
1
version September 14, 1998, 2:25 P.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1998

Problem Set 2

� Issued: Tuesday, September 15

� Tutorial preparation for: Week of September 21

� Written solutions due: Friday, September 25 at start of recitation

� Reading: This problem set draws on the material in SICP 2.1, 2.2.1-2.2.3 for data abstraction,

and 1.3 for higher order procedures. To prepare for lectures during the week of September

22, you should read SICP section 2.1 through the end of section 2.2.

Your goals for this problem set are three-fold. First, you will gain practice with Scheme mecha-

nisms for compound data (speci�cally, pairs created using cons). Second, you will become expert

in manipulating both lists and trees, which are important conventional interfaces we often use to

represent more complicated or hierarchical data. Finally, an important aspect of Scheme program-

ming is learning to write and use higher order procedures; the third goal of this problem set is for

you to become skilled in writing higher order procedures and analyzing the processes they generate.

While this problem set has a large number of computer exercises, you are primarily being asked

to write many small procedures to gain practice, rather than understand or write a large software

system. Your software development will go much faster if you can take advantage of previous

procedures when you write new ones.

1. Tutorial exercises

You should prepare these exercises for oral presentation in tutorial and include written answers in

your homework solution.

Tutorial exercise 1: List Representations. The following exercise focuses on the key pair

and list construction, accessor, and predicate procedures cons, car, cdr, list, and null?.

Each of the following expressions are evaluated, in the order they appear. At the indicated point,

show what the returned value would be, and draw a box and pointer diagram corresponding to

the returned value (if the returned value is a pair). You will need to understand the printed

representation of pairs and lists, as well as how the above primitive procedures work.

6.001, Fall Semester, 1998|Problem Set 2 2

(define x (cons 1 2))

(define y (cons x x))

y

==> ??

(define a (cons 1 (cons x (cons 3 nil))))

a

==> ??

(define b (list 1 x 3))

b

==> ??

(null? (cdddr b))

==> ??

Tutorial exercise 2: List Procedures. De�ne a procedure last-pair that returns the list

that contains only the last element of a given (nonempty) list:

(last-pair (list 23 72 149 34))

==> (34)

De�ne a closely related procedure last that returns the last element of a given (nonempty) list:

(last (list 23 72 149 34))

==> 34

Tutorial exercise 3: List Manipulation Higher Order Procedures. Here you will use the

implementations of the higher order procedures (HOPs) map, filter, and accumulate. These

procedures are de�ned in the text, but you should be able to reproduce them from memory.

A. Using HOPs. Given a list of integers, write a procedure sum-some-cubes that calculates the

sum of the cubes of the values in the list, but only including the cube in the sum if the cubed value

is between 10 and 10000 (inclusive).

B. Copy Using HOPS. Implement a procedure copy which, given a list, produces a new list

which is a copy of the input list but consisting of new cons cells. First, de�ne copy directly using

only the the simple cons, car, cdr, and null? Scheme procedures.

Next de�ne copy using map, then using filter, and �nally using accumulate. As you do this,

note the similarity in structure between your directly implemented copy and each higher order

procedure.

6.001, Fall Semester, 1998|Problem Set 2 3

C. HOPS using HOPS. Fill in the missing expressions to complete the following de�nitions of

some list-manipulation operations using accumulation.

(define (map p sequence)

(accumulate (lambda (x y) <??>) nil sequence))

(define (append seq1 seq2)

(accumulate cons <??> <??>))

(define (length sequence)

(accumulate <??> 0 sequence))

Tutorial exercise 4: Trees as Nested Lists. Suppose we evaluate the expression

(list 1 (list 2 3) (list 4 (list 5)))

Give the result printed by the interpreter, show the corresponding box and pointer diagram, and

draw the interpretation of this structure as a tree (as in Figure 2.6 in SICP on page 108).

Tutorial exercise 5: fringe of a Tree. Do exercise 2.28 of the text, to implement a procedure

fringe which operates on a tree that is represented using nested lists, and produces a attened list

of the leaves (in left to right order) in the tree.

2. A Look at the Stock Market - List Manipulation Procedures

One important application of computer science is in the �nancial markets. Communication and

information technology is crucial to the management of vast amounts of market information, and

sophisticated signal processing and arti�cial intelligence technology is often applied in an e�ort to,

well, make money, by careful observation of the stock market.

In this section, we will track a �ctional company, Acme Industries, as it is traded on the oor of

the New York Stock Exchange (NYSE). We will �nd that list manipulation procedures can be used

to help calculate information about the price and trading activity in the stock. Note that we will

be manipulating lists { the government frowns upon manipulation of the stock market itself.

First, let us consider a simpli�ed version of a stock ticker, or a list of stock prices. Our price

ticker will be a sequence (list) of the stock prices that our stock, Acme in this case, has traded at

throughout any given trading day. On the NYSE, stock prices are given in dollars and fractions of

dollars (down to 1/16th of a \point"); we will use real numbers to indicate prices. For example,

on the previous day IBM closed at 101.0, and for the current trading day, the price ticker for IBM

might look like:

(define ibm-previous-close 101.0)

(define ibm-prices (list 100.0 99.5 99.5 99.75 100.0 100.125 100.5))

In this part, you will write basic procedures to perform simple technical analysis on these prices.

6.001, Fall Semester, 1998|Problem Set 2 4

Ticker Price Analysis

Begin by loading the code for problem set 2, using the Edwin command M-x load problem set.

This will de�ne for you the variable acme-prices to represent our ticker, as well as give you the

basic list procedures map, filter, and accumulate.

Computer Exercise 1: price-trend. Write a procedure price-trend that calculates the net

gain (a positive number) or loss (a negative number) in the price of the stock based on the closing

price (last price) of the current trading day compared to the closing price on the previous day. The

procedure should take as arguments the previous day's closing price and the day's ticker for the

stock, e.g. (price-trend <previous-close> <ticker>). You should feel free to use the basic

list higher order procedures above, or any procedures you de�ned in the tutorial exercises.

(price-trend ibm-previous-close ibm-prices)

==> -0.5

Demonstrate that price-trend works on some simpli�ed cases of your own, and then show

the price-trend result for Acme Industries. Note that variables acme-previous-close and

acme-prices are de�ned in the problem set code for you.

Is the process your procedure generates iterative or recursive? What is the order of growth in space

S and computation time T as a function of the length N of the ticker? (For this case, you should

look for the depth of deferred operations to indicate space, and examine the number of basic cons,

car, and cdr operations when considering time.)

Computer Exercise 2: price-average. Write a procedure price-average that calculates the

average price of the stock for that trading day. Again, show test cases for your procedure, and then

show the price-average for Acme Industries.

Is the process your procedure generates iterative or recursive? What is the order of growth in terms

of space S and computation time T as a function of the length of the ticker?

Computer Exercise 3: price-high. Write a procedure price-high that returns the highest

price of the stock during the trading day. This is just a call to a new higher order procedure you

are to write named list-max that returns the largest item in the list:

(define (price-high ticker)

(list-max ticker))

(price-high ibm-prices)

==> 101.5

You should write the list-max procedure so that it walks over the data structure directly (i.e.

does not use the higher order procedures map, filter, or accumulate, but rather uses car, cdr,

null?). You may also �nd the Scheme procedure max, e.g. (max 27 35) ==> 35 helpful.

6.001, Fall Semester, 1998|Problem Set 2 5

Does your procedure produce an iterative or recursive process? Now write it the other way (i.e. if

you �rst wrote a recursive process version, write an iterative version, or vice-versa). As always, in

both cases show simple test cases, and show the high price of the day for Acme Industries.

Computer Exercise 4: price-high using accumulate.

A. price-high. Now you may take advantage of the existing conventional list interfaces and

higher order procedures. Rewrite your price-high procedure using accumulate.

The use of the accumulate procedure (as de�ned in the book and in the problem set code) by

price-high results in a recursive process { explain why.

B. Alternative accumulate Our ace stock analyst Ben Bitdiddle wants to create a general

iterative version of accumulate. Consider the following attempt:

(define (iter-accumulate combiner init lst)

(define (helper so-far lst)

(if (null? lst)

so-far

(helper (combiner (car lst) so-far)

(cdr lst))))

(helper init lst))

Can Ben correctly rewrite price-high to use iter-accumulate with a reduced order of growth in

space or time?

Ben proposes to the head of the �rm, Alyssa P. Hacker, that all procedures that currently use

accumulate should be converted to use iter-accumulate. Alyssa disagrees, and states that it

would be wrong to use iter-accumulate interchangeable with accumulate. Help show what

Alyssa means by (1) giving a counter-example where di�erent results would be obtained with

accumulate and iter-accumulate; and (2) explaining under what conditions it would be safe to

use iter-accumulate in place of accumulate.

Computer Exercise 5: Traversing Two Lists Simultaneously. Ben is asked to write a

procedure price-range that returns a list of the form (<low> <high>) that has the lowest and

highest prices for the stock for that trading day, e.g.:

(define (price-range ticker)

(list (price-low ticker)

(price-high ticker)))

Unlike the procedure above, however, Ben is asked to write the procedure in such a fashion that

it only walks over the ticker once (whereas the procedure above must walk over the list twice).

Complete Ben's procedure below, and show the price-range for Acme's stock:

6.001, Fall Semester, 1998|Problem Set 2 6

(define (price-range ticker)

(define (helper ticker low-so-far high-so-far)

(if (null? ticker)

<??>

(helper <??>

(min <??> <??>)

(max <??> <??>))))

(helper (cdr ticker) (car ticker) (car ticker)))

On the Floor of the Exchange

So far we have just considered the ticker tape of prices. Now let's go onto the \oor" and consider

in more detail the way in which trades (buying and selling) of stock occur.

In stock trading, the ask or o�er-price is what a seller o�ers to sell at, while the bid-price is what a

buyer is willing to pay. In both cases, the o�erer or bidder must say not only what price she or he

desires, but also the number of shares that the o�er or bid applies to. We will use a Scheme pair

(cons cell) to represent a bid as the combination of the bid-price and number of shares (or bid-

shares), and will similarly represent the offer as the combination of the ask-price and ask-shares.

(Note that we will use the term o�er or ask interchangeably.)

(define (ask-price ask) (car ask))

(define (ask-shares ask) (cdr ask))

(define (bid-price bid) (car bid))

(define (bid-shares bid) (cdr ask))

In this exercise, we assume an idealized market in which an o�er is made, followed immediately by

a bid, followed by another o�er, and so on in a paired alternating fashion. Suppose we now have a

record of the bid and ask prices for our stock (by our rules above these two lists will always be of

equal length):

(define ibm-ask (list (cons 101.0 200) (cons 100.5 200) (cons 101.0 100)))

(define ibm-bid (list (cons 100.5 100) (cons 100.5 100) (cons 101.0 100)))

The spread is the di�erence between the ask price and the bid price. When the spread becomes

zero (or less than zero, although the rules are such that this should not occur), a trade will occur

at the agreed upon price. For example, in the second round of the above case someone o�ers 200

shares of IBM for 100 1/2, and someone agrees to buy just 100 of those shares for 100 1/2. The

di�erence or spread in price has gone to zero, and 100 shares change hands.

Computer Exercise 6: price-spreads. Write a procedure price-spreads that takes as argu-

ments the list of o�ers and the list of bids, and computes a list of the spreads in the stock price for

the day (you may assume the two lists are equal in length).

To begin, write this so that your procedure directly walks over the two lists (e.g. using car, cdr,

cons, null?, and appropriate accessor functions). Is your process recursive or iterative, and what

are the orders of growth in space and time? Show the list of spreads for Acme stock over the day.

6.001, Fall Semester, 1998|Problem Set 2 7

Computer Exercise 7: map2. Now, create a new higher order procedure map2 of the form
(map2 <proc> <lst1> <lst2>) that maps the procedure proc over two lists in sync and produces
an output list consisting of the resulting of proc applied to the two respective elements of the list.
For example,

(map2 + (list 1 2 3) (list 10 11 12))

==> (11 13 15)

Re-implement your price-spreads procedure to use map2.

Computer Exercise 8: trade?. Next, we want to produce an indication of when a trade occurs

or not. Write a procedure trade? that takes a single o�er (the pair of the ask-price and ask-shares),

and a single bid (the pair of the bid-price and bid-shares), and returns true (#t) if a trade can occur

or false (#f) otherwise.

Now given a list of o�ers and a list of bids as above, we wish to produce as output the ticker of

stock prices (consisting only of the prices at which shares have actually exchanged hands) such as

we saw in computer exercise 1. Write a procedure ticker-prices that works as:

(ticker-prices ibm-asks ibm-bids)

==> (100.5 101.0)

Computer Exercise 9: merge2. Ace analyst Ben Bitdiddle discovers that a common pattern

appears again and again in procedures he is writing to look at the lists of bids and o�ers. He

sees procedures that take two input lists, walk down the lists in parallel, perform some predicate

or test on the items in the list, and depending on the outcome of the test perform \map-like"

computation on the list. Ben decides he wants to abstract out this common pattern as another

helpful higher order procedure that does a two-list �lter integrated with a two-argument map on

the result, e.g. of the form (merge2 <pred> <proc> <list1> <list2>) that might work as in the

following example to produce the sums of the items in a list when both items are odd:

(merge2 (lambda (x y) (and (odd? x) (odd? y)))

+

(list 1 2 3 4)

(list 5 3 5 3))

==> (6 8)

Complete the code for this merge2 higher order procedure:

(define (merge2 pred proc list1 list2)

(cond ((null? list1) nil)

((<??> (car list1) (car list2))

(cons (<??> (car list1) (car list2))

(<??> pred proc (cdr list1) (cdr list2))))

(else (<??> pred proc (cdr list1) (cdr list2)))))

6.001, Fall Semester, 1998|Problem Set 2 8

Computer Exercise 10: ticker-prices using merge2. With this new powerful higher order

merge2 procedure, you can write quite a number of useful analysis procedures with relatively little

e�ort. First, rewrite your ticker-prices procedure to take advantage of merge2.

(define (ticker-prices asks bids)

(merge2 trade?

(lambda (ask bid) (car ask))

asks bids))

Computer Exercise 11: ticker-shares using merge2. In the daily stock market report, the

public is often very interested in knowing the volume (total number of shares traded). Using

the merge2 procedure, write a new procedure (ticker-shares <ask-list> <bid-list>) that

produces a list consisting of the number of shares for each individual trade (again, just for those

cases where a trade actually occurs). Show how this can be used with accumulate to create a

procedure total-shares that takes the asks and bids, and produces the the total number of shares

exchanged. Show the ticker-shares and total-shares results for Acme.

Computer Exercise 12: price-volume. Ben is asked to write a procedure price-volume that

tells the total dollars that change hands for a given stock during the day, which is simply the sum

of the product of the volume and price for any given trade that occurs. Write this procedure which

takes as its arguments the list of asks and the list of bids for the day, and demonstrate that it

works.

3. At the Acme Industries Plant - Tree Manipulation Procedures

We now have the opportunity to visit Acme's manufacturing plant to understand better how they

assemble their products. Acme makes widgets. A widget is a complex object assembled from

some number of smaller components. Each of these components may also be made up of smaller

subcomponents, and this \nesting" of subcomponents can be arbitrary deep for arbitrarily complex

widgets. Acme needs representations to help (a) manage the time and number of manufacturing

stations needed to build widgets, (b) manage the number of components that go into a widget, and

(c) analyze the cost of building widgets.

The �rst challenge is to represent the sequence of operations and time required to build widgets.

Acme uses a tree structure as illustrated in Figure 1 to indicate both the overall structure of their

assembly procedure, and the time required to put together parts. A leaf is inserted into the tree for

each \manufacturing station," which is the physical location on the plant oor where people and

machines assemble some particular subcomponent. For this leaf in the tree, Acme indicates the

number of hours it takes to assemble that component or part of the widget. If a part that is going

into the assembly must itself be assembled, then that part is represented as a subtree (or \node")

rather than as the number of hours. For example, the brand new \NeoWidget" that Acme has

recently begun selling consists of three top-level operations (as illustrated in Figure 1): putting the

backplane together (taking 5 hours), putting the various sprockets together and into the backplane

(which can take up to 9 hours), and putting the operator controls on the front (which takes 1

6.001, Fall Semester, 1998|Problem Set 2 9

hour). The assembly of the sprockets is an assembly suboperation, which consists of assembling a

frob (2 hours), together with a doo-dad consisting of some big sprockets (4 hours) and some small

sprockets (3 hours). The assembly hours representation is:

(define NeoWidget-hours (list 5 (list 2 (list 4 3)) 1))

which is drawn in a tree form as shown in Figure 1. For now, we will assume that manufacturing

occurs in a sequential assembly line fashion, where the product moves from one manufacturing

station to the next in sequence. In the case of the NeoWidget, the assembly line consists of a

sequence of �ve stations.

2 hr

4 hr

1 hr

3 hr

5 hr

5 hr

2 hr

4 hr

3 hr

1 hr

Figure 1: Number of hours required in making and assembling the various elements of the Acme

NeoWidget. The left �gure shows the tree-oriented representation of the time required to make the

widget (and each of its sub-assemblies). The right �gure shows the order of operations assuming a

sequential assembly line.

Computer Exercise 13: assembly-line-hours. Given a tree representation of an assembly

operation, the �rst job is to write a procedure assembly-line-hours that produces the total num-

ber of hours required to make a widget. For example, (assembly-line-hours NeoWidget-hours)

==> 15. Hint: you may �nd the fringe procedure you wrote in the tutorial exercises to be helpful,

as well as other higher order procedures.

In the problem set code, the assembly tree for the Acme \MegaWidget" is also de�ned (provided as

MegaWidget-hours). Show the number of hours required to make a MegaWidget using an assembly

line.

Computer Exercise 14: Tree Accumulation. Another way to think about the procedure

assembly-line-hours is as a special case of tree accumulation, analogous to list accumulation.

Unlike a simple list accumulation, in a tree we can have two kinds of \end conditions" { when

we hit the end of a tree or subtree, and when we hit a leaf of the tree. We will add some

exibility to tree-accumulate so that we can apply one procedure (op) to a leaf, and another

6.001, Fall Semester, 1998|Problem Set 2 10

procedure (combiner) to aggregate the tree. Complete the de�nition of the higher order procedure

tree-accumulate below:

(define (tree-accumulate combiner op initial tree)

(cond ((null? tree) <??>)

((not (pair? tree))

(<??> tree))

(else

(<??> (tree-accumulate combiner op initial (<??> tree))

(tree-accumulate combiner op initial (<??> tree))))))

Now rewrite your assembly-line-hours to use this procedure.

Computer Exercise 15: count-line-stations. We would like to be able to compute how

many manufacturing stations (locations where assembly occurs) are needed in the serialized as-

sembly line for a given product. Write a procedure count-line-stations that, given the tree of

operations for a product (e.g. NeoWidget-hours), counts the number of stations required. Hint: we

need exactly one station for each leaf in the tree, e.g. (count-line-stations NeoWidget-hours)

==> 5. How many assembly line stations will be needed to make the MegaWidget?

Parallel Manufacturing

As the whiz-bang outside consultant, you have been asked to see if there is any way to speed up

the assembly process and shorten the manufacturing time for the product. You argue that many

of the operations can be performed in parallel rather than in sequence. In discussion with the

manufacturing personnel, they determine that parts can indeed be assembled in parallel; however

each subassembly (indicated by a node rather than a leaf in the tree assembly representation) will

then require an additional assembly work station to put together the sub-assemblies coming from

the respective parallel stations. In the previous assembly line situation, nodes did not require a

work station, as assembly only took place (in left to right sequence) at points corresponding to

leaves in the tree. One additional hour will also be needed at each of these \merge" stations. This

situation is shown schematically in Figure 2. Thus, for the NeoWidget, an additional hour (and

work station) is needed after the completion of the 3 hour and 4 hour parallel operations; another

hour (and station) is need to then merge with the parallel 2 hour operation, and a �nal additional

hour (and a third additional station) is needed to merge with the parallel 5 and 1 hour operations;

thus a total of 7 hours (and 8 work stations) will be required. Note that we are \pipelining"

multiple instances of the same part number through the assembly line or parallel assembly ow, so

that when one part (serial number) moves to the next station, the next part (with the next serial

number) comes into that station. For this reason, we do not \share" or reuse stations that might

appear to be unoccupied because of the sequencing requirements.

Computer Exercise 16: assembly-parallel-hours. To help determine how much better this

parallel assembly is, you are asked to write a procedure assembly-parallel-hours that works on

the original tree of operations (e.g. NeoWidget-hours), and computes the total number of hours

6.001, Fall Semester, 1998|Problem Set 2 11

5 hr

2 hr

4 hr

3 hr

1hr

1hr
1hr

1hr

Total
time
7 hr

Figure 2: The same assembly operation in a \Gantt-chart" like form. The horizontal axis is time,

with required sequencing constraints and additional assembly time (1 hour) due to putting together

parallel assemblies shown.

required to make the product, assuming that complete parallel manufacturing can be achieved but

including the extra one hour assembly time needed for respective merge operations.

Hint: this will be one hour more than the maximum number of hours it takes to parallel assemble

all the subcomponents of the widget. You may also �nd higher order procedures de�ned earlier,

such as list-max, to be helpful, together with wishful thinking.

How long will it take to assemble a MegaWidget in parallel?

Computer Exercise 17: count-parallel-stations. Next, write a procedure which counts

the total number of manufacturing stations needed in a parallel assembly situation, including

the additional stations needed to merge or integrate the parallel-fabricated parts. The proce-

dure count-parallel-stations should take as argument the assembly hours tree structure (e.g.

NeoWidget-hours). For our example in Figure 2, we need three additional stations in addition

to the �ve original operations for a total of eight stations. In terms of our tree structure, this is

equivalent to counting the sum of the number of leaves and nodes within the tree; you may �nd it

useful to think about using the list HOPs if tree-accumulate does not match your needs.

How many manufucturing stations are needed if we parallel produce the MegaWidget?

Computer Exercise 18: parallel-scale. Acme is interested to know how much more quickly

the NeoWidget (and in general any product) can be built if the underlying operation time could

be reduced by some factor. For example, suppose the pure assembly time (corresponding to leaves

in the original assembly tree) could be halved for all sub-assemblies, but the \merge" time of one

hour remains for each of the additionally required merge stations. Clearly, the overall manufacture

time is not in general half that of the original, because of the overhead of the merge time. For

example

(parallel-scale 0.5 NeoWidget)

==> 0.643 ; from 4.5/7.0

6.001, Fall Semester, 1998|Problem Set 2 12

Write the procedure parallel-scale that takes as the �rst argument the factor by which we are

able to scale the primitive assembly operations, takes as the second argument the assembly tree for

some product, and returns the fraction of time the new manufacturing plant would take assuming

parallel assembly. You may �nd it useful to implement a procedure map-tree which maps some

procedure over the leaves of a tree to produce a new tree; this can be easily be implemented in

terms of accumulate-tree.

What is this time bene�t if we cut the raw assembly time for the MegaWidget in half?

Acme Manufacturing Components and Cost

In addition to the assembly time, Acme is interested in determining the component or part counts

and costs for its widgets. Again, a tree representation is chosen. The parts-count tree mirrors

the structure of the previous assembly tree, with one important di�erence: for each leaf node in

the assembly tree (where we indicated the number of hours required to assemble that component),

the parts-count tree instead has a list of the numbers of di�erent kinds of purchased parts that are

needed for assembly of that component.

In addition, the parts-cost tree is structured in parallel to the parts-count tree, but giving the

cost (in dollars) of each of the corresponding primitive parts used in that assembly. These two new

tree data structures are illustrated for the NeoWidget in Figure 3.

10 5 10

7 8

2 2 3 2

1 2 3 4 $1 $2 $1

$2 $2

$5 $7 $10 $2

$3 $2 $1 $15

Figure 3: The parts-count tree (left), and parts-cost tree (shown to the right) corresponding to the

NeoWidget shown in Figure 1.

Computer Exercise 19: sum-parts-cost. To help manage costs, Acme wants to know how

much the raw materials in their widgets are costing. Write a procedure sum-parts-cost that takes

a parts-count tree and a parts-cost tree, and computes the sum of the costs of the parts of the assem-

bly, e.g. (sum-parts-cost NeoWidget-hours NeoWidget-parts-count NeoWidget-parts-cost)

==> 188. Hint: you may �nd the fringe, map2, and accumulate procedures to be helpful. Given

de�nitions for the trees MegaWidget-parts-count and MegaWidget-parts-cost in the problem

set code, what is the sum of the parts costs for the MegaWidget?

6.001, Fall Semester, 1998|Problem Set 2 13

Computer Exercise 20: summarized-costs-tree. In order to get an even better picture of

where the parts costs are coming from, Acme wants a procedure that will create a new tree for

them with some summarized parts cost information embedded in that tree. Write a procedure

summarized-costs-tree that takes as arguments an assembly tree, a parts-count tree, and a parts-

cost tree, and produces a new tree where the total parts cost for each subassembly is given rather

than the assembly hours. For example, For example, (summarized-costs-tree NeoWidget-hours

NeoWidget-parts-count NeoWidget-parts-cost) ==> (30 (30 (24 34)) 70). Note that the

resulting tree should have the same structure (leaves and nodes in the same locations) as the

assembly tree.

A possible strategy is to walk all three trees together, but use the structure of the assembly tree to

guide what to do with the other two trees.

Create a summarized costs tree for the MegaWidget.

Problem Set Writeup. Turn in answers to the following questions along with your answers to

the questions in the problem set:

1. About how much time did you spend on this homework assignment? (Reading and preparing

the assignment plus computer work.)

2. Which scheme system(s) did you use to do this assignment (for example: 6.001 lab, your own

NT machine, your own Win95 machine, your own Linux machine)?

3. We encourage you to work with others on problem sets as long as you acknowledge it (see

the 6.001 General Information handout).

� If you cooperated with other students, LA's, or others, or found portions of your answers

for this problem set in references other than the text (such as some of the archives),

please indicate your consultants' names and your references. Also, explicitly label all

text and code you are submitting which is the same as that being submitted by one of

your collaborators.

� Otherwise, write \I worked alone using only the reference materials," and sign your

statement.

