Thoughts for Recitation

April 18, 1997

Convert some simple Java programs into Decaf Java-In-Scheme. For

example, consider the programs in java-syntax.scm:

 ;; class phw {

 ;; public static void main() {

 ;; System.out.println("Hello, world");

 ;; }

 ;; }

 (CLASS () phw

 (METHOD (public static) void main ()

 (call (DOT System out println)

 "Hello, world")))

 ;; class phw {

 ;; public static void main() {

 ;; System.out.println("Hello, world");

 ;; }

 ;; }

 (CLASS phw

 (METHOD (public static) void main ()

 (call (DOT System out println)

 "Hello, world")))

Go over some of the interesting bits of code from java-eval and

java-support. The idea is to let them get a bit used to the data

structures described in lecture (objects and classes; frames and lists

of bindings).

Some nice bits of code to consider are:

COERCE which takes a value and a CLASS (type) and tries to convert the

value to the given type by walking back up the object's class chain

searching for the desired type. If it succeeds, it returns the

corresponding superobject of the original value.

FIND-BINDING which takes a name (called VAR, unfortunately), a Decaf

Java-in-Scheme environment, and a NEXT procedure. It searches for a

binding of the variable as a FIELD (not a method) and returns the

value of the variable. Most of the interesting stuff here is how it

deals with the base frames (GLOBAL, OBJECT, CLASS).

Some of the Java evaluation procedures are simple and you can show the

use of flow-of-control (or CPS style requires odd coding styles):

J-EVAL-CALL is the standard procedure call and is very similar to

Scheme if you add COERCE and special handling for the operator (method

lookup). Do NOT try to go over the method lookup code in class unless

you are really prepared -- it's a major subject on the problem set but

they are asked to look at only a very small part because the code is

very complicated. But the code in J-EVAL-CALL is very similar to

Scheme, so it's nice to compare. Some things to notice are the need

to create a label for RETURN, the creation of a new base environment

(using BASIC-ENVIRONMENT) that will either be a CLASS (for static

methods) or an OBJECT (for dynamic methods); the coercion of the

arguments and return value; and the creation of a PARAMETERS frame to

bind the arguments.

J-EVAL-INSTANCEOF if you want to talk about dynamic typing in Java.

It has to use the dynamic type of the object to see if it can be

"downward" cast.

J-EVAL-GLOBAL shows how default values are supplied if a variable is

declared without specifying a value.

The perennial favorite J-EVAL-IF shows how to rewrite IF in

continuation passing style, which is good if you've never seen it

before. Your students certainly won't have seen it yet.

Going over J-EVAL-WHILE, which is on the problem set as an example

(they have to write DO) is a nice idea.

