(1)

Example
(2)

projector
(3)

Announcements

(4)

Example, 2
(5)

projector
(6)

Factorial

(7)

Pairs
(8)

projector
(9)

Note: Write Announcements and Example before class starts!

SLIDE 1

0. ON BOARD 1:
(define make-adder

 (lambda (x)

 (lambda (y)

 (+ x y))))

ON BOARD 4:

(define add-2

 (make-adder 2))

(define add-3

 (make-adder 3))

(add-2 5) ; (7

(add-3 5) ; (8

(add-2 12); (14

(define make-counter

 (lambda (balance)

 (lambda (amt)

 (set! balance

 (+ balance amt))

 balance)))

(define count-2

 (make-counter 2))

(define count-3

 (make-counter 3))

(count-2 5) ; ({7 later}

(count-3 5) ; ({8 later}

(count-2 12); ({19 later}

ON BOARD 3:

 Quiz review, tonight, 7pm, 26-xxx
 Quiz, Tomorrow, 5-7pm xor 7-9pm

 J++ soon; start learning your favorite Java environment

Models, State, and Side-Effects

0. PS4 winners, 5 mins. 10:05 - 10:10

1. Introduction, 5 mins., 10:10 - 10:15

Building models of the real world requires modularity that reflects the systems being modeled.

State: hidden, visible – state is the information needed to make the system repeatable

Functions: all state is visible “what you put in determines what you get out”

The real world seems to have hidden state, or at least we like to see it that way! PROP?

2. Today's Example, 5 mins., 10:15 - 10:20

SLIDE 2

Since things appear to change in the real world, we add a new special form, set!, to our language to model these changes. SET! takes a variable and an expression and changes the value of the variable. This is the first truly controversial change we are making to Scheme, and today we’ll investigate the pros, cons (bad pun?), and implementation issues.

SLIDE 3

ADD TO BOARD 4

 (count-2 5) ; (7
 (count-3 5) ; (8
 (count-2 12) ; (19

 (count-2 5) ; (24

Unlike make-adder, the procedures created by make-counter appear to remember – they have hidden state.

3. The Good, 5 mins., 10:20 - 10:25

We can write programs with a modularity that matches our intuitions about the real world. The example from the book of a random number generator is excellent.

SLIDE 4
Functional approach: just a pure function rand-update, that has an explicit state needed to compute the next value.

(define random-init 7)

;**not in book**

(define rand

 (let ((x random-init))

 (lambda ()

 (set! x (rand-update x))

 x)))

SLIDE 5

If we try to implement estimate-pi in a "functional style" (without using side-effects) we get the following program:

(define (estimate-pi trials)

 (sqrt (/ 6 (random-gcd-test trials random-init))))

(define (random-gcd-test trials initial-x)

 (define (iter trials-remaining trials-passed x)

 (let ((x1 (rand-update x)))

 (let ((x2 (rand-update x1)))

 (cond ((= trials-remaining 0)

 (/ trials-passed trials))

 ((= (gcd x1 x2) 1)

 (iter (- trials-remaining 1)

 (+ trials-passed 1)

 x2))

 (else

 (iter (- trials-remaining 1)

 trials-passed

 x2))))))

 (iter trials 0 initial-x))

SLIDE 6
Whereas, with side-effects, we get a much better modularity:

(define (estimate-pi trials)

 (sqrt (/ 6 (monte-carlo trials cesaro-test))))

(define (cesaro-test)

 (= (gcd (rand) (rand)) 1))

(define (monte-carlo trials experiment)

 (define (iter trials-remaining trials-passed)

 (cond ((= trials-remaining 0)

 (/ trials-passed trials))

 ((experiment)

 (iter (- trials-remaining 1) (+ trials-passed 1)))

 (else

 (iter (- trials-remaining 1) trials-passed))))

 (iter trials 0))

4. The Bad, 5 mins., 10:25 - 10:30

The problem with side-effects is that they introduce new kinds of bugs, due to the order in which things happen.

BOARD 6
(define (fact n)

 (define (iter product counter)

 (if (> counter n)

product

(iter (* counter product)

 (+ counter 1))))

 (iter 1 1))

SLIDE 7
 (define (fact n)

 (let ((product 1)

(counter 1))

 (define (iter)

 (if (> counter n)

 counter

 (begin

 (set! product (* product counter))

 (set! counter (+ counter 1))

 (iter))))

 (iter)))

5. The Ugly, 10 mins., 10:30 - 10:40

Environment diagram
6. Pairs revisited, 10 mins., 10:40 – 10:50

BOARD 7
(define (make-pair L R)

 (lambda (msg)

 (case msg

 ((LEFT) L)

 ((RIGHT) R)

 ((NEW-LEFT!) (lambda (new) (set! L new)))

 ((NEW-RIGHT!) (lambda (new) (set! R new))))))

(define (left pair) (pair 'LEFT))

(define (set-left! pair new-value)

 ((pair 'NEW-LEFT!) new-value))

BOARD 9
(define X (make-pair 1 2))

(left x)

(set-left! x 10)

(left x)

7. Review, 5 minutes, 10:50 - 10:55

We introduce side-effects, using the special form SET! and the primitive procedures SET-CAR! and SET-CDR! to allow a new modularity. Unfortunately, it also requires the more complicated environment model, since variables now refer to locations (in frames) rather than values. It also introduces an entire new class of bugs, and makes it impossible to repeat the execution of a program to test it! So we've got a way to make our programs better reflect our understanding of the structure of the real world, but the price we pay is that our programs act like the real world.
1
5

