MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Fngineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall Semester, 1996

Lecture Notes — October 29, 1996

Concurrency and Time/State

Introducing mutation (e.g. set!) into our language forces us to confront what we mean by equality
and change.

An example of a simple procedure that is referentially transparent:

An example of a simple procedure involving mutation that is NOT referentially transparent:

Mutation has introduced issues of time directly into our language.

Consider two withdrawals from a joint bank account. Sketch below an example of why concurrent
procedures can cause problems:



6.001, Fall Semester, 1996—Lecture Notes — October 29, 1996 2

Possible restrictions on concurrent programming that will fix the problem of accessing shared
variables:

Serialization
Suppose we extend Scheme to include a procedure called parallel-execute:

(parallel-execute p1 p2... pPk)

Each p must be a procedure of no arguments. Parallel-execute creates a separate process for
each p, which applies p (to no arguments). These processes all run concurrently.

As an example of how this is used, consider

(define x 10)

(parallel-execute (lambda () (set! x (* x x)))
(lambda () (set! x (+ x 1))))

Here are the possible outcomes

e 101: P; sets x to 100 and then P, increments x to 101.
e 121: P, increments x to 11 and then P; sets x to x times x.

e 110: P, changes x from 10 to 11 between the two times that P; accesses the value of x during
the evaluation of (* x x).



6.001, Fall Semester, 1996—Lecture Notes — October 29, 1996 3

e 11: P, accesses x, then P; sets x to 100, then P, sets x.

e 100: P accesses x (twice), then P, sets x to 11, then P; sets x.

But with serialization

(define x 10)
(define s (make-serializer))

(parallel-execute
(s (lambda () (set! x (* x x))))
(s (lambda () (set! x (+ x 1)))))

can produce only two possible values for x, 101 or 121. The other possibilities are eliminated,
because the execution of P; and P cannot be interleaved.

We can fix our bank account example:

(define (make-account balance)
(define (withdraw amount)
(if (>= balance amount)
(begin (set! balance (- balance amount))
balance)
"Insufficient funds"))
(define (deposit amount)
(set! balance (+ balance amount))
balance)
(let ((protected (make-serializer)))
(define (dispatch m)
(cond ((eq? m ’withdraw)
(protected withdraw))
((eq? m ’deposit)
(protected deposit))
((eq? m ’balance) balance)
(else (error "Unknown request
—-- MAKE-ACCOUNT"
m))))
dispatch))

A procedure to swap balances in two accounts

(define (exchange accountl account?2)
(let ((difference (- (accountl ’balance)
(account?2 ’balance))))
((accountl ’withdraw) difference)
((account2 ’deposit) difference)))

Suppose Paul swaps ¢l and a2 at the same time that Peter swaps al and a3.

Peter might compute difference between al and a2 but then Paul might change the balance in al
before Peter is able to complete the exchange.

So instead we can export a serializer:



6.001, Fall Semester, 1996—Lecture Notes — October 29, 1996

(define (make-account-with-serializer balance)
(define (withdraw amount)
(if (>= balance amount)
(begin (set! balance (- balance amount))
balance)
"Insufficient funds"))
(define (deposit amount)
(set! balance (+ balance amount))
balance)
(let ((balance-serializer (make-serializer)))
(define (dispatch m)
(cond ((eq? m ’withdraw) withdraw)
((eq? m ’deposit) deposit)
((eq? m ’balance) balance)
((eq? m ’serializer)
balance-serializer)
(elge (error "Unknown request —-- MAKE-ACCOUNT"
m))))
dispatch))

Now each user must explicitly manage serialization.

(define (deposit account amount)
(let ((s (account ’serializer))
(d (account ’deposit)))
((s d) amount)))

But exchanging is now straightforward.

(define (serialized-exchange accountl account?2)
(let ((serializeri (accountl ’serializer))
(serializer?2 (account?2 ’serializer)))
((serializerl (serializer2 exchange))
accountl1
account?2)))

An implementation of a serializer:

(define (make-serializer)
(let ((mutex (make-mutex)))
(lambda (p)
(define (serialized-p . args)
(mutex ’acquire)
(let ((val (apply p args)))
(mutex ’release)
val))
serialized-p)))

(define (make-mutex)
(let ((cell (list false)))
(define (the-mutex m)
(cond ((eq? m ’acquire)
(if (test-and-set! cell)
(the-mutex ’acquire))) ; retry
((eq? m ’release) (clear! cell))))
the-mutex))



6.001, Fall Semester, 1996—Lecture Notes — October 29, 1996

(define (clear! cell)
(set-car! cell false))

(define (test-and-set! cell)
(if (car cell)
true
(begin (set-car! cell true)
false)))



