill; change incremental search to terminate on 〈RET〉 rather
than 〈ESC〉; show mode-specific key bindings in C-h m.

• Release 7.5.3 fixes problems in the Windows port that caused errors when trying to
read gzipped Info files. This release also fixes a bug that prevented the code from
compiling properly when using egcs or GCC 2.95.x under GNU/Linux.

• Release 7.5.2 adds support for FreeBSD; no other system is affected. The code for
GNU/Linux has been re-compiled but should otherwise be unchanged.

• Release 7.5.1 fixes some bugs in Edwin Rmail and in how Edwin displays characters
with codes between #x80 and #xA0.

A.2 Overall Changes

The following changes affect the entire system:
• MIT Scheme has been re-released under the GNU General Public License.
• With this release we no longer support Windows 3.1 or any form of dos. The only

supported Microsoft operating systems are Windows 95, Windows 98, and Windows
NT. We have tested on Windows 95, Windows 98, and Windows NT 4.0.

• Although there have been no significant changes to the compiler, there have been some
low-level representation changes to records and structures that make compiled code in
this release incompatible with that from the previous release.

• sos object-oriented programming extensions are now included in the base release. They
are not loaded by default; evaluate (load-option ’sos) to load them.

• The documentation has been overhauled. The Reference Manual has sections describing
both new facilities and also some older facilities that were never properly documented.
The User’s Manual has new material in the Installation, Debugging, and Edwin chap-
ters, and has been revised throughout.

A.3 Base System Changes

These are the major changes to the base system:
• Command-line options:
• The -compiler and -edwin command-line options can now be specified together,

meaning that a band containing both compiler and Edwin support should be
loaded.

• The heap-sizing code now automatically defaults the -constant command-line
option to the correct size for the band being loaded, and adds the heap used by
the band to the requested heap size. In consequence, it should rarely be necessary
to specify -constant. An additional benefit is that the -heap command-line option
now specifies exactly how much heap space is available when Scheme is started;
previously the available amount was less than the specified amount due to the
band’s heap usage.

• Command-line arguments can now be defined by user code.

70 MIT Scheme User’s Manual

• Numeric input/output:
• Several changes to the number reader and printer have resulted in greatly improved

performance, particularly for floating-point numbers.
• The variable flonum-unparser-cutoff can now specify the format in which the

numbers are to be printed, e.g. scientific or engineering.
• The parser now treats *parser-radix* differently: if it is set to a value other

than 10 and the parser encounters radix-10 syntax (e.g. a decimal point), an error
is signalled.

• Strings and characters:
• Regular-expression match and search are now available for strings.
• String search procedures are now implemented, using Boyer-Moore search when

appropriate.
• Characters now have 16 bits of character code (instead of 7) to allow 8-bit ISO

latin and Unicode characters. Strings are still based on 8-bit characters.
• Ports:
• The fresh-line operation is now supported by all common port types.
• close-input-port and close-output-port now close only one side of a bidirec-

tional port; previously they closed both sides.
• The following port operations have been eliminated: write-string, read-chars,

and write-chars.
• The low-level port data abstraction has been overhauled. The new design has port

types that implement the operations for the port, and are shared between all ports
of a given type.

• Operating-system interface:
• Synchronous subprocesses can now be run from Scheme code.
• Date and time support has been fleshed out and now provides a rich set of rep-

resentations and conversions. Unfortunately, this support depends on underlying
support of the C library, which is sometimes of low quality.

• A bug in socket support has been fixed: port numbers are now specified normally
and automatically translated to network order. Previously it was necessary to
translate them to network order by hand.

• open-tcp-stream-socket and open-unix-stream-socket now return one i/o

port rather than an input port and an output port. tcp sockets now use "\r\n"
end-of-line marker regardless of the operating system.

• Under Linux, Scheme now detects various foreign filesystems such as msdos, vfat,
ntfs, and hpfs, and sets the default line translation for files on those systems to
"\r\n".

• Red-black trees now support operations to read or delete the minimum or maximum
element of a tree.

• Both merge-sort and quick-sort are now available. As before, sort defaults to
merge-sort.

• Pathname objects can now be written (using fasdump) on one operating system and
read (using fasload) on another. Previously this didn’t work between unlike operating

Appendix A: Release Notes 71

systems, such as Windows and unix, because Scheme only loaded the pathname support
for the operating system it was running on. Now support for all operating systems is
loaded, no matter what system is being used.

• Numerous fixes to stream code, eliminating premature dereferencing of streams, and
dropping pointers to streams as soon as possible.

• Transcripts (i.e. transcript-on) are now local to a particular repl. This is usually
relevant only when using Edwin, where there can be several repl buffers. Previously
transcripts only recorded activity on the Scheme console, and ignored any other repls,
including Edwin repl buffers.

• bkpt is no longer a macro. Instead, it extracts an environment from the continuation
it is called with, by looking at the innermost stack frame. In order for this to work
properly, it must not be called in a tail-recursive position. Calling it in a tail-recursive
position will not generate any errors, but will cause the breakpoint to be visiting the
wrong environment.

• Under X11, the BackSpace keysym is treated as Delete, as long as BackSpace is bound
to ascii backspace.

• The ‘hppacach’ program knows how to find kernel files for HP-UX 10.x and later.

• OS/2:

• Under OS/2, the default font for the Scheme console window has been changed to
"8.Courier".

• More sophisticated heuristics are used to discover the user’s home directory on
OS/2 systems.

• Under OS/2 Warp 4.0, Scheme now reports the operating-system version correctly.

• A new undocumented generic-procedure dispatch mechanism and its associated tagged
data structures provides a high-performance substrate for building clos-like object-
oriented programming systems. This mechanism has been fully integrated into the
existing record and defstruct code. The sos system (which is documented) has been
added as a load option to allow writing object-oriented code.

• Undocumented interfaces now provide support for gdbm, md5 checksums, and blowfish
encryption. The blowfish encryption is disabled by default, but we may later distribute
a key to enable it.

A.4 Edwin Changes

These changes affect only Edwin:

• The following are new language modes: html, Java, php, Verilog, vhdl. Some of these
modes are pretty sketchy, consisting of little more than syntax and indentation – they
are not to be confused with the more powerful modes provided by Emacs.

• Edwin can read and write files compressed with bzip2, gzip, or compress. It can
also read and write files encrypted with blowfish (but this is currently disabled due to
export restrictions).

72 MIT Scheme User’s Manual

• On PC systems, compressed files, encrypted files, and Rmail files do not have line
translation; they are stored in Scheme’s native format (i.e. with newlines as line termi-
nators).

• Edwin now indirects through symbolic links to find the true file being edited, and
backup files go in the directory of the true file rather than the link.

• Commands that read arguments from the minibuffer now have prompt histories, which
can be accessed by using M-p and M-n.

• The command eval-expression is now bound to M-: for compatibility with newer
versions of Emacs.

• A new command insert-filename, bound to C-c C-i, prompts for a filename in the
minibuffer, then inserts it at point. The formatting of the filename is controlled by the
variable insert-filename-format, which by default uses Scheme string format.

• Shell buffers now implement command completion. This is overloaded onto the
filename-completion command C-M-i just as in Emacs.

• A new command-line option -edit causes the editor to start up when Scheme is started.
• A new command inferior-repl-flush-output, bound to C-c C-o, deletes output

from the previous command. This works similarly to the corresponding command in
shell buffers.

• Errors in the repl buffer now prompt in the repl buffer itself, rather than in the
minibuffer as previously. The new prompts are less intrusive.

• The evaluation commands now permit the evaluation environment to be set to the
name of a package, and use the package’s environment if available. If the package’s
environment is unavailable, or if the package doesn’t exist, the global environment is
used instead.

• The command repl now treats its argument differently, simplifying the creation of mul-
tiple inferior repl buffers. A new command set-inferior-repl-buffer associates a
Scheme buffer with an arbitrary inferior repl buffer, so that evaluation commands in
that Scheme buffer use the specified repl buffer.

• Info now supports the variable info-directory-list, which works like that in Emacs.
• The command manual-entry now uses multiple buffers with Emacs 19 naming con-

ventions.
• Frame-related commands are now bound to C-x 5 as in Emacs, e.g. C-x 5 f finds a file

in another frame. The command split-window-horizontally has been moved to C-x

3, again as in Emacs.
• All commands operating on frames now use the noun “frame” in their names, for

consistency with Emacs. Previously they used “screen”.
• New commands show-frame-size, show-frame-position, set-frame-size, and

set-frame-position.
• Under X11, Edwin now distinguishes between its primary frame and all other frames

when finding resources. The new X resource name for these secondary frames is
edwinSecondary.

• Sending mail is now supported through a direct smtp interface. This interface will work
on any operating system that supports sockets (all of the systems we current distribute
for). See the variables mail-relay-host and smtp-require-valid-recipients.

Appendix A: Release Notes 73

A.5 Windows Changes

Many substantial changes have been made to the Windows port, mostly to bring it up
to par with the other ports.
• There is now a single input queue for events, which fixes various small but annoying

bugs having to do with events not being read at times when they should have been.
• The command-line parser has been improved so that it will accept arguments with

spaces in them. In order for this to work properly, the argument must be surrounded
by double quotes. This fix allows Scheme to be installed in a directory whose name
contains spaces.

• Scheme now understands about Windows 98 version strings, and furthermore provides
more detailed information about specifics of the platform.

• Scheme now more aggressively allocates low memory, and consequently is able to allo-
cate slightly larger heaps. Unfortunately there are inherent limitations on the heap size
that cannot easily be worked around in this fashion. If you need more memory, you
must use a friendlier operating system, or wait for Windows 64-bit addressing support.

• The Scheme microcode now compiles using Visual C++ 5.0 or later. However it is
probably not desirable to do this, because Visual C++ links in certain libraries at key
places in the memory image, and consequently limits the heap to fairly small sizes. The
microcode we distribute is compiled with Watcom C/C++ 11.0, which does not restrict
our heap allocation as much.

• Various pop-up error dialogs are now suppressed, e.g. for inaccessible floppy devices.
• International keyboards should now work properly. However, this hasn’t been tested

properly; we’d appreciate information about how well it works.
• Subprocesses and sockets are now supported. However, Edwin’s shell mode works only

under Windows NT; there is something wrong with the Windows 9x subprocess support
that we don’t yet understand.

• Scheme now uses more sophisticated heuristics to discover the user’s home directory
on Windows systems. It is no longer necessary to bind the HOME environment variable
under Windows NT.

• Edwin has its own copy of ‘gzip.exe’ to guarantee that there’s support for gzip-
compressed files.

• Edwin now recognizes the standard Windows shell prompt in shell buffers.
• Edwin printing commands now work.
• Edwin now supports cut and paste using the kill and yank commands.
• All Dired commands are now supported. Dired formats directory listings in native

format rather than unix format. The M command changes mode bits, which are specified
much like arguments to the attrib command. The S command toggles whether or not
hidden/system files are shown; by default these files do not appear in Dired listings.

• New undocumented primitives provide access to the registry.

74 MIT Scheme User’s Manual

GNU Free Documentation License 75

GNU Free Documentation License

Version 1.1, March 2000
Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

76 MIT Scheme User’s Manual

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTeX input format, sgml or xml using a publicly
available dtd, and standard-conforming simple html designed for human modifica-
tion. Opaque formats include PostScript, pdf, proprietary formats that can be read
and edited only by proprietary word processors, sgml or xml for which the dtd

and/or processing tools are not generally available, and the machine-generated html

produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long

GNU Free Documentation License 77

as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

78 MIT Scheme User’s Manual

I. Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

GNU Free Documentation License 79

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgements”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may

80 MIT Scheme User’s Manual

include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 81

Index

*
args . 56

proc . 56

result . 56

save-uncompressed-files? 34

uncompressed-file-lifetime 34

-
-band . 12

-compiler . 11

-constant . 12

-edit . 15

-edwin . 11

-emacs . 13, 59

-eval . 15

-fasl . 13

-gc-directory . 14

-gc-drone . 14

-gc-end-position . 14

-gc-file . 14

-gc-keep . 14

-gc-read-overlap . 14

-gc-start-position . 14

-gc-window-size . 14

-gc-write-overlap . 15

-gcfile . 14

-heap . 12

-interactive . 13

-large . 12

-library . 13

-load . 15

-no-init-file . 15

-nocore . 13

-option-summary . 12

-stack . 12

-suspend-file . 15

-utab . 13

-utabmd . 13

A
advice . 57

advise-entry . 57

advise-exit . 57

all . 43

apropos . 53

argument-command-line-parser 16

assigned . 44

B
band . 12, 28

bchscheme . 10

bkpt . 52

bound . 44

break . 56

break-both . 56

break-entry . 55

break-exit . 56

breakpoint . 24

breakpoints . 47

browser, Continuation . 48

bugs . 47

bugs, reporting . 1

C
C-b . 24

C-c . 24

C-c ? . 24

C-c C-b . 24, 60

C-c C-c . 24, 60

C-c C-p . 60

C-c C-s . 59

C-c C-u . 24, 60

C-c C-x . 24, 60

C-c C-y . 59

C-c i . 24

C-c q . 24

C-c z . 24

C-g . 24

C-M-z . 59

C-u . 24

C-x . 24

C-x c . 62

C-x C-c . 62

C-x C-e . 59

C-x C-z . 62

C-x z . 62

cd . 27

cf . 33

cmdl-interrupt/abort-nearest 24

82 MIT Scheme User’s Manual

cmdl-interrupt/abort-previous 24

cmdl-interrupt/abort-top-level 24

COLUMNS . 19

command scripts . 9

command-line debugger . 48

command-line options . 9

compatibility package, version 9

compiler, starting . 9

compiler, version . 9

COMSPEC . 21

constant space . 10

continuation Browser. 48

continue . 24

create-editor . 61

create-editor-args . 62

current REPL environment 26

D
debug . 48

debugger . 48

Debugger command: ? . 51

Debugger command: a . 50

Debugger command: b . 50

Debugger command: c . 50

Debugger command: d . 50

Debugger command: e . 50

Debugger command: f . 50

Debugger command: g . 50

Debugger command: h . 50

Debugger command: i . 51

Debugger command: j . 51

Debugger command: k . 51

Debugger command: l . 50

Debugger command: m . 51

Debugger command: o . 50

Debugger command: p . 50

Debugger command: q . 51

Debugger command: r . 50

Debugger command: s . 50

Debugger command: t . 50

Debugger command: u . 50

Debugger command: v . 50

Debugger command: w . 50

Debugger command: x . 51

Debugger command: y . 51

Debugger command: z . 51

debugging . 47

declarations . 35

define . 36

define-integrable . 36

define-load-option . 28

difference . 44

disk-restore . 29

disk-save . 28

DISPLAY . 19

E
edit . 61

edwin . 61

Edwin, version . 9

EDWIN_BINARY_DIRECTORY . 19

EDWIN_ETC_DIRECTORY . 19

EDWIN_INFO_DIRECTORY . 19

environments, examining . 53

error . 47

ESHELL . 19

examining environments . 53

execution history . 49

exit . 21, 24

F
finding procedures . 53

fixnum (defn) . 44

flo:vector-cons . 45

flo:vector-length . 46

flo:vector-ref . 45

flo:vector-set! . 46

flonum consing . 45

flush-purification-queue! 30

fonts . 20

free . 44

FTP site . 1

G
gc-flip . 29

ge . 26

gst . 26

Index 83

H
heap space . 10

help . 53

HOME. 6, 18

HOMEDRIVE . 20

HOMEPATH . 20

I
icons . 10

identify-world . 9

ignore-assignment-traps 43

ignore-reference-traps . 43

inhibit-editor-init-file? 61

init file . 10

inspecting environments . 53

integrate . 35

integrate-external . 35

integrate-operator . 35

integrations, seeing effects of 37

intersection . 44

L
level number, REPL . 23, 59

LINES . 19

load . 26

load-debugging-info-on-demand? 34

load-noisily? . 27

load-option . 27

load/default-types . 27

M
M-o . 59

M-z . 59

memory . 10

microcode, version . 9

MITSCHEME_ALL_BAND . 11, 17

MITSCHEME_BACKGROUND . 20

MITSCHEME_BAND . 12, 17

MITSCHEME_COMPILER_BAND 11, 17

MITSCHEME_EDWIN_BAND 11, 17

MITSCHEME_FONT . 20

MITSCHEME_FOREGROUND . 20

MITSCHEME_GC_DIRECTORY 14, 18

MITSCHEME_GC_DRONE . 14, 18

MITSCHEME_GC_END_POSITION 14, 18

MITSCHEME_GC_FILE . 14, 18

MITSCHEME_GC_READ_OVERLAP 14, 18

MITSCHEME_GC_START_POSITION 14, 18

MITSCHEME_GC_WINDOW_SIZE 14, 18

MITSCHEME_GC_WRITE_OVERLAP 15, 18

MITSCHEME_GEOMETRY . 20

MITSCHEME_INF_DIRECTORY 6, 19

MITSCHEME_LARGE_CONSTANT 12, 17

MITSCHEME_LARGE_HEAP 12, 17

MITSCHEME_LARGE_STACK 12, 17

MITSCHEME_LIBRARY_PATH 5, 13, 17

MITSCHEME_LOAD_OPTIONS . 19

MITSCHEME_SMALL_CONSTANT 12, 17

MITSCHEME_SMALL_HEAP 12, 17

MITSCHEME_SMALL_STACK 12, 17

MITSCHEME_UTABMD_FILE 13, 17

N
nearest-repl/environment 26

none . 44

O
OS/2 . 1

P
pa . 53

PATH . 19

pathname-type . 27

PC . 1

pe . 26

pp . 52

print-gc-statistics . 12, 30

procedure-environment . 26

procedures, finding . 53

prompt, REPL . 23

purify . 26, 29

pwd . 27

Q
quit . 21, 24

84 MIT Scheme User’s Manual

R
reduce-operator . 38, 39

reduction . 48

reference traps . 42

release number . 9

REPL . 23

REPL, restarting from . 25

replace-operator . 37

reporting bugs . 1

reset-editor . 66

reset-editor-windows . 66

restart . 25

run-scheme . 59

runtime system, version . 9

S
save-buffers-kill-edwin 62

save-buffers-kill-scheme 62

save-editor-files . 66

scheme . 10

scheme-interaction-mode 59

scheme-mode . 59

set . 43

set-command-line-parser! 16

set-gc-notification! . 30

sf . 34

SF, version . 9

SHELL . 6, 19

simple-command-line-parser 16

stack space . 10

student package, version . 9

subexpression . 48

subproblem . 48

subsystem versions . 9

suspend-edwin . 62

suspend-scheme . 62

system-global-environment 26

T
TEMP . 18

TERM . 19

TMP . 18

TMPDIR . 6, 18

toggle-gc-notification! 31

trace . 55

trace-both . 55

trace-entry . 54

trace-exit . 54

U

unadvise . 57

unadvise-entry . 57

unadvise-exit . 57

unbreak . 56

unbreak-entry . 56

unbreak-exit . 56

union . 44

Unix . 1

untrace . 55

untrace-entry . 55

untrace-exit . 55

USER. 6, 20

user-initial-environment 26

USERDIR . 20

USERNAME . 20

usual-integrations . 35

V

variable caches . 42

version numbers . 9

W

Web site . 1

where . 53

window color . 20

window position . 20

Windows . 1

working directory . 27

world image . 12, 28

Index 85

X
xscheme-select-process-buffer 59

xscheme-send-breakpoint-interrupt 60

xscheme-send-buffer . 59

xscheme-send-control-g-interrupt 60

xscheme-send-control-u-interrupt 60

xscheme-send-control-x-interrupt 60

xscheme-send-definition 59

xscheme-send-previous-expression 59

xscheme-send-proceed . 60

xscheme-send-region . 59

xscheme-yank-previous-send 59

86 MIT Scheme User’s Manual

i

Table of Contents

Introduction . 1

1 Installation . 3
1.1 Unix Installation . 3
1.2 Windows Installation . 4
1.3 OS/2 Installation . 4

1.3.1 OS/2 Installation Procedure . 4
1.3.2 Environment Variables . 5

1.4 Optional Configuration . 6

2 Running Scheme . 9
2.1 Basics of Starting Scheme . 9
2.2 Customizing Scheme . 9
2.3 Memory Usage . 10
2.4 Command-Line Options . 11
2.5 Custom Command-line Options . 15
2.6 Environment Variables. 16

2.6.1 Environment Variables for the Microcode 16
2.6.2 Environment Variables for ‘bchscheme’ 17
2.6.3 Environment Variables for the Runtime System . . 18
2.6.4 Environment Variables for Edwin 19
2.6.5 Environment Variables for Microsoft Windows . . . 19
2.6.6 Environment Variables for OS/2 20

2.7 Starting Scheme from Microsoft Windows 21
2.8 Leaving Scheme . 21

3 Using Scheme . 23
3.1 The Read-Eval-Print Loop . 23

3.1.1 The Prompt and Level Number 23
3.1.2 Interrupting . 24
3.1.3 Restarting . 25
3.1.4 The Current REPL Environment 26

3.2 Loading Files . 26
3.3 World Images . 28
3.4 Garbage Collection . 29

ii MIT Scheme User’s Manual

4 Compiling Programs . 33
4.1 Compilation Procedures . 33
4.2 Declarations . 35

4.2.1 Standard Names . 35
4.2.2 In-line Coding . 35
4.2.3 Operator Replacement . 37
4.2.4 Operator Reduction. 38

4.3 Efficiency Tips . 40
4.3.1 Coding style . 41
4.3.2 Global variables . 42
4.3.3 Fixnum arithmetic . 44
4.3.4 Flonum arithmetic . 44

5 Debugging . 47
5.1 Subproblems and Reductions . 48
5.2 The Command-Line Debugger . 48
5.3 Debugging Aids . 51
5.4 Advising Procedures . 54

6 GNU Emacs Interface . 59

7 Edwin . 61
7.1 Starting Edwin. 61
7.2 Leaving Edwin . 62
7.3 Scheme Mode . 63
7.4 Evaluation . 63
7.5 REPL Mode . 64
7.6 The Edwin Debugger . 65
7.7 Last Resorts . 66

Appendix A Release Notes 67
A.1 Recent Changes . 67
A.2 Overall Changes . 69
A.3 Base System Changes . 69
A.4 Edwin Changes . 71
A.5 Windows Changes . 73

GNU Free Documentation License 75
ADDENDUM: How to use this License for your documents 80

Index . 81

	Introduction
	Installation
	Unix Installation
	Windows Installation
	OS/2 Installation
	OS/2 Installation Procedure
	Environment Variables

	Optional Configuration

	Running Scheme
	Basics of Starting Scheme
	Customizing Scheme
	Memory Usage
	Command-Line Options
	Custom Command-line Options
	Environment Variables
	Environment Variables for the Microcode
	Environment Variables for bchscheme
	Environment Variables for the Runtime System
	Environment Variables for Edwin
	Environment Variables for Microsoft Windows
	Environment Variables for OS/2

	Starting Scheme from Microsoft Windows
	Leaving Scheme

	Using Scheme
	The Read-Eval-Print Loop
	The Prompt and Level Number
	Interrupting
	Restarting
	The Current REPL Environment

	Loading Files
	World Images
	Garbage Collection

	Compiling Programs
	Compilation Procedures
	Declarations
	Standard Names
	In-line Coding
	Operator Replacement
	Operator Reduction

	Efficiency Tips
	Coding style
	Global variables
	Fixnum arithmetic
	Flonum arithmetic

	Debugging
	Subproblems and Reductions
	The Command-Line Debugger
	Debugging Aids
	Advising Procedures

	GNU Emacs Interface
	Edwin
	Starting Edwin
	Leaving Edwin
	Scheme Mode
	Evaluation
	REPL Mode
	The Edwin Debugger
	Last Resorts

	Release Notes
	Recent Changes
	Overall Changes
	Base System Changes
	Edwin Changes
	Windows Changes

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	Index

