MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science
6.001 -- Structure and Interpretation of Computer Programs

March 20, 1997

Lecture Notes

Object-Oriented Programming

OO Programming is about conventions for handling local state:

· What is in the state?

· How access is granted to the state?

· How is the state created, initialized, and modified?

· How code for handling the state can be shared for reuse?

Terminology for O-O Programming

1. Terminology: Access to state is via objects. An object can receive messages, and has access to various methods for responding to them.

2. Terminology: Objects are created by classes, which specify what state is to be created when a new object is created, what messages the object will process, which methods it will use to process those messages, and what to do if the object receives a message for which it has no method.

3. The classes are related to each other through inheritance or delegation. We'll explore delegation (it's a bit more powerful) but Java uses inheritance.

4. In Scheme, objects and classes are both procedures. The local state is stored in the frames that are created when the procedures are called. This is also true of Java.

Basic Operations for Objects

(define (get-method-from-object message object)

 (object message))

(define get-method ; Simplification

 get-method-from-object)

(define no-method

 (let ((tag (list 'NO-METHOD)))

 (lambda () tag)))

(define (method? x)

 (cond ((procedure? x) #T)

 ((eq? x (no-method)) #F)

 (else

 (error

 "Object returned this non-message:" x))))

(define (delegate to from message . args)

 ;; See your Scheme manual to explain `.'

 ;; FROM wants TO to handle a message on its behalf

 ;; This assumes that *all* objects inherit from NAMED-OBJECT

 (let ((method (get-method message to)))

 (cond ((method? method)

 (apply method from args))

 ((eq? to from)

 (error "No method for" message "in" (ask from 'NAME)))

 (else (error "Can't delegate" message

 "from" (ask from 'NAME)

 "to" (ask to 'NAME))))))

(define (ask object message . args)

 ;; See your Scheme manual to explain `.'

 ;; Just delegate from the OBJECT to itself!

 (apply delegate object object message args))

<!-- SLIDE 6 --!>

<h1>Named Objects</h1>

<pre>

(define (make-named-object name)

 ;; All objects deletegate to this, so we are

 ;; guaranteed that any object can respond to the

 ;; messages NAME, INSTALL, and SAY.

 (lambda (message)

 (case message

 ((NAMED-OBJECT?) (lambda (self) #T))

 ((NAME) (lambda (self) name))

 ((SAY)

 (lambda (self list-of-stuff)

 (if (not (null? list-of-stuff))

 (display-message list-of-stuff))

 'NUF-SAID))

 ((INSTALL) (lambda (self) 'INSTALLED))

 (else (no-method))))))

</pre>

<h1>Delegation</h1>

Idea: capture common information (state and methods) for reuse

rather than reinvention.

Idea: when you want to have some behavior, create an object

that has that behavior as part of your local state, and then delegate

work to it when needed.

Problem: you have to know who you are, so that operations

that work differently with you will have your special stamp on them.

"If I delegate a task to you, I expect you to do it the way I would

have done it."

Solution: Every method has a first argument that is the

"self" on whose behalf the operation is performed.

<!-- SLIDE 7 --!>

<h1>Places delegate to Named-Object</h1>

<pre>

(define (make-place name)

 (let ((neighbor-map '()) ; Alist, direction -> object

 (things '())

 (named-obj (make-named-object name)))

 (lambda (message)

 (case message

 ((PLACE?) (lambda (self) #T))

 ...

 (else (get-method message named-obj)))))))

</pre>

