MASSACHVSETTSINSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001-- Structure and Interpretation of Computer Programs
Fall Semester, 1998, Final Exam
Be sure to write your name on all pages of this exam.
Print Your Name:
Your Recitation Instructor:
Your Tutor:
Please write clear and concise answers to the questions in the spaces provided in this booklet. You
may use scratch paper if you need, but the spaces we provide are the only places we will 1ook at
when grading. Your solutions, particularly to programming problems, may be judged not only on

whether they work or not, but also on clarity and ease of understanding.

Note that not all questions are of equivalent difficulty, so you may wish to skim all questionsin
this exam booklet before beginning.

Any comments you would like to make on this exam:

Comments from graders:

Problem | Vaue Grade Grader

30
35
25
40
25
30
15
Total 200

N oo B~ WO|IDN|

6.001 Fall Term 1998 - Final Exam Y our Name:

Problem 1

For each of the statements below, circle T if the statement is true, and F if the statement isfalse.

T

F

The halting theorem states that it is impossible to examine any piece of code and
determine if it will terminate or not.

In the United States, software can be copyrighted but not patented.

A Javacompiler converts class definitions written in the Java programming language
into bytecodes that are hardware-independent.

Javais an object-oriented programming language that supports class variables, class
methods, instance variables, instance methods, and multiple inheritance.

Garbage collection cannot be used in Java because Java programs must react to the
user or to the network in real time.

Mark/sweep garbage collection may require a stack of depth nin order to mark a
memory with n pairs.

If the Scheme evaluator supportsthe del ay and f or ce specia forms, it is possible
for the Scheme user to implement cond as a simple procedure without additional
extensions to the evaluator.

Deadlock can occur between two processes that are running in parallel if amutual
exclusion approach is used (such as the synchronization approach discussed in class)
in which both processestry to gain access to a single shared resource.

The possible values for z at the completion of the parallel-execution below
(define z 5)
(define (Pl) (set! z (+ z 10)))
(define (P2) (set! z (* z 2)))
(parall el -execute P1 P2)
are 10, 15, 20, and 30.

The value of the following expression is equal to the expression itself:
((lanmbda (x) (list x (list 'quote x)))
"(lanmbda (x) (list x (list "quote x))))

Extra credit (O points): In everything other than legal documents, it is not
discouraged to speak without resorting to double negatives, except when writing
commentsin your code.

6.001 Fall Term 1998 - Final Exam Y our Name:

Problem 2

You are interested in creating aconput er - account object to help with the administration of a
computer system that may have many users. The behavior you desire is that each account
(instance of conput er - account) can have its own unique user nanme which is specified when
the account is created. The user nane can later be retrieved with the USERNAVE method.

Part A.

Your team of 6.001 graduates supplied the following different implementations for the
conput er - account class. For each implementation, indicate whether the code will work
correctly or not; if it will not work correctly, explain why.

Al
(define (make-conputer-account unane)
(let ((username "()))
(set! usernane unane)
(1 ambda (nessage)
(case nessage
((USERNAVE) (| anbda (sel f) usernane))
(el se (no-nethod))))))

Circleones CORRECT or INCORRECT BECAUSE:

A2
(define nake- conmput er - account
(let ((username "()))
(lambda (unane)
(set! usernane unane)
(1 ambda (nessage)
(case nessage
((USERNAVE) (| anbda (sel f) usernane))
(el se (no-nethod)))))))

Circleone: CORRECT or INCORRECT BECAUSE:

A3
(define nake-conput er-account
(1 ambda (user nane)
(1 ambda (nessage)
(case nessage
((USERNAVE) (| anbda (sel f) usernane))
(el se (no-nethod))))))

Circleone: CORRECT or INCORRECT BECAUSE:

6.001 Fall Term 1998 - Final Exam Y our Name:

Part B.

Next, we wish to create a new class passwor d- account that inherits the behavior of

conput er - account and extendsit in the following way. Each passwor d- account instance
will aso have a password, and the account will support aLOG N method that checks to seeif the
correct password has been given before alowing the user to begi n- sessi on (thebegi n-
sessi on procedure isimplemented elsewhere). The code below is an attempt to accomplish this,
but it ismissing several critical parts. You are to provide any additional needed code or other
maodifications below. You may mark directly on the code below to (clearly) indicate where your
additions belong, and to X-out where code is being deleted or changed.

(define nake- passwor d- account
(I anbda (uname passwd)
(let ((password passwd))
(1 ambda (nmessage)
(case nessage
((LOA N) (lanbda (self pass)
(if (eq? pass password)
(begi n-sessi on)
(error "lIncorrect password"))))
(el se (no-nethod)))))))

Part C.

C1. Complete the expression below to create apasswor d- account for Ben Bitdiddle (Ben
selects the symbol benbi t for his username and 2t ot he2i s4 for his password).

(define ben-account

)

C2. Write an expression to show how Ben can successfully log in to the system.

6.001 Fall Term 1998 - Final Exam Y our Name:

Part D.

It is sometimes useful to have an account with two passwords. Rather than further subclass
password-account, we wish to change the implementation of password account by adding a
method ALLOW JO NT which takes a second password as an argument. By default, the account is
created as a single password account, but using the ALLOW JO NT method one can add a second
password. You need to supply the missing line of code <EXP1> below.

(Note that for the moment we are not concerned with the changes you made in part c, rather, we
are only focusing on the new ALLOW JO NT method in this part.)

(define nake- passwor d- account
(I ambda (unane passwd)
(let ((passwordl passwd)
(password2 ' ()))
(1 ambda (nmessage)
(case nessage
((LOAN) (lanbda (self pass)
(if (eq? pass password)
(begi n-sessi on)
(error "Incorrect password"))))
((ALLOMJO NT) (Il anmbda (self second-passwd)
<EXP1>

))
(el se (no-nethod)))))))

<EXP1>:

Part E.

In order to deal with the situation when a second password has indeed been specified, we need to
change our LOG N method aswell. Replacethe (i f . ..) expression from the LOG N method of
part D with a new expression so that if the account is a single user account, then only when the
correct passwor d1 is supplied should the user be able to login. If the account has been enabled
asajoint account, then only when passwor d1 or passwor d2 is supplied should login be
successful.

6.001 Fall Term 1998 - Final Exam Y our Name:

Problem 3

In each part of this problem you are given a sequence of register machine instructions with the
entry point or entry label st ar t that implements some register machine subroutine. Our goal isto
understand how these instructions perform as a subroutine. After each set of instructions several
statementswill be made: circle theletter for all statementsthat are true (there will usually be more
than one true statement) and fill in any blanks if the statement is true and has a blank.

Note that each of the subroutines to follow may well be intended to compute different things.
Before each part, you should assume that the following instructions are issued (e.g. to call the
subroutine from a“fresh” register machine) initialized as follows:

(assign x (const ' (10 11 (12 13))))
(assign continue (label done))
(goto (label start)) ;call the subroutine
done
<here we stop the machine and | ook at the ans register>

Part A.

start
(assign ans (const 0))
| oop
(test (op null?) (reg x))
(branch (reg continue))
(assign ans (op +) (reg ans) (const 1))
(goto (1 abel Io0p))

A1l. Theresulting register machineisiterative (resultsin a stack of constant depth).

A2. Theresulting register machineis recursive (results in a stack with maximum depth that
depends on the size of the input x).

A3. Returns (to the done label) with the following value in the ans register:

A4. Returns (to the done label) with the stack in a different state than it was at the st ar t entry.
A5. Resultsin a process which continues forever.
AB6. Resultsin aprocess which terminates with the following error:

6.001 Fall Term 1998 - Final Exam Y our Name:

Part B.

start
(assign x (op cdr) (reg x))
(test (op null?) (reg x))
(branch (Il abel end))
(save conti nue)
(assign continue (label add-to-count))
(goto (label start))

end

(assign ans (const 1))
(goto (reg continue))
add- t o- count
(assign ans (op +) (reg ans) (const 1))
(restore continue)
(goto (reg continue))

Bl
B2.

B3.
B4.
BS.
B6.

The resulting register machine isiterative (resultsin a stack of constant depth).

The resulting register machine is recursive (results in a stack with maximum depth that
depends on the size of the input x).

Returns (to the done label) with the following value in the ans register:

Returns (to the done label) with the stack in a different state than it was at the st art entry.
Results in a process which continues forever.
Resultsin a process which terminates with the following error:

6.001 Fall Term 1998 - Final Exam Y our Name:

Part C.

start
(save x)
(assign x (op cdr) (reg x))
(test (op null?) (reg x))
(branch (1l abel found_last))
(goto (label start))

f ound_I ast
(restore ans)
(assign ans (op car) (reg ans))
(goto (reg continue))

C1. Theresulting register machine isiterative (resultsin a stack of constant depth).

C2. The resulting register machine is recursive (results in a stack with maximum depth that
depends on the size of the input x).

C3. Returns (to the done label) with the following value in the ans register:

C4. Returns (to the done label) with the stack in a different state than it was at the st art entry.
C5. Resultsin aprocess which continues forever.
C6. Resultsin aprocess which terminates with the following error:

Part D.

start
(save x)
(assign x (op cdr) (reg x))
(test (op null?) (reg x))
(branch (1l abel found_Ilast))
(restore ans) ;this is the only change frompart C
(goto (label start))

found_| ast
(restore ans)
(assign ans (op car) (reg ans))
(goto (reg continue))

D1. Theresulting register machineisiterative (resultsin a stack of constant depth).

D2. The resulting register machine isrecursive (resultsin a stack with maximum depth that
depends on the size of the input x).

D3. Returns (to the done label) with the following value in the ans register:

D4. Returns (to the done label) with the stack in adifferent state than it was at the st ar t entry.
D5. Resultsin a process which continues forever.
D6. Resultsin aprocess which terminates with the following error:

6.001 Fall Term 1998 - Final Exam Y our Name:

Problem 4

The object oriented system in Scheme that we used this term had mechanisms for creating
instances with their own local state, methods that could be invoked by message passing to an
instance, and a mechanism for inheritance through delegation. In this problem, we explore a
mechanism to support class variables and class methods in addition to instance variables and
instance methods.

Consider the following expression which is evaluated in the global environment (and which
creates part of the environment diagram shown on the next page):

(define auto-class
(let ((list-of-autos '()))
(lambda (cl ass-nmethod . args)
(case cl ass-net hod
((MAKE- | NSTANCE)
(let ((color (car args))
(odoneter (cadr args))) ;miles car has been driven
(define (dispatch nessage)
(case nessage
((CGET-COLOR) (lanbda (self) color))
((SET-COLOR) (Il anbda (sel f newcol or)
(set! color newcolor)))
((DRI'VE-M LES) (lanbda (self niles)
(set! odoneter (+ odoneter miles))
odoneter))))
(set! list-of-autos (cons dispatch |ist-of-autos))
di spatch))
((NUM AUTCS) (length list-of-autos))))))

The following expressions are then evaluated in sequence in the global environment:

(define exanple (list 2 2))

(define new chevy (auto-class ' MAKE-|I NSTANCE 'red 0))
(define ol d-edsel (auto-class ' MAKE-| NSTANCE ' bl ue 50000))
(auto-cl ass ' NUM AUTOS) ==> 2

((new chevy ' DRI VE-M LES) new chevy 500) ==> 500

creating the environment diagram as shown on the next page. In this environment diagram, the
different environments are labeled E1 through E8 (and GE for the global environment); the
different procedure objects are labeled P1 through P4; and cons cells are labeled C1 through C4.
Your job isto complete the “wiring” of the environment diagram by completing the table on
page 10 to indicate what each of the pointers Q0 through Q20 should point to (E1- E8, GE, P1-
P4, C1-C4,or none of the above). While you are free to draw on the environment diagram to
help work through the evaluation of the above expressions (beginning with the (def i ne aut o-
class ...) expression), wewill ONLY look at the table on page 10 where you must put your
final answers.

6.001 Fall Term 1998 - Final Exam

Your Name:

GE
new- chevy:
— W vy: Q2 auto-class: QL exanpl e: Q
ol d-edsel: @3
C3 C4 Cl C2
= s Vo
El .
_p| list-of-autos: b Q13 814 2 2
B QL5)
E2_> cl ass- net hod: E7_> cl ass- net hod:
MAKE- | NSTANCE NUM AUTCS
args: (bl ue 50000) args: ()
CV* P4 QLo
EIi» color: blue
odorret er: 50000
di spatch: B p: cl ass- nethod . args
b: (case ...
. message
@ * b: (case ...)
Ei._ cl ass- net hod:
MAKE- | NSTANCE
args: (red 0)
m 47T Ay
E8
self: QL9
QlO* ™| niles: 500
ES p: nmessage
color: red :
™ odoneter: O b: (case ...)
di spatch: QL1
P3 &0
QlZ*
E6
—»| Message: DRI VE-M LES

10

S

self mles

(set! odoneter

(+ odonmeter mles))

6.001 Fall Term 1998 - Final Exam Y our Name:

Part A.

In the following table, indicate what each of the “question pointers’ QL through Q20 should bein
the environment diagram on the preceding page. For example, Q0 should be a pointer to the cons
cell C1 asindicated in the table below. You should indicate the objects being pointed to as one of
the environments labeled E1 through E8 (or GE for the global environment); the different
procedure objects labeled P1 through P4; or acons cells labeled C1 through C4. If the pointer
goes to none of these, write “none” in the table for that cell.

Question Object Question Object
Pointer Pointed To Pointer Pointed To

o |
QL1
QL2
QL3
QL4
Q15
QL6
QL7
Q18
Q19
@0

BB QAG R RIB B RS

g

Part B.

In part a, we assigned ol d- edsel to be an instance of the aut o class. If we evaluate the
following expression in the global environment:

(set! ol d-edsel new chevy)

isit now safe to garbage collect the object that ol d- edsel wasoriginally pointing to? Explain
why or why not.

11

6.001 Fall Term 1998 - Final Exam Y our Name:

Part C.

It is sometimes necessary for an auto maker to issue a RECALL when some defect or safety
problem is discovered. Modify the aut o- cl ass below to complete the class method RECAL L
that will look at each auto ever created and perform some user-specified recall test and
modification operation (named user - r ecal | - pr ocedur e below) on each auto. To make this
change, provide the code for <EXP> below.

(define auto-class
(let ((list-of-autos '()))
(lambda (cl ass-nmethod . args)
(case cl ass-net hod
((MAKE- | NSTANCE)
(let ((color (car args))
(odoneter (cadr args))) ;mles car has been driven
(define (dispatch nessage)
(case nessage
((GET-COLOR) (| anbda (self) color))
((SET-COLOR) (Il anbda (sel f newcol or)
(set! color newcolor)))
((DRIVE-MLES) ...)))

(set! list-of-autos (cons dispatch |ist-of-autos))
di spatch))

((RECALL)

(let ((user-recall-procedure (car args)))
<EXP>))

((NUM AUTOS) (length list-of-autos))))))

<EXP>:

Part D.

It has just been determined that all red autos are dangerous. Complete the following expression to
issue arecall in which you change the color of all red carsto green.

(auto-class ' RECALL

12

6.001 Fall Term 1998 - Final Exam Y our Name:

Problem 5

The term's over, and you are busy packing because you need to move out of your room. In your
desk, you find a piece of paper with two compiled code fragments. Intrigued by your discovery,
you sit down on your bed and occupy yourself with the pleasant diversion of trying to figure out
what scheme expression was compiled to produce each compiled code fragment.

Here's the first compiled excerpt:

(assign val (op make-conpil ed-procedure) (label entry2) (reg env))
(goto (label after-Ilanbdal))
entry2
(assign env (op conpil ed-procedure-env) (reg proc))
(assign env (op extend-environnment) (const (f))
(reg argl) (reg env))
6 (assign val (op |ookup-variable-value) (const f) (reg env))
7 (assign val (op | ookup-vari abl e-value) (const f) (reg env))
8. (goto (reg continue))
9. after-lanbdal
10. (perform (op define-variable!) (const x) (reg val) (reg env))
11. (assign val (const ok))

PR

From lines 1 and 4, you deduce that the scheme expression is some sort of procedure definition.
Examining lines 1-11, answer each part below:

Part A.
How many arguments does the procedure take?

Part B.
What is the procedure body?

Part C.
What is the name of the procedure being defined?

Part D.
What is the scheme expression that was compiled?

Part E.
Which linein the compiled code is unnecessary (other than line 11) and can be eliminated without
changing the result?

Part F

What scheme expression produces the same compiled code as above, without the unnecessary line
of part E?

13

6.001 Fall Term 1998 - Final Exam Y our Name:

Further down on the very same page immediately following the code shown in partsA through E,
you find this second excerpt:

(assign proc (op | ookup-vari abl e-value) (const x) (reg env))
(assign val (const 2))
(assign argl (op list) (reg val))
(test (op primtive-procedure?) (reg proc))
(branch (1l abel primtive-branch8))
conpi | ed- branch?
(assign val (op conpil ed-procedure-entry) (reg proc))
(goto (reg val))
primtive-branch8
10. (assign val (op apply-primtive-procedure) (reg proc) (reg argl))
11. (goto (reg continue))

NSO hwNE

Part G.

Study the following sections: lines 1-3, lines 4-5, lines 6-8, lines 9-11. What was the scheme
expression that was compiled?

Part H.

Looking at the code, we know what scheme expressions produced both the first and the second
compiled excerpts. Using this knowledge, how can we optimize the compiled code in the second
excerpt? In other words, which lines in the compiled code in the second excerpt are unnecessary
and can be safely removed?

14

6.001 Fall Term 1998 - Final Exam Y our Name:

Problem 6

In our discussion of the Java programming language, we saw that Javais strongly typed: that is,
one must declare the type of avariable to indicate that only values consistent with that type may
be assigned to the variable, e.g.

int i =5;

String s = "Hell o";
i
i

27, /1 This is okay
false; [/ This is NOT okay

Thisis an interesting design decision which enables the Java compiler or interpreter to check that
assignments during compile-time or run-time are type-consistent, and issue an error if not.

In this problem we consider changes to our Scheme evaluator to add some degree of type
declarations to the language. In particular, we wish to extend the syntax of variable definitions to
explicitly require that atype for the variable be given, e.g.

(define number x 27)
(define string y "Hello")
(define procedure abs-val ue
(lambda (x) (if (> x 0) x (- x))))

or generally
(define <type> <var> <val >)

In this problem we will first extend our frame representation to store the type associated with
variables in the environment, then we will extend the evaluation procedures to ensure that we
interpret the extended def i ne syntax, and finally we will also extend the assignment semantics
so that an error is generated if one attemptsto later assign a value with an inconsistent type to a
variable.

Part A.

In the representation of frames and environments discussed in the book and used on the problem
set, we represented aframe as alist of variable names (symbols), together with alist of variable
values in one to one correspondence:

(define (make-frame vari abl es val ues)
(cons vari abl es val ues))

15

6.001 Fall Term 1998 - Final Exam Y our Name:

We will change this so that we instead keep alist of variable types, alist of variable names, and a
list of variable values, al in one-to-one correspondence:

(define (make-franme types vari abl es val ues)
(l'ist types variabl es val ues))

Compl ete the definitions of the accessor functions consistent with this new frame representation:

(define (frane-types frane)

)

(define (franme-variables framne)

)

(define (franme-val ues frane)

Part B.

We also have to change the add- bi ndi ng-t o-franme! procedureto work with our new frame
representation. Here is the old procedure:

(define (add-binding-to-frane! var val frane)
(set-car! frame (cons var (car frame)))
(set-cdr! frame (cons val (cdr frane))))

Complete the revised version of add- bi ndi ng-t o-frane! towork with our new
representation:

(define (add-binding-to-franme! type var val framne)

16

6.001 Fall Term 1998 - Final Exam Y our Name:

Part C.
Thel ookup- vari abl e- val ue procedure from the evaluator is shown below.

(define (Il ookup-variabl e-val ue var env)
(define (env-1oop env)
(define (scan vars val s)
(cond ((null? vars)
(env-1oop (encl osing-environnment env)))
((eqg? var (car vars))
(car vals))
(el se (scan (cdr vars) (cdr vals)))))
(if (eqg? env the-enpty-environment)
(error "Unbound variabl e" var)
(let ((frame (first-frane env)))
(scan (frane-variabl es frane)
(frane-values frame)))))
(env-1oop env))

We see that this procedure still works with our modified frame representation to retrieve avariable
value from the environment.

We will also need al ookup- vari abl e-t ype procedure so that later on we can retrieve the
declared type for avariable from the frame (e.g. for later use in type checking). Using the

| ookup- vari abl e- val ue procedure above as an example, we have created a start toward the
new | ookup- vari abl e-t ype procedure below. Complete the modifications necessary in the
code below to complete the definition of | ookup- vari abl e-t ype. Be careful to clearly
indicate where any additional expressions you write are to be inserted, and to indicate or X-out
any code to be deleted or changed.

(define (I ookup-variable-type var env)
(define (env-1oop env)
(define (scan vars val s)
(cond ((null? vars)
(env-1oop (enclosing-environnent env)))
((eqg? var (car vars))
(car vals))
(el se (scan (cdr vars) (cdr vals)))))
(if (eq? env the-enpty-environment)
(error "Unbound variable" var)
(let ((frame (first-frane env)))
(scan (frane-variabl es frane)
(frane-values franme)))))
(env-1oo0p env))

17

6.001 Fall Term 1998 - Final Exam Y our Name:

Next we need to make changes to the evaluator to handle our extended syntax. Repeated below is
meval whichcallseval - defi niti ontohandlethe(define ...) syntax:

(define (nmeval exp env)
(cond ((sel f-eval uating? exp) exp)

((assignnent ? exp) (eval -assignnment exp env))
((definition? exp) (eval-definition exp env))

((application? exp)
(mapply (nmeval (operator exp) env)
(l'ist-of-values (operands exp) env)))
(el se (error "Unknown expression type -- EVAL" exp))))

To handle our new type declaration syntax, we reviseeval - def i ni ti on asfollows:

(define (eval -definition exp env)
(define-variable! (definition-type exp) ;added for types
(definition-variabl e exp)
(meval (definition-value exp) env)
env)
' ok)

Theeval - defi ni ti on procedure uses the syntax proceduresdef i ni ti on-t ype,
definition-variabl e,anddefi nition-val ue. Theimplementation for defi niti on-
t ype must be updated in order for it to handle both the fully declared definition of variables, e.g.
(define nunber x 5) and the syntactic sugared form for procedure definition:

(define (definition-type exp)
(if (synmbol? (cadr exp))
(cadr exp) ;fully decl ared case
" procedure)) ;syntactic sugared procedure definition case

The old implementations for def i ni ti on-vari abl e anddef i ni ti on-val ue are shown
below; these were necessary to deal with the syntactic sugared form of procedure definition.

(define (definition-variabl e exp)
(if (symbol? (cadr exp))
(cadr exp) ;regul ar definition case
(caadr exp) ; procedure definition case

))

(define (definition-value exp)
(if (synbol? (cadr exp))

(caddr exp) ;regular definition case
(make- | anbda ; procedure definition case
(cdadr exp) ; formal paraneters
(cddr exp)))) ; body

18

6.001 Fall Term 1998 - Final Exam Y our Name:

With our type declaration extension, we would like the “shorthand” (syntactic sugared) way of
writing a procedure:

(define (abs-val ue x)
(if (>x0) x (- x)))

to be interpreted equivalently to afully declared definition for the variable abs- val ue:

(define procedure abs-val ue
(lambda (x) (if (> x 0) x (- x))))

Part D.

Revisethedef i ni ti on-vari abl e procedure (shown on the previous page) to handle both the
simpledef i ne syntax such as(defi ne nunber x 5) and the sugared form of a procedure
definition as shown above:

(define (definition-variable exp)

Part E.

Revisethedef i ni ti on-val ue procedure (shown on the previous page) to handle both the
simpledef i ne syntax such as(def i ne nunber x 5) and the sugared form of a procedure
definition as shown above:

(define (definition-value exp)

19

6.001 Fall Term 1998 - Final Exam Y our Name:

Part F.

Finally, we also want to update the eval uation of assignments so that errors are generated if atype-
inconsistent assignment is attempted, e.g.

(define nunber x 5)
(set! x 'foo)
==> ERROR attenpt to assign to variable X a value of wong type

To implement this, you should assume you already have available a procedure
(type-consi stent? type val ue) that returns#t if thetype of the object val ue is
consistent with the declared t ype:

(type-consi stent? 'nunber 5) ==> #t
(type-consistent? 'string 'foo) ==> #f

Shown below istheset - vari abl e- val ue! procedure from the evaluator which you will need
to modify:

(define (set-variable-value! var val env)
(define (env-1oop env)
(define (scan vars val s)
(cond ((null? vars)
(env-1oop (enclosing-environnent env)))
((eg? var (car vars))
(set-car! vals val))
(el se (scan (cdr vars) (cdr vals)))))
(if (eq? env the-enpty-environment)
(error "Unbound variable -- SET!" var)
(let ((frame (first-frane env)))
(scan (frane-variabl es frane)
(frame-values frane)))))
(env-1oo0p env))

Modify the procedure above in order to check for type consistency in variable assignments. Be
sureto clearly indicate where any additional code you writeisinserted, and to mark codethat isto
be deleted.

20

6.001 Fall Term 1998 - Final Exam Y our Name:

Problem 7

This problem considers asmall list structured memory. Asdiscussed in class, the contents of
memory cells are represented in a shorthand notation, where “N<#>" indicates the storage of a
number, “P<i ndex>" indicates the storage of a pointer to the cell at a given index, and “EQ”
indicates the null pointer. We extend this notation with “S<synbol >” to indicate a symbol, e.g.
Sf oo indicates that the cell contains the symbol “f oo”.

The current contents of memory, aswell asthef r ee- | i st pointer, are shown below.

0 1 2 3 4 5 6 7 8 9

the-cars | P1 P5 Sz P4 Sy Sx EO N20 N30 EO

the-cdrs | EO P3 NGO EO pP7 N10 P9 P8 P7 EO

root: PO
free-list: P6

The“r oot ” to this data structure corresponds to the global environment, or GE = PO.

Free cellsin memory are represented asalinked list of unused cons cells. That is, thecdr part of
each free cell pointsto the “next” free cell in the freelist. If there are no more free cells, then the
cdr part isthe empty list EO. New cons cells are alocated by taking the first cell pointed to by the
free-1ist,and updating or overwriting thef r ee- | i st register to point to the next free cell.

The contents of this memory correspond to a simplified representation of a Scheme environment
such as might be used by the explicit control evaluator (Scheme interpreter). In this case, the
environment isrepresented as alist of frames; each frame containsalist of bindings; each binding
isapair of avariable name (symbol) and its value.

The following box and pointer diagram corresponds to the current global environment (pointed to
by ther oot register:

r oot —_—

T
AN
T
~
;)

-
-
-
-
-

21

6.001 Fall Term 1998 - Final Exam Y our Name:

Part A.
The following expression is evaluated in this global environment.

(set! y (cdr y))

A1l. Show what changes on the box and pointer diagram below:
0

root_>|
1 ¥ 3
K g S
A

A2. Also show what changes in the memory structure below (repeated here from the previous
page) and updatethefree-1i st orroot registersif necessary

0 1 2 3 4 5 6 7 8 9

the-cars | P1 P5 Sz P4 Sy SX EO N20 N30 EO

the-cdrs | EO P3 N6O EO P7 N10 P9 P8 pP7 EO

root: PO
free-list: P6

Part B.
The following expression is evaluated in our global environment:

(set! x " (50))
B1. Show any additional changes in the environment box and pointer diagram above.

B2. Show what additional changes occur in the memory structure below, and update thef r ee-
l'i st orroot registersif necessary.

0 1 2 3 4 5 6 7 8 9

the-cars | P1 P5 Sz P4 Sy Sx EO N20 N30 EO

the-cdrs | EO P3 NGO EO P7 N10 P9 P8 P7 EO

root: PO
free-list: P6

22

6.001 Fall Term 1998 - Final Exam Y our Name:

Part C.
The following expression is evaluated with respect to our global environment data structure:
(set! y 40)

What cells, if any, become available for garbage collection (that is, what cells currently in the
environment data structure could be added to the f r ee- | i st) when this expression is evaluated?

23

