Legal and Privacy Implications of

Peer-to-Peer Systems
Version 1.0

May 17, 2001

Raj Dandage (Editor)

Tim Gorton

Ngozika Nwaneri

Mark Tompkins
Advisors:

Keith Enright

Zulfikar Ramzan

Professors:

Hal Abelson

Danny Weitzner

Abstract

This paper examines privacy issues in the context of peer-to-peer systems. In it, we build a framework of concerns in the areas of privacy, law, and public policy and use this framework to evaluate a number of current peer-to-peer systems. Based on these evaluations, we develop a set of recommendations that users, system developers, and public policy makers can draw upon in order to enhance users’ privacy. These recommendations are significant because privacy is and will continue to be a great concern in the world of computing.

Table of Contents

2Abstract

3Table of Contents

6Table of Figures

71 Introduction

92 History and Definitions

102.1 So What is P2P?

133 Goals of P2P Systems

133.1 Business Goals

133.1.1 Fostering Business Communication and Technological Innovation

143.1.2 Establishing a Large User Base

143.2 Public Policy Goals

153.2.1 Protecting Users’ Privacy

173.2.3 Protecting Copyright Holders’ Rights

173.2.4 Preventing Libel

173.3 Technical Goals

183.3.1 Scalability

183.3.2 Reliability

193.3.3 Simplicity and Ease of Use

193.3.4 Security

214 A Threat Model for P2P Systems

214.1 Possible Adversaries

224.2 Privacy Threats

234.2.1 Monitoring of Transactions

234.2.2 Manipulation of Transactions

244.2.3 Compromised Anonymity

254.2.4 Impersonation and Misrepresentation

254.2.5 Legal Action

254.2.6 Social Pressure

264.3 Usability Threats

274.3.1 Denial of Service

274.3.2 Unreliability

274.3.3 Blocking of Access to End Users

284.3.4 Malicious Content

284.3.5 Freeloading

294.4 Summary

305 Legal Issues Affecting P2P Systems

305.1 Copyright in the United States

305.1.1 Background on U.S. Copyright Law

315.1.2 The Digital Millennium Copyright Act of 1998

345.1.3 Legal Attacks on Napster

365.1.4 Legal Attacks on Gnutella

375.2 Libel Law in the United States

385.2.1 The Communications Decency Act of 1996

395.2.2 The CDA Applied to P2P

405.2.3 Challenges for Law Enforcement

415.3 Censorship in the United States and Abroad

425.4 Summary of Liability by Party

435.4.1 P2P System Operators

435.4.2 Internet Service Providers

445.4.3 P2P Application Developers

445.4.4 End-users

466 Analysis of Current P2P Systems

466.1 Napster

466.1.1 What is it?

476.1.2 How does it work?

486.1.3 What are its business and public policy goals?

506.1.4 How does it address the threats in our model?

526.2 Gnutella

526.2.1 What is it?

536.2.2 How does it work?

546.2.3 What are its business and public policy goals?

556.2.4 How does it address the threats in our model?

616.2.5 Programs that Track Napster and Gnutella Users

646.3 Freenet

646.3.1 What is it?

646.3.2 How does it work?

676.3.3 What are its business and public policy goals?

686.3.4 How does it address the threats in our model?

716.4 Free Haven

726.4.1 What is it?

726.4.2 How does it work?

756.4.3 What are its business and public policy goals?

756.4.4 How does it address the threats in our model?

776.5 Mojo Nation

786.5.1 What is it?

786.5.2 How does it work?

806.5.3 Business and Public Policy Goals

816.5.4 How does it address the threats in our model?

836.6 AOL Instant Messenger/Jabber

846.6.1 What are they?

846.6.2 How do they work?

856.6.3 What are their business and public policy goals?

866.6.4 How does it address the threats in our model?

896.7 Groove

896.7.1 What is it?

906.7.2 How does it work?

916.7.3 What are its business and public policy goals?

926.7.4 How does it address the threats in our model?

936.8 Sun JXTA

946.8.1 What is it?

956.8.2 What are its business and public policy goals?

966.8.3 How does it work?

986.8.4 How does it address the threats in our model?

1006.9 Summary

1027 Conclusions and Recommendations

1027.1 Recommendations for P2P Users

1047.2 Recommendations for System Designers

1047.2.1 Anonymity

1067.2.2 Authentication

1077.2.3 Avoiding Liability

1097.3 Recommendations for Policy Makers and Industry Groups

1127.4 Summary

Table of Figures

47Figure 1 Napster network diagram.

58Figure 2 An example Gnutella topology using reflectors.

61Figure 3 A set of queries that passes through a typical Gnutella node

66Figure 4 The Freenet stack model.

90Figure 5 An example Groove shared space.

96Figure 6 The JXTA 3 layer architecture.

101Figure 7 A comparison of evaluated P2P systems.

1 Introduction

Ngozika Nwaneri

The Internet is changing into a world of one-to-one communication, generally uncontrolled and loosely mediated as traditional client/server communication channels expand to include complex, interconnected peer-to-peer infrastructures. Though these new systems have the potential to change the way users collaborate and find information on a daily basis, users of today’s systems face substantial privacy concerns, which developers and public policy makers must address.

This paper brings together the concerns of privacy, public policy, and technology in order to develop a set of criteria for analyzing peer-to-peer systems, uses these criteria to evaluate a number of current P2P systems, and utilizes this evaluation to form a set of recommendations that users, developers, and public policy makers can draw upon to enhance these systems’ privacy. We begin by examining the roots of P2P in client/server architectures in order to understand how the current notion of P2P has developed as a result of the commercialization of the Internet. We then construct a model of the goals of P2P systems from the perspectives of business, technology and public policy and use these to construct a concrete threat model as a means of evaluating peer-to-peer systems. This threat model considers how systems protect anonymity of users’ identity, online activity, publications, and personal data, how systems allow for authentication when needed, and how systems cope with technical issues.

The next section examines the legal concerns facing users and operators of P2P systems. We examine accountability of users and system operators under current laws when copyrighted material or libel is inappropriately transferred. We shall see that the rapid rise of P2P systems has been unaccounted for by current U.S. laws; the courts are presently struggling with applying copyright law to P2P file sharing systems, and the issues of libel and international censorship remain entirely unaddressed by the courts and legislatures thus far. We then move on to apply our threat model to a number of current P2P systems in order to identify techniques that foster or hinder privacy concerns in these systems. We conclude by drawing upon the analysis of these systems to form recommendations for users and developers that will help enhance privacy in current and future P2P systems. In addition, we utilize our legal analysis to provide suggestions for developers to comply with the law in designing tomorrow’s systems and for public policy makers to reexamine unresolved issues with regard to P2P architectures.

2 History and Definitions

Ngozika Nwaneri

The first generation of the Internet allowed the access of information across a global, shared communications medium. In this form of access, everyone on the network was an equal peer (meaning they could upload and download files). In a sense, every machine on the network could act like a client as well as like a server. There was no content-specific presentation of information, and almost any user could publish information for all to see. Everything was decentralized, and networks were comprised of very few nodes. As the number of nodes grew, so did the number of ways information could be transferred. Different protocols were introduced, including Telnet, FTP, Gopher, and WAIS.

Information and access began to change with the emergence of the commercialized Internet. The Internet was slowly becoming available to ordinary people to send email, view web pages, and purchase goods. Web browsing software became available for free while server software was not as accessible, causing an imbalance between nodes on the Internet. Clients would log onto a server, get the information or data they needed, and disconnect. Communications companies and ISP’s recognized this pattern and provided temporary Internet access by issuing temporary or dynamic IP addresses to clients. Servers went into high demand to handle the millions of requests for web pages. Companies offered broadband service with high speed downloading and slow uploading, promoting this client/server inequity while erecting barriers to clients publishing their own content.

The infrastructure of the Internet changed during this period as well. Centralized services such as search engines and portals were implemented for the use of finding information on any topic. From a technological standpoint, systems such as firewalls and proxy servers were implemented to prevent some traffic from entering and leaving a network, further destroying the concept of a global, equally shared communications medium.

Building on the concepts introduced by search engines, the third generation of the Internet is being implemented with new peer-to-peer protocols. The desire to utilize resources at the edge of the network to their fullest and the desire to empower individuals are driving principles behind today’s P2P systems. Today’s systems follow the concepts of the first generation P2P systems because content resides at the edge of the network and is not centralized. But today’s systems also have to deal with the firewalls, NAT’s, and bandwidth inequities that are inherent to the second generation Internet.

2.1 So What is P2P?

The main idea behind peer-to-peer architectures is the sharing of computer resources and services by direct exchange between computers. It is about decentralized networking applications that provide real-time resource location for material of interest to a particular user on the network. Unlike client/server interactions, in which a client generates a query and a server responds, peers generate both queries and responses. From a communications perspective, their interactions are very symmetric.

So how does one define P2P? Clay Shirky, a well-respected writer on social and economic effects of the Internet, proposes a “litmus test” for P2P systems. He asserts that for a system to be a P2P system, it must answer “yes” to the following two questions:

1. Does it allow for variable connectivity and temporary network addresses?

2. Does it give the nodes at the edges of the network significant autonomy?

He proposes that the first question isolates an important property of P2P systems: that they are not limited by the traditional IP/DNS addressing scheme of the Internet. In a P2P system, instead of connecting to 18.232.1.222, a user connects to “Bob,” and this will contact Bob regardless of what computer he is using. The second question highlights the other important property of P2P: utilization of edge resources. Any system that does not utilize edge nodes or does not give them autonomy is not P2P. In the remainder of this paper, we will use Shirky’s definition of P2P because of its clear premises and its comprehensiveness.

Peer-to-peer architectures may be classified into two broad categories: the hybrid systems and the pure P2P architectures. Hybrid systems (or brokered P2P systems) use a centralized server to connect two computers together before a direct exchange takes place on the edge. The central server is responsible for maintaining a registry of shared information and responding to queries for that information, while the peers on the system hold the actual resources. Napster is a perfect example of a hybrid system. In Napster, peers connect to the central server and update lists of shared resources for the other peers in the network. Individual peers request information from the central server, which responds by telling the peers where the information can be found. Pure P2P networks consist entirely of nodes of equivalent capabilities; everything is decentralized. Search information is broadcasted from neighbor to neighbor until a response to the information requested is met. We will examine an example of this type of system later in the Gnutella section.

3 Goals of P2P Systems

Mark Tompkins

Now that we have a clear definition of what P2P is and how it originated, we can begin to develop methods for analyzing P2P systems. The first step in doing this is to define a set of goals that these systems should have. This set of goals will prove vital not only in evaluating the effectiveness of current P2P systems but also in developing recommendations for future systems. This section will look at three types of goals: public policy, business, and technical, all of which are integral in determining a P2P system’s design.
3.1 Business Goals

Business goals almost always drive the selection of the other goals. That is, a commercial organization will generally shape its public policy and technical goals based on its business goals. Although there are many possible business goals, this paper classifies business goals into two categories, which will be explained in the following paragraphs.

3.1.1 Fostering Business Communication and Technological Innovation

P2P system designers are constantly trying to come up with new, innovative ways to deal with the common problems that P2P architectures pose. For example, because the code for Gnutella is open source, many other programmers have been able to use it to develop their own P2P applications (e.g. BearShare, LimeWire), as well as separate programs like Clip2 Reflectors which increase Gnutella’s scalability.

In addition to fostering innovation of P2P systems themselves, certain products such as Groove allow users to collaborate on other projects and share ideas with each other using a P2P infrastructure. This can promote technological advancements in almost any area, by allowing researchers from all over the world to share their discoveries with one another.

Finally, P2P systems like AIM and Jabber, which will be examined in detail later, provide a way for professionals to communicate with each other over large distances. These instant messaging programs are now available on wireless devices too, allowing users to communicate with each other regardless of where they are. The chat room features offered by these systems also provide an alternative to conference calls, facilitating group work on projects and conferences between different businesses.

3.1.2 Establishing a Large User Base

In order for any P2P system to be both technically and financially successful, there must be enough nodes on the network to support it. To capture this large user base, the designers of a P2P system must make sure that the system is functional, reliable, easy to use, and satisfies a large market demand. While many companies which design P2P systems currently rely on venture capital to fund their research and development, having a large user base is important for profits to be made.

3.2 Public Policy Goals

Public policy goals are often chosen as a result of business goals. Thus, it may be difficult to determine exactly what the public policy goals of a system are. Nevertheless, these goals are very important in evaluating P2P; this section looks at four public policy goals that are common to many P2P systems.

3.2.1 Protecting Users’ Privacy

Protecting users’ privacy is a fundamental goal of many P2P systems. This is because all of these applications—whether they were created for file transfer, publishing, messaging, or collaboration—are created to benefit the people who use them in some way. If users feel that their privacy will be compromised in some way by a P2P application, they simply will not use it. Most users’ privacy concerns involve anonymity of their identity, online activity, and publications, and authentication of documents that they retrieve (these will be discussed in detail later in Chapter 4).

Creating enforceable laws to protect the privacy of P2P users is difficult for the same reason that it is difficult to enforce copyright protection laws on a P2P network. There are simply too many users to monitor individually, and it is difficult to find a central authority with enough control over these P2P systems that could be held responsible for enforcing these laws. While laws exist which regulate personal information collection and database merging for the federal government (Privacy Act of 1974), and in certain sectors of the economy (Fair Credit Reporting Act of 1971), there is no law which universally protects the privacy of computer users. Thus, companies like DoubleClick may collect whatever data they like about users who visit certain websites and use it however they want, as long as they do not violate their own privacy policy. While corporations are encouraged to follow the Code of Fair Information Practices as defined by Casper Weinberger in his report Records, Computers, and the Rights of Citizens, there is no law that requires them to do so. The Code of Fair Information Practices provides principles regarding the notice, access, secondary use, accuracy, and security of data collected from individuals.

Companies that collect data from users over the Internet usually have a privacy policy which informs users of the data that is being collected and what it is going to be used for. This policy is often consistent with most of the points in the Code of Fair Information Practices. On a P2P network, though, individuals can often collect information about users just as easily as companies can, and these individuals are less likely to follow any sort of privacy policy. Therefore, the Code of Fair Information Practices doesn’t apply very well to P2P systems. These individuals could log and post IP addresses on a website like ZeroPaid.com (see the Gnutella section), sell data to marketers, or even send harassing messages or advertisements to identified users if they want to. For this reason, if P2P developers want to protect the privacy of their customers, their only recourse is to build privacy-enhancing technology into their system, since they can’t rely on laws or standards to protect P2P users’ privacy from the large number of peers on their systems.

3.2.2 Promoting Free Speech and Publication

Protecting users’ First Amendment rights is a primary goal of many P2P system designers. By including technology which prevents censorship of documents or provides anonymity of publishers, some P2P systems like Freenet and Free Haven make it possible for people to say what they want without fear of any social or legal consequences. Of course, because most governments have laws that prohibit certain forms of speech such as libel, or divulging national secrets, these P2P systems may be providing ways for people to circumvent these laws.

3.2.3 Protecting Copyright Holders’ Rights

On a P2P system, speech is simply a form of data, and certain data can also be seen as a marketable product (e.g. an MP3). Therefore, P2P systems pose a problem for people who are trying to market their data, because once a copy of that data is put on a P2P network, it is freely available to anyone who wants to download it. Since many P2P systems have made it easier for users to illegally share copyrighted files, the designers of these systems have been forced to worry about these copyright holders’ rights—and the risk of being sued. This is a greater concern for “hybrid” P2P systems like Napster because they take a more active role in facilitating file sharing and have a central server which can be modified to prevent searching for illegal files.

3.2.4 Preventing Libel

Preventing libel is an issue which has not yet been seriously addressed by most P2P systems. This is because many P2P systems were created with the purpose of protecting users’ First Amendment rights by preventing censorship and providing anonymity, and have thus provided a way for circumventing libel and defamation laws. Without a way to trace back to where libel or defamatory statements originated from, enforcing these laws may become a problem for public policy makers and law enforcement.

3.3 Technical Goals

Technical goals also tend to be a result of business goals. This is because organizations design systems based on what they want to do with them. The technical goals that follow are inherent in many systems; not just P2P. However, as we will see, these technical goals are especially relevant to P2P.

3.3.1 Scalability

Scalability is a major issue for any complex system which involves a large number of nodes communicating in a network. When nodes in a P2P system connect directly to each other to communicate or share files, this does not usually present large scalability problems (assuming desired files and information are distributed throughout the network). However, the method used to actually locate these peers can be very bandwidth-intensive and potentially not scalable, depending on how it is done. While “hybrid” P2P systems such as Napster can take care of these scalability issues by having a central server which manages file searches, completely decentralized systems such as Gnutella, Freenet, and Free Haven have to worry about how to locate files on other peers without flooding the network with requests. The specific approaches taken by these systems will be discussed later in Chapter 6.

3.3.2 Reliability

Another important issue for P2P application designers is reliability of nodes. For example, in a file sharing or publishing system where each node serves data, it is important to make sure that frequently accessed documents stay available even when some nodes are down. This can be accomplished by replicating data over multiple nodes. Because some documents are more popular than others and some nodes are on the network more often than others, systems like Freenet and Free Haven account for these inequities by either propagating more copies of popular documents, or assigning a “reputation” to a node based on how often it leaves the network and storing more files on nodes that have better reputations.

3.3.3 Simplicity and Ease of Use

While Napster may not have the versatility of Gnutella or the anonymity provided by Free Haven, its enormous commercial success can be attributed to the fact that it is simple, easy to use, and efficient. Napster can be downloaded and set up by anybody in a matter of minutes, and has a very intuitive interface. Music fans around the country have discovered it by word-of-mouth, and as more of them log on to the Napster server, the more files become available to everyone else. Unfortunately, other P2P system designers have seen that Napster’s ease of use and efficiency are one of the reasons that the company is being targeted by so many copyright lawsuits, and they are starting to sacrifice efficiency in their own systems in favor of more privacy-enhancing goals, such as anonymity and decentralization. Nevertheless, in order for a P2P system to gain widespread popularity among the general population, it needs to be easy enough for the average computer user to figure out without too much help.

3.3.4 Security

Secure is an important goal for P2P system. Unfortunately, because no nodes on a P2P system can be implicitly trusted, attacks on the system can come from anywhere, and they can come in many different forms (see Chapter 4). Therefore, it is hard to make any P2P system completely secure. One natural advantage that pure P2P architectures have over other systems is that there is no central point of failure that can bring the entire system down. A well-designed P2P system can function even if some nodes become unavailable as a result of some form of attack. Also, by using encryption and replication of data, node operators can at least be sure that the document they are getting is authentic and hasn’t been tampered with.

4 A Threat Model for P2P Systems

Raj Dandage

The last section provided an overview of the goals that P2P systems may have. While understanding these goals is vital in evaluating P2P systems, it does not provide a complete picture of the issues facing them. In this section, we will expand on the goals of the last section by looking at specific concerns that P2P systems must address. In doing this, we will construct a “threat model” for P2P systems. This model will identify the potential adversaries that these systems face, and it will list the possible “threats” that these adversaries may cause. We will use these threats later, when evaluating example P2P systems. This section is divided into three parts. The first part will look at the different types of adversary that a P2P system may face. The next two parts will focus on how these adversaries may cause privacy and usability threats to P2P systems.

4.1 Possible Adversaries

P2P systems may have several possible adversaries. Some are people, others are organizations. Moreover, some come from within the system while others are external. But what they all have in common is that they pose a threat to the system. The following sections will examine exactly what those threats are. For now, however, we can define exactly who our adversaries are and what roles they play in the threat model.

Our threat model consists of six different classifications of adversary: the malicious hacker, governments, employers, ISP’s, operators of P2P systems, and other users. Malicious hackers are users who have technical skill but use it with some sort of malicious intent. They pose a threat because they are capable of technical attacks on the system. Governments are made up of agencies that may pose a threat. Law enforcement, for example, may pose privacy threats. Judicial branches, meanwhile, may pose legal threats. Employers pose similar privacy threats, but on a smaller scale than the government. They also tend to be less tightly regulated and therefore capable of more damage. ISP’s may pose a threat because they provide the point of access to a P2P system, as may operators of P2P systems. Finally, other users may pose a threat by snooping or creating non-malicious technical threats.

4.2 Privacy Threats

Privacy threats are threats to the privacy of any entity of the system. As we explained in Chapter 3, there are many different frameworks in which privacy threats can be evaluated. Often, however, these frameworks differ in who they intend to protect against and in the values that they promote. In order to reconcile the differences, we will construct our own model that combines the relevant issues and classifies them in terms of the threats they pose to P2P systems. In our model, we borrow several concepts from Robert Ellis Smith’s view of privacy in cyberspace and classify privacy threats into several different categories: monitoring of transactions, manipulation of transactions, compromised anonymity, impersonation and misrepresentation, and legal or social action. In what follows, we will look at each of these categories and explain how they may pose a threat to P2P systems.

4.2.1 Monitoring of Transactions

Monitoring of transactions is a big concern for any networked system; P2P systems are no exception. It is possible to monitor transactions by monitoring the underlying network, as well as by monitoring protocol-specific data that is passed through or targeted at a specific node.

Monitoring of the underlying network is a common threat to networked systems that can be perpetrated by all of the different types of adversaries identified. This is often done by packet sniffing at an intermediate point on the network. Because many P2P systems use an insecure underlying network protocol, such as TCP, they are susceptible to this type of threat.

Monitoring of protocol-specific data moving through nodes on the network also can pose a threat to P2P systems. Many P2P systems involve some sort of chaining, in which one node passes data to another node, which, in turn, passes data to a subsequent node. This results in data moving through many intermediate nodes that are not trusted and often not part of the direct route between the origin and destination. Furthermore, all of these intermediate nodes understand the protocol being spoken, and thus it is easy for them to examine this data. This threat also extends to data stored at a node. Many P2P systems spread data across different nodes for storage. Because of this, it may be possible for a node operator to learn secret information about peers by looking at the data that the system stored at his/her node.

4.2.2 Manipulation of Transactions

Another threat to privacy in P2P systems is manipulation of transactions. That is, an attacker may go beyond simply monitoring transactions and actually edit or forge them. Like monitoring of transactions, manipulation can be done directly on the underlying network as well as by a peer through whom the data is passing (or targeted). The most likely adversaries who would try to perform this would be hackers, although all of the different adversaries are possible culprits.

4.2.3 Compromised Anonymity

A third type of privacy threat in P2P systems is the unwanted identification of individuals or nodes, or compromised anonymity. It is important to clearly define the threat as unwanted identification, since in many systems, being able to identify actors in the system is not a threat at all. In general, however, compromising anonymity poses a major threat to P2P systems. In our discussion, we can classify threats of this kind into two categories: individuals and nodes.

The prospect of compromising individuals’ anonymity is certainly one of the most feared threats to P2P systems. In many systems, it is absolutely vital that no user knows any personal information about any other user. Personal information can mean name, age, credit card number, location, usage patterns, or any other information associated with an individual in the system. All of the adversaries listed may perpetrate this type of threat; however, they would do it for different reasons. For example, a malicious hacker may do it to steal a user’s identity, and a government official may do it to determine who is accessing child pornography.

 Compromising the anonymity of components of the system can also threaten P2P systems. The components that are most commonly threatened are peer nodes. For some systems, revealing such information as node location, operating system, data, or even IP address, may be considered a threat. The possible adversaries who may attempt to do this are likely to be hackers, governments, and operators of P2P systems. ISPs and employers may also act as adversaries in this situation but are much less likely to do so because they have access to much of this information anyway.

4.2.4 Impersonation and Misrepresentation

Although compromised anonymity is often a threat to P2P systems, the converse, impersonation or misrepresentation, may also pose a threat. Many P2P systems are specifically designed to allow trusted, authenticated communication between individuals (which threat applies depends on the public policy goals of the system, as we will see later). In this case, any type of impersonation of another individual threatens the system. Furthermore, if a user misrepresents information about himself/herself, such as age, name, and credentials, this would also pose a threat.

4.2.5 Legal Action

The threat of legal action against users is another privacy threat of concern in P2P systems. This legal action is generally taken by the government or another user, and can be criminal or civil in nature. The major legal issues of concern for P2P systems are copyright, libel, and censorship. We will go into much greater detail about these issues in Chapter 5.

4.2.6 Social Pressure

There are many ways in which society or other external forces can threaten P2P systems. Content on P2P systems—or even the functionality of these systems—is often governed by the norms of society. Different social groups or norms may have different levels of influence over what content is distributed. Moreover, individual organizations may be able to exert pressure on a system or its components in order to gain control of it.

Real-world examples of social groups’ or norms’ influence on the content of P2P systems can be found all over. In one famous example, Zeropaid.com posted the IP addresses of people who attempted to download child pornography on its “Wall of Shame” in an attempt to embarrass them. This case will be discussed in detail in Section 6.2; for now, however, it is worthy of note that the involvement of social norms in this manner can affect the way a P2P system is used, as well as the information transferred through it. Adversaries that may perpetrate this type of threat are generally other users.

Pressure exerted by organizations on a P2P system can also pose a threat. This type of threat generally comes from external, non-user organizations. A simple illustration of this type of threat is a buyout. Suppose the Church determines that content on a system is sacrilegious; it may choose to buy enough of the system so that it can regulate that content. Although we will see later that P2P systems are much less prone to this type of control, they still may be affected by it to some extent. Another threat of this kind is physical: an adversary may threaten to hurt or kill the operator of a system if certain demands are not met.

4.3 Usability Threats

Usability threats—as we will define them—are attacks that make it difficult for users to participate in a P2P system. These types of attack do not usually hurt the user directly; instead, they are generally aimed at the system as a whole, where they affect multiple peers. The specific threats that we categorize as usability threats are denial of service, unreliability, blocking of access to end users, malicious content, and freeloading.

4.3.1 Denial of Service

Denial of service attacks have historically posed a great threat to the Internet. A denial of service attack is orchestrated by a bunch of malicious computers connecting to and sending packets to a single target computer, until that computer is no longer able to handle the load. The attackers in this case are almost always malicious hackers. We will see later that P2P systems tend to be relatively immune to this type of threat; nonetheless, because of their prevalence, we list them as an important threat.

4.3.2 Unreliability

Although we have mostly looked at malicious threats until now, there are several non-malicious threats that affect P2P systems; one of the most important of these is unreliability. Unreliability in P2P systems is often due to the fact that resource providers are entering and exiting the system at all times. Therefore, access to resources may be unreliable. There is no specific adversary that would be responsible for this type of threat; instead, it is due to the general transience of P2P systems. In addition, this threat may be due to the unreliability of individual nodes (hardware, software, etc.), although this is less likely in a P2P system.

4.3.3 Blocking of Access to End Users

Blocking of access to end users is another type of threat to P2P systems; this type of threat may or may not be malicious in nature. Blocking of access, as it will be used in this paper, is a technical barrier placed in a network that keeps certain users from accessing certain resources. A common, non-malicious example of this threat is a corporate firewall or NAT. Although these devices are intended to protect the corporation, they can make it very difficult for internal users to be part of external P2P systems. This is because most of these devices are configured to reject incoming connections, and proxies or tunneling services that understand the many different P2P protocols are not available. This characteristic also opens the door for malicious blocking of access. For example, countries like China block all access to IP addresses that serve content with which they disagree. Of course, this type of blocking poses a serious threat to P2P systems because of the many resources that it renders inaccessible.

4.3.4 Malicious Content

Another threat to P2P systems is malicious content, which is content placed in the system by hackers or other users and is usually in the form of viruses or Trojan horses. This type of threat is especially relevant to P2P systems, due to the way by which information is propagated through the system. Often, because there is no central authority (or because the central authority cannot effectively control the information that goes through the system), malicious content can spread rapidly and freely. One famous example of a Trojan horse spreading through a P2P system is the Mandragore virus, which automatically distributed itself to thousands of computers worldwide (we will look at the Mandragore virus in more detail in Section 6.2).

4.3.5 Freeloading

Freeloading, or inequitable use of resources, is the final threat we will look at in this section. Freeloading has been a problem since feudal times, when farmers grazed cattle on common land. If nobody used too much land, everything was fine; however, if one farmer chose to use more, he gained and everyone else lost. Thus, everyone would try to use too much land, destroying the land so that nobody could use it. Biologist Garrett Hardin called this “tragedy of the commons.”

This “tragedy” applies to P2P systems when too many users freeload. A user is freeloading on a P2P system when he/she uses resources of the system but does not donate a fair share of resources back to the system (in this definition, resources can take the form of disk space or processor time, as well as contributions of content, such as MP3s). In terms of our adversary model, freeloaders are “everyday” users. P2P systems are prone to freeloading because there is often no centralized authority to police peers and ensure equity. Unfortunately, in most systems, when too many users freeload, the entire system becomes useless, or worse, breaks down. An example of this problem is music sharing: everyone wants to download MP3s but very few people want to rip and share them. If enough people decide to be freeloaders and not rip or share, there are no MP3s to download, and everyone loses (except maybe the record companies).

4.4 Summary

P2P systems can have many business, technical, and policy goals which often conflict with each other. These goals affect the way the systems are built as well as the ways in which they address key threats. This section looked at several types of threats to P2P systems. The following section examines legal threats in more detail. Therefore, the next section will explain in depth the legal issues affecting P2P.

5 Legal Issues Affecting P2P Systems

Tim Gorton

In the last section, while developing a threat model for P2P systems, we discovered that legal action poses an important threat to P2P systems. Several P2P file-sharing systems have already fallen prey to United States copyright law, and there are clear causes for concern regarding libel law and censorship in P2P systems. P2P system operators, individual system developers, Internet service providers, and end users all have good reason to be concerned about the applicability of the law to these new distributed systems. In this section, we will continue to build a set of criteria for evaluating P2P systems by examining the legal issues that face these systems and the effects they have. Specifically, this section will look at the issues of libel, copyright, and censorship.

5.1 Copyright in the United States

The most developed area of United States law with respect to P2P systems is undoubtedly copyright law, due largely to legal action against Napster and its users by music copyright holders. Recent developments have included action against Gnutella users by the Motion Picture Association of America. These applications of copyright law shed some light on how copyright law may affect other P2P systems in the future, though some of these systems, such as those that provide anonymous publication, may well stymie current U.S. laws.

5.1.1 Background on U.S. Copyright Law

There are three types of copyright infringement. The most obvious is “direct infringement,” in which an individual copies material in a manner prohibited by law. This does not include “fair use,” which generally includes reusing segments of copyrighted material for educational use, critique, satire, or for archival purposes. In the context of P2P systems, end-users may be involved in direct infringement either by obtaining copyrighted material from others or by making such material available themselves.

Individuals or organizations that do not directly infringe copyright may still violate copyright law in one of two ways: “contributory infringement” and “vicarious infringement.” First, an entity may be held liable for “contributory infringement” if it, “with knowledge of the infringing activity, induces, causes, or materially contributes to the infringing conduct of another.”
 In the context of on-line information providers, the “knowledge of infringing activity” has generally been interpreted to mean that the defendant must have been notified that infringing material or activity exists.
 An entity may also be accused of “vicarious infringement” when it “has the right and ability to supervise the infringing activity and also has a direct financial interest in such activities.”

P2P systems and the organizations that operate them are rarely guilty of direct infringement. However, users of file-sharing systems such as Napster and Gnutella may illegally copy copyrighted materials from one machine to another, opening the organization operating the system (if one exists) to charges of contributory or vicarious infringement.

5.1.2 The Digital Millennium Copyright Act of 1998

Much of the recent legal action involving online systems, including P2P systems, has centered on the Digital Millennium Copyright Act of 1998 (abbreviated DMCA.) The DMCA makes two major additions to existing copyright law: it prohibits devices created to circumvent technological measures protecting copyrighted works, and it provides an exemption for “service providers” if they comply with a number of provisions of the law.

The DMCA provides for criminal and civil remedies against any entity individual or organization that “circumvent[s] a technological measure that effectively controls access to a work protected under this title.” Though this provision has not yet been used against a user or operator of a P2P system, it has certainly been employed against others to censor material related to breaking the DVD encryption scheme. This censorship may eventually impact P2P systems, as described in Section 5.3. Furthermore, it is conceivable that a P2P system developer may be accused of creating a device that circumvents a technological protection measure by, for example, allowing copyrighted files to be shared easily between users’ computers.

However, some P2P systems have already found an ingenious way of employing this prohibition on circumvention technology to protect their own users. For example, AIMster’s web site includes a “Warning to spammers, data collectors, and potential spies, eavesdroppers, or wiretappers” which reads in part, “All messages, searches, file transfers and other communications in the AIMster service are copyright materials protected by encryption technology. Federal law prohibits any attempts to circumvent this technological measure, or any attempts to develop any technology or device that is primarily designed or produced for the purpose of circumventing the protection offered by the encryption technology.”
 However, it seems that the recording industry has already found a way to avoid these problems in order to reverse engineer the Napster protocol without violating the DMCA; Media Tracker, one program developed to collect information by scanning the Napster network, is operated outside the United States.
 AIMster has also been aggressively defending itself against charges of copyright violation as it attempts to define itself as a service for business users; in fact, AIMster recently filed suit against the Recording Industry Association of America, asking a court to issue a judgment that AIMster is not infringing on copyrights in anticipation of litigation by the RIAA.

The DMCA’s exemption of liability for “service providers” has already had a great impact on P2P systems. The DMCA provides a substantial set of requirements in order to qualify for its liability exemptions, including removing copyrighted material after being notified by a copyright holder, identifying an offending individual after being issued a subpoena by a copyright holder, and not interfering with “standard technical measures” used to identify or protect copyrighted material.
 These provisions have already been applied against Napster and numerous ISP’s, as will be detailed in the following sections.

A key question in applying the DMCA to P2P technologies is its definition of a “service provider” as “an entity offering the transmission, routing, or providing of connections for digital online communications, between or among points specified by a user, of material of the user's choosing, without modification to the content of the material as sent or received.”
 This differs from the more traditional definition of an Internet service provider: “a provider of online services or network access, or the operator of facilities therefor.”
 In the realm of P2P systems, we must consider both whether the organization operating a centralized system such as Napster falls under this definition and also whether an individual user of a decentralized system such a Gnutella falls under this definition. Neither of these questions has clear answers thus far, though the trial against Napster should provide some answers to these questions, insofar as they apply to a corporation administering a P2P system.

5.1.3 Legal Attacks on Napster

Copyright holders have combated Napster’s file-sharing system using two forms of legal attacks: charging that Napster itself violates copyright law and taking action against individuals using Napster to violate copyrights. The band Metallica has been the most active in taking action against individual Napster users, using the DMCA to force Napster to terminate the accounts of 325,000 users who were trading Metallica songs.
 Specifically, Metallica provided Napster with the notification specified by the DMCA in order to ask the service provider to remove access to the material in question. Although Napster compiled with Metallica’s request, denying the request would not have been illegal under the DMCA. However, it would certainly have thwarted any chance that Napster had of claiming the immunity from liability for copyright violations provided by the DMCA to service providers.

This liability exemption has been particularly relevant for Napster because a group of music publishers sued Napster in December 1999 in the Northern California District Court, charging that Napster has engaged in both “contributory” and “vicarious” copyright infringement. Though this case has not yet come to trial in the District Court, a preliminary injunction was entered by the District Court on July 26, 2000, was partially reversed by the 9th Circuit Court of Appeals on February 12, 2001, and was subsequently revised by the District Court. Napster’s current file filtering scheme is a direct result of this modified injunction.

The Appeals Court ruling regarding the strength of the plaintiffs’ case and Napster’s status under the DMCA have worrisome implications for the liability of other centralized P2P systems. With regard to the copyright claims, the Appeals Court found that Napster “materially contributed” to the transfer of copyrighted material through its service, arguing that users would not be able to easily distribute the copyrighted music without Napster’s service. The Court further found that Napster derived a “direct financial benefit” from users’ infringement of copyrights, arguing that, despite Napster’s current total lack of revenue, “Ample evidence supports the district court's finding that Napster's future revenue is directly dependent upon ‘increases in userbase’.”
 The Court also noted that the availability of free, copyrighted music acts to attract “customers” to Napster’s service. The Appeals Court also found that Napster had the “right and ability to supervise” its users, asserting that “The ability to block infringers' access to a particular environment for any reason whatsoever is evidence of the right and ability to supervise.”
 However, the Court was careful to limit Napster’s burden of policing its system by noting that it maintains only lists of filenames in its system and thus was responsible only for policing these lists for names which indicate infringing material.

Finally, the Court did not make a decision regarding Napster’s ability to gain an exemption from liability under the DMCA’s safe harbors, but instead refused to stay the injunction based on this claim. The Court noted that the plaintiffs had raised “significant questions under this statute, including: (1) whether Napster is an Internet service provider as defined by 17 U.S.C. § 512(d); (2) whether copyright owners must give a service provider "official" notice of infringing activity in order for it to have knowledge or awareness of infringing activity on its system; and (3) whether Napster complies with § 512(i), which requires a service provider to timely establish a detailed copyright compliance policy.”
 It is worrisome, however, that the District Court denied Napster’s motion for summary adjudication under a DMCA safe harbor partially on the grounds that Napster “does not transmit, route, or provide connections for allegedly infringing material through its system,” which is a key component of the DMCA’s definition of a “service provider.” These questions must be decided in the District Court trial, which has not yet occurred. Though a denial of the DMCA safe harbors would open P2P systems such as Napster up to a variety of copyright suits, it would also have the interesting effect of removing these systems’ incentives to comply with the procedures proscribed by the DMCA for blocking users’ access.

5.1.4 Legal Attacks on Gnutella

Because, as we will see in Section 6.2, Gnutella’s distributed file-sharing system has no centralized organization, there is no single entity for copyright holders to target. The only alternative available is the much harder prospect of taking action against end-users who are actually violating copyrights. Here, however, the DMCA provides an intermediate step—by granting immunity to Internet service providers only if they block the accounts of offending users when informed of the infringement by a copyright holder. Although this doesn’t mean that ISP’s are required to police their systems, it provides a clear mechanism for copyright holders to request that accounts be blocked. If an ISP refused to block an account after being properly notified, they could forfeit a DMCA safe harbor and might be held liable for contributory copyright infringement.

Thus the Motion Picture Association of America (MPAA) sent hundreds of letters to ISP’s and universities in April 2001, warning them that people using their networks are trading copyrighted movies using Gnutella and asking that the ISP’s and universities prevent this abuse. ZDNet News reported that the ISP Excite@Home then sent out about twenty emails telling Gnutella users that their service would be disconnected if they continued sharing illegal material.
 To date, no legal action has been taken against individual users, apart from requesting that their ISP’s block their service. Because of the large number of individual Gnutella and Napster users, it seems that for the near future copyright holders will rely on ISP’s to block individual users under the DMCA instead of undertaking with costly legal proceedings against each user.

5.2 Libel Law in the United States

United States defamation law prohibits making untrue statements that undermine the reputation of another individual. Libel, or written defamation, may become a cause for concern in P2P systems, because such systems can be used to distribute libelous documents—often through computers whose owners are unaware of the content that they are providing.

5.2.1 The Communications Decency Act of 1996

The Communications Decency Act (CDA) fundamentally sought to make it illegal to display obscene or indecent material online. Although the Supreme Court overturned its strongest prohibitions in the 1996 case Reno v. ACLU, the CDA still contained a provision intended to allow ISP’s and public institutions to use filtering software without fear of being treated as publishers of content for libel purposes. Publishers are generally liable for libel in content that they produce, while a library or bookstore, for example, is not liable unless it has specific knowledge of defamatory content.

This provision of the CDA was enacted in response to the New York Supreme Court’s decision in Stratton-Oakmont v. Prodigy, in which the Court held that “PRODIGY's conscious choice, to gain the benefits of editorial control, has opened it up to a greater liability than CompuServe and other computer networks that make no such choice.”
 Despite the fact that Prodigy was simply screening for offensive content through software checks and human moderators, the Court held that Prodigy had placed itself in the position of a publisher for the purposes of defamatory statements. Thus, in the Court’s view, ISP’s or other online services using automated filtering software or any measure of manual control over content would necessarily exercise some editorial control over all content they provide, thereby opening them to liability for defamatory content that passes through their filters. In order to allow ISP’s and online services to employ such filters with the goal of blocking offensive content, Congress granted them blanket immunity to liability for libel under the heading “Protection for `Good Samaritan' Blocking and Screening of Offensive Material.” Congress wrote that “No provider or user of an interactive computer service shall be treated as the publisher or speaker of any information provided by another information content provider.”
 This exception has been held by the Fourth Circuit Appeals Court to include cases where an online service receives specific notice of defamatory content.
 It is, however, crucial to note that this exemption from liability does not apply to the individual who originally made the defamatory statement; only online services that repeat the content are exempted.

5.2.2 The CDA Applied to P2P

The crucial factor in applying the CDA to peer-to-peer systems is the CDA’s definition of the “interactive computer services” to which it grants immunity. The law defines an “interactive computer service” as “any information service, system, or access software provider that provides or enables computer access by multiple users to a computer server, including specifically a service or system that provides access to the Internet and such systems operated or services offered by libraries or educational institutions.”
 Although a dialup computer may not fit the traditional image of a “server,” when using a P2P system it may function as an “information system…that provides…access by multiple users to a computer server.” The law leaves the term “server” undefined, and herein lies the problem for applying the CDA exception to a P2P system. We may use a common definition of a server as a computer providing content, in which case a user running a node of a P2P system would seem to qualify. However, in the more traditional definition in the client/server context, a node is neither entirely a client nor a server in the sense that those terms were used in 1996. Since the applicability of the CDA to P2P systems has not yet been tested in court, it is unclear whether it would extend to cover node operators who knowingly distribute defamatory content electronically.

5.2.3 Challenges for Law Enforcement

Although individual users may not be liable for defamatory content distributed from their computers using a P2P system, the individual who created the content is certainly liable for the statements. However, several of P2P systems described later were created specifically to allow anonymous publication. Free Haven, for example, makes it extremely difficult to learn the location or identities of individual nodes, as we will learn in Section 6.4. Even on a less anonymous file-sharing system like Napster, so many copies of a file may exist that it is impossible to tell who originally created it. This may make determining the author of a libelous statement nearly impossible.

France has chosen an interesting solution to a somewhat similar problem. Following a highly-protested prosecution of a popular web site hosting service for obscene content provided by one of the sites it hosted, France passed a law granting immunity for such services, with an important caveat: the hosting service must maintain records that can be used to identify content provides to law enforcement agencies. This is relatively simple in the case of a centralized hosting service, since the service simply needs to keep records of who is responsible for each hosted site. This requirement becomes much more difficult when applied to a P2P system, when it may be difficult to identify the computer from which material is obtained, to say nothing of identifying an individual. It is unclear whether this law would apply to P2P systems at all and whether it might actually make it illegal to run such a system designed for anonymous publication.

5.3 Censorship in the United States and Abroad

Many countries, including the United States, have deemed it illegal to post certain types of material online, though the prohibited material differs widely from country to country. In the U.S., prohibited material ranges from libel to child pornography to code that bypasses the encryption scheme used on DVD’s (which has been deemed illegal under the DMCA). In November 2000, a law was been proposed to the South Australian Parliament that would make R-rated material—or even advertisements for such material—illegal online.
 Other countries around the world have varying regulations, but many prohibit the publication of certain political views and material criticizing the government. These prohibitions may be enforced through legal means or through intimidation or other social pressure. Several P2P systems are designed explicitly to combat these prohibitions by allowing anonymous publication in a distributed system purportedly safe from legal attacks and social pressure.

The key distinction to be made with such systems is that while the system may prevent documents from being censored through a wide distribution of nodes operating under different governments and laws, individual node operators may still be at risk from their local government. Some systems have tried to combat this (with varied levels of success, as we shall examine in Chapter 6) by providing “plausible deniability” for content on the local machine by encrypting document contents so that a node operator cannot identify or censor the documents on his or her machine. Of course, this does not prevent a government from outlawing a system altogether in order to prevent the spread of prohibited material.

The question for an operator of an individual node in any P2P system is to what extent he/she can be held accountable for the information provided by his/her computer. The answer will likely vary depending on the country he/she lives in and to what extent he/she knows what material is being served. However, the situation may actually be much worse: many countries appear to believe that their laws apply to servers operated outside their borders. In 1998, Canada’s Human Rights Commission brought charges against the Ontario resident Ernst Zundel for the California-based Zundelsite, which is operated by an American. A French court ordered Yahoo’s U.S.-based auction site to block French access to Nazi-related materials in November, 2000 or face fines of $14,000 per day. In February, 2001 Yahoo counter sued in a California court, arguing that the French court has no jurisdiction over a U.S. web site.
 The German High Court has ruled that its Internet laws apply to servers outside of its borders,
 and in April, 2001, Germany’s Interior Minister proposed using denial of service attacks as a way to shut down web sites based in the U.S. that help German Neo-Nazis.
 Clearly the problems of international jurisdiction over the Internet extend beyond P2P systems, but P2P systems may have special problems because the system likely resides in no one country, giving little hint of which jurisdiction might apply.

5.4 Summary of Liability by Party

As one can see, there are many legal issues that relate to P2P systems. In the next chapter, we will look at how these legal issues affect current systems, and later we will use these issues as a foundation for public policy recommendations for P2P systems. In order to do this, it is worthwhile to look again at these issues with respect to the parties who may be liable.

5.4.1 P2P System Operators

Naturally, a truly decentralized P2P system has no “operator.” However, there are a number of P2P systems with some centralized component, often run by a business or individual. As the Napster case illustrates, the operator may be held liable for end-users’ copyright infringement. If the P2P system does qualify as a “service provider” under the DMCA, the operator must remove access when notified by a copyright holder in order to qualify for the DMCA’s safe harbors. If, in fact, the DMCA does not apply, then system operators will be forced to prevent copyright violations if they have the “right or ability supervise” their users activity in any way. Further, it is conceivable that an operator might be held to violate the DMCA’s prohibitions on circumventing technological protection measures for copyrighted material by facilitating transfer of the material. It seems that operators need not fear liability for defamatory statements distributed through their system under the CDA, but they could still be targets for legal action in other countries, as well as social pressure in some situations. Put simply, the system’s centralization produces a single target for legal and social attacks.

5.4.2 Internet Service Providers

ISP’s are clearly targeted by the DMCA; in order to qualify for the DMCA’s exemption from copyright liability, the ISP must block violators when notified by a copyright holder and identify offenders to these copyright holders upon request. The CDA provides a blanket exemption from liability for defamatory statements posted by users. Legal and social pressure from outside countries might be a concern, though this is often against individual users or system operators.

5.4.3 P2P Application Developers

System developers are generally not linked to copyright abuse because they merely create software, rather than observing or controlling how it is used. However, even this could become a legal concern; if the system that a developer created were held to circumvent a technological protection measure that protects copyrighted work, the developer could be held individually liable—and charged with a crime. The precedent that computer code may constitute such a violation already exists with the banning of the DeCSS code; though this has not yet occurred with respect to a P2P system, this seems quite possible.

5.4.4 End-users

End-users are often engaged in direct copyright infringement in the case of the most popular file-sharing systems. This is clearly illegal and is worth little further comment, beyond noting that the only viable option for copyright holders to attack large numbers of end-users is to request that their ISP’s block their access under the DMCA. However, a much more subtle issue exists in systems where nodes forward content between each other without user intervention. Freenet, a system designed to subvert censorship, is a clear example: a chain of nodes passes content back to the requestor, each one storing the data in order to speed up the next request for that file. However, this means that defamatory or copyrighted material may by accessible from a user’s computer without the user’s requesting it—or even realizing that it is there. In fact, we will see that Freenet and Free Haven were both specifically designed to prevent a node operator from discovering the content of the node’s data store by encrypting the data.

The CDA may provide immunity from libel prosecutions in the U.S., and it would seem that a user would likely be free from copyright concerns if he were unaware that the material was present. However, it is conceivable that a programmer with the ability to modify an open-source file-sharing system in order to censor content on his/her own node might be held to have the “right or ability to supervise” this content—and he/she might then be held liable for vicarious infringement of copyright.

By becoming a server on the Internet—even temporarily via a dialup connection—an end-user may open himself/herself to a variety of legal attacks from various countries across the world and may even be targeted by countries with more restrictive prohibitions on online material. Although individual users can often be saved from legal proceedings by the sheer volume of users online, by using P2P systems, they join the world of the Internet’s elite servers, thereby inheriting some of the restrictions on providing content online that the permanent servers act under.

6 Analysis of Current P2P Systems

Mark Tompkins and Raj Dandage

In the last several sections, we developed a set of criteria for evaluating P2P systems. We began by looking at the goals of these systems. We then moved on to building a threat model that listed the specific concerns that may affect these systems. Finally, we examined the legal issues that these systems may face. Now that we have built up this set of criteria, we may begin use it. This section will look at a variety of current P2P systems and evaluate them with respect to our criteria.

6.1 Napster

Mark Tompkins

The first P2P application that we will consider is Napster. The success of Napster is one of the reasons that current P2P systems are under such intense analysis from policy makers, copyright holders, and programmers. While millions of users across the world have discovered Napster as an easy to use, efficient way to obtain free music over the Internet, Napster has also sparked much legal controversy regarding its role in enabling copyright infringement.
6.1.1 What is it?

On its website, Napster describes itself as “the largest, most diverse online community of music lovers in history.” More specifically, Napster is a file sharing system which allows peers to search for and trade MP3 songs on the network. In addition to this, Napster provides other functions such as a user “hotlist” which allows peers to browse the entire shared file directories of a specific user, chat rooms, and instant messaging.

6.1.2 How does it work?

While Napster is the first thing most people think of when they hear “P2P”, it is not actually a “pure” P2P system in the sense of being completely decentralized. When a user runs Napster, the program connects to a central database to which it adds pointers to all of the shared files on that user’s hard drive. Later, when a user sends a search request for a song, the request goes to this database, and the database returns a list of all files which match the search query, and the machines they are stored on. To download a song, the user simply clicks on one of them, and the Napster database brokers a direct connection between the peer storing the song and the one requesting it (see Figure 1).

[image: image1.jpg]Napster Database

sends
sequest
Farfile

setuens fist of

hosts, including
05t

I

connects to host 3,
downloads fle sutomatically

Figure 1 Napster network diagram.

Napster uses this “hybrid” approach for a good reason. Central databases have historically proven to be more efficient at processing searches across a large network, provided that they remain synchronized with any transient state that lies at the edges of the network. For transfers of large files, though, decentralization is more efficient because all of the bandwidth load is distributed across the network instead of concentrated on a few servers. Napster simply takes both of these ideas and combines them to make the system very scalable and easy to use.

6.1.3 What are its business and public policy goals?

Since Napster was invented, it has been the target of many political and legal attacks, which, over the past year, have forced the company to reevaluate its business and public policy goals.

When Shawn Fanning created the first version of Napster as a freshman at Northeastern University in January 1999, his original goal was to provide an easy, efficient system to satisfy the growing market demand for MP3’s. To do this, he decided to take advantage of all of the disk space already being used to store MP3’s at the edges of the Internet instead of relying on a centralized server. This would make the system more scalable and would hopefully avoid copyright issues by placing responsibility on each node to decide what files to share.

Unfortunately, after several long legal battles, the courts have required Napster to revise its goals somewhat (see Chapter 4). The company has recently begun to comply with the wishes of copyright holders in order to appease them and avoid further lawsuits. Following Metallica’s lawsuit against Napster last year, Napster promptly shut down 325,000 accounts of users who were reportedly sharing songs by that band. More recently, the large recording company Bertelsmann loaned Napster $50 million to develop their system so it only allowed legal file sharing, agreeing that if Napster was successful, they would drop their lawsuit against the company.

Although there has been talk that Napster will begin charging a $5.00 monthly fee for its service to reimburse copyright holders, the only action that it has taken so far has been to filter artist and file names that were specifically requested by recording industries, at the demand of a U.S. District Court judge. The effectiveness of this filtering has been questionable at best: Napster users have found many ways to get around filename filtering by changing or slightly misspelling song names. Nonetheless, as of the end of April of 2001, Napster claimed to be filtering over 1.75 million filenames or filename variants. In addition, the total number of files downloaded had dropped by over one third, to 1.59 million from 2.49 billion in March of 2001.

Napster’s current business goals can be discovered simply by looking at their website. Instead of promoting their product as an efficient file sharing tool, Napster is now trying to appeal to artists by featuring a different song and artist every week on their site, and by providing links for artists interested in promoting a new song. Because artists like Metallica and Dr. Dre have posed such a danger to Napster by threatening them with lawsuits, Napster is using this campaign to attract new artists by encouraging them to promote their music to the public or even use Napster as a collaboration tool. By getting artists on their side, Napster hopes that the recording industry will ease off as well, since the recording industries depend on artists for their business. Some artists, like Limp Bizkit, are avid supporters of Napster and of free file sharing; Limp Bizkit even had Napster sponsor their concert tour in summer of 2000.

6.1.4 How does it address the threats in our model?

Monitoring of Transactions and Compromised Anonymity

Because Napster does not focus on anonymity, and the central database brokers connections between nodes, it is very easy to track file sharing activity on the system. Whenever a user downloads a song from another user, he/she can see that person’s username, along with the exact files he/she is downloading. Moreover, it is not difficult to determine his/her IP address and thus ISP. Also, by knowing someone’s username, another user can use the “hotlist” to browse that user’s entire shared folder looking for illegally copied songs.

On a larger scale, tracking programs such as Copyright Agent and Media Tracker have been created to monitor transactions over Napster and Gnutella and aggregate data in a huge database. While these databases are currently used by copyright holders to discover the identities of users who illegally share music, they could be used for marketing purposes to direct advertisements to customers, possibly being merged with other databases to re-identify users. These tracking programs will be described in detail later in Section 6.2.5.

Impersonation and Misrepresentation

Because a user must enter a username and password when he/she installs Napster and that username cannot be changed without reinstalling the program, impersonation on Napster is difficult. Still, Napster does not prevent the same username from being used on multiple IP addresses, so if an attacker knew a person’s username and password, he/she could install Napster with that username and pretend to be that person. Of course, the attacker’s IP address could still be tracked, but because Napster bans usernames instead of IP addresses, an attacker impersonating someone else could cause that person to be banned even if he/she did nothing wrong.

Legal Action and Social Pressure

In the last chapter, we saw that Napster has already been the target of many legal attacks from copyright holders; but in addition to legal attacks, Napster has been the target of an immense amount of social pressure, both positive and negative. As mentioned earlier, there has been a lot of pressure form recording industries and from certain artists to shut Napster down. Other institutions are being targeted by these groups as well: certain universities have been asked by Metallica and other artists to ban Napster on their campuses. On the other hand, there are many people (mostly Napster users) who are avid supporters of Napster and feel that it is their First Amendment right to share whichever files they choose and that recording industries should be working with Napster instead of against the company.

Denial of Service

Because Napster is a “hybrid” P2P system with a centralized server, it is vulnerable to denial of service attacks from hackers. If a hacker were to flood the Napster server with more requests than it could handle, the server would be temporarily shut down and would be unable to process searches from other nodes. A DoS attack would not affect transfers already in progress between nodes, though.

Unreliability and transient availability of resources

Because the more popular songs on Napster are replicated on multiple peers, finding most songs should not be a problem even if many nodes are down.

Malicious Content

Napster makes sure that every file traded over is in MP3 format, so it would be very difficult to spread a virus over Napster. However, if a user is running a program like Wrapster, which disguises other file types as MP3’s for sharing over the Napster network, malicious content could be spread relatively easily. It is much more important for a peer to trust the node that it is downloading from if it is running a program like Wrapster than if not.

6.2 Gnutella

Mark Tompkins

With the recent legal attacks on Napster, many people have started to discover Gnutella as an alternative for trading MP3’s. Gnutella is much more than this, however. It is a completely decentralized P2P system, and it is more flexible in terms of the types of files it shares. This section will examine the Gnutella infrastructure and evaluate it based on the criteria set forth in our model.

6.2.1 What is it?

Gnutella is not an actual piece of software; rather, it is an open-source protocol which has been the foundation for many new P2P products such as BearShare and LimeWire. Like Napster, Gnutella has a built-in keyword search, so the user doesn’t have to know the exact name or location of the file they are looking for. Gnutella has no central server that brokers connections between clients though, which makes it less efficient than Napster but also less liable.

6.2.2 How does it work?

With the absence of a central database, Gnutella must rely on a different technique for nodes to locate one another. In order for a node to connect to the Gnutella network, it must first establish a connection with at least one other node by sending out a ping request to it. This node can be discovered offline, or it can come from the application’s host cache, which contains the IP address of hosts it has previously been connected to.

Searching for Files

Once a node is connected to the network, it can initiate keyword queries to search for files. The Gnutella protocol uses a BFS (breadth-first search) algorithm to search for files over the network. When a node initiates a query, that query is assigned a unique ID and is broadcast to each of that node’s neighbors. Those nodes try to match the keyword with any files they have and then forward the request on to their neighbors. The unique ID’s prevent loops from forming, and each request has a TTL of about 7 so that it cannot propagate forever
. Every host can interpret a Gnutella query any way it wants to, but most user applications have a standardized keyword matching system built in to them.

Retrieving Files

When a node matches a keyword to a file that it has, it sends a response back to the node from which it received the request. That node, in turn, sends the response to the node where it got the request. This sequence continues until the response message reaches the node that originated the query. At this point, the originator will probably have received multiple responses from different nodes, and it can directly connect to any one of these nodes to download the desired file.

6.2.3 What are its business and public policy goals?

Gnutella was originally developed primarily as a tool to share recipes, according to Tom Pepper, one of Gnutella’s creators.
 Since its inception, many open source developers have realized Gnutella’s potential as a dynamic infrastructure which not only allows P2P file sharing but also permits transience of nodes across the network. Because in the traditional transient web, many nodes do not have fixed locations or IP addresses, those nodes are constrained to act as browsers. They cannot effectively host material because any hyperlinks or database entries pointing to them would become invalid whenever their IP address changed. Gnutella solves this problem by using a search mechanism which does not rely on the persistency of any single node, allowing transient nodes to act as effective servers as well as clients.

Because Gnutella is a “pure” P2P system with no centralized server controlling the network, there is no single point of failure, both from a legal and technical standpoint.

Also, Gnutella is an open protocol—not a company—so it would be impossible for someone to completely shut it down (short of suing every Gnutella application company and banning the source code). Having open source code has an additional advantage: it allows for new innovations and freelance application development. Many companies have created applications not only to implement the Gnutella protocol (e.g. BearShare, LimeWire), but also to support it and address its inherent shortcomings, such as scalability and freeloading. Some of these applications will be discussed later in this section.
6.2.4 How does it address the threats in our model?

Monitoring of Transactions and Compromised Anonymity

Gnutella does a better job protecting the privacy of its users than Napster does, by virtue of the fact that it has no central server which can monitor every transaction. Searching is relatively anonymous: when a node forwards a query to its neighbors, it does not know that query’s origin—it only knows the IP address of the node that passed the query to it. On the other hand, file transfer is not anonymous: any nodes that connect to transfer a file know each others’ IP addresses and may store each other in their respective host caches. Thus Gnutella partially addresses the threat of compromised anonymity.

Zeropaid.com took advantage of the lack of file transfer anonymity to create a “Wall of Shame” on their website. The company ran a Gnutella server and shared fake files named to seem like child pornography. Whenever a user tried to download one of these files, Zeropaid logged his/her IP address, and posted it on the “Wall of Shame” for everybody to see.
 While Zeropaid’s objective was to discourage the trading of child pornography on Gnutella, many users were angry that the company was violating what they felt was a reasonable expectation of privacy on the Gnutella network.

In addition, there are tracking programs which can monitor activities on Gnutella, as we will discuss later in this section. These programs are currently being used to enforce copyright law, but a company could just as easily use the information gained for marketing purposes or to identify users (by merging this data with data from other sources).

Manipulation of Transactions

Because connections are made directly between two peers transferring a file, it would be difficult for a third party to interfere with the transfer. The peer sharing the file could, however, forge data or give it a misleading name, like Zeropaid did with its “Wall of Shame”. Of course, since files are not signed or verified, it is possible for an attacker in the network to interfere with the transfer using traditional IP packet manipulation techniques.

Legal Action and Social Pressure

Gnutella application designers would be significantly less liable in a law suit than Napster’s designers. This is because once a user has downloaded a Gnutella application, the application designers play no further role in facilitating file sharing or brokering connections between peers. As mentioned in Chapter 4, however, ISP’s and universities have been targeted by the Motion Picture Association of America because Gnutella is being used to trade copyrighted movies over their networks. The DMCA gives complete immunity to ISP’s who block offending users, but nevertheless many ISP’s and universities have refused to take any action against their users for various reasons.

Denial of Service and Unreliability

Because Gnutella is completely decentralized, denial of service attacks against a single node would not compromise the integrity of the network as a whole. On the other hand, if a malicious hacker managed to flood his/her area of the network with a huge number of broadcasts, he/she might succeed in disabling a reasonably large group of nodes. As mentioned before, unreliability of a few nodes is not an issue for Gnutella because the protocol is designed for a transient network.

Another issue related to unreliability that is worthy of note when examining Gnutella is scalability. Gnutella’s method of broadcasting queries throughout the network allows it to have an efficient decentralized search mechanism, but this also presents some scalability problems. As the number of nodes on the network increases and the network becomes more interconnected, the amount of traffic going through every node also increases. While this may not be a problem for high bandwidth users, hosts with dial-up connections may not be able to process all of the traffic, and will become dead-ends for queries, thus fragmenting the network.

Different solutions have been conceived to deal with Gnutella’s scalability issues. Clip2, for example, invented the idea of a Reflector. A Reflector is a Gnutella node that acts almost like a mini-Napster server; it maintains an index of the files of all nodes connected to it, and whenever a matching query is sent to it, the Reflector responds instead of forwarding it to its neighbors. By having low-bandwidth nodes connect to a Reflector, they don’t have to deal with as much traffic, and the Gnutella network as a whole becomes more scalable (see Figure 2).
 A drawback to this approach, though, is that Reflectors add a level of centralization to the network, and the operators of these Reflectors could potentially be held liable for the same reason that Napster is.

[image: image2.jpg]() sroutana camecton

@ oser comnecton

@ crorcsand Comactonmeticir

Figure 2 An example Gnutella topology using reflectors.

Another method to address scalability issues has been implemented in the version 3.0.0 Alpha of BearShare, a popular Gnutella-based file sharing application. This version of BearShare allows the user to choose one of three modes to run in: client, defender (a dedicated server), or peer. High-bandwidth users may choose to run as a defender, allowing many low-bandwidth client users to connect to them and use them as a gateway to the public network without having extra traffic pass through them, similar to a Clip2 Reflector. Defenders may set a password for their server to make it private-access, and they may also set rules and send messages to clients that are connected to them. BearShare applications running in peer mode work like a regular Gnutella application, acting as both a client and a server. By creating this hierarchy on the network, defenders may be more prone to legal and hacker attacks, but this is a tradeoff that BearShare was willing to take in order to make their system more scalable.

Malicious Content

Because no single node on a Gnutella network can inherently be trusted, malicious content is a large potential threat to Gnutella users. There are no built-in safety features to prevent the spread of a virus or Trojan Horse over Gnutella besides existing firewalls and anti-virus software (which becomes outdated quickly). Therefore, it is important for users to know exactly what file they are downloading and to be especially careful before running any downloaded executable files.

The Mandragore Virus scare in February 2001 is an example of how malicious content could easily be spread over a P2P network such as Gnutella.
 This virus, once installed on a host, becomes active when that host connects to the Gnutella network. It masquerades as a separate connecting host, and initiates a connection with the peer that is unknowingly running the virus application. Thus, whenever that host receives a query, it forwards the query to the Mandragore program, which is set to automatically respond. The Mandragore program returns to every query an 8 kilobyte .EXE file. If a user downloads this file and runs it, the Mandragore virus installs itself on that user’s computer. While this virus does not have any malicious side effects, it serves as an example of how malicious content could easily be spread over Gnutella.

Freeloading

Freeloading on Gnutella poses a very serious problem which can compromise the efficiency and usefulness of the system. A recent study done by two Xerox employees showed that a substantial 70% of all Gnutella users are freeloaders, and that 50% of all queries on Gnutella are answered by only 1% of the hosts.
 Having such a large number of freeloaders will cause searching performance on Gnutella to suffer, because queries will be forwarded by nodes which are sharing no content. Therefore, these broadcast queries are less likely to find any matching content before their TTL runs out. Also, because so few users are sharing content, the system is actually less decentralized than Gnutella developers would have us believe. This means that it would be easier to attack nodes that hold content, or even to sue them individually for copyright infringement, because there are so few of them.

Unfortunately, there is little incentive to share files on Gnutella unless someone has a file that he/she wants to publish. Since many people seem to use Gnutella for downloading MP3’s, movies, and pornography (see Figure 3), it is much easier for them to avoid being targeted for copyright infringement if they do not share the files that they download. Also, freeloaders can download files faster without having to worry about bandwidth being used for uploads.

One way to reduce freeloading on Gnutella would be to have “reputations” based on how many files people share, and have people who share more files have greater preference for downloading from other nodes. Also, an application could force users to share files in their download directory, or a system like Mojo Nation (discussed later) could possibly be put into place which allows users to buy and sell resources such as disk space from each other.

[image: image3.jpg]BearShare =10l x]

Hosts | Soach| Do | Ulosds Mord ||

i [ristone [see TUsood: [Requess [Wi | [Semonten T
& twaring! . 1603 [Supoman

csor
e coclson
nena et michiog
ey
eparese
foiichel b et
speas e
i st
agramanha
dandozabs
borymarion
e space
e et e 3

7 Pase
At [chasctes Fies
Upto [T chaactrs Bandvidh

S2eeee A o) i & e

Figure 3 A set of queries that passes through a typical Gnutella node

6.2.5 Programs that Track Napster and Gnutella Users
While some P2P users may assume that their activity on the network is private and that the only information they share is with the people that they directly download from, many of them are actually being monitored by large companies both for copyright enforcement and marketing purposes. This section will examine these two areas where P2P users’ privacy may be compromised as a result of this large-scale tracking and data collection.

Copyright Enforcement

Both the recording and movie industries have become very concerned recently about the amount of copyrighted material that is being traded over P2P networks. They have sued—or have threatened to sue— P2P software companies, ISP’s, and universities for allowing their users to illegally trade files with each other. While little is known about tracking programs that compile databases about copyright offenders, these programs do exist and could potentially become a very powerful tool for the recording and movie industries.

 Copyright Agent, for example, allows copyright holders to identify unauthorized distributions of material over P2P systems and will send DMCA notices to the ISP’s of offenders
. Recently, Copyright Agent was used to conduct a sting on Napster users by tracking all instances of illegally shared Roy Orbison songs. As a result, Napster was forced to ban 60,000 Roy Orbison fans from its service.

Media Tracker is another program which could be used by the recording and movie industries to track user activity over Napster and Gnutella. It can track a user’s collection of shared files and his/her IP address and ISP by masquerading as a regular peer on the network and collecting data from other machines. Programs like Napster and BearShare actually aid the job of these trackers by providing “hotlists” so a user can see the entire collection of shared files on an individual’s computer. Also, Media Tracker is run from outside the country, in order to avoid any U.S. privacy laws which would regulate its use.

Marketing

Companies like Big Champagne have been using tracking programs to aggregate data for marketing purposes as well. For them, P2P technology may be the perfect way to enable advertisers to target consumers directly based on their preferences and tastes. If, for example, an advertiser could look into a user’s hard drive and see what kind of songs that user likes, the advertiser could build a huge database based on these preferences. Napster’s new instant messaging option provides these advertisers with a way to directly communicate with their target audience as well. Since Napster introduced this feature into its service, some users have been harassed by advertisers who saw a song on a user’s hard drive and then sent the user a message telling him/her where to find other songs he/she might enjoy.

Running these tracking programs to aggregate data about P2P users is perfectly legal, because by sharing files to the public over a system like Napster or Gnutella, users are giving up any expectation of privacy that they might have concerning the data. While there is currently no way to regulate this data collection, users may elect to use a P2P system that protects their anonymity better, such as Freenet or Free Haven if they do not want advertisers and copyright holders to see what they download or store.

6.3 Freenet

Mark Tompkins

We have looked at several P2P file sharing systems. We will now focus on some P2P publishing systems. The primary goal of all of these systems is to provide anonymity, both for readers and publishers. The first of these that we will consider is Freenet.

6.3.1 What is it?

Freenet is a completely distributed, decentralized, and anonymous publishing system that uses dynamic file caching and forwarding to enhance the privacy of its users. Each node contributes part of its hard drive to be read from and written to by the network, and the content stored on each node is constantly changing. Freenet is open source, and is still being developed and improved by its designers. The encryption and file caching methods included in Freenet make it difficult to identify the origin of any document; in fact, it is even difficult to see what is being stored on a users’ own node. This makes it difficult not only to censor documents, but also to assign responsibility to anyone for anything published or stored on the network.

6.3.2 How does it work?

Freenet acts like one gigantic, distributed hard drive. Node operators can insert and retrieve documents and files from the system in a manner similar to browsing the World Wide Web, except that the documents they publish aren’t necessarily on their server—in fact, they migrate throughout the network. Another difference is that requested data is forwarded to the requestor along a path of nodes, instead of directly from the node that is storing the content. The following section explains how retrieving and publishing documents works in detail.

Requesting Documents

To retrieve a document from Freenet, a user must know the public key to identify that document. They must find this key name either by finding it offline, or by accessing a Freenet node which has been designated as a mini-search utility where publishers can register the keys to their documents. Once they know the key, a user sends out a request for that document, first to itself. Whenever a node receives a request, it first checks its local cache to see if it has the file. If so, it returns the file to the node that forwarded the request to it (not necessarily the same node that originated the request). If the node doesn’t have the data, it looks in its routing table to find the node with the “closest” (by lexicographic distance) key and forwards the request to that node.
 This repeats until either the document is found or the request’s time-to-live expires.

When a document is passed back along the same path of nodes that the request took, each node pushes a copy of the file to the top of its cache (which is in the form of a stack), and the data is checked against a content hash key to ensure that the document has not been tampered with. When the stack becomes full, the least recently accessed documents are deleted from the node, but the table still keeps track of where it got the document from so it can forward future requests there (see Figure 4). This mechanism allows popular documents to propagate to places in the network where they are most requested, and eventually causes documents that are never requested to be deleted from the system. This also reverses the “Slashdot effect,” in which the most popular documents are also the most difficult to access because of high traffic. The “Slashdot effect” is a major problem for many client/server systems.

[image: image4.png]KEY DATA ADDRESS

e54JKDFYAIDAF | gfda0USDREWAD [topf18.343.2.1:993
Sr3ASI544KK | SDUI4aweS3aL [cn/80.33.4.11:33
KLI459Dds3P3 | Pok3eDSsaseds |tcy3.2.1.1:1134
YU4SMMKSBDS top64.33.22.112
09MHNhjUHUTS topi22.2.24111
UESWs54345 topi121.227783

Figure 4 The Freenet stack model.

While Gnutella uses a breadth-first search algorithm, which doesn’t scale well to large numbers of nodes, Freenet’s depth-first search algorithm—where searches are directed along the most likely paths first—makes the system as a whole much more scalable.

Inserting Documents

To insert a document into the Freenet data space, the author must first designate a public key which can be used to identify it. This public key is a simple text string, and two separate documents cannot have the same key. To alleviate the problem of key collisions, users have created a pseudo-directory naming structure. For example, instead of naming a document “beach.jpg”, a user could instead name it “/johndoe/pics/beach.jpg”. Not only does this avoid key collisions, it also allows users to create a unique namespace for themselves if they want people to see that they published the document. Of course, this form of namespace is far from secure, since anyone could publish documents under it. A user can, nevertheless, reinforce this namespace and establish a pseudonym by attaching a digital signature verification to any documents he/she publishes.

Inserting a document in Freenet works in a similar manner to retrieving a document: Freenet nodes use their “closeness” algorithm to forward the insert request to the node with the closest key. If the public key exists already, the existing document is returned and the new document is not inserted. If not, the document is stored on that node.

The most prominent drawbacks to Freenet are that there is currently no effective filename search engine implemented and that it is impossible for authors update or delete files from the system (besides by hoping that no one accesses it so it disappears on its own). Also, because a document must travel along multiple nodes to reach the requestor, it can take a long time to retrieve certain documents. The designers of Freenet were conscious of these drawbacks when they designed the system, but they decided that the anonymity and privacy provided were worth the tradeoff.

6.3.3 What are its business and public policy goals?

Freenet’s business and public policy goals are very clearly defined on their web page:

· Provide anonymity for both producers and consumers of information

· Plausible deniability for node operators

· Resistance to attempts by third parties to deny access to information

· Efficient dynamic storage and routing of information

· Decentralization of all network functions

Freenet was originally created with these goals because its designers noticed the growing tendency of current Internet systems to compromise their users’ privacy. Servers could track information about everyone who accessed their site, companies could aggregate this data and sell it for marketing purposes, governments could censor published documents, and unpopular (or popular) sites could be flooded with denial of service attacks to effectively shut them down. By adopting these goals, Freenet aspired to create just what its name implies: a free network where users’ First Amendment rights are completely protected from outside pressure or attacks.

Freenet’s reversal of the “Slashdot effect” mentioned earlier allows it to achieve yet another important goal: the most requested data in the system is distinguished from the most “acceptable” data. This not only prevents censorship, but allows popular documents to be accessed quickly, thus propagating them throughout the network even more.
6.3.4 How does it address the threats in our model?

Monitoring of Transactions and Compromised Anonymity

The anonymity provided by Freenet has several implications for monitoring of transactions. First of all, if an attacker had control of enough nodes and was able to carefully analyze network traffic patterns, he/she could trace back requests for documents that passed through them back to the sender of the request. Therefore the anonymity provided by Freenet is not perfect, but it would be very expensive and time-consuming for an attacker to effectively use this to track documents, and it would be even more difficult to design a system similar to Media Tracker which could aggregate data on a large scale. For the same reason, a company like DoubleClick, Inc. would have trouble aggregating data request patterns and user information from Freenet. Freenet also effectively prevents the government from monitoring and regulating file sharing in the same way.

Manipulation of Transactions

Because each node checks the validity of a document that it forwards against a content hash key, any data that is manipulated in any way will be thrown out. Also, if an attacker attempts to update a document to change its contents, he/she will only succeed in propagating the original version throughout the network.

Impersonation and Misrepresentation

Since there is no way to easily tell which nodes documents originate from, and publishers are anonymous, impersonation and misrepresentation is not an issue. Even if an author used a signature verification key to make a pseudonym, an attacker would not be able to use that pseudonym without acquiring that user’s private key.

Legal Action and Social Pressure

Freenet’s design allows the operators of its nodes to avoid most types of legal action and social pressure. By creating a system where no node knows who it is requesting data from, nodes can claim plausible deniability for requests that are traced back to them. Also, because the content stored on each node is constantly changing, and node operators cannot see what is on their own node, it may be difficult to hold them responsible for any illegal content (such as copyrighted material) which is stored there (see Chapter 4). In addition to copyright law, Freenet provides users with a way to circumvent libel law, and even laws governing illegal material such as child pornography. This is an unavoidable consequence in a system where it is impossible to censor any material or track down the people who published it.

The only way that a document could even partially be censored would be to have most nodes in the system install a key filter for that document, and refuse to host it. But to do this, the document would have to be notorious enough that the key was known to many users, and they would all have to agree to ban that key. Also, even if the government or copyright holders did issue a decree for all nodes to block a certain key, the publisher could simply change a few bytes in the document and re-insert it using a new key, circumventing this ban.

Denial of Service and Unreliability

Because Freenet is completely decentralized, the entire system cannot be shut down by a DoS attack. Even if an attacker wanted to flood an individual node with requests, he/she would have a hard time because the document he/she is requesting would be forwarded to other nodes and requests would start to be routed there instead. Freenet’s method of replicating popular files helps it deal with unreliability of node connections, so if a node goes down and makes its files unavailable, the only documents which would no longer be available to the network would be ones that no one had requested recently anyway.

Malicious Content
Because Freenet ensures the validity of each document that it passes back along a chain of nodes, it is difficult, but not impossible, for a virus or Trojan Horse to spread over the system. Just like any other system, an attacker could post malicious content with a misleading key name that a lot of people were likely to request; however, as soon as word got out, people would stop requesting that key or would block it from their node.

It would also be a lot harder for a virus like Mandragore on Gnutella to propagate, because if a program were to respond to all search requests like Mandragore does (see Section 6.2), and it tried to forward the virus instead of the correct data, the content hash key wouldn’t match, so the virus wouldn’t be forwarded back. Therefore, as long as a node operator is sure that they trust the key that they are requesting, he/she should be relatively safe from malicious content.

6.4 Free Haven

Raj Dandage

While Freenet makes a good attempt at anonymity, it leaves a few holes through which potential adversaries could determine a user’s or node’s identity. That is where Free Haven comes in. Like Freenet, Free Haven is an anonymous publishing system. Also, much of the basic structure of the systems are similar. As this section will demonstrate, Free Haven takes the concept of anonymity one step further. Because Free Haven shares many characteristics with Freenet, this section will often refer to the previous section, Section 6.3, for in-depth explanation.

6.4.1 What is it?

Free Haven is very much like Freenet in what it is intended to do. Both systems are designed for anonymous publishing, and both systems have similar policy goals. However, Free Haven goes a great deal further in meeting these goals. In addition, Free Haven is designed for long-term, popularity-independent storage. Whereas Freenet is designed to replicate popular documents and discard unpopular ones, Free Haven is designed to keep documents indefinitely, regardless of how many requests are made for them.

6.4.2 How does it work?

At a high level, Free Haven works much like Freenet. The Free Haven system is composed of a distributed network of peers, all of whom store and serve documents. Also, all data is signed and encrypted. However, the processes of inserting and requesting documents are somewhat different.

Requesting Documents

When a peer requests a document, several steps are taken. Like Freenet, all documents are referenced by public key. To get a document, a peer must know this key. It takes this key, and creates a message containing a hash of that key, as well as the requester’s public key (a new key pair is generated every time for the requester). It then broadcasts this message to all of the peers that it knows about. Unique to Free Haven, though, is the fact that it does not know the IP address of those peers. Instead, it uses anonymous re-mailers to communicate with them. When sending a message to a peer, it creates a one-time reply block and puts that in an email message along with the keys listed. When a peer receives this email, it checks to see if it has any documents corresponding to the hash of the requested document’s public key. If it does, it encrypts the part of document that it has and uses the reply block to send it back via an anonymous re-mailer. Finally, the requester reconstructs the document once it gets enough replies to do so.

It is important to note that because the system uses anonymous re-mailers for peers to communicate with their neighbors, no peer can determine any other peer’s IP address or location (unless the anonymity of the re-mailer is compromised). This differs from Freenet, in which peers directly connect to their neighbors. Using re-mailers makes the system much slower than Freenet, but it increases anonymity greatly.

Inserting Documents

To insert a document, a user must locate a peer which is willing to originally store that document (this is generally the user’s own machine). The first thing that the system does with a document is break it into pieces, only a subset of which are needed to reconstruct the document. Free Haven uses Michael Rabin’s information dispersal algorithm (IDA) to do this. The system then generates a key pair for the document, and signs each piece of the file.

At this time, the publisher can set an expiration time, after which the system will drop the document. Free Haven does not offer any form of document revocation—the only way a document leaves the system is if it expires. Here, Free Haven differs from Freenet in that Free Haven only drops documents after the expiration date, whereas Freenet will drop documents if they become unpopular.

Once the pieces of the document are signed and stored locally, the system begins the process of “trading” to propagate the document across the network. Pieces of a document may be traded at any time, depending on the will of the peer and whether the peer can find others willing to trade. This makes the document a moving target, and it makes it impossible to know whether the peer that traded the document was the publisher. In a trade, the first thing that happens is that one peer sends its share to the other. The other, in turn, sends a share back to the first. They also exchange receipts and alert their “buddies” of the change (the buddy system will be explained in the next paragraph).

In order to make servers accountable for behaving properly, Free Haven introduces two important concepts: a buddy system and a reputation system. The buddy system essentially gives each share another share that it is accountable for. A peer is responsible for periodically checking that the buddies of its shares are available. It is also responsible for alerting buddies when a share is traded, so that they know where to look in the future. The reputation system complements the buddy system by maintaining reputation information at each peer. Each peer keeps information on the reputation of know peers. Other peers can broadcast information about a failed trade or other misbehavior. If the first peer trusts the broadcaster, it may update its reputation information. Reputation information is used to determine who to trade with.

6.4.3 What are its business and public policy goals?

The main business goal of Free Haven is to be used as a completely anonymous publishing system for long-term, popularity-independent content. That is, it is intended to be used with other systems, such as Freenet, which are faster but do not provide popularity-independent storage or the level of anonymity that it provides.

Free Haven has several public policy goals. First, it intends to provide anonymity of several types: author, publisher, reader, document, server, and query. Author anonymity makes it impossible to determine the author of a document. Publisher anonymity makes it impossible to determine which server originally inserted the document. Reader anonymity makes it impossible for anyone to determine who is downloading or reading the document. Document anonymity means that the server does not know what it is storing. Server anonymity makes it impossible to tell what server is storing a document from information about that document (such as the document’s public key). Finally, query anonymity means that a server does not know which document it is returning in response to a request. In addition to anonymity, Free Haven attempts to provide server accountability and some level of equity.

6.4.4 How does it address the threats in our model?

Monitoring and Manipulation of Transactions

Free Haven provides very strong protection against monitoring or manipulation of transactions through the same channels as Freenet.

Compromised Anonymity

We have seen that Free Haven provides extremely thorough protection of anonymity. To protect author anonymity and publisher anonymity, documents are constantly being traded via anonymous channels. To protect reader anonymity, requests are made via anonymous channels, using reply blocks. To protect document anonymity, documents are encrypted and split into pieces for storage. To protect server anonymity, requests are forwarded by peers and go through anonymous channels. Finally, to protect query anonymity, documents are split and hashed by key.

Impersonation and Misrepresentation

As in Freenet, the threats of impersonation or misrepresentation are not addressed because the system is designed for complete anonymity.

Legal Action and Social Pressure

Free Haven has similar issues as Freenet in terms of legal action; a complete explanation of these issues is in Section 6.3. However, Free Haven introduces one more important factor to protect against legal action or social pressure: documents cannot be revoked from the system. This is important because if legal action is taken against the author, there is no way for the author to remove the document. While it is still possible to take legal action against the author, the benefits are greatly diminished. Furthermore, because the author cannot revoke a document, there is no benefit to pressuring (or threatening) the author—and thus no incentive to find him/her.

Denial of Service and Unreliability

Denial of service and unreliability are also not big concerns of Free Haven, since only a subset of the pieces of a document are needed to reconstruct it. Also, there are accountability mechanisms for servers (such as the buddy system), which ensure that servers are running and have the pieces of documents that they are supposed to have.

Blocking of Access to End Users and Malicious Content

Blocking of access and malicious content are not really addressed, as in Freenet; for a complete explanation see Section 6.3.

Freeloading

Freeloading is somewhat addressed because a peer must donate space to the system in order to share a document.

6.5 Mojo Nation

Raj Dandage

Like Freenet and Free Haven, Mojo Nation is designed for P2P publishing, but its focus is different: instead of being focused on assuring anonymity, it attempts to solve the problem of freeloading in P2P systems by creating a capitalist “market” for resources. This section will describe Mojo Nation and evaluate it in the context of our model.

6.5.1 What is it?

As stated, Mojo Nation is a resource sharing P2P system. In addition to publishing documents on the system, peers can share computation time and bandwidth. However, the main feature of the system that distinguishes it from others is that it manages this sharing in a capitalist manner. That is, it introduces currency, which is called Mojo, which peers use to purchase resources. Peers can earn Mojo by selling resources to the system. For example, if a peer wanted to compute a large dataset, and it did not have any Mojo to pay for this computation, it could sell some of its disk space. Using the Mojo it earns, it could then purchase computation time from other peers in the system and compute its dataset. Using this “market” paradigm, Mojo Nation peers can actually bargain and make their own microeconomic decisions in order to maximize personal benefit.

Another feature of Mojo Nation is that it facilitates what the creators call “swarm distribution,” which is intended to speed up access to content by fetching different parts of that content from multiple sources at the same time. Although we will see that the benefits of this scheme are, at best, questionable, Mojo Nation’s creators claim that it makes the system the only P2P system that is scalable enough to support media-rich content.

6.5.2 How does it work?

Mojo Nation contains two classes of components: centralized servers for searching and accounting, and peers for sharing resources. In the system, each peer runs a “broker,” which is designed to act on the peer’s behalf by finding and purchasing the resources requested, as well as managing the sale of resources that the peer is offering. There are two basic operations that a peer may perform: publishing content and accessing resources.

Publishing content in Mojo Nation is performed by paying peers to host the content and registering this content with a content directory. When a broker wants to publish a document, the first thing that it must do is break up the document, encrypting and generating ID tags for each piece. As in Freenet and Free Haven, the document is broken up in such a way that only a subset of the pieces are necessary to reconstruct the document. The broker then finds a set of servers to host that document. It does this by contacting a “meta tracker,” which maintains a directory of peers sharing disk space and the prices for storage. It selects (possibly using a user-defined algorithm) which peers to purchase space from in order to meet its requirements for cost, reputation/uptime, etc. For each peer that it chooses, it uploads the file and authorizes the central “token server” to transfer Mojo from its own account to the peer’s account. Finally, it creates a “map” describing how to reconstruct the file (that is, which peers host which parts) and registers this “map” with a “content tracker.”

To access a resource on Mojo Nation, a broker must perform the inverse process. First, it selects a set of “content trackers” from its pre-determined list to perform the search. It makes this selection based on the price that the tracker charges and its reputation. It then asks selected trackers to perform the search, authorizing the “token server” to transfer the cost of the search to the trackers’ accounts. As search results, the tracker sends name and content information, as well as the “map” that explains how to reconstruct the document. With this “map” the broker knows which peers to contact; it contacts them, authorizes the “token server” to transfer Mojo to them, and downloads the pieces. Because the pieces are all on separate peers, a slow or unreliable connection for some peers will not affect the download. Moreover, if the broker’s node is on a fast network and all of the peers that store the document are on slower networks, the transfer rate is limited by the speed of the fast network instead of the slow network (as it would be if it were a direct transfer between two peers). This is because the broker can transfer different parts of the file from different peers simultaneously, thereby using all of its available bandwidth. Mojo Nation dubs this characteristic “swarm distribution,” claiming that it solves the problem of scalability in P2P networks.

6.5.3 Business and Public Policy Goals

Although it is open source, Mojo Nation is a commercial system that the developers intend to license to companies for internal file sharing. The developer maintains some level of control over the system via the centralized “token server” but allows much of the functionality to be decentralized. The developer is also placing a great deal of effort into marketing the idea as a revolutionary concept, even though the implementation is not completely in place and the system has yet to attract any large number of users.

In terms of policy goals, the system does not promote any sort of anti-censorship or anonymity causes, but it does attempt to maintain equity. Documentation on the system clearly states that it is not intended as a copyright subversion tool. Furthermore, it states that “user anonymity is not a feature supported” and that any type of DMCA violation that is reported will be investigated and the violators reprimanded. What it does attempt to achieve is equity of resource distribution, via the market paradigm.

6.5.4 How does it address the threats in our model?

Monitoring and Manipulation of Transactions

Overall, Mojo Nation provides fairly good protection against monitoring or manipulation of transactions. It encrypts and signs all data transferred over the network between peers. However, search requests sent to “content trackers” can easily be logged, and since these trackers are decentralized—not run or overseen by a central authority—there is no privacy policy or expectation of protection. It is also possible for trackers to manipulate search requests, although it is difficult for them to manipulate the “maps” that allow documents to be reconstructed.

Compromised Anonymity

Mojo Nation does not aim to provide any level of anonymity, as stated in the goals section. In general, it is fairly easy to determine IP addresses and information about other peers in the system. Also, the centralized accounting mechanism maintains data on all peers and the content that they request. In the future, it may be possible to purchase some level of anonymity by buying a certain number of “hops” that a transaction must go through before reaching its destination; however, this feature is currently only in the idea phase.

Impersonation and Misrepresentation

Mojo Nation also does not address the threats of impersonation or misrepresentation.

Legal Action and Social Pressure

Mojo Nation suffers from similar issues as Free Haven in terms of legal action. Because only parts of a document are stored on individual nodes in the system, no node has enough information to reconstruct the document by itself. Therefore, a node can claim “plausible deniability” about the content of that document. As with Freenet and Free Haven, if a node can be considered an ISP, it would be immune from trouble related to any sort of defamatory remarks transmitted through the system. Also, it must take the appropriate actions to avoid transmitting copyrighted material, as set forth in the DMCA.

Denial of Service and Unreliability

Mojo Nation takes several steps to address the problems of denial of service and unreliability. Because of the mostly decentralized nature of the system, DoS attacks are unlikely to affect the system as a whole. Moreover, in order to communicate with a peer, an attacker must pay Mojo to that peer; thus, in order to perpetrate a DoS attack, the attacker must have an extremely large amount of Mojo, which is unlikely. To address unreliability, popular content is replicated more, so there is a good chance that that content is available when requested. Also, only a subset of the pieces of a resource are needed to reconstruct that resource, so even with a large number of unreliable peers, it is possible to access a resource.

Blocking of Access to End Users

Mojo Nation addresses blocked access by supporting “relay servers”—servers that act as mailboxes outside of a firewall or NAT. Peers behind these devices can access the “relay servers” at a convenient time and get or post information to Mojo Nation.

Malicious Content

Like Freenet and Free Haven, the threat of malicious content is not directly addressed by Mojo Nation.

Freeloading

As explained before, Mojo Nation provides a well-developed means of dealing with freeloading by the market paradigm and the transfer of Mojo. Because peers must pay to use resources, they cannot be freeloaders. Moreover, there is a reputation system in Mojo Nation that helps establish a baseline (but is by no means exhaustive) for determining the trustworthiness of a peer.

6.6 AOL Instant Messenger/Jabber

Raj Dandage

We now move from publishing systems to collaboration systems. The first of these that we will look at are AOL Instant Messenger (AIM) and Jabber, both Instant Messaging platforms. These two systems allow users to communicate with each other via one-to-one chat, and they have “buddy lists” for determining who is available to communicate with. Because these two protocols are similar and are very weak in terms of addressing the threats in our model, we will look at them together.

6.6.1 What are they?

Both AIM and Jabber are P2P instant messaging systems under our definition of P2P. Users in these systems create usernames that are attached to them, independent of network addressing, and their peers can communicate with them using these usernames. Jabber, however, goes beyond simple instant messaging by providing connectivity across IM systems. For example, Jabber users can communicate with AIM, ICQ, MSN Messenger, and Jabber users at the same time. Also, Jabber is designed to be a framework for P2P communication that can be used not only by humans but also by applications.

6.6.2 How do they work?

Although they provide similar functionality, Jabber and AIM work in quite different ways. Whereas AIM uses centralized servers for communication, Jabber is inherently decentralized. In addition, AIM is a closed protocol, while Jabber is open. They also rely on different ways of structuring data and different ways of providing extensibility. However, both share similar security models.

AIM works using an inherently client/server model. Almost all AIM messages (except for file transfers) are routed through central AIM servers at America Online before they reach their destination. Information on who is online and “buddy list” status are all maintained on AIM servers as well. AIM uses a proprietary protocol to communicate between the AIM servers and the AIM client applications. Although the data is sent in a proprietary protocol, it is all sent as clear-text, and there is no encryption or signing done on any data.

Jabber, meanwhile, works through a system of decentralized servers. Users must connect to a Jabber server in order to communicate; however, they can connect to any one server, and the servers communicate as peers amongst each other. The way this works is: each Jabber user (this can be a human or an application) has a username that consists of a namespace identifier and a name. Each Jabber server presides over a namespace. So, for example, if Bob connects to the MIT Jabber server, his name may be Bob@MIT. If he wanted to communicate with Alice at Stanford, he would address his message to Alice@Stanford. Then, he would send that message to MIT’s Jabber server. MIT’s Jabber server knows that its peer, the Stanford Jabber server, presides over the Stanford namespace, so it forwards the message to that server. Then, Alice can access the message using the Stanford Jabber server. In Jabber, all messages are sent in XML format, and have an open standard for structure. In addition, servers can act as gateways to other IM platforms (such as AIM and ICQ), translating the data that they receive from XML to the proprietary format for delivery. Finally, as in AIM, all data is sent as clear-text; however, because the standard is open, it is possible that encrypted versions of Jabber may develop in the future.

6.6.3 What are their business and public policy goals?

Jabber and AIM have somewhat different business goals. AIM is intended as a large-scale IM solution, where AOL has centralized control. It uses this control to deliver advertisements to users and to facilitate distribution of new features to users. Jabber, on the other hand, is an open-source project. Although it is backed by a for-profit company, it is designed as an open and customizable IM solution, with which one client can be used for all IM communication.

While these two IM systems have different business goals, their policy goals are very similar. They do not promote a very high degree of security or authenticity. They attempt to provide some level of anonymity by allowing users to use pseudonyms as their usernames (instead of using their real names). However, neither system claims anonymity as an important goal.

6.6.4 How does it address the threats in our model?

Monitoring and Manipulation of Transactions

Both AIM and Jabber do little to protect against monitoring or manipulation of transactions. In both systems, data is sent as clear-text, and in Jabber it may be forwarded through several un-trusted servers. This makes it simple for an adversary to perform packet sniffing or listen at a node and read messages. Furthermore, neither system directly supports any sort of signature. Therefore, it is relatively easy for an attacker to manipulate data while it is in transit. It is worthy of note that Jabber’s open XML structure provides the extensibility to secure communications using encryption and vCards. This idea, however, is only in the development stage.

Compromised Anonymity

Both AIM and Jabber use pseudonyms to refer to users in the system, in order to provide a basic level of anonymity. Unfortunately, this provides a very weak degree of anonymity that can be easily compromised.

Impersonation and Misrepresentation

Both systems also provide little protection against impersonation or misrepresentation. In order to authenticate users, these systems use simple usernames and passwords. Jabber also provides support for SHA1 encryption of passwords, as well as Zero Knowledge authentication. However, without using these, both of these systems are especially prone to impersonation threats.

AIM, because of its widespread use, has a history of identity theft and password fraud. By simply stealing another individual’s password—or guessing it—an attacker can impersonate that individual and sometimes cause a great deal of damage. There have been noted cases where identity theft on AIM have resulted in millions of dollars in business losses and have assisted stalkers in getting personal information about their victims.

Legal Action and Social Pressure

The threat of legal action does not plague these systems as much as P2P systems. One of the reasons for this is that there is no way of distributing content to a large number of people at once in these systems. Therefore, it is difficult for anyone to be caught for copyright violation (although if someone were caught, under the DMCA, there would be consequences). Libel has similar issues. In addition, since AOL has been identified in the past as a service provider under the CDA, it may be able to claim immunity for all libel that is transmitted over the AIM network. Jabber servers are distributed and run by diverse organizations, so if legal action were to be taken on them, it would be difficult to pinpoint a group to act against.

Denial of Service, Unreliability, and Blocking of Access to End Users

Because AIM is centralized, it suffers from DoS and blocking threats much more than other P2P systems, including Jabber. If an adversary were to attack the AIM servers, all AIM communication would be stopped, since it must go through these servers. Jabber, however, is decentralized so it cannot easily be attacked in a similar fashion. It is also not as prone to unreliability problems because there are multiple servers that users can connect to. Both systems offer relay mechanisms to provide access to users behind firewalls and NAT’s.

Malicious Content and Freeloading

AIM addresses the threat of malicious content with a pseudo-reputation system, in which a user can reduce the reputation of another user by “warning” him/her. The warning level of a particular user is displayed along with his/her name for all other users to see. Furthermore, a user’s warning level determines the maximum rate at which he/she can send messages. Nonetheless, this method of addressing malicious content has its drawbacks: a user’s reputation may be destroyed by another user without just cause, since it is very easy to warn people.

AIM also addresses the issue of freeloading—more specifically, inequitable use of resources—by limiting the rate at which users can send messages. If a user exceeds his/her maximum rate he/she must wait before continuing. This allows AIM servers to devote a fair amount of resources to everyone using the system.

6.7 Groove

Raj Dandage

Like AIM and Jabber, Groove is a P2P collaboration system. It differs from the others in that it has a very commercial focus: it is designed for use in businesses to increase productivity. This section will examine Groove in detail and evaluate it in the context of our model.

6.7.1 What is it?

Groove is a comprehensive and decentralized P2P system that allows users to collaborate in real-time. It provides chat, IM, whiteboard, group web browsing, calendar, discussion board, and application sharing services. These services, which are together called a “shared space,” allow two or more users to work on projects regardless of physical location. Groove also provides a framework for connecting other applications to its P2P infrastructure, so that they can be used by peers in a “shared space”(see Figure 5).

[image: image5.jpg]

Figure 5 An example Groove shared space.

6.7.2 How does it work?

When a user wants to join a “shared space,” he/she starts the Groove application and uses his/her invitation—the user must be invited by another member via email or IM—to determine which peers to connect to and the protocols that they are using. Normally, the application connects directly to its peers; however, if it is behind a firewall or NAT, it can use a Groove “relay server,” which acts as a gateway into a Groove network. The Groove application uses a complicated scheme in which the invitation is signed with the public keys of participants and contains contact information. The recipient can compute a fingerprint (a hash of the public key that is small enough to be printed on business cards, etc.) to assure the authenticity of the invitation.

Once the application has connected to its peers, it can begin to communicate. The first thing that the system does is synchronize the new application’s state to that of its peers. To do this, peers send “delta messages”—sequential updates to the state of the system—in sequence until the new application has all of the history and thus can reconstruct the current state.

All communication in the system is done using “delta messages.” Each one of these is signed and encrypted to ensure security. The creator of the Groove space can choose whether the space is “mutually trusting,” in which symmetric keys are used (under the assumption that all members of the space trust each other), or “mutually suspicious,” in which Diffie-Hellman key pairs are used. Using the latter, peers can ensure the authenticity of every message transmitted in the system. When a message is sent or received, it is also archived locally by each peer as encrypted data. This allows peers to reconstruct a Groove session and allows them to verify the authenticity of each message.

6.7.3 What are its business and public policy goals?

Because Groove is a commercial application, its business goals are relatively clear. The software is sold to companies on a per-user basis. The company also sells license management tools to assist in distribution of the software. It is interesting to note that although the application is heavily marketed as “empowering individuals” because of its P2P nature, the software is somewhat moving away from P2P. The company has introduced several enterprise management tools for Groove, so that IT managers have a great deal of control over the system. This, in effect, could turn it into a hierarchical and centralized system.

Groove’s main public policy goal is to sacrifice anonymity for data security and trust. The designers make the following “guarantees” to users. First, strong security is always being used and cannot be turned off. Second, all data is confidential on the wire and on disk. Third, no group member can impersonate any other member. Fourth, a lost message can be recovered from any other member, and its authenticity and originator can be verified. Finally, no non-member can eavesdrop.

6.7.4 How does it address the threats in our model?

Monitoring and Manipulation of Transactions

Groove does a very thorough job of ensuring that messages are not monitored or manipulated. As stated earlier, all messages are signed by the originator and encrypted. When the data is stored locally on disk, it retains the signature and remains encrypted, so that it cannot be tampered with.

Compromised Anonymity

As stated, anonymity is not a goal of the Groove system; in fact, the system is designed so that it is easy to verify the originator of each message. Thus, this threat is not addressed.

Impersonation and Misrepresentation

Because all messages are signed, it is easy to verify the originator’s public key. In order to associate the public key with a real person, the system computes fingerprints, which can be placed on a business card or over the phone. It is the user’s responsibility for checking these fingerprints. Groove is also designed to support central certificate authorities and webs of trust; however, these features are not yet in place.

Legal Action and Social Pressure

Averting legal action is not a goal of Groove; in contrast, the system is designed to facilitate accountability by signing all data so that it is easy to determine the originator. While Groove does not know what users do, any participant in a shared space can verify the originator of any message.

Denial of Service, Unreliability, and Blocking of Access to End Users

Groove does a good job of protecting against denial of service, unreliability, and blocked access. Because of its decentralized nature, Groove is not prone to DoS attacks. Also, because all messages are mirrored locally on all peers, any unreliable nodes in the system can leave and re-enter the system without missing any messages. Finally, Groove markets “relay servers” designed to tunnel the Groove protocol through HTTP, so peers can access the system from behind firewalls or NAT’s.

Malicious Content and Freeloading

The threats of malicious content and freeloading are dealt with socially by Groove. That is, everyone knows exactly who everyone else is and what they are sending. Therefore, there is a great deal of social pressure not to distribute malicious content or freeload, since any individual who does so will be held accountable.

6.8 Sun JXTA

Raj Dandage

We now move from systems that use P2P for specific applications (such as collaboration) to P2P frameworks by looking at JXTA. JXTA is an early stage project developed by Sun to create a multi-platform, multi-language set of protocols that facilitates the development of P2P applications. Because JXTA is in very early stages, little is known about its design issues. This section will describe JXTA and hopefully begin to unravel those issues.

6.8.1 What is it?

Sun defines JXTA as an “open network computing platform designed for peer-to-peer computing.” It is intended to standardize the way in which peers discover each other, advertise their resources, communicate, and form groups. However, what differentiates JXTA from other initiatives of the sort are the following features: 1) it uses a small number of protocols (these will be discussed later), and 2) it is language- and transport protocol-independent. Furthermore, it is designed to be small and simple. Because, as we have seen, different business goals lead to different security goals and different technical issues, over-specifying could render JXTA useless. Therefore, the designers chose not to include these details in the specification, but instead to allow for different implementations using different technologies.

It is interesting to note that this was also the intent of Sun’s Jini project. Sun claims the two differ in that “Jini technology is a mechanism for connecting distributed services within a local area network using an object model and a centralized service location broker.”

6.8.2 What are its business and public policy goals?

JXTA has three main business goals, as stated in the JXTA white paper: interoperability, platform independence, and ubiquity. JXTA is designed so that P2P applications can be interoperable and have common ways of communicating. Most P2P systems today have proprietary protocols specifically designed for a certain type of content. For example, Napster has a protocol specifically designed for sharing MP3s and AIM has a protocol specific to instant messaging. This means that these systems cannot communicate. With JXTA, however, they could use common protocols, so they would be able to discover each other and share information. The second business goal, platform independence, means that JXTA is not tied to any language, transport, or OS. For example, the protocols could be implemented in C++, Java, or Scheme. Moreover, since it is not tied to a transport protocol, JXTA devices can communicate using TCP, HTTP, UDP, or any other protocol. Finally, ubiquity means that JXTA can be used on any device, including PCs, cell phones, and PDA’s. Most P2P systems are specific to transport protocol or OS, so they cannot do this.

The policy goals of JXTA are a bit less clear. Generally, JXTA favors under-specifying in cases where policy goals may be at issue: the JXTA white paper specifically states that “JXTA technology is a platform focused on mechanisms and not policy.” Security, for instance, is left fairly open to application developers, since conflicting policy goals would result in different security implementations.

6.8.3 How does it work?

The JXTA specification is still in its early design; however, we can offer a technical overview of the state of the specification at this time. In this section, we will do just that, beginning with an examination of the different layers and then looking at how these layers fit together.

A JXTA-based P2P system consists of three layers: the core, the JXTA services layer, and the application layer (see Figure 6). The core contains the most basic functionality that a JXTA P2P system must possess. This includes the implementation of the protocols below, as well as the security implementation. Above that is the JXTA service layer; this layer contains functionality common to subsets of P2P applications. For example, there may be file sharing services, or IM services. Finally, the application layer contains the actual end-user application.

[image: image6.png]x1a
Applcaions

axa
Sarvices

o
Core

XA Commnty heplcssons
S0y
T oty Servies D e
o e,

=0

Peer on the Network

Figure 6 The JXTA 3 layer architecture.

The JXTA core is made up of six protocols which are necessary for most any P2P system: peer discovery, peer resolver, peer information, peer membership, pipe binding, and peer endpoint. The peer discovery protocol allows peers to find out what other peers or groups of peers are available to communicate with. The peer resolver protocol allows peers to send or receive queries to search for peers, groups, or resources in the system. The peer information protocol is for determining information about peers, such as where they are or what capabilities they have. The peer membership protocol is used to authenticate peers as part of groups. The pipe binding protocol is for creating data connections between peers or groups of peers, over which messages can be broadcast. Finally, the peer endpoint protocol allows for complex routing of messages between peers (for example, tunneling through a firewall is handled by this protocol).

In addition to protocol implementations, the JXTA core contains a security implementation. As we noted above, JXTA does not aim to impose a specific security policy in applications. Therefore, much of the security implementation is left out of the specification. However, JXTA makes provisions for many possible implementations. For example, communication security can be implemented by creating secure versions of the “pipe” used for message transfer in the pipe binding protocol. Anonymity, meanwhile, can be achieved by adding intermediate “hops” using an appropriate implementation of the peer endpoint protocol. To assist developers, the 1.0 reference implementation of JXTA offers several security primitives. These include a simple cryptographic library, a pluggable authentication framework, a simple access control framework, and an SSL-based transport security framework.

6.8.4 How does it address the threats in our model?

Monitoring and Manipulation of Transactions

Although security implementation is application-dependent, JXTA provides strong support for transport security to address the threat of monitoring and manipulation of transactions. Data “pipes” between peers can be implemented using cryptography (by selecting a proper implementation of the pipe binding protocol), or even using standard protocols, such as SSL. Moreover, JXTA supports other methods of transport security, such as tunneling the entire P2P system through a VPN.

Compromised Anonymity

JXTA provides similar support for protection against compromised anonymity. Using different versions of the peer endpoint protocol, a P2P application developer can select a method of maintaining anonymity like those described in the other example applications. JXTA does use unique ID’s for referring to peers, groups, and services. However, these are not tied to any identifying information, such as IP address or username, and they can be masked by commonly known techniques.

Impersonation and Misrepresentation

To prevent against impersonation or misrepresentation, JXTA supports authenticating messages, peers, etc. This is done by selecting an appropriate implementation of the peer membership protocol that provides the level of authentication required. The version 1.0 reference implementation includes a PAM-like authentication framework.

Legal Action and Social Pressure

Because it is a specific goal of JXTA not to address policy issues and to leave them to application developers, the threats of legal action and social pressure are not examined in this section.

Denial of Service and Unreliability

To combat DoS attacks and general unreliability, all JXTA protocols are completely decentralized. The problem of unreliability is also addressed by the fact that JXTA is intended to be ubiquitous, and thus applications can be much more redundant than more specialized protocols.

Blocking of Access to End Users

To address blocking of access to end users, JXTA provides the endpoint routing protocol. The implementation of this protocol can be selected to fit the specific problem, such as relaying messages to peers behind a firewall.

Malicious Content and Freeloading

The threats of freeloading and malicious content are addressed in JXTA by a provision for peer monitoring and metering. The peer information protocol allows peers to monitor each other and determine information about other peers. In addition, it allows peers to determine the amount of resources being used by other peers. However, because the peer information protocol is simply designed to allow peers to respond to requests that others make, there is not yet a way of ensuring that certain information is true. Also, a peer has the option of not answering a request for information. Sun intends to refine this issue in later drafts of the specification.

6.9 Summary

In this section we have looked at several different P2P systems in the context of threats and goals. While these systems address a variety of issues, none of them does a complete job of protecting against threats in our model (see Figure 7). In order to help alleviate this problem in future P2P systems, our next section will outline recommendations targeted to P2P users, system designers, and policy makers for addressing the threats.

	
	Napster
	Gnutella
	Freenet
	Free Haven
	Mojo Nation
	Jabber/AIM
	Groove

	Monitoring of Transactions
	Can monitor downloads; tracking programs; central directory
	Queries mostly anonymous, transfers not; tracking programs
	Extremely difficult, must control lot of nodes
	Near impossible
	Difficult, but central content trackers can log searches
	Relatively easy: data transferred as clear-text
	All data encrypted, so difficult

	Manipulation of Transactions
	Not addressed
	Fairly easy to forge because many intermediate nodes
	Extremely difficult, documents signed; cannot censor data
	Near impossible, documents signed; cannot revoke data
	Difficult
	Relatively easy: data transferred as clear-text
	All data signed, so difficult

	Compromised Anonymity
	Not addressed
	Direct connection for file transfer—not anonymous
	Publisher and user anonymity maintained; know IP of immediate peers
	Author, publisher, reader, document, server, and query anonymity assured
	Not currently addressed: direct connection for data transfer and search
	Uses pseudonyms, but still possible to determine identity
	System designed for authentic communication, so irrelevant

	Impersonation
	Difficult—usernames chosen once
	Not addressed
	Designed for anonymity, so irrelevant
	Designed for anonymity, so irrelevant
	Not addressed
	Common problem because of weak authentication schemes
	Signature authentication scheme, possible future use of web of trust or CA

	Legal/Social Action
	Centralized, very vulnerable
	Decentralized, so no central party hold accountable
	Plausible deniability: don’t know what is stored locally, so legal action difficult
	Plausible deniability: don’t know what is stored locally, so legal action difficult; also, impossible to revoke data
	Plausible deniability: don’t have enough pieces of data to know what is stored locally, so legal action difficult
	Not really a problem due to nature of communication
	Designed for complete accountability; can tell exactly who sent every piece of data

	Denial of Service
	Centralized, vulnerable
	Not a problem—completely decentralized
	Not a problem—popular data replicated
	Not a problem—documents split into pieces, only subset needed to reconstruct
	Not a problem—popular data replicated
	Centralized servers, so vulnerable
	All data replicated locally

	Unreliability/ Transience
	Songs replicated based on popularity, so generally not a problem
	Not a problem—designed for transience
	Popular data replicated so unreliable node has no effect
	Accountability and reputation protocols built in to system
	Document split into pieces over servers, only subset of pieces needed to reconstruct
	Not a problem due to nature of system
	All data replicated locally

	Blocking of Access to End Users
	Not addressed
	Can be client-initiated, so firewall-friendly
	Not addressed
	Not addressed
	Relay servers tunnel through firewall
	Relay servers tunnel through firewall
	Relay servers tunnel through firewall

	Malicious Content
	Everything in MP3 format
	Problem, for example: Mandragore virus
	Problem because data type and origin unknown
	Problem because data type and origin unknown
	Problem because data type and origin unknown; however, centralized company determines accountability
	Pseudo-reputation system
	Complete accountability means can origin of content

	Freeloading
	Affects number of files shared but not performance
	Problem, fewer resources and searches less likely to find relevant information
	Not a problem: system ensures that all peers donate space, even if they don’t publish
	Not a problem: system ensures that all peers donate space, even if they don’t publish
	Not a problem: payment system for use of resources
	Primitive scheme to avoid this
	Not a problem due to nature of system

Figure 7 A comparison of evaluated P2P systems.
7 Conclusions and Recommendations

Tim Gorton and Ngozika Nwaneri

So now that we are aware of the legal issues as well as the advantages and disadvantages of some of today’s most used peer-to-peer systems, what should users of tomorrows peer-to-peer systems be looking for as far as security of shared information and identity? What steps must peer-to-peer developers take to protect users’ privacy? Creating a system to address all of these issues will be complex and hinges on cooperation from users, developers, and public policy makers. All three must work to bring together the rights of the individual, the needs of society, and the desires of business. By combining technology and policy, developers can create a reliable, technical solution for the next generation of peer-to-peer systems. What follows are recommendations that address the main issues of today’s P2P systems: anonymity and identity, authentication, legal issues and public policy.

7.1 Recommendations for P2P Users

Ngozika Nwaneri

In order for users to trust a P2P system to protect the privacy of their information, users must understand the purpose and policies of the system. Is the system based on trust and authentication, anonymity, or a mixture of both? How does the system handle user transactions? Are these transactions anonymous or do they require accountability? Depending on the user, these issues may or may not be a factor. In addition, how does the system go about achieving the goals it set out to accomplish? Does the system provide the users with enough control to find a balance between privacy and accessibility that suits their needs?

Another recommendation for users using peer-to-peer systems is being aware of accountability. Accountability can play a big part in deciding what peer-to-peer system to use for novice and an expert users. For example, a corporate whistleblower would not want to use a system that requires proof of identity. On the other hand, an author using a P2P system to express herself may want her name attached to her work. Users must be aware of what activities require accountability and what the consequences may be when anonymity is breached.

Furthermore, users should be cautious in trusting the other peers on the network that they share files with. Applications that allow the transfer of a variety of files should be taken very seriously. Having some relationship with the source of a file can be important but also makes things more complicated because with millions of computers, not being able to trust everyone on the network can make trusting every node very impractical.

Lastly, users can employ anonymity-enhancing software to protect their online communications. These software applications have been created by third-party vendors such as Zero Knowledge Systems specifically to provide on-line anonymity. These applications usually route connections through a centralized or distributed set of servers in order to hide the identity of the computer initiating the transactions. These technologies could be combined with some P2P systems in order to prevent other users from determining the IP address and other header information of the user’s computer.

7.2 Recommendations for System Designers

Tim Gorton and Ngozika Nwaneri

Developers of tomorrow’s peer-to-peer systems are in the difficult position of needing to satisfy user demand and the nebulous requirements of law. Of course, even the question of whether to use a peer-to-peer architecture is not a trivial decision, as it involves tradeoffs in efficiency, control, and privacy. For those choosing to develop a peer-to-peer system, providing anonymity and authentication in the peer-to-peer environment pose difficult problems to overcome.

7.2.1 Anonymity

Anonymity is not always even desirable in a peer-to-peer environment; Groove is an excellent example of a peer-to-peer system that functions well with a small group of well-identified participants. In many more public systems, however, anonymity is a major concern of users, and systems designers must take this into account in order to attract these users to their service. The aim in providing anonymity to users of a peer-to-peer system is giving users control over the degree to which their identity is known to others on the system, to the system operator, and to outsiders. At the very least, as users become more aware of the privacy issues involved in using these systems, system operators will be forced by user concern to post explicit notices of information made available by the system.

There are numerous steps that can be taken to provide anonymity in order to satisfy user demand, though these often come at the cost of some performance. A number of these techniques have been observed in the system described in Chapter 6, so we shall simply bring them together here. Systems such as Freenet and Free Haven which utilize forwarding content between nodes in order to make it difficult to identify nodes which request and provide files may do so at a performance tradeoff, but Freenet actually turns this into a benefit as nodes cache data in order to speed subsequent requests. This also serves to disentangle content from the IP address of the node that created it, providing for some measure of anonymous publication. Expanding this distributed model of software distribution of content in other contexts may prove useful to control the distribution of material, to discover infringements of intellectual property, and to negotiate licenses in a network environment.

Cryptography also yields a number of techniques that may be used to increase the anonymity of users and protect the security of information on nodes or centralized servers. Among the best-known techniques is the use of public key cryptography to create one or more pseudonyms for a user without revealing any aspect of his true identity. Techniques in Private Information Retrieval may be employed to protect the anonymity of queries, as well as ensuring the security of unauthorized data.
 Secret-sharing techniques, in which a piece of data is split into n shares and any k shares are sufficient to discover the data, may be employed to reduce the risk of sensitive information being uncovered by spreading identifying data across a number of trusted computers. This should help ensure that any attempt to discover identifying information is sufficiently difficult that only a suitably urgent and appropriate attempt—such as a court order—will succeed. One more distant possibility for protecting users’ anonymity without sacrificing functionality lies in the development of digital cash systems for online transactions. The various proposals for such systems are well beyond the scope of this discussion, but it will suffice to note that the purpose of these systems is to provide a unique piece of data that may be recognized by a central authority (for example, a bank) as authentic and, most importantly, may only be spent once. Such systems, though still theoretical, hold great promise for the development of anonymous, distributed e-commerce systems, especially for such commodities as computation and storage, for which little real-world verification is necessary.

7.2.2 Authentication

Authentication is an issue in both the security and privacy of P2P systems. Most online systems today simply require a username and password for rudimentary authentication, but cryptography has provided more reliable means of authentication for tomorrow’s P2P systems. Public-key cryptography is the best-known example, in which performing a cryptographic signature that can only be performed by a holder of a private key may authenticate a user to a system. New technologies such as smart cards and biometric data can further reduce the possibility of this private key being stolen. There have also been several examples of distributed reputation systems for peer-to-peer environments, including both AIM’s centralized use of “warning” ratings to allow users to rate each other’s online behavior and PGP’s “web of trust,” in which cryptographic signatures on a public key allow others to attest to the validity of the key.

Recent advances in cryptography may once again prove useful in balancing authentication and anonymity through the use of what Zero Knowledge Systems calls “private credentials”
 and the use of blind signatures. Private credentials give a user the ability to authenticate himself selectively in each transaction. The credential would be issued by a centralized certificate authority (CA) but can be cryptographically verified without contacting the CA, making it particularly useful for distributed systems with continuous communication. In each transaction, the user can choose which pieces of information specified in the credential to make available, thereby gaining the ability to explicitly control the disclosure of identifying information while producing evidence necessary to demonstrate that he is, for example, over the age of eighteen.

Security also requires that data be encrypted in order to avoid eavesdropping of sensitive information. Of course, failures in security may have disastrous consequences to individuals’ privacy as well. The verification of data may be important as well, as illustrated by SETI@Home’s difficulties with forged data. Though such results may be authenticated through the use of a cryptographic signature for which the private key is embedded in the software, concerns about data verification may become even more important in a general distributed computation system, as another user’s potentially dangerous code may run on a machine. In this situation, an appropriate solution seems to be the sort of “sandboxing” that Sun has created for Java applets executing in a browser—the program is prohibited from accessing most disk and network functions, usually only allowing it to perform computation and present a user interface.

7.2.3 Avoiding Liability

Napster’s legal troubles have clearly illustrated the potential legal dangers for developers and operators of P2P systems when end users are involved in illegal activity. The most pressing areas of concern are copyright violations, libel, and the possibility of various forms of censorship through governmental action and social pressure.

The clearest message from the Napster case is the Appeals Court’s holding that Napster’s ability to terminate users and the company’s access to lists of files shared on their service gave Napster the “right and ability” to control its users’ activity. Napster is now struggling with the responsibility of policing its users, and this is undesirable both from the perspective of the technical and legal effort required and the negative effect on users’ perception of the system as they come under scrutiny. The Appeals Court was careful to limit Napster’s responsibility for policing activity on its system within the bounds of the system’s design, which seems to leave much of the possibilities for escaping liability in the hands of the system designers. One simple solution is to design the system such that there is no centralized entity with knowledge of users’ activity or the ability to terminate users. This is how server software makers avoid liability for users who use the software to distribute materials illegally. This method is often undesirable from a business perspective, however, because it leaves the company distanced from its users. A more realistic alternative may be to design the system such that communication between users or nodes is entirely private, even from the company operating the system. AIM could, for example, take this approach by encrypting communication between hosts using keys not known to AOL; AIMster has done this to some extent in its use of the AIM protocol for file-sharing, but AIMster retains the ability to decrypt these communications. This approach could have some negative business consequences, since the data on users’ activity would be unavailable for market research and the like, but legal concerns and the desire to attract users by providing secure communications may outweigh these concerns.

Avoiding knowledge of users’ activity is not the only answer; several peer-to-peer systems have, in fact, decided to embrace the idea of policing their users in the name of avoiding liability. However, this position brings with it dangerous privacy concerns; naturally the ability to monitor users’ activity necessarily infringes on users’ privacy in their online activities. Furthermore, the need to block users in response to offenses requires some degree of identification of users, whether by pseudonym (which may be ineffective in preventing users from re-registering), real name, or IP address (which is often impractical for systems that accommodate variable connectivity.)

The degree to which developers and system operators must police activity of which they might be aware is unclear from current legislation and case law, but the details of the Napster trial will provide some answers to the application of copyright law to peer-to-peer systems. Libel law remains untested in the context of peer-to-peer, and it remains to be seen whether a P2P system is a “service provider” which is exempted from liability for libel by the Communications Decency Act. Censorship also remains an unsettling question for P2P systems developers because of varied and conflicting international regulations on content. Doubtless developers will watch these cases and issues with interest as the scope of their possible liability becomes more concretely defined.

7.3 Recommendations for Policy Makers and Industry Groups

Tim Gorton

The most readily apparent need in peer-to-peer systems from a policy perspective is the clarification of the degree to which a system operator can be held responsible for material present on a peer-to-peer system and the degree to which individual users of a fully distributed system might be considered system operators. Because so many legal questions remain unanswered, it is not even clear whether it would be beneficial for users to be treated as operators—if a user was viewed as a system operator, he might, for example, be able to claim the CDA exemption for libel but might also be held liable for copyright infringements.

Areas in need of clarification in U.S. law include the DMCA safe harbors for “service providers,” the CDA exemption from liability for libel on “interactive computer systems,” the DMCA prohibition on the distribution of means of circumventing technological measures protecting copyrighted material, and the applicability of contributory and vicarious copyright infringement to the peer-to-peer environment. The DMCA and CDA exemptions seem to have been targeted at Internet Service Providers which provide mere access to the Internet, while the “vicarious” copyright infringement of which Napster has been accused has been most often used to prosecute companies for making money off of employees’ illegal activities. None of these laws clearly account for the possibility that a mere user may in essence offer the same sort of service that a commercial web site may provide. The courts have already begun to struggle with applying these existing laws to peer-to-peer systems, but a legislative examination of the appropriate level of liability for users and operators of distributed systems may prove more constructive.

The other important legal concern facing peer-to-peer systems operators is the applicability of innumerable, conflicting national laws to a single online environment. This has already been a major problem for web sites, which have a clear “home” nation where the server resides. A distributed system has the additional problem that its nodes may well exist in a large number of different countries around the world. Though this is often employed by P2P systems as a means of circumventing censorship, a number of countries have already attempted to apply rules governing online activity outside their borders. Left unchecked, this trend could result in the untenable situation that all countries’ law apply everywhere in cyberspace. There are no easy answers to this problem, but it is one that must be addressed in the near future on an international scale. Though this discussion would likely focus on commercial web sites for economic reasons, the special problems posed by P2P systems should be included as well.

Industry groups may also play a significant role in the future development of peer-to-peer systems. Despite the success of some systems such as Napster, the development of peer-to-peer systems has largely lacked technical or theoretical coherence. Jon Katz, a Slashdot commentator, questions whether the heading “peer-to-peer” has any meaning at all because of the disparate variety of systems that have been labeled P2P.
 Only recently, through publications such as O’Reilly & Associates book Peer-to-Peer: Harnessing the Power of Disruptive Technologies in March 2001, have these far-flung technologies been brought together for analysis by the development community. Sun’s JXTA initiative also promise as a means of organizing development of various ideas and techniques in peer-to-peer system design around a coherent, extensible platform. This project, and others like it in the future, has the potential to provide focal points for developers to critically examine and extend each other’s work. This peer review may help uncover security and privacy issues in these systems and may encourage industry certification groups such as TRUSTe to include peer-to-peer systems in addition web sites as systems in need of privacy analysis and certification.

7.4 Summary

Ngozika Nwaneri

This paper brought together the concerns of privacy, public policy, and technology in order to develop a set of criteria for analyzing peer-to-peer systems, analyzed a number of current P2P systems using these criteria, and formed a set of recommendations based on this analysis that users, developers, and public policy makers can draw upon to enhance privacy. Addressing these issues through system design and public policy will take us a step closer in implementing a secure resource sharing infrastructure for use among communities, groups, corporations, and individuals around the world.

� Clay Shirky, “Listening to Napster,” from Andy Oram’s Peer to Peer: Harnessing the Power of Disruptive Technologies (Sebastopol: O’Relly, March 2001), 22.

� Robert Smith, Ben Franklin’s Web Site: Privacy and Curiosity from Plymouth Rock to the Internet (Providence: Privacy Journal, 2000), 329.

� Ibid., 339-343.

� Clay Shirky, “In Praise of Freeloaders” OpenP2P.com (December 1, 2000). See http://www.openp2p.com/pub/a/p2p/2000/12/01/shirky_freeloading.html (accessed 4/20/01)

� Ibid.

� A&M Records v. Napster, 9th Cir 00-16401 (2001), quoting Gershwin 433 F.2nd at 1162 (9th Cir 1971)

� Ibid.

� Ibid.

� See AIMster’s web site at http://www.aimster.com.

� “Media Tracker -- Your Questions Answered,” 7amNews (March 27, 2001). See http://7amnews.com/2001/features/032802.shtml (accessed 5/15/01).

� “Aimster Sues the Recording Industry,” The Standard (May 2, 2001). See http://www.thestandard.com/article/0,1902,24170,00.html (accessed 5/15/01).

� 17 U.S.C. §512

� 17 U.S.C. §512(k)(1)

� Ibid.

� John Borland, “Napster blocks Metallica fans; Dr. Dre takes names,” CNet News (May 10, 2000). See http://news.cnet.com/news/0-1005-200-1851365.html?tag=rltdnws (accessed 5/15/01).

� A&M Records v. Napster, 9th Cir 00-16401 (2001)

� Ibid.

� Ibid.

� Lisa M. Bowman, “Action! Piracy clampdown targets movies,” ZDNet News (April 17, 2001). �See http://www.zdnet.com/zdnn (accessed 5/1/2001).

� Stratton-Oakmont v. Prodigy, 1995 WL 323710 (N.Y. Sup. Ct. May 24, 1995)

� 47 U.S.C. § 230(c)(1)

� Zeran v. America Online, Inc., 129 F.3d 327 (4th Cir. 1997)

� 47 U.S.C. § 230(e)(2)

� Oram, et. al., 393-397.

� EFF Australia has a comprehensive page on the law, including its text, at: http://www.efa.org.au/Campaigns/sabill.html.

� Kristi Essick, “Yahoo Defies Court Ruling Over Nazi Memorabilia,” The Industry Standard Europe (February 21, 2001). See http://www.thestandard.com/article/0,1902,22360,00.html (accessed 5/7/01).

� �Oram, et. al., 393-397.

� Steve Kettmann, “German Threat Raises Infowar Fear,” Wired News (April 9, 2001). See http://www.wired.com/news/politics/0,1283,42921,00.html (accessed 5/7/01).

� “Napster’s Musical History”, The Standard (February 12, 2001). See http://www.thestandard.com/article/0,1902,22139,00.html (accessed 4/22/01).

� “Napster Tones Down the Downloads”, The Standard (May 1, 2001)

See http://www.thestandard.com/article/0,1902,24127,00.html (accessed 4/22/01).

� Gene Kan, “Gnutella” from Oram, et. al., 106.

� Ibid., 95.

� Kelly Truelove, “Gnutella and the Transient Web”, OpenP2P.com (March 22, 2001). See http://www.openp2p.com/lpt/a/705 (accessed 4/19/01).

� Bob Sullivan, “Gnutella Porn Surfers Exposed,” ZDNet News (May 4, 2000). See http://www.zdnet.com/zdnn/stories/news/0,4586,2561681,00.html (accessed 4/21/01).

� “Clip2 Reflector Overview,” Clip2.com. See http://www.clip2.com/reflector.html (accessed 4/21/01).

� Ben Houston, “A P2P Virus: The ‘GnutellaMandragore’ Virus,” Exocortex.org (February 26, 2001). See http://www.exocortex.org/gnutella/ (accessed 4/21/01).

� Eytan Adar and Bernardo Huberman, “Free Riding on Gnutella,” First Monday, volume 5, number 10 (October 2000). See http://www.firstmonday.org/issues/issue5_10/adar/index.html (accessed 4/21/01).

� “Copyright Agent Intro,” Copyright.net. See http://www.copyright.net/copyrightnet/copyright_agent_intro.cfm.cfm (accessed 4/22/01).

� Janelle Brown, “Who is spying on your downloads?”, The Salon.com (March 27, 2001). See http://salon.com/tech/feature/2001/03/27/media_tracker/index.html (accessed 4/17/01).

� “The Recording Industry’s Secret Weapon Exposed”, 7amnews (March 27, 2001). See http://7amnews.com/2001/features/032101.shtml (accessed 4/21/01).

� Janelle Brown, “The Napster Parasites”, The Salon.com (February 9, 2001).

See http://salon.com/tech/feature/2001/02/09/napster_parasites/index.html (accessed 4/17/01).

� Theodore Hong, “Designing Privacy Enhancing Technologies: International Workshop on Design Issues in Anonymity and Unobservability,” The Free Network Project (2001). See http://freenet.sourceforge.net/index.php?page=icsi-revised (accessed 4/21/00).

� Hong.

� Roger Dingledine, Michael Freedman, and David Molnar, “Free Haven”, from Oram, et. al., 168.

� Ibid., 167.

� Ibid., 170.

� Ibid., 174.

� Ibid., 163-165.

� “Technical Overview” MojoNation.com (2001). See http://mojonation.net/docs/technical_overview.shtml (accessed 4/20/01).

� Ibid.

� Ibid.

� Ibid.

� “How It Works,” MojoNation.com (2001). See http://mojonation.net/docs/how_it_works.shtml (accessed 4/20/01).

� Dingledine, et. al., from Oram, et. al., 183

� “MojoNation FAQ,” MojoNation.com (2001). See http://mojonation.net/docs/faq.shtml (accessed 4/20/01).

� Jeremie Miller, “Jabber,” from Oram, et. al., 83-86.

� “Mojo Nation FAQ.”

� “Jabber Technology Overview,” Jabber.org. See http://docs.jabber.org/general/html/overview.html (accessed 4/20/01).

� “AIM Not Secure,” TNL.net. See http://www.tnl.net/newsletter/2001/aimsecurity.asp (accessed 4/20/01).

� “Groove Product Backgrounder,” Groove.net. See http://www.groove.net/pdf/groove_product_backgrounder.pdf (accessed 4/20/01).

� Used with permission from http://www.groovenetworks.com

� John Udell, Nimisha Asthagiri, and Walter Tuvell, “Groove,” from Oram, et. al., 372.

� Ibid., 362-367.

� Ibid., 356.

� Li Gong, “JXTA: A Technology Overview,” JXTA.org (April 25, 2001), 1-4. See http://a1376.g.akamai.net/f/1376/3565/1d/akamai.collab.net/jxta/JXTA-Tech-Overview.pdf (accessed 4/20/01).

� “JXTA FAQ,” JXTA.org. See http://www.jxta.org/project/www/docs/DomainFAQ.html#jinni (accessed 4/20/01).

� Gong, 2.

� Ibid., 6.

� Ibid., 3.

� Ibid., 5.

� Ibid., 8.

� More information on Private Information Retrieval research may be found at http://www.toc.lcs.mit.edu/~cis/pir.html.

� See Zero Knowledge Systems’ November, 2000 white paper on Private Credentials at http://www.zks.net/media/credsnew.pdf

� “Does Peer-to-Peer Suck?” Slashdot (April 4, 2001). See http://slashdot.org/features/01/03/27/1820213.shtml (accessed 4/22/01).

PAGE
55

