

1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001-- Structure and Interpretation of Computer Programs

Fall Semester, 1998, Final Exam

Be sure to write your name on all pages of this exam.

Print Your Name:

Your Recitation Instructor:

Your Tutor:

Please write clear and concise answers to the questions in the spaces provided in this booklet. You
may use scratch paper if you need, but the spaces we provide are the only places we will look at
when grading. Your solutions, particularly to programming problems, may be judged not only on
whether they work or not, but also on clarity and ease of understanding.

Note that not all questions are of equivalent difficulty, so you may wish to skim all questions in
this exam booklet before beginning.

Any comments you would like to make on this exam:

Comments from graders:

Problem Value Grade Grader

1 30

2 35

3 25

4 40

5 25

6 30

7 15

Total 200

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

2

Problem 1

For each of the statements below, circle T if the statement is true, and F if the statement is false.

T F The halting theorem states that it is impossible to examine any piece of code and
determine if it will terminate or not.

T F In the United States, software can be copyrighted but not patented.

T F A Java compiler converts class definitions written in the Java programming language
into bytecodes that are hardware-independent.

T F Java is an object-oriented programming language that supports class variables, class
methods, instance variables, instance methods, and multiple inheritance.

T F Garbage collection cannot be used in Java because Java programs must react to the
user or to the network in real time.

T F Mark/sweep garbage collection may require a stack of depth

n

 in order to mark a
memory with

n

 pairs.

T F If the Scheme evaluator supports the

delay

 and

force

 special forms, it is possible
for the Scheme user to implement

cond

 as a simple procedure without additional
extensions to the evaluator.

T F Deadlock can occur between two processes that are running in parallel if a mutual
exclusion approach is used (such as the synchronization approach discussed in class)
in which both processes try to gain access to a single shared resource.

T F The possible values for

z

 at the completion of the parallel-execution below

 (define z 5)
 (define (P1) (set! z (+ z 10)))
 (define (P2) (set! z (* z 2)))
 (parallel-execute P1 P2)

are 10, 15, 20, and 30.

T F The value of the following expression is equal to the expression itself:

 ((lambda (x) (list x (list ’quote x)))
 ’(lambda (x) (list x (list ’quote x))))

T F

Extra credit (0 points):

 In everything other than legal documents, it is not
discouraged to speak without resorting to double negatives, except when writing
comments in your code.

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

3

Problem 2

You are interested in creating a

computer-account

 object to help with the administration of a
computer system that may have many users. The behavior you desire is that each account
(instance of

computer-account

) can have its own unique

username

 which is specified when
the account is created. The

username

 can later be retrieved with the

USERNAME

 method.

Part A.

Your team of 6.001 graduates supplied the following different implementations for the

computer-account

 class. For each implementation, indicate whether the code will work
correctly or not; if it will not work correctly, explain why.

A1:

(define (make-computer-account uname)
 (let ((username ’()))
 (set! username uname)
 (lambda (message)
 (case message
 ((USERNAME) (lambda (self) username))
 (else (no-method))))))

Circle one: CORRECT or INCORRECT BECAUSE:

A2:

(define make-computer-account
 (let ((username ’()))
 (lambda (uname)
 (set! username uname)
 (lambda (message)
 (case message
 ((USERNAME) (lambda (self) username))
 (else (no-method)))))))

Circle one: CORRECT or INCORRECT BECAUSE:

A3:

(define make-computer-account
 (lambda (username)
 (lambda (message)
 (case message
 ((USERNAME) (lambda (self) username))
 (else (no-method))))))

Circle one: CORRECT or INCORRECT BECAUSE:

the same variable

username

 would be shared by all instances.

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

4

Part B.

Next, we wish to create a new class

password-account

 that inherits the behavior of

computer-account

 and extends it in the following way. Each

password-account

 instance
will also have a password, and the account will support a

LOGIN

 method that checks to see if the
correct password has been given before allowing the user to

begin-session

 (the

begin-
session

 procedure is implemented elsewhere). The code below is an attempt to accomplish this,
but it is missing several critical parts. You are to provide any additional needed code or other
modifications below. You may mark directly on the code below to (clearly) indicate where your
additions belong, and to X-out where code is being deleted or changed.

(define make-password-account
 (lambda (uname passwd)
 (let ((password passwd))
 (lambda (message)
 (case message
 ((LOGIN) (lambda (self pass)
 (if (eq? pass password)
 (begin-session)
 (error "Incorrect password"))))
 (else (no-method)))))))

Part C.
C1.

 Complete the expression below to create a

password-account

 for Ben Bitdiddle (Ben
selects the symbol

benbit

 for his username and

2tothe2is4

 for his password).

 (define ben-account

)

C2.

 Write an expression to show how Ben can successfully log in to the system.

(account (make-account uname))

(account message)

(make-password-account ’benbit ’2tothe2is4)

((ben-account ’LOGIN) ben-account ’2tothe2is4)

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

5

Part D.

It is sometimes useful to have an account with two passwords. Rather than further subclass
password-account, we wish to change the implementation of password account by adding a
method

ALLOW-JOINT

 which takes a second password as an argument. By default, the account is
created as a single password account, but using the

ALLOW-JOINT

 method one can add a second
password. You need to supply the missing line of code

<EXP1>

 below.

(Note that for the moment we are not concerned with the changes you made in part c, rather, we
are only focusing on the new

ALLOW-JOINT

 method in this part.)

(define make-password-account
 (lambda (uname passwd)
 (let ((password1 passwd)
 (password2 ’()))
 (lambda (message)
 (case message
 ((LOGIN) (lambda (self pass)
 (if (eq? pass password)
 (begin-session)
 (error "Incorrect password"))))
 ((ALLOW-JOINT) (lambda (self second-passwd)
 <EXP1>
))
 (else (no-method)))))))

<EXP1>:

Part E.

In order to deal with the situation when a second password has indeed been specified, we need to
change our

LOGIN

 method as well. Replace the (

if ...)

 expression from the

LOGIN

 method of
part D with a new expression so that if the account is a single user account, then only when the
correct

password1

 is supplied should the user be able to login. If the account has been enabled
as a joint account, then only when

password1

 or

password2

 is supplied should login be
successful.

(set! password2 second-passwd)

(if (or (eq? password1 pass)
 (and (not (null? password2))
 (e1? password2 pass)))
 (begin-session)
 (error "Incorrect password"))

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

6

Problem 3

In each part of this problem you are given a sequence of register machine instructions with the
entry point or entry label

start

 that implements some register machine subroutine. Our goal is to
understand how these instructions perform as a subroutine. After each set of instructions several
statements will be made: circle the letter for

all

 statements that are true (there will usually be more
than one true statement) and fill in any blanks if the statement is true and has a blank.

Note that each of the subroutines to follow may well be intended to compute different things.
Before each part, you should assume that the following instructions are issued (e.g. to call the
subroutine from a “fresh” register machine) initialized as follows:

 (assign x (const ’(10 11 (12 13))))
 (assign continue (label done))
 (goto (label start)) ;call the subroutine
done
 ... <here we stop the machine and look at the ans register>

Part A.

start
 (assign ans (const 0))
loop
 (test (op null?) (reg x))
 (branch (reg continue))
 (assign ans (op +) (reg ans) (const 1))
 (goto (label loop))

A1. The resulting register machine is iterative (results in a stack of constant depth).

A2. The resulting register machine is recursive (results in a stack with maximum depth that
depends on the size of the input

x

).

A3. Returns (to the

done

 label) with the following value in the

ans

 register: ________________

A4. Returns (to the

done

 label) with the stack in a different state than it was at the

start

 entry.

A5. Results in a process which continues forever.

A6. Results in a process which terminates with the following error: ________________________

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

7

Part B.

start
 (assign x (op cdr) (reg x))
 (test (op null?) (reg x))
 (branch (label end))
 (save continue)
 (assign continue (label add-to-count))
 (goto (label start))
end
 (assign ans (const 1))
 (goto (reg continue))
add-to-count
 (assign ans (op +) (reg ans) (const 1))
 (restore continue)
 (goto (reg continue))

B1. The resulting register machine is iterative (results in a stack of constant depth).

B2. The resulting register machine is recursive (results in a stack with maximum depth that
depends on the size of the input

x

).

B3. Returns (to the

done

 label) with the following value in the

ans register: ________________

B4. Returns (to the done label) with the stack in a different state than it was at the start entry.

B5. Results in a process which continues forever.

B6. Results in a process which terminates with the following error: ________________________

3

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

8

Part C.
start
 (save x)
 (assign x (op cdr) (reg x))
 (test (op null?) (reg x))
 (branch (label found_last))
 (goto (label start))
found_last
 (restore ans)
 (assign ans (op car) (reg ans))
 (goto (reg continue))

C1. The resulting register machine is iterative (results in a stack of constant depth).

C2. The resulting register machine is recursive (results in a stack with maximum depth that
depends on the size of the input x).

C3. Returns (to the done label) with the following value in the ans register: ________________

C4. Returns (to the done label) with the stack in a different state than it was at the start entry.

C5. Results in a process which continues forever.

C6. Results in a process which terminates with the following error: ________________________

Part D.
start
 (save x)
 (assign x (op cdr) (reg x))
 (test (op null?) (reg x))
 (branch (label found_last))
 (restore ans) ;this is the only change from part C
 (goto (label start))
found_last
 (restore ans)
 (assign ans (op car) (reg ans))
 (goto (reg continue))

D1. The resulting register machine is iterative (results in a stack of constant depth).

D2. The resulting register machine is recursive (results in a stack with maximum depth that
depends on the size of the input x).

D3. Returns (to the done label) with the following value in the ans register: ________________

D4. Returns (to the done label) with the stack in a different state than it was at the start entry.

D5. Results in a process which continues forever.

D6. Results in a process which terminates with the following error: ________________________

(12 13)

(12 13)

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

9

Problem 4

The object oriented system in Scheme that we used this term had mechanisms for creating
instances with their own local state, methods that could be invoked by message passing to an
instance, and a mechanism for inheritance through delegation. In this problem, we explore a
mechanism to support class variables and class methods in addition to instance variables and
instance methods.

Consider the following expression which is evaluated in the global environment (and which
creates part of the environment diagram shown on the next page):

(define auto-class
 (let ((list-of-autos '()))
 (lambda (class-method . args)
 (case class-method
 ((MAKE-INSTANCE)
 (let ((color (car args))
 (odometer (cadr args))) ;miles car has been driven
 (define (dispatch message)
 (case message
 ((GET-COLOR) (lambda (self) color))
 ((SET-COLOR) (lambda (self newcolor)
 (set! color newcolor)))
 ((DRIVE-MILES) (lambda (self miles)
 (set! odometer (+ odometer miles))
 odometer))))
 (set! list-of-autos (cons dispatch list-of-autos))
 dispatch))
 ((NUM-AUTOS) (length list-of-autos))))))

The following expressions are then evaluated in sequence in the global environment:

(define example (list 2 2))
(define new-chevy (auto-class 'MAKE-INSTANCE 'red 0))
(define old-edsel (auto-class 'MAKE-INSTANCE 'blue 50000))
(auto-class 'NUM-AUTOS) ==> 2
((new-chevy 'DRIVE-MILES) new-chevy 500) ==> 500

creating the environment diagram as shown on the next page. In this environment diagram, the
different environments are labeled E1 through E8 (and GE for the global environment); the
different procedure objects are labeled P1 through P4; and cons cells are labeled C1 through C4.
Your job is to complete the “wiring” of the environment diagram by completing the table on
page 10 to indicate what each of the pointers Q0 through Q20 should point to (E1-E8, GE, P1-
P4, C1-C4, or none of the above). While you are free to draw on the environment diagram to
help work through the evaluation of the above expressions (beginning with the (define auto-
class ...) expression), we will ONLY look at the table on page 10 where you must put your
final answers.

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

10

.

GE
auto-class: Q1

p: message
b: (case ...)

list-of-autos: Q5
E1

Q4

old-edsel: Q3

new-chevy: Q2
example: Q0

class-method:
E2

Q6

 MAKE-INSTANCE
args: (blue 50000)

color: blue
E3

Q7

odometer: 50000
dispatch: Q8

message: DRIVE-MILES
E6

Q12

self: Q19
E8

Q18

miles: 500

2 2Q13 Q14

C3 C4 C2C1

class-method:
E4

Q9

 MAKE-INSTANCE
args: (red 0)

color: red
E5

Q10

odometer: 0
dispatch: Q11

p: class-method . args
b: (case ...)

Q16

p: self miles
b: (set! odometer

Q20

p: message
b: (case ...)

Q17

 (+ odometer miles))

class-method:
E7

Q15

 NUM-AUTOS
args: ()

P4

P2

P3

P1

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

11

Part A.

In the following table, indicate what each of the “question pointers” Q1 through Q20 should be in
the environment diagram on the preceding page. For example, Q0 should be a pointer to the cons
cell C1 as indicated in the table below. You should indicate the objects being pointed to as one of
the environments labeled E1 through E8 (or GE for the global environment); the different
procedure objects labeled P1 through P4; or a cons cells labeled C1 through C4. If the pointer
goes to none of these, write “none” in the table for that cell.

Part B.
In part a, we assigned old-edsel to be an instance of the auto class. If we evaluate the
following expression in the global environment:

(set! old-edsel new-chevy)

is it now safe to garbage collect the object that old-edsel was originally pointing to? Explain
why or why not.

Question
Pointer

Object
Pointed To

Question
Pointer

Object
Pointed To

Q0 C1

Q1 P4 Q11 P2

Q2 P2 Q12 E5

Q3 P1 Q13 P1

Q4 GE Q14 P2

Q5 C3 Q15 E1

Q6 E1 Q16 E1

Q7 E2 Q17 E5

Q8 P1 Q18 E6

Q9 E1 Q19 P2

Q10 E4 Q20 E6

No, the list-of-autos still holds a valid pointer to the
auto instance that was old-edsel.

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

12

Part C.
It is sometimes necessary for an auto maker to issue a RECALL when some defect or safety
problem is discovered. Modify the auto-class below to complete the class method RECALL
that will look at each auto ever created and perform some user-specified recall test and
modification operation (named user-recall-procedure below) on each auto. To make this
change, provide the code for <EXP> below.

(define auto-class
 (let ((list-of-autos '()))
 (lambda (class-method . args)
 (case class-method
 ((MAKE-INSTANCE)
 (let ((color (car args))
 (odometer (cadr args))) ;miles car has been driven
 (define (dispatch message)
 (case message
 ((GET-COLOR) (lambda (self) color))
 ((SET-COLOR) (lambda (self newcolor)
 (set! color newcolor)))
 ((DRIVE-MILES) ...)))
 (set! list-of-autos (cons dispatch list-of-autos))
 dispatch))
 ((RECALL)
 (let ((user-recall-procedure (car args)))
 <EXP>))
 ((NUM-AUTOS) (length list-of-autos))))))

<EXP>:

Part D.
It has just been determined that all red autos are dangerous. Complete the following expression to
issue a recall in which you change the color of all red cars to green.

(auto-class ’RECALL

)

(map user-recall-procedure list-of-autos)

(lambda (auto)
 (if (eq? ((auto ’GET-COLOR) auto) ’red)
 ((auto ’SET-COLOR) auto ’green)
 ’ok))

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

13

Problem 5

The term's over, and you are busy packing because you need to move out of your room. In your
desk, you find a piece of paper with two compiled code fragments. Intrigued by your discovery,
you sit down on your bed and occupy yourself with the pleasant diversion of trying to figure out
what scheme expression was compiled to produce each compiled code fragment.

Here's the first compiled excerpt:

1. (assign val (op make-compiled-procedure) (label entry2) (reg env))
2. (goto (label after-lambda1))
3. entry2
4. (assign env (op compiled-procedure-env) (reg proc))
5. (assign env (op extend-environment) (const (f))
 (reg argl) (reg env))
6. (assign val (op lookup-variable-value) (const f) (reg env))
7. (assign val (op lookup-variable-value) (const f) (reg env))
8. (goto (reg continue))
9. after-lambda1
10. (perform (op define-variable!) (const x) (reg val) (reg env))
11. (assign val (const ok))

From lines 1 and 4, you deduce that the scheme expression is some sort of procedure definition.
Examining lines 1-11, answer each part below:

Part A.
How many arguments does the procedure take?

Part B.
What is the procedure body?

Part C.
What is the name of the procedure being defined?

Part D.
What is the scheme expression that was compiled?

Part E.
Which line in the compiled code is unnecessary (other than line 11) and can be eliminated without
changing the result?

Part F.
What scheme expression produces the same compiled code as above, without the unnecessary line
of part E?

1

(begin f f)

x

(define (x f) f f)

Line 6 or 7

(define (x f) f)

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

14

Further down on the very same page immediately following the code shown in parts A through E,
you find this second excerpt:

1. (assign proc (op lookup-variable-value) (const x) (reg env))
2. (assign val (const 2))
3. (assign argl (op list) (reg val))
4. (test (op primitive-procedure?) (reg proc))
5. (branch (label primitive-branch8))
6. compiled-branch7
7. (assign val (op compiled-procedure-entry) (reg proc))
8. (goto (reg val))
9. primitive-branch8
10. (assign val (op apply-primitive-procedure) (reg proc) (reg argl))
11. (goto (reg continue))

Part G.
Study the following sections: lines 1-3, lines 4-5, lines 6-8, lines 9-11. What was the scheme
expression that was compiled?

Part H.
Looking at the code, we know what scheme expressions produced both the first and the second
compiled excerpts. Using this knowledge, how can we optimize the compiled code in the second
excerpt? In other words, which lines in the compiled code in the second excerpt are unnecessary
and can be safely removed?

(x 2)

Line 4, 5, 9, 10, 11 are not needed, since we know x is a
compound procedure (and will stay a compound procedure since
x is not rebound before excerpt 2, and there is no entry point
to jump into excerpt 2).

Lines 2 and 3 can be combined to (assign argl (op list) (const 2))

Ultimately, the whole thing could be replace with line 2 since
we know what procedure X does.

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

15

Problem 6

In our discussion of the Java programming language, we saw that Java is strongly typed: that is,
one must declare the type of a variable to indicate that only values consistent with that type may
be assigned to the variable, e.g.

 int i = 5;
 String s = "Hello";
 ...
 i = 27; // This is okay
 i = false; // This is NOT okay

This is an interesting design decision which enables the Java compiler or interpreter to check that
assignments during compile-time or run-time are type-consistent, and issue an error if not.

In this problem we consider changes to our Scheme evaluator to add some degree of type
declarations to the language. In particular, we wish to extend the syntax of variable definitions to
explicitly require that a type for the variable be given, e.g.

(define number x 27)
(define string y "Hello")
(define procedure abs-value
 (lambda (x) (if (> x 0) x (- x))))

or generally

(define <type> <var> <val>)

In this problem we will first extend our frame representation to store the type associated with
variables in the environment, then we will extend the evaluation procedures to ensure that we
interpret the extended define syntax, and finally we will also extend the assignment semantics
so that an error is generated if one attempts to later assign a value with an inconsistent type to a
variable.

Part A.
In the representation of frames and environments discussed in the book and used on the problem
set, we represented a frame as a list of variable names (symbols), together with a list of variable
values in one to one correspondence:

(define (make-frame variables values)
 (cons variables values))

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

16

We will change this so that we instead keep a list of variable types, a list of variable names, and a
list of variable values, all in one-to-one correspondence:

(define (make-frame types variables values)
 (list types variables values))

Complete the definitions of the accessor functions consistent with this new frame representation:

(define (frame-types frame)

)

(define (frame-variables frame)

)

(define (frame-values frame)

)

Part B.
We also have to change the add-binding-to-frame! procedure to work with our new frame
representation. Here is the old procedure:

(define (add-binding-to-frame! var val frame)
 (set-car! frame (cons var (car frame)))
 (set-cdr! frame (cons val (cdr frame))))

Complete the revised version of add-binding-to-frame! to work with our new
representation:

(define (add-binding-to-frame! type var val frame)

)

(car frame)

(cadr frame)

(caddr frame)

(set-car! frame (cons type (car frame)))

(set-car! (cdr frame) (cons var (cadr frame)))

(set-car! (cddr frame) (cons val (caddr frame)))

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

17

Part C.
The lookup-variable-value procedure from the evaluator is shown below.

(define (lookup-variable-value var env)
 (define (env-loop env)
 (define (scan vars vals)
 (cond ((null? vars)
 (env-loop (enclosing-environment env)))
 ((eq? var (car vars))
 (car vals))
 (else (scan (cdr vars) (cdr vals)))))
 (if (eq? env the-empty-environment)
 (error "Unbound variable" var)
 (let ((frame (first-frame env)))
 (scan (frame-variables frame)
 (frame-values frame)))))
 (env-loop env))

We see that this procedure still works with our modified frame representation to retrieve a variable
value from the environment.

We will also need a lookup-variable-type procedure so that later on we can retrieve the
declared type for a variable from the frame (e.g. for later use in type checking). Using the
lookup-variable-value procedure above as an example, we have created a start toward the
new lookup-variable-type procedure below. Complete the modifications necessary in the
code below to complete the definition of lookup-variable-type. Be careful to clearly
indicate where any additional expressions you write are to be inserted, and to indicate or X-out
any code to be deleted or changed.

(define (lookup-variable-type var env)
 (define (env-loop env)
 (define (scan vars vals)
 (cond ((null? vars)
 (env-loop (enclosing-environment env)))
 ((eq? var (car vars))
 (car vals))
 (else (scan (cdr vars) (cdr vals)))))
 (if (eq? env the-empty-environment)
 (error "Unbound variable" var)
 (let ((frame (first-frame env)))
 (scan (frame-variables frame)
 (frame-values frame)))))
 (env-loop env))

types

types types

types

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

18

Next we need to make changes to the evaluator to handle our extended syntax. Repeated below is
meval which calls eval-definition to handle the (define ...) syntax:

(define (meval exp env)
 (cond ((self-evaluating? exp) exp)
 ...
 ((assignment? exp) (eval-assignment exp env))
 ((definition? exp) (eval-definition exp env))
 ...
 ((application? exp)
 (mapply (meval (operator exp) env)
 (list-of-values (operands exp) env)))
 (else (error "Unknown expression type -- EVAL" exp))))

To handle our new type declaration syntax, we revise eval-definition as follows:

(define (eval-definition exp env)
 (define-variable! (definition-type exp) ;added for types
 (definition-variable exp)
 (meval (definition-value exp) env)
 env)
 'ok)

The eval-definition procedure uses the syntax procedures definition-type,
definition-variable, and definition-value. The implementation for definition-
type must be updated in order for it to handle both the fully declared definition of variables, e.g.
(define number x 5) and the syntactic sugared form for procedure definition:

(define (definition-type exp)
 (if (symbol? (cadr exp))
 (cadr exp) ;fully declared case
 ’procedure)) ;syntactic sugared procedure definition case

The old implementations for definition-variable and definition-value are shown
below; these were necessary to deal with the syntactic sugared form of procedure definition.

(define (definition-variable exp)
 (if (symbol? (cadr exp))
 (cadr exp) ;regular definition case
 (caadr exp) ;procedure definition case
))

(define (definition-value exp)
 (if (symbol? (cadr exp))
 (caddr exp) ;regular definition case
 (make-lambda ;procedure definition case
 (cdadr exp) ;formal parameters
 (cddr exp)))) ;body

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

19

With our type declaration extension, we would like the “shorthand” (syntactic sugared) way of
writing a procedure:

(define (abs-value x)
 (if (> x 0) x (- x)))

to be interpreted equivalently to a fully declared definition for the variable abs-value:

(define procedure abs-value
 (lambda (x) (if (> x 0) x (- x))))

Part D.
Revise the definition-variable procedure (shown on the previous page) to handle both the
simple define syntax such as (define number x 5) and the sugared form of a procedure
definition as shown above:

(define (definition-variable exp)
 (if (symbol? (cadr exp))
 (caddr exp) ;regular (typed) definition case
 (caadr exp) ;procedure definition case
))

Part E.
Revise the definition-value procedure (shown on the previous page) to handle both the
simple define syntax such as (define number x 5) and the sugared form of a procedure
definition as shown above:

(define (definition-value exp)
 (if (symbol? (cadr exp))
 (cadddr exp) ;regular definition case
 (make-lambda ;procedure definition case
 (cdadr exp) ;formal parameters
 (cddr exp)))) ;body

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

20

Part F.
Finally, we also want to update the evaluation of assignments so that errors are generated if a type-
inconsistent assignment is attempted, e.g.

(define number x 5)
(set! x ’foo)
==> ERROR: attempt to assign to variable X a value of wrong type

To implement this, you should assume you already have available a procedure
(type-consistent? type value) that returns #t if the type of the object value is
consistent with the declared type:

(type-consistent? ’number 5) ==> #t
(type-consistent? ’string ’foo) ==> #f

Shown below is the set-variable-value! procedure from the evaluator which you will need
to modify:

(define (set-variable-value! var val env)
 (define (env-loop env)
 (define (scan types vars vals)
 (cond ((null? vars)
 (env-loop (enclosing-environment env)))
 ((eq? var (car vars))
 (if (type-consistent? (car types) val)
 (set-car! vals val)
 (error "wrong type"))
 (else (scan (cdr types) (cdr vars) (cdr vals)))))
 (if (eq? env the-empty-environment)
 (error "Unbound variable -- SET!" var)
 (let ((frame (first-frame env)))
 (scan (frame-types frame)
 (frame-variables frame)
 (frame-values frame)))))
 (env-loop env))

Modify the procedure above in order to check for type consistency in variable assignments. Be
sure to clearly indicate where any additional code you write is inserted, and to mark code that is to
be deleted.

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

21

Problem 7

This problem considers a small list structured memory. As discussed in class, the contents of
memory cells are represented in a shorthand notation, where “N<#>” indicates the storage of a
number, “P<index>” indicates the storage of a pointer to the cell at a given index, and “E0”
indicates the null pointer. We extend this notation with “S<symbol>” to indicate a symbol, e.g.
Sfoo indicates that the cell contains the symbol “foo”.

The current contents of memory, as well as the free-list pointer, are shown below.

root: P0
free-list: P6

The “root” to this data structure corresponds to the global environment, or GE = P0.

Free cells in memory are represented as a linked list of unused cons cells. That is, the cdr part of
each free cell points to the “next” free cell in the free list. If there are no more free cells, then the
cdr part is the empty list E0. New cons cells are allocated by taking the first cell pointed to by the
free-list, and updating or overwriting the free-list register to point to the next free cell.

The contents of this memory correspond to a simplified representation of a Scheme environment
such as might be used by the explicit control evaluator (Scheme interpreter). In this case, the
environment is represented as a list of frames; each frame contains a list of bindings; each binding
is a pair of a variable name (symbol) and its value.

The following box and pointer diagram corresponds to the current global environment (pointed to
by the root register:

0 1 2 3 4 5 6 7 8 9

the-cars P1 P5 Sz P4 Sy Sx E0 N20 N30 E0

the-cdrs E0 P3 N60 E0 P7 N10 P9 P8 P7 E0

1 3

5
4 7 8

0

x 10 y 20 30

root

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

22

Part A.
The following expression is evaluated in this global environment.

(set! y (cdr y))

A1. Show what changes on the box and pointer diagram below:

A2. Also show what changes in the memory structure below (repeated here from the previous
page) and update the free-list or root registers if necessary

root: P0
free-list: P6

Part B.
The following expression is evaluated in our global environment:

(set! x ’(50))

B1. Show any additional changes in the environment box and pointer diagram above.

B2. Show what additional changes occur in the memory structure below, and update the free-
list or root registers if necessary.

root: P0
free-list: P6

0 1 2 3 4 5 6 7 8 9

the-cars P1 P5 Sz P4 Sy Sx E0 N20 N30 E0

the-cdrs E0 P3 N60 E0 P7 N10 P9 P8 P7 E0

0 1 2 3 4 5 6 7 8 9

the-cars P1 P5 Sz P4 Sy Sx E0 N20 N30 E0

the-cdrs E0 P3 N60 E0 P7 N10 P9 P8 P7 E0

1 3

5
4 7 8

0

x 10 y 20 30

root

X
X

50

6

P8

P6

N50

E0

P9

6.001 Fall Term 1998 - Final Exam Your Name: Solutions

23

Part C.

The following expression is evaluated with respect to our global environment data structure:

(set! y 40)

What cells, if any, become available for garbage collection (that is, what cells currently in the
environment data structure could be added to the free-list) when this expression is evaluated?

Cells 7 and 8

