

PIC Programming
in Assembly

(http://www.mstracey.btinternet.co.uk/index.htm)

Tutorial 1
Good Programming Techniques.

Before we get to the nitty gritty of programming the PIC, I think now is a
good time to explain some good programming techniques.

If you type a ; (semicolon) anywhere in your program, the compiler will
ignore anything after it until the carriage return. This means we can add
comments in our program to remind us of what on earth we were doing in
the first place. This is good practice, even for the simplest programs.
You may well fully understand how your program works now, but in a few
months time, you may be scratching your head. So, use comments
wherever you can – there is no limit.

Secondly, you can assign names to constants via registers (more about
these later). It makes it far easier to read in English what you are writing
to, or what the value is, rather than trying to think of what all these
numbers mean. So, use real names, such as COUNT. Notice that I have
put the name in capitals. This makes it stand out, and also means that
(by convention) it is a constant value.

Thirdly, put some kind of header on your programs by using the semi-
colons. An example is below:

;;;
; Author : ;
; Date : ;
; Version: ;
; Title: ;
; ;
; Description: ;

; ;
; ;
; ;
; ;
; ;
; ;
; ;
; ;
; ;
;;;

Notice that I have made a kind of box by using the semi-colons. This just
makes it look neat.

Finally, try and document the program on paper as well. You can either
use flow charts or algorithms or anything else you want. This will help
you in writing your program, step by step.

 Right, that’s the lecture over with, lets move on to the real stuff.

Tutorial 2

The Registers.

A register is a place inside the PIC that can be written to, read from or
both. Think of a register as a piece of paper where you can look at and
write information on.

The figure below shows the register file map inside the PIC16F84. Don’t
worry if you haven’t come across anything like this before, it is only to
show where the different bits and pieces are inside the PIC, and will help
explain a few of the commands.

First thing you will notice is that it is split into two - Bank 0 and Bank 1.
Bank 1 is used to control the actual operation of the PIC, for example to
tell the PIC which bits of Port A are input and which are output. Bank 0 is
used to manipulate the data. An example is as follows: Let us say we
want to make one bit on Port A high. First we need to go to Bank 1 to set
the particular bit, or pin, on Port A as an output. We then come back to
Bank 0 and send a logic 1 (bit 1) to that pin.

The most common registers in Bank 1 we are going to use are STATUS,
TRISA and TRISB. The first allows us to come back to Bank 0, TRISA
allows us to select which pins on Port A are output and which are input,
TRISB allows us to select which pins on Port B are output and which are
input. The SELECT register in Bank 0 allows us to switch to Bank 1.

Let us take a closer look at these three registers.

STATUS

To change from Bank 0 to Bank 1 we tell the STAUS register. We do this
by setting bit 5 of the STATUS register to 1. To switch back to Bank 0,
we set bit 5 of the STATUS register to 0. The STATUS register is located
at address 03h (the ‘h’ means the number is in Hexadecimal).

TRISA and TRISB.

These are located at addresses 85h and 86h respectively. To program a
pin to be an output or an input, we simply send a 0 or a 1 to the relevant
bit in the register. Now, this can either be done in binary, or hex. I
personally use both, as the binary does help visualize the port. If you are
not conversant with converting from binary to hex and vice versa, then
use a scientific calculator.

So, on Port A we have 5 pins, and hence 5 bits. If I wanted to set one of
the pins to input, I send a ‘1’ to the relevant bit. If I wanted to set one of
the pins to an output, I set the relevant bit to ‘0’. The bits are arranges in
exactly the same way as the pins, in other words bit 0 is RA0, bit 1 is
RA1, bit 2 is RA2 and so on. Let’s take an example. If I wanted to set
RA0, RA3 and RA4 as outputs, and RA1 and RA2 as inputs, I send this:
 00110 (06h). Note that bit zero is on the right, as shown:

Port A Pin RA4 RA3 RA2 RA1 RA0

Bit Number 4 3 2 1 0

Binary 0 0 1 1 0

The same goes for TRISB.

PORTA and PORTB

 To send one of our output pins high, we simply send a ‘1’ to the
corresponding bit in our PORTA or PORTB register. The same format
follows as for the TRISA and TRISB registers. To read if a pin is high or
low on our port pins, we can perform a check to see if the particular
corresponding bit is set to high (1) or set to low (0)

Before I give an example code, I need to explain just two more register –
w and f.

W

The W register is a general register in which you can put any value that
you wish. Once you have assigned a value to W, you can add it to
another value, or move it. If you assign another value to W, its contents
are overwritten.

An Example Code.

I am going to give you some example code on what we have just learnt.
Don’t try and compile this yet, we will do that when we come to our first
program. I am just trying to show how the above is actually programmed
and introduce a couple of instructions along the way. I am going to set up
Port A as per the example above.

First, we need to switch from Bank 0 to Bank 1. We do this by setting the
STATUS register, which is at address 03h, bit 5 to 1.

 BSF 03h,5

The BSF Means Bit Set F. The letter F means that we are going to use a
memory location, or register. We are using two numbers after this
instruction – 03h, which is the STATUS register address, and the number
5 which corresponds to the bit number. So, what we are saying is “Set bit
5 in address 03h to 1”.

We are now in Bank 1.

MOVLW b'00110'

We are putting the binary value 00110 (the letter b means the number is
in binary) into our general purpose register W. I could of course have
done this in hex, in which case our instruction would be:

MOVLW 06h

Either works. The MOVLW means ‘Move Literal Value Into W’, which in
English means put the value that follows directly into the W register.

Now we need to put this value onto our TRISA register to set up the port:

MOVWF 85h

This instruction means “Move The Contents Of W Into The Register
Address That Follows”, in this case the address points to TRISA.

Our TRISA register now has the value 00110, or shown graphically:

Port A Pin RA4 RA3 RA2 RA1 RA0

Binary 0 0 1 1 0

Input/Output O O I I O

Now we have set up our Port A pins, we need to come back to Bank 0 to
manipulate any data.

BCF 03h,5

This instruction does the opposite of BSF. It means “Bit Clear F”. The
two numbers that follow are the address of the register, in this case the
STATUS register, and the bit number, in this case bit 5. So what we have
done now is set bit 5 on our STAUS register to 0

We are now back in Bank 0.

Here is the code in a single block:

BSF
03h,5
;Go to Bank 1
MOVLW
06h
 ;Put 00110
into W
MOVWF
85h
;Move 00110
onto TRISA
BCF
03h,5
;Come back to
Bank 0

Read this through a couple of times, until it is you can follow it. So far we
have looked at 4 instructions. Only 31 to go!

Tutorial 3

Writing To the Ports.

In the last tutorial, we I showed you how to set up the IO port pins on the
PIC to be either input or output. In this tutorial, I am going to show you
how to send data to the ports. In the next tutorial, we will finish off by
flashing an LED on and off which will include a full program listing and a
simple circuit diagram so that you can see the PIC doing exactly what we
expect it to. Don’t try and compile and program your PIC with the listings
here, as they are examples only.

First, let us set up Port A bit 2 as an output:

bsf 03h,5 ;Go to Bank 1
movlw 00h ;Put 00000 into W
movwf 85h ;Move 00000 onto TRISA – all pins
set to output
bcf 03h,5 ;Come back to Bank 0

This should be familiar from the last tutorial. The only difference is that I
have set all of the pins on Port A as output, by sending 0h to the tri-state
register.

Now what he have to do is turn an LED on. We do this by making one of
the pins (the one with the LED connected to it) high. In other words, we
send a ‘1’ to the pin. This is how it’s done (note the comments for an
explanation of each line):

movlw 02h ;Write 02h to the W register. In binary this is 00010, which
 ;puts a ‘1’ on bit 2 (pin 18) while keeping the other pins to ‘0’

movwf 05h ;Now move the contents of W (02h) onto the PortA, whose
 ;address is 05h

So, now our LED is on, we now need to turn it off:

movlw 00h ;Write 00h to the W register. This puts a ‘0’ on all pins.

movwf 05h ;Now move the contents of W (0h) onto the Port A, whose
 ;address is 05h

So, what we have done is turn the LED on then off once.

What we want is for the LED to turn on then off continuously. We do this
by getting the program to go back to the beginning. We do this by first
defining a label at the start of our program, and then telling the program to
keep going back there.

We define a label very simply. We type a name, say START, then type
the code:

Start movlw 02h ;Write 02h to the W register. In binary this is
 ;00010, which puts a ‘1’ on pin 2 while keeping
 ;the other pins to ‘0’

movwf 05h ;Now move the contents of W (02h) onto the
 ;PortA, whose address is 05h

movlw 00h ;Write 00h to the W register. This puts a ‘0’ on
 ;all pins.

movwf 05h ;Now move the contents of W (0h) onto the Port
 ;A, whose address is 05h

 goto Start ;Goto where we say Start

As you can see, we first said the word ‘Start’ right at the beginning of the
program. Then, right at the very end of the program we simply said ‘goto
Start’. The ‘goto’ instruction does exactly what it says.

This program will continuously turn the LED on and off as soon as we
power up the circuit, and will stop when we remove power.

I think we should look at our program again:

 bsf 03h,5
 movlw 00h
 movwf 85h
 bcf 03h,5
Start movlw 02h
 movwf 05h
 movlw 00h
 movwf 05h
 goto Start

OK, I know I have left the comments off. But, do you notice that all we
can see are instructions and numbers? This can be a little confusing if
you are trying to debug the program later, and also when you write the
code you have to remember all of the addresses. Even with the
comments in place, it can get a bit messy. What we need is to give these
numbers names. This is accomplished by another instruction: ‘equ’.

The ‘equ’ instruction simply means something equals something else. It
is not an instruction for the PIC, but for the assembler. With this
instruction we can assign a name to a register address location, or in
programming terms assign a constant. Let us set up some constants for
our program, then you will see how much easier to read the program is.

STATUS equ 03h ;this assigns the word STATUS to the value of 03h,
 ;which is the address of the STATUS register.

TRISA equ 85h ;This assigns the word TRISA to the value of 85h,
 ;which is the address of the Tri-State register for PortA

PORTA equ 05h ;This assigns the word PORTA to 05h which is the
 ;address of Port A.

So, now we have set up our constant values, let us put these into our
program. The constant values must be defined before we can use them,
so to be sure always put them at the start of the program. I will re-write
the program without comments again, so that you can compare the
previous listing to the new one:

STATUS equ 03h
TRISA equ 85h
PORTA equ 05h

 bsf STATUS,5
 movlw 00h
 movwf TRISA
 bcf STATUS,5

Start movlw 02h
 movwf PORTA
 movlw 00h
 movwf PORTA
 goto Start

Hopefully, you can see that the constants make following the program a little easier,
even though we still have not put the comments in. However, we are not quite finished.

Tutorial 4

Delay Loops.

There is one slight drawback to our flashing LED program. Each
instruction takes one clock cycle to complete. If we are using a 4MHz
crystal, then each instruction will take 1/4MHz, or 1uS to complete. As
we are using only 5 instructions, the LED will turn on then off in 5uS. This
is far too fast for us to see, and it will appear that the LED is permanently
on. What we need to do is cause a delay between turning the LED on
and turning the LED off.

The principle of the delay is that we count down from a previously set
number, and when it reaches zero, we stop counting. The zero value
indicates the end of the delay, and we continue on our way through the
program.

So, the first thing we need to do is to define a constant to use as our
counter. We will call this constant COUNT. Next, we need to decide how
big a number to start counting from. Well, the largest number we can
have is 255, or FFh in hex. Now, as I mentioned in the last tutorial, the
equ instruction assigns a word to a register location. This means that
whatever number we assign our COUNT, it will equal the contents of a
register.

If we try and assign the value FFh, we will get an error when we come to
compile the program. This is because location FFh is reserved, and so
we can’t access it. So, how do we assign an actual number? Well, it
takes a little bit of lateral thinking. If we assign our COUNT to the
address 08h, for example, this will point to a general purpose register
location. By default, the unused locations are set to FFh. Therefore, if
COUNT points to 08h, it will have the value of FFh when we first switch
on.

But, I hear you cry, how do we set COUNT to a different number? Well,
all we do is ‘move’ a value to this location first. For example, if we wanted
COUNT to have a value of 85h, we can’t say COUNT equ 85h because
that is the location of out Tri-State register for Port A. What we do is this:

movlw 85h ;First put the value of 85h in the W register

movwf 08h ;Now move it to our 08h register.

Now, when we say COUNT equ 08h, COUNT will equal the value 85h.
Subtle, isn’t it!

So, first we define our constant:

COUNT equ 08h

Next we need to decrease this COUNT by 1 until it reaches zero. It just
so happens that there is a single instruction that will do this for us, with
the aid of a ‘goto’ and a label. The instruction we will use is:

DECFSZ COUNT,1

This instruction says ‘Decrement the register (in this case COUNT) by the
number that follows the comma. If we reach zero, jump two places
forward.’ A lot of words, for a single instruction. Let us see it in action
first, before we put it into our program.

COUNT equ 08h
LABEL decfsz COUNT,1
 goto LABEL
 Carry on here.
 :
 :
 :

What we have done is first set up our constant COUNT to 255. The next
line puts a label, called LABEL next to our decfsz instruction. The decfsz
COUNT,1 decreases the value of COUNT by 1, and stores the result
back into COUNT. It also checks to see if COUNT has a value of zero. If
it doesn’t, it then causes the program to move to the next line. Here we
have a ‘goto’ statement which sends us back to our decfsz instruction. If
the value of COUNT does equal zero, then the decfsz instruction causes
our program to jump two places forward, and goes to where I have said
‘Carry on here’. So, as you can see, we have caused the program to stay
in one place for a predetermined time before carrying on. This is called a
delay loop. If we need a larger delay, we can follow one loop by another.

The more loops, the longer the delay. We are going to need at least two,
if we want to see the LED flash..

Let us put these delay loops into our program, and finish off by making it
a real program by adding comments:

;*****Set up the Constants****

STATUS equ 03h ;Address of the STATUS register
TRISA equ 85h ;Address of the tristate register for port A
PORTA equ 05h ;Address of Port A
COUNT1 equ 08h ;First counter for our delay loops
COUNT2 equ 09h ;Second counter for our delay loops

;****Set up the port****

 bsf STATUS,5 ;Switch to Bank 1
 movlw 00h ;Set the Port A pins
 movwf TRISA ;to output.
 bcf STATUS,5 ;Switch back to Bank 0

;****Turn the LED on****

Start movlw 02h ;Turn the LED on by first putting
 movwf PORTA ;it into the w register and then
 ;on the port

;****Start of the delay loop 1****

Loop1 decfsz COUNT1,1 ;Subtract 1 from 255
 goto Loop1 ;If COUNT is zero, carry on.
 decfsz COUNT2,1 ;Subtract 1 from 255
 goto Loop1 ;Go back to the start of our loop.
 ;This delay counts down from
 ;255 to zero, 255 times

;****Delay finished, now turn the LED off****

 movlw 00h ;Turn the LED off by first putting
 movwf PORTA ;it into the w register and then on
 ;the port

;****Add another delay****

Loop2 decfsz COUNT1,1 ;This second loop keeps the
 goto Loop2 ;LED turned off long enough for
 decfsz COUNT2,1 ;us to see it turned off
 goto Loop2 ;

;****Now go back to the start of the program

 goto Start ;go back to Start and turn LED
 ;on again

;****End of the program****

end ;Needed by some compilers,
 ;and also just in case we miss
 ;the goto instruction.

You can compile this program and then program the PIC. Of course, you
will want to try the circuit out to see if it really does work. Here is a circuit
diagram for you to build once you have programmed your PIC.

Congratulations, you have just written your first PIC program, and built a
circuit to flash an LED on and off. So far, if you have followed these
tutorials, you have learnt a total of 7 instruction out of 35, and yet already
you are controlling the I/O ports!

Why not try and alter the delay loops to make the LED flash faster – what
is the minimum value of COUNT to actually see the LED flash? Or, why
not add a third or even more delay loops after the first one to slow the
LED down. You will need a different constant for each delay loop. You
could then even adjust your delay loops to make the LED flash at a given
rate, for example once a second.

In the next tutorial we will see how we can use a thing called a subroutine
to help keep the program small and simple.

Tutorial 5

Subroutines

 A subroutine is a section of code, or program, than can be called as and
when you need it. Subroutines are used if you are performing the same
function more than once, for example creating a delay. The advantages
of using a subroutine are that it will be easier to alter the value once
inside a subroutine rather than, say, ten times throughout your program,
and also it helps to reduce the amount of memory your program occupies
inside the PIC.

Let us look at a subroutine:

ROUTINE COUNT equ 255
LABEL decfsz COUNT,1
 Goto LABEL
 RETURN

First, we have to give our subroutine a name, and in this case I have
chosen ROUTINE. We then type the code that we want to perform as
normal. In this case, I have chosen the delay in our flashing led
program. Finally, we end the subroutine by typing the RETURN
instruction.

To start the subroutine from anywhere in our program, we simply type the
instruction CALL followed by the subroutine name.

Let us look at this in slightly more detail. When we reach the part of our
program that says CALL xxx, where xxx is the name of our subroutine,
the program jumps to wherever the subroutine xxx resides. The
instructions inside the subroutine are carried out. When the instruction
RETURN is reached, the program jumps back to our main program to the
instruction immediately following our CALL xxx instruction.

You can call the same subroutine as many times as you want, which is
why using subroutines reduces the overall length of our program.
However, there are two things you should be aware of. First, as in our
main program, any constants must be declared before they are used.
These can be either declared within the subroutine itself, or right at the
start of the main program. I would recommend that you declare
everything at the start of your main program, as then you know that
everything is in the same place. Secondly, you must ensure that the main
program skips over the subroutine. What I mean by this is if you put the
subroutine right at the end of your main program, unless you use a ‘Goto’
statement to jump away from where the subroutine is, the program will
carry on and execute the subroutine whether you want it to or not. The
PIC does not differentiate between a subroutine and the main program.

Let us look at our flashing led program, but this time we will use a
subroutine for the delay loop. Hopefully, you will see how much simpler
the program looks, and also you will see how the subroutine works for
real.

;*****Set up the Constants****

STATUS equ 03h ;Address of the STATUS register
TRISA equ 85h ;Address of the tristate register for port A
PORTA equ 05h ;Address of Port A
COUNT1 equ 08h ;First counter for our delay loops
COUNT2 equ 09h ;Second counter for our delay loops

;****Set up the port****

bsf STATUS,5 ;Switch to Bank 1
movlw 00h ;Set the Port A pins
movwf TRISA ;to output.
bcf STATUS,5 ;Switch back to Bank 0

;****Turn the LED on****

Start movlw 02h ;Turn the LED on by first putting it
 movwf PORTA ;into the w register and then on the port

;****Add a delay

 call Delay

;****Delay finished, now turn the LED off****

movlw 00h ;Turn the LED off by first putting it
movwf PORTA ;into the w register and then on the port

;****Add another delay****

call Delay

;****Now go back to the start of the program

 goto Start ;go back to Start and turn LED on again

;****Here is our Subroutine

Delay

Loop1 decfsz COUNT1,1 ;This second loop keeps the LED
 goto Loop1 ;turned off long enough for us to
 decfsz COUNT2,1 ;see it turned off
 goto Loop1 ;
return

;****End of the program****

end ;Needed by some compilers, and also
 ;just in case we miss the goto instruction.

Hopefully, you can see that by using a subroutine for our delay loop, we
have reduced the size of the program. Each time we want a delay, either
when the LED is on or off, we simply call the delay subroutine. At the end
of the subroutine, the program goes back to the line following our ‘Call’
instruction. In the example above, we turn the LED on. We then call the
subroutine. The program then returns so that we can turn the LED off.
We call the subroutine again, and when the subroutine has finished, the
program returns and the next instruction it sees is ‘goto Start’.

For those of you who are interested, our original program was 120 bytes
long. By using the subroutine, we have reduced our program size down
to 103 bytes. This may not seem to be that great, but seeing that we only
have 1024 bytes in total inside the PIC, every little bit helps.

In the next tutorial, we will look at reading from the ports.

Tutorial 6

Reading from the I/O ports.

Up to now, we have been writing to Port A so that we can turn an LED on
and off. Now, we are going to look at how we can read the I/O pins on
the ports. This is so that we can connect an external circuit, and act on
any outputs it gives.

If you recall from our previous tutorials, in order to set up the I/O ports, we
had to switch from Bank 0 to Bank 1. Let us do that first:

STATUS equ 03h ;Address of the STATUS register
TRISA equ 85h ;Address of the tristate register for port A
PORTA equ 05h ;Address of Port A
bsf STATUS,5 ;Switch to Bank 1

Now, to set up the port to be an output, we sent a 0 to the TrisA register.
To set a pin on a port to be an input, we send a 1 to the TisA register.

movlw 01h ;Set the Port A pins
 movwf TRISA ;to input.
 bcf STATUS,5 ;Switch back to Bank 0

Now we have set bit 0 of Port A to input. What we need to do now is to
check if the pin is high or low. For this, we can use one of two
instructions: BTFSC and BTFSS.

The BTFSC instruction means ‘Do a bit test on the register and bit we
specify. If it is a 0, then we skip the next instruction’. BTFSS means ‘Do
a bit test in the register and bit we specify. If it is set to a 1, then we skip
the next instruction.’

Which one we use, depends on how we want our program to react when
we read the input. For example, if we are simply waiting for the input to
be a 1, then we could use the BTFSS instruction like this:

Code here
:
BTFSS PortA,0
Goto start
Carry on here
:
:

The program will only move onto ‘Carry on here’ only if bit 0 on PortA is
set to a 1.

Let us now write a program which will flash an LED at one speed, but if a
switch is closed it will flash the LED twice as slow. You can probably
work this program out for yourself, but I have included the listing anyway.
You could try and write the whole program, just to see if you have
grasped the concepts. We are using the same circuit as before, with the
addition of a switch connected RA0 of the PIC and the positive rail of our
supply.

;*****Set up the Constants****

STATUS equ 03h ;Address of the STATUS register
TRISA equ 85h ;Address of the tristate register for port A
PORTA equ 05h ;Address of Port A
COUNT1 equ 08h ;First counter for our delay loops
COUNT2 equ 09h ;Second counter for our delay loops

;****Set up the port****

bsf STATUS,5 ;Switch to Bank 1
 movlw 01h ;Set the Port A pins:
 movwf TRISA ;bit 1to output, bit 0 to input.
 bcf STATUS,5 ;Switch back to Bank 0

;****Turn the LED on****

 Start movlw 02h ;Turn the LED on by first putting it
 movwf PORTA ;into the w register and then on the port

;****Check if the switch is closed

BTFSC PORTA,0 ;Get the value from PORT A
 ;BIT 0. If it is a zero
call Delay ;a zero, carry on as normal.
 ;If is is a 1, then add an
 ;extra delay routine

;****Add a delay

call Delay

;****Delay finished, now turn the LED off****

 movlw 00h ;Turn the LED off by first putting it
 movwf PORTA ;into the w register and then on the port

;****Check if the switch is still closed

BTFSC PORTA,0 ;Get the value from PORT A
 ;BIT 0. If it is a zero,
 call Delay ;carry on as normal.
 ;If is a 1, then add an
 ;extra delay routine

;****Add another delay****

call Delay

;****Now go back to the start of the program

 goto Start ;go back to Start and turn LED on again

;****Here is our Subroutine

Delay

Loop1 decfsz COUNT1,1 ;This second loop keeps the LED
 goto Loop1 ;turned off long enough for us to
 decfsz COUNT2,1 ;see it turned off
 goto Loop1 ;
return

 ;****End of the program****

 end ;Needed by some compilers, and also
 ;just in case we miss the goto instruction.

What I have done here is to turn the LED on. I then check to see if the
switch is closed. If it is closed, then I make a call to our delay subroutine.
This gives us the same delay as before, but we are now calling it twice.
The same goes for when the LED is off. If the switch is not closed, then
we have our old on and off times.

You can compile and run this program. However a word of warning. The
final circuit and code will look un-impressive to someone who is not
interested in programming microcontrollers. So, don’t be upset if, when
you show your family and friends how you can change the speed of a
flashing LED with a switch, they show very little interest – I am talking
from personal experience, here!

If you have been following these tutorials from the start, then you may be
interested to know that you have now learnt 10 of the 35 instructions for
the PIC 16F84! And all of these have been learnt just by simply turning
an LED on and off.

Tutorial 7

So far, we have made the PIC flash an LED on and off. Then we were
able to interact with our PIC by adding a switch, and so altering the flash
rate. The only problem is, the program is very long and very wasteful of
memory. It was fine when I was introducing the commands for for the first
time, but there must be a better way of doing it. Well there is (you knew
that was coming, right?).

Let us examine how we were actually turning the LED on and off.

movlw 02h
movwf PORTA
movlw 00h
movlw PORTA

First we loaded our w register with 02h, then moved it to our PortA
register to turn the LED on. To turn it off, we loaded w with 00h and then
moved it to our PortA register. In between these routines we had to call a
subroutine so that we could see the LED flashing. So, we had to move
two sets of data twice (once into the w register then to PORTA) and call a
subroutine twice (once for on and once for off).

So, how can we do this more efficiently? Simple. We use another
instruction called XORF.

The XORF instruction performs an Exclusive OR function on the register
that we specify with the data we give it. I think I need to explain what on
earth an Exclusive OR is before we go on.

 If we have two inputs, and one output, the output will only be a 1 if, and
only if, the two inputs are different. If they are the same, then the output
will be 0. Here is a truth table, for those who prefer to look at these:

A B F

0 0 0
0 1 1
1 0 1
1 1 0

 Let us now look to what happens if we make B the same as our previous
output, and just changing the value of A:

A B F

0 0 0
0 0 0
1 0 1

1 1 0
1 0 1

 If we keep the value of A equal to 1, and we Exclusive OR it with the
output, the output will toggle. For those who can’t see this from the truth
table, here it is using binary:

 0 Current Output
 EX-OR With 1 1 New Output
 EX-OR With 1 0 New Output

Hopefully you can see that by exlusive ORing the output with 1, we are
now toglling the output from 0 to 1 to 0.

So, to turn our LED on and off, we just need two lines:

MOVLW 02h
XORWF PORTA,1

What we are doing is loading our w register with 02h. We are then
Exclusive ORing this number with whatever is on our PortA. If bit 1 is a 1,
it will change to a 0. If bit 1 is a 0, it will change to a 1.

Let’s run through this code a couple of times, to show how it is working in
binary:

 PORTA
 00010
xorwf 00000
xorwf 00010
xorwf 00000
xorwf 00010

We don’t even need to load the same value into our w register each time,
so we can do this once at the beginning, and just jump back to our toggle
command. Also, we don’t need to set up a value on our PortA register.
Why? Well, because if on power up it is a 1, we will toggle it. I, on the
other hand it is a 0 on power up, we will still toggle it.

So, let us now see our new code. The first one is our original flashing LED, and the
second is where we added a switch:

Flashing LED

;*****Set up the Constants****

STATUS equ 03h ;Address of the STATUS register
TRISA equ 85h ;Address of the tristate register for port A
PORTA equ 05h ;Address of Port A

COUNT1 equ 08h ;First counter for our delay loops
COUNT2 equ 09h ;Second counter for our delay loops

;****Set up the port****

bsf STATUS,5 ;Switch to Bank 1
 movlw 00h ;Set the Port A pins
 movwf TRISA ;to output.
 bcf STATUS,5 ;Switch back to Bank 0
 movlw 02h ;Set up our w register with 02h

;****Turn the LED on and off****

Start xorwf PORTA,1 ;Toggle the LED

;****Add a delay

call Delay

;****Now go back to the start of the program

 goto Start ;go back to Start and turn LED on again

;****Here is our Subroutine

Delay

Loop1 decfsz COUNT1,1 ;This second loop keeps the LED
 goto Loop1 ;turned off long enough for us to
 decfsz COUNT2,1 ;see it turned off
 goto Loop1 ;

return

;****End of the program****

end ;Needed by some compilers, and also
 ;just in case we miss the goto instruction.

Flashing LED With Switch:

;*****Set up the Constants****

STATUS equ 03h ;Address of the STATUS register
TRISA equ 85h ;Address of the tristate register for port A
PORTA equ 05h ;Address of Port A

COUNT1 equ 08h ;First counter for our delay loops
COUNT2 equ 09h ;Second counter for our delay loops

;****Set up the port****

bsf STATUS,5 ;Switch to Bank 1
 movlw 01h ;Set the Port A pins:
 movwf TRISA ;bit 1to output, bit 0 to input.
 bcf STATUS,5 ;Switch back to Bank 0

movlw 02h ; Set up our w register with 02h

;****Turn the LED on and off****

Start xorwf PORTA,1 ;Toggle the LED

;****Check if the switch is closed

BTFSC PORTA,0 ; Get the value from PORT A
 ;BIT 0. If it is a zero,
 call Delay ;carry on as normal.
 ;If is a 1, then add an
 ;extra delay routine

;****Add a delay

call Delay

;****Check if the switch is still closed

BTFSC PORTA,0 ;Get the value from PORT A
 ;BIT 0. If it is a zero,
 call Delay ;carry on as normal.
 ;If is a 1, then add an
 ;extra delay routine

;****Add another delay****

call Delay

;****Now go back to the start of the program

 goto Start ;go back to Start and turn LED on again

;****Here is our Subroutine

Delay

Loop1 decfsz COUNT1,1 ;This second loop keeps the LED
 goto Loop1 ;turned off long enough for us to
 decfsz COUNT2,1 ;see it turned off
 goto Loop1 ;
return

;****End of the program****

end ;Needed by some compilers, and also
 ;just in case we miss the goto instruction.

I hope you can see that by just using one simple instruction, we have
reduced the size of our program. In fact, just to show how much we have
reduced our programs by, I have shown the two programs, what changes
were made, and their sizes in the table below:

Program Change Size (Bytes)

Flashing LED Original 120
Flashing LED Subroutine Added 103
Flashing LED XOR Function Used 91
LED With Switch Original 132
LED With Switch XOR Function Used 124.

So, not only have we learnt some new instructions, we have also reduced
the size of our coding!

 Logical And Arithmetic Operators

Tutorial 8

Here, we are going to examine how to manipulate individual bits, perform
some simple arithmetic, and data tables.

Logical Operators

In the last tutorial I introduced the Exclusive OR function. The ExOR
function is known as a logical operator. In this tutorial I am going to
explain the other logical operators that the PIC supports. There won’t be
any example programs, but I will explain how to use the operators by

using small sections of code.

AND

The AND function simply compares two bits and produces a 1 if they are
the same, and a 0 if they are different. For example, if we said 1 AND 1,
the result is 1, whereas if we said 1 AND 0 the result will be 0. Of course,
we can compare words as well, and all the AND function does is compare
the two words bit by bit. The example below shows two 8-bit words being
ANDed along with the result:

 11001011
AND 10110011
Equals 10000011

As you can see, the result will only have a 1 when two 1s coincide with
each other in the two words. We can use the AND function to check the
ports, for example. If we are monitoring some I/O pins which are
connected to a circuit, and we need to monitor a certain condition where
only some of the pins are high, then we can simply read the port, and
then AND the result with the condition we are checking for, just like the
example above.

The PIC gives us two flavors for AND. They are ANDLW and ANDWF.
ANDLW allows us to perform an AND function with the contents of the W
register, and a number that we specify. The syntax is:

ANDLW <number> where <number> is what we will AND the
contents of W with. The result of the AND function will be stored back
into the W register.

ANDWF allows us to perform an AND function on the W register and
another register, such as a PORT. The syntax is:

ANDWF <register>,d where <register> is the register we are
interested in, e.g. PORTA, and d tells the PIC where to place the result. If
d=0, the result is placed in the W register, and of d=1 the result is stored
in the register we specified.

The two sections of code below show an example of each AND function.
The first is checking the status of the PORTA, where we need to see if
the inputs are 1100. We will put the result back into the W register:

movlw 1100
ANDWF 05h,0

The second example will now check the contents of the W register:

ANDLW 1100

OR

We have already come across one OR function, namely the XOR. This
produced a 1 if two bits are different, but not the same. There is a second
OR function called IOR, which is the inclusive OR. This function will
produce a 1 if either bit is a 1, but also if both bits are 1. Below is a
simple truth table to demonstrate this:

 A B O/P
 0 0 0
 0 1 1
 1 0 1
 1 1 1

Arithmetic Operators

ADD

This function does exactly what it says. It adds two numbers! If the result
of adding the two numbers exceeds 8 bits, then a CARRY flag will be set.
The CARRY flag is located at address 03h bit 0. If this bit is set, then the
two numbers exceeded 8 bits. If it is a 0, then the result lies within 8 bits.

 Again, the PIC gives us two flavors of ADD, namely ADDLW and
ADDWF. As you may have guessed, this is very similar to the above
function. ADDLW adds the contents of the W register to a number that
we specify. The syntax is:

ADDLW <number>

ADDWF will add the contents of the W register and any other register that
we specify. The syntax is:

ADDWF <register>,d where <register is the register we specify and d
tells the PIC where to place the result. If d=0, the result is placed in the
W register, and is d=1 it placed in the register that we specified.

SUB

Now, I bet you can’t guess what this function does! Yes, you guessed it,
this function subtracts one bit from another. Once again the PIC gives us
two flavors: SUBLW and SUBWF. The syntax is exactly the same as for
the ADD function, except of course you type SUB instead of ADD!

Increment

If we wanted to add 1 to a number in the PIC, we could just simply use
the ADD function, and use the number 1. ~The problem with this is that
we have to first put the number into the W register, then use ADDLW 1
command to increment it. If we wanted to add 1 to a register, it is even
worse. We first have to put the number 1 into the W register, then use
ADDWF <register>,1. So, for example, to add 1 to location 0C, say, we
would have to have the following section of code:

movlw 01
addwf 0c,1

There is a better way of doing this. We can use the command INCF. The
syntax is:

INCF <register>,d where <register> is the register, or location, that we
are interested in, and d tells the PIC where to place the result. If d=0, the
result is in the W register, and if d=1, the result is placed in the register
we specified. By using this single instruction we can literally half the
coding. If we wanted the result put back into the W register, then using
the example above, we would have had to add another command to
move the contents of 0C back into the W register, and then put the 0C
register back to whatever it was.

There is another increment command. It is INCFSZ. This command will
increment the register that we specify, but if we the register equals 0 after
the increment (which will happen when we add 1 to 127) then the PIC will
skip the next instruction. The section of code below demonstrates this:

Loop incfsz 0C
 Goto Loop
 :
 :
 Rest of program.

In the above section of code, 0C will be incremented by 1. We then have
an instruction that tells the PIC to go back to our label called Loop, and

increment 0C by 1 again. This carries on until 0C equals 127. This time,
when we increment 0C by 1, 0C will now equal 0. Our INCFSZ
instruction will then tell the PIC to skip the next instruction, which in this
case is the goto statement, and so the PIC will continue with the rest of
the program.

Decrement

I have already covered the decrement function in previous tutorials, so I
won’t repeat myself here.

Compliment

The last instruction in this group will invert all of the bits in the register that
we specify. The syntax is:

COMF <register>,d where <register is the register that we want to invert,
and d will tell the PIC where to store the result. If d=0, the result is stored
in the W register. Id d=1, the result is stored back into the register we
specified. The following example shows this instruction in action:

0C = 11001100

COMF 0C,1

0C = 00110011

This could be use, for example, to quickly turn the pins of a port from
output to input and vice-versa.

Tutorial 9

 BIT Operations

Bit operations allow us to manipulate a single bit within a word. They
allow us to move, set and clear single bits in registers or numbers that we
specify. At the end of this tutorial I will show you a program that will
produce a set of running lights that go one way, then the other way. We
saw this done previously when we looked at the exclusive OR function,
where we Exclusively ORed the ports with a word.

We have already seen a couple of bit operations when we set up the
ports on the PIC, and I will repeat their use here.

BCF

This instruction will clear a bit that we specify in a register that we
specify. The syntax is:

BCF <register>,<bit>

We used this previously to change from page 1 to page 0 by clearing a bit
in the STATUS register. We can also use it to set a bit to 0 in any other
register/location. For example, if we wanted to set the third bit in
11001101 stored in location 0C to 0, we would enter:

BCF 0C,03

BSF

This instruction will set any bit we specify to 1 in any register that we
specify. We used this previously to go from Page 0 to Page 1. The
syntax is:

BSF <register>,<bit>, and is used in
exactly the same way as BCF above.

BTFSC

So far we have set or cleared a bit in a register. But what if we want to
just simply test if a bit is a 1 or a 0 in a register? Well, we can use
BTFSC. It says Bit Test Register F, and Skip If It Is Clear. This
instruction will test the bit we specify in the register. If the bit is a 0, the
instruction will tell the PIC to skip the next instruction. We would use this
instruction if we wanted to test a flag, such as the carry flag. This saves
us having to read the STATUS register and looking at the individual bits
to see which flags are set. For example, if we wanted to test if the Carry
flag had been set to 1 after we have added two numbers, then we would
enter the following:

BTFSC 03h,0
carry on here if set to 1
or here if set to 0

If the status of the bit is a 1, then the instruction immediately following
BTFSC will be carried out. If it is set to a 0, then the next instruction is
skipped. The following section of code shows where it might be used:

Loop :
 :
 :
 BTFSC 03,0
 Goto Loop

In the above code, the PIC will only come out of the loop if bit 0 of the
STATUS register (or the Carry flag) is set to 0. Otherwise, the goto
command will be carried out.

BTFSS

This instruction says Bit Test Register F, And Skip If Set. This is similar
to the BTFSC instruction, except that the PIC will skip the next instruction
if the bit we are testing is set to 1, rather than 0.

CLRF

This instruction will set the entire contents of a register to 0. The syntax
is:

CLRF <register>

We used this previously to set the output of the Ports to 0, by using
CLRF 85h. We also used it to set the Ports to have all pins to output by
using CLRF 05h.

CLRW

This is similar to the CLRF instruction, except is only clears the W
register. The syntax is quite simply:

CLRW

RLF And RRF

These commands will move a bit in a register one place to the left (RLF)
or the right (RRF) in a register. For example, if we had 00000001 and we
used RLF, then we would have 00000010. Now, what happens if we
have 10000000 and carried out the RLF instruction? Well, the 1 will be
placed in the carry flag. If we carried out the RLF instruction again, the 1
will reappear back at the beginning. The same happens, but in reverse,
for the RRF instruction. The example below demonstrates this for the
RLF instruction, where I have shown the 8 bits of a register, and the carry
flag :

 C 76543210
 0 00000001
 RLF 0 00000010
 RLF 0 00000100
 RLF 0 00001000
 RLF 0 00010000
 RLF 0 00100000
 RLF 0 01000000
 RLF 0 10000000
 RLF 1 00000000
 RLF 0 00000001

Example Program

I am now going to give you an example code which you can compile and
run. It will produce a running light starting at PortA bit 0, going to PortB
bit 8 and then back again. Connect LEDs to all of the Port pins. You will
see some of the bit operations mentioned in this tutorial.

TIME EQU 9FH ; Variable for the delay loop.
PORTB EQU 06H ; Port B address.
TRISB EQU 86H ; Port B Tristate address.
PORTA EQU 05H ; Port A address.
TRISA EQU 85H ; Port A Tristate address.
STATUS EQU 03H ; Page select register.
COUNT1 EQU 0CH ; Loop register.
COUNT2 EQU 0DH ; Loop register.

BSF STATUS,5 ; Go to page 1
MOVLW 00H ; and set up
MOVWF TRISB ; both Ports A and B
MOVLW 00H ; to output,

MOVWF TRISA ; then return to
BCF STATUS,5 ; page 0.

MOVLW 00H ; Clear Port A.
MOVWF PORTA ;

 ; Start of main program

RUN
MOVLW 01H ; Set the first bit
MOVWF PORTB ; on Port B.
CALL DELAY ; Wait a while
CALL DELAY ;

; Move the bit on Port B left, then pause.

 RLF PORTB,1

 CALL DELAY
 CALL DELAY

 RLF PORTB,1

 CALL DELAY
 CALL DELAY

 RLF PORTB,1

 CALL DELAY
 CALL DELAY

 RLF PORTB,1

 CALL DELAY
 CALL DELAY

 RLF PORTB,1

 CALL DELAY
 CALL DELAY

 RLF PORTB,1

 CALL DELAY
 CALL DELAY

 RLF PORTB,1

 CALL DELAY
 CALL DELAY

 RLF PORTB,1 ; This moves the bit into the carry flag

; Now move onto Port A, and move the bit left.

RLF PORTA,1 ; This moves the bit from the zero flag into PortA

CALL DELAY
CALL DELAY

RLF PORTA,1

CALL DELAY
CALL DELAY

RLF PORTA,1

CALL DELAY
CALL DELAY

RLF PORTA,1

CALL DELAY
CALL DELAY

; Move the bit back on Port A

RRF PORTA,1

CALL DELAY
CALL DELAY

RRF PORTA,1

CALL DELAY
CALL DELAY

RRF PORTA,1

CALL DELAY
CALL DELAY

RRF PORTA,1 ; This moves the bit into the zero flag

; Now move the bit back on Port B

 RRF PORTB,1

 CALL DELAY
 CALL DELAY

 RRF PORTB,1

 CALL DELAY
 CALL DELAY

 RRF PORTB,1

 CALL DELAY
 CALL DELAY

 RRF PORTB,1

 CALL DELAY
 CALL DELAY

 RRF PORTB,1

 CALL DELAY
 CALL DELAY

 RRF PORTB,1

 CALL DELAY
 CALL DELAY

 RRF PORTB,1

 CALL DELAY
 CALL DELAY ; Now we are back where we started,
 ;
GOTO RUN ; let's go again.

; Subroutine to give a delay between bit movements.

DELAY

MOVLW TIME ; Get the delay time,
MOVWF COUNT1 ; and put it into a variable.

 LOOP1 ;

 DECFSZ COUNT1 ; Decrement 1 from the delay time until it GOTO
LOOP1 ; reaches zero.

MOVWF COUNT1 ; Get the delay time again,

 LOOP2 ; and repeat the count down.
 DECFSZ COUNT1 ;
 GOTO LOOP2 ;

RETURN ; End of subroutine.

END ;

Tutorial 10

Data Tables

There is a nice feature in the instruction set that allows you to use a data
table. A data table is simply a list of data values, where each one is read
depending on some criteria. For example, you might have a circuit that
uses a PIC where it counts the number of times an input pin goes high in
1 second. You can then display the number on a 7 segment display.
Once the timing has started, the PIC counts the number of times the pin
goes high. After 1 second it goes to the table and looks up the
information it needs to display the number on the display that
corresponds to the number of times the pin went high. This is useful,
because we don’t know what the number will be until the PIC has
completed its count. By using a table, we can let the PIC decide which
number to display.

Now, before I carry on to explain how the data table works, I have to
explain how the PIC keeps track of whereabouts in the program it is when
the program is running. It helps if you have done some programming in
BASIC. If not, don’t worry, you should still be able to see the concept.

Imagine we have a BASIC program like the one shown below:

 10 LET K=0
 11 K=K+1
 12 IF K>10 THEN GOTO 20 ELSE GOTO 11
 20 PRINT K
 21 END

The program starts at line 10. Once K is set to 0, it then proceeds to line
11. After we have added 1 to K we then move on to line 12. Here we are
asking if K is greater than 10. If it is, then we go to line 20, if not we go
back to line 11. Line 20 prints the value of K, and line 21 ends the
program. BASIC uses line numbers to help the programmer keep track of
where things are, as labels are not allowed.

The PIC uses labels to jump between locations – or does it? We use the
labels so that we know where things are, and also so that we can tell the
PIC in an easy way where to go. What actually happens is the PIC uses
an internal line counter called a Program Counter. The Program Counter
(abbreviated to PC) keeps track of the memory location of where the
current instruction is. When we tell the PIC to go to a particular label, it
know the memory location and hence increase the PC until it reads that
memory location. This is exactly the same way as we read the BASIC
program above. Below is a section of code, with the memory locations, or
the contents of the PC, next to each instruction:

PC Instruction

0000 movlw 03
0001 movwf 0C
0002 Loop decfsc 0C
0003 goto Loop
0004 end

In the example above, I have set the PC to 0000. At this location we
have the instruction movlw 03. When the PIC has executed this
instruction, it increments the PC so that the next instruction is read. Here
the PIC sees movwf 0C. The PC is incremented again. Now the PIC
reads decfsc 0C. If the contents of 0C are not 0, then the PC is
incremented by 1, and the next instruction, goto Loop, tells the PC to go
back to location 0003, which is where we have said Loop. If the contents
of 0C is 0, then the PC is told to increment by 2, in other words skip the
next instruction. This puts the PC at location 0004, where the program
ends. The locations are set by the assembler, and we don’t normally
need to worry what the PC is doing. Until, that is we need to control it like
we are about to do when using data tables.

The best way to explain how a data table works, is to start off with an
example.

PC equ 02

movlw 03
call table

:
table addwf PC
retlw 01
retlw 02
retlw 03
retlw 04
retlw 05
retlw 06
retlw 07

return

The first instruction is assigning the label PC with the address of the
Program Counter (02h). We are then placing the value of 03h into the w
register. We then make a call to table. The first line in the subroutine
table adds the contents of the W register (03h) to the program counter.
This causes the program counter to increase by 3, or to put it another
way, causes the program counter to move down 3 lines. When the
counter reaches 3 lines down it the PIC sees the instruction retlw. This
command passes the value following it into the W register, and then
returns from the subroutine. RETLW actually means Return, Literal to
W. Notice I put a comma after the word Return. As we are in a
subroutine, we need a Return instruction to come out of it. Hence the
RET in the instruction. After the RETLW instruction is a number, and this
is what is placed in the W register. In this case it is the number 3.

We can assign any number to the W register, as long as when this
number is added to the Program Counter in the table subroutine, we will
find a retlw instruction. In the above example this means we can have
any number from 1 to 7. If we go past the subroutine, we could end up
executing another part of the program. Because of this, it is always a
good idea to put the data table right at the end of the PIC program, so if
we do overshoot then we will reach the end of the program anyway.

Tutorial 11

 Interrupts - An Introduction

The subject of interrupts is probably going to be the longest and most
difficult to go through. There is no easy way of explaining interrupts, but
hopefully by the end of this section you will be able to implement
interrupts into your own programs. I have split the section into two parts.
This is to help break the subject up, and to give you, the reader, a break.

So what is an interrupt? Well, as the name suggests, an interrupt is a
process or a signal that stops a microprocessor/microcontroller from what
it is doing so that something else can happen. Let me give you an every
day example. Suppose you are sitting at home, chatting to someone.
Suddenly the telephone rings. You stop chatting, and pick up the
telephone to speak to the caller. When you have finished your telephone
conversation, you go back to chatting to the person before the telephone
rang. You can think of the main routine as you chatting to someone, the
telephone ringing causes you to interrupt your chatting, and the interrupt
routine is the process of talking on the telephone. When the telephone
conversation has ended, you then go back to your main routine of
chatting. This example is exactly how an interrupt causes a processor to
act. The main program is running, performing some function in a circuit,
but when an interrupt occurs the main program halts while another routine
is carried out. When this routine finishes, the processor goes back to the
main routine again.

The PIC has 4 sources of interrupt. They can be split into two groups.
Two are sources of interrupts that can be applied externally to the PIC,
while the other two are internal processes. I am going to explain the two
external ones here. The other two will be explained in other tutorials
when we come to look at timers and storing data.

If you look at the pin-out of the PIC, you will see that pin 6 shows it is
RB0/INT. Now, RB0 is obviously Port B bit 0. The INT symbolizes that it
can also be configures as an external interrupt pin. Also, Port B bits 4 to
7 (pins 10 to 13) can also be used for interrupts. Before we can use the
INT or other Port B pins, we need to do two things. First we need to tell
the PIC that we are going to use interrupts. Secondly, we need to specify
which port B pin we will be using as an interrupt and not as an I/O pin.

Inside the PIC there is a register called INTCON, and is at address 0Bh.
Within this register there are 8 bits that can be enabled or disabled. Bit 7
of INTCON is called GIE. This is the Global Interrngupt Enable. Setting
this to 1 tells the PIC that we are going to use an interrupt. Bit 4 of
INTCON is called INTE, which means INTerrupt Enable. Setting this bit
to 1 tells the PIC that RB0 will be an interrupt pin. Setting bit 3, called
RBIE, tells the PIc that we will be using Port B bits 4 to 7. Now the PIC
knows when this pin goes high or low, it will need to stop what it’s doing
and get on with an interrupt routine. Now, we need to tell the PIC
whether the interrupt is going to be on the rising edge (0V to +5V) or the
falling edge (+5V to 0V) transition of the signal. In other words, do we
want the PIC to interrupt when the signal goes from low to high, or from
high to low. By default, this is set up to be on the rising edge. The edge
‘triggering’ is set up in another register called the OPTION register, at
address 81h. The bit we are interested in is bit 6, which is called
INTEDG. Setting this to 1 will cause the PIC to interrupt on the rising
edge (default state) and setting it to 0 will cause the PIC to interrupt on
the falling edge. If you want the PIC to trigger on the rising edge, then

you don’t need to do anything to this bit. Now, unfortunately, the Option
register is in Bank 1, which means that we have to change from bank 0 to
bank 1, set the bit in the Option register, then come back to bank 0. The
trick here is to do all of the Bank 1 registers in one hit, such as setting up
the port pins, then coming back to Bank 0 when you are finished.

Ok, so now we have told the PIC which pin is going to be the interrupt,
and on which edge to trigger, what happens in the program and the PIC
when the interrupt occurs? Two things happen. First, a ‘flag’ is set. This
tells the internal processor of the PIC that an interrupt has occurred.
Secondly, the program counter (which I mentioned in the last tutorial)
points to a particular address within the PIC. Let’s quickly look at each of
these separately.

Interrupt Flag

In our INTCON register, bit 1 is the interrupt flag, called INTF. Now, when
any interrupt occurs, this flag will be set to 1. While there isn’t an
interrupt, the flag is set to 0. And that is all it does. Now you are probably
thinking ‘what is the point?’ Well, while this flag is set to 1, the PIC
cannot, and will not, respond to any other interrupt. So, let’s say that we
cause an interrupt. The flag will be set to 1, and the PIC will go to our
routine for processing the interrupt. If this flag wasn’t set to 1, and the
PIC was allowed to keep responding to the interrupt, then continually
pulsing the pin will keep the PIC going back to the start of our interrupt
routine, and never finishing it. Going back to my example of the
telephone, it’s like picking up the telephone, and just as soon as you start
to speak it starts ringing again because someone else want to talk to
you. It is far better to finish one conversation, then pick up the phone
again to talk to the second person.

There is a slight drawback to this flag. Although the PIC automatically
sets this flag to 1, it doesn’t set it back to 0! That task has to be done by
the programmer – i.e. you. This is easily done, as I’m sure you can
guess, and has to be done after the PIC has executed the interrupt
routine.

Memory Location

When you first power up the PIC, or if there is a reset, the Program
Counter points to address 0000h, which is right at the start of the program
memory. However, when there is an interrupt, the Program Counter will
point to address 0004h. So, when we are writing our program that is
going to have interrupts, we first of all have to tell the PIC to jump over
address 0004h, and keep the interrupt routine which starts at address
0004h separate from the rest of the program. This is very easy to do.

First, we start our program with a command called ORG. This command means Origin,
or start. We follow it with an address. Because the PIC will start at address 0000h, we
type ORG 0000h. Next we need to skip over address 0004h. We do this by placing a
GOTO instruction, followed by a label which points to our main program. We then follow
this GOTO command with another ORG, this time with the address 0004h. It is after this
command that we enter our interrupt routine. Now, we could either type in our interrupt
routine directly following the second ORG command, or we can place a GOTO
statement which points to the interrupt routine. It really is a matter of choice on your
part. To tell the PIC that it has come to the end of the interrupt routine we need to place
the command RTFIE at the end of the routine. This command means return from the
interrupt routine. When the PIC see this, the Program Counter points to the last location
the PIC was at before the interrupt happened. I have shown below a short segment of
code to show the above:

 ORG 0000h ;PIC starts here on power up and reset
 GOTO start ;Goto our main program

 ORG 0004h ;The PIC will come here on an interrupt
 : ;This is our interrupt routine that we
 : ;want the PIC to do when it receives
 : ;an interrupt

 RETFIE ;End of the interrupt routine

start ;This is the start of our main program.

There are two things you should be aware of when using interrupts. The
first is that if you are using the same register in your main program and
the interrupt routine, bear in mind that the contents of the register will
probably change when the interrupt occurs. For example, let’s you are
using the w register to send data to Port A in the main program, and you
are also using the w register in the interrupt routine to move data from
one location to another. If you are not careful, the w register will contain
the last value it had when it was in the interrupt routine, and when you
come back from the interrupt this data will be sent to Port A instead of the
value you had before the interrupt happened. The way round this is to
temporarily store the contents of the w register before you use it again in
the interrupt routine. The second is that there is a delay between when
one interrupt occurs and when the next one can occur. As you know, the
PIC has an external clock, which can either be a crystal or it can be a
resistor-capacitor combination. Whatever the frequency of this clock, the
PIC divides it by 4 and then uses this for it’s internal timing. For example
if you have a 4MHz crystal connected to your PIC, then the PIC will carry
out the instructions at 1MHz. This internal timing is called an Instruction
Cycle. Now, the data sheet states (admittedly in very small print) that you
must allow 3 to 4 instruction cycles between interrupts. My advice is to
allow 4 cycles. The reason for the delay is the PIC needs time to jump to

the interrupt address, set the flag, and come back out of the interrupt
routine. So, bear this in mind if you are using another circuit to trigger an
interrupt for the PIC.

Now, a point to remember is that if you use bits 4 to 7 of Port B as an
interrupt. You cannot select individual pins on Port B to serve as an
interrupt. So, if you enable these pins, then they are all available. So, for
example, you can’t just have bits 4 and 5 – bits 6 and 7 will be enabled as
well. So what is the point of having four bits to act as an interrupt? Well,
you could have a circuit connected to the PIC, and if any one of four lines
go high, then this could be a condition that you need the PIC to act on
quickly. One example of this would be a house alarm, where four
sensors are connected to Port B bits 4 to 7. Any sensor can trigger the
PIC to sound an alarm, and the alarm sounding routine is the interrupt
routine. This saves examining the ports all the time and allows the PIC to
get on with other things.

In the next tutorial, we will write a program to handle an interrupt.

Tutorial 12

 Interrupts - Writing The Code

We covered quite a bit of ground in the last tutorial, and so I think it is
time that we wrote our first program. The program we are going to write
will count the number of times we turn a switch on, and then display the
number. The program will count from 0 to 9, displayed on 4 LEDs in
binary form, and the input or interrupt will be on RB0.

The first thing we need to do is tell the PIC to jump over the address
where the Program Counter points to when an interrupt occurs. You will
notice that I am using a different way of expressing hexadecimal
numbers. Before I used to use F9h where h denoted hexadecimal. We
can write this as 0xF9, and this is the format I am going to use from now
on.

org 0x00 ;This is where the PC points to on power up and reset
 goto main ;Goto our main program

org 0x04 ;This is where our interrupt routine will start

retfie ;This tells the PIC that the interrupt routine has
 ;finished and the PC will point back to the main
 ;program

 main ;This is the start of our main program

Now we need to tell the PIC that we are going to use interrupts, and we are using RB0
pin 6 as an interrupt pin:

bsf INTCON,7 ;GIE – Global interrupt enable (1=enable)
bsf INTCON,4 ;INTE - RB0 interrupt enable (1=enable)

I am going to clear the interrupt flag just in case (I never trust anything!)

bcf INTCON,1 ;INTF - Clear flag bit just in case

Now we need to set up our two ports. Remember that as we are using RB0 as an
interrupt pin, this must be set up as an input:

 bsf STATUS,5 ;Switch to Bank 1

movw 0x01 ;

movwf TRISB ;Set RB0 as input

 movlw 0x10 ;

 movwf TRISA ;Set the first 4 pins on PortA as output

 bcf STATUS,5 ;Come back to Bank 0

We are going to use a variable called COUNT to store the number of
switch counts. We could just simply increment the value on Port A, but
you will see why I am using a variable when we write our interrupt routine.

loop

movf COUNT,0 ;Move the contents of
COUNT into W

movwf PORTA ;Now move it to Port A

goto loop ;Keep on doing this

end ;End of our program

So, our main program is written, and now we need to tell the PIC what to
do when an interrupt happens. In this instance, our interrupt is going to
be the switch. What we want the PIC to is add one to the variable
COUNT each time the switch is closed. However, we only want to display
the number of times the switch closes from 0 to 9. Above, I said we could
have just simply incremented the value on Port A each time there was an
interrupt. But, Port A has 5 bits, and if we just simply incremented the
port, we will have a maximum count of 31. There are two reasons why I
chose not to go up to 31. First, we are going to use a 7-segment display,
which can at the most only go from 0 to 15 (0 to F in hex). Secondly, I
also want to show you some of the arithmetic commands that you came
across in the last couple of tutorials.

 So lets get on with our interrupt routine.

Now the first thing we need to do is temporarily store the contents of our
w register, as we are using this to transfer the contents of COUNT to
PORTA. If we don’t store it, then we could send a completely different
number as a result of our arithmetic. So let’s do that first:

 movwf TEMP ;Store w register in a temporary location

Next we want to add 1 to our variable COUNT:

incf COUNT,1 ;Increment COUNT by 1, and put the result

 ;back into COUNT

Next we want to do a check on COUNT to se if we have gone past the
value of 9. The way we can do this is to subtract it from 10.

movlw 0x0A ;Move the value 10 into w

subwf COUNT,0 ;Subtract w from COUNT, and put the

 ;result in w

From tutorial 8 we saw that if we subtract a large number from a small
number a Carry flag will be set. This flag will also be set if the numbers
are equal, and we subtract them.

btfss STATUS,0 ;Check the Carry flag. It will be set if

 ;COUNT is equal to, or is greater than w,

 ;and will be set as a result of the subwf

 ;instruction

Now we know if the value of COUNT is 9 or more. What we want to do
now is if COUNT is greater than 9, put it back to 0, otherwise go back to
the main program so that we can send it to Port A. The BTFSS command
as you know will skip the next instruction if the carry flag is set i.e COUNT
= 10:

goto carry_on ;If COUNT is <10, then we can carry on

goto clear ;If COUNT is >9, then we need to clear it

 carry_on

bcf INTCON,0x01 ;We need to clear this flag to enable

 ;more interrupts

movfw TEMP ;Restore w to the value before the
interrupt

retfie ;Come out of the interrupt routine

clear

clrf COUNT ;Set COUNT back to 0

bcf INTCON,1 ;We need to clear this flag to enable

;more interrupts

 retfie ;Come out of the interrupt routine

All that is left to do now is put everything together and also define values
to our constants, which we can do right at the beginning of our program.

Below is the complete program listing. The circuit is shown after the
program listing. Every time you turn the switch on, the LEDs will count up
in binary from 0000 to 1010 then back to 0000.

 org 0x00 ;This is where we come on power up and reset

 ;*******************SETUP CONSTANTS*******************

INTCON EQU 0x0B ;Interrupt Control Register

PORTB EQU 0x06 ;Port B register address

PORTA EQU 0x05 ;Port A register address

TRISA EQU 0x85 ;TrisA register address

TRISB EQU 0x86 ;TrisB register address

STATUS EQU 0X03 ;Status register address

 COUNT EQU 0x0c ;This will be our counting variable

 TEMP EQU 0x0d ;Temporary store for w
register

 goto main ;Jump over the interrupt address

;***************INTERRUPT ROUTINE***************

 org 0x04 ;This is where PC points on an interrupt

 movwf TEMP ;Store the value of w temporarily

 incf COUNT,1 ;Increment COUNT by 1, and put the result

 ;back into COUNT

 movlw 0x0A ;Move the value 10 into w

 subwf COUNT,0 ;Subtract w from COUNT, and put the

 ;result in w

 btfss STATUS,0 ;Check the Carry flag. It will be set if

 ;COUNT is equal to, or is greater than w,

 ;and will be set as a result of the subwf

 ;instruction

 goto carry_on ;If COUNT is <10, then we can carry on

 goto clear ;If COUNT is >9, then we need to clear it

carry_on

 bcf INTCON,0x01 ;We need to clear this flag to enable

 ;more interrupts

 movfw TEMP ;Restore w to the value before the interrupt

 retfie ;Come out of the interrupt routine

clear

 clrf COUNT ;Set COUNT back to 0

 bcf INTCON,1 ;We need to clear this flag to enable

 ;more interrupts

retfie ;Come out of the interrupt routine

;*******************Main Program*********************

 main

 ;*******************Set Up The Interrupt Registers****

 bsf INTCON,7 ;GIE – Global interrupt enable (1=enable)

 bsf INTCON,4 ;INTE - RB0 Interrupt Enable (1=enable)

 bcf INTCON,1 ;INTF - Clear FLag Bit Just In Case

 ;*******************Set Up The Ports******************

 bsf STATUS,5 ;Switch to Bank 1

 movlw 0x01

 movwf TRISB ;Set RB0 as input

 movlw 0x10

 movwf TRISA ;Set R 0 to RA3 on PortA as output

 bcf STATUS,5 ;Come back to Bank 0

 ;*******************Now Send The Value Of COUNT To Port A

 loop

movf COUNT,0 ;Move the contents of Count into W

movwf PORTA ;Now move it to Port A

goto loop ;Keep on doing this

 end ;End Of Program

The Circuit Diagram

Below is the circuit diagram that will work for the code above. There are
two things in the diagram that may throw you. First, I have not included a
timing capacitor in the oscillator circuit. This is a clever little trick that you
can try if you run out of capacitors. The capacitance comes from the
stray capacitance between the oscillator pin and ground. so, with the
resistor and the stray capacitance, we have an RC oscillator. Okay, this
is not an accurate way of doing it, as the stray capacitance will vary from
circuit to circuit. But, I thought you may be interested in seeing this sort of
thing. Secondly, I have included a de-bouncing circuit across the switch.
This is needed because every time you flick a switch, the contacts will
bounce. This will make the PIC think there have been more than one
switches. With the de-bouncing circuit, when the switch goes high, the
capacitor charges up. no matter how many times the switch goes to +5V,
the capacitor will only charge once. The capacitor is discharged when the
switch is thrown the other way. If you want to see the effects of switch
bounce, then disconnect the capacitor and resistor across the switch.

Tutorial 13

The Watchdog Timer

We are now going to look at an internal timer, called a Watchdog Timer

So what is a Watchdog Timer?

Suppose you have written a program that is continuously running on a
PIC. Now, you want to make sure that this program is always running,
and that no matter what happens it will never stop. The first thing you
would have, of course, is a loop back at the end of the program that
brings us back to the start of the program. But consider this case. Let us
say that the PIC is monitoring an input. When this input goes high, it
jumps to another part of the program and waits for another pin to go high.
If the second pin doesn’t go high, the PIC will just sit there and wait. It will
only exit if the second pin goes high. Let us consider another example.
Suppose you have written a program. You have compiled it successfully,
and you have even simulated it over and over again using a simulator
such as MPLAB. Everything seems to work fine. You program the PIC
and place it into a circuit. However after a long period of time, the
program gets stuck somewhere and the PIC gets caught in a loop.
What’s needed in both cases is some kind of reset if the program gets
stuck. This is the purpose of a watchdog circuit.

A watchdog circuit is nothing new. Many microprocessors and
microcontrollers have them. But how does it work? Well, inside the PIC
there is a resistor/capacitor network. This provides a unique clock, which
is independent of any external clock that you provide in your circuit. Now,
when the Watchdog Timer (abbreviated to WDT) is enabled, a counter
starts at 00 and increments by 1 until it reaches FF. When it goes from
FF to 00 (which is FF + 1) then the PIC will be reset, irrespective of what
it is doing. The only way we can stop the WDT from resetting the PIC is
to periodically reset the WDT back to 00 throughout our program. Now
you can see that if our program does get stuck for some reason, then the
WDT will not be set. The WDT will then reset the PIC, causing our
program to restart from the beginning.

In order to use the WDT, we need to know three things. First, how long
have we got before we need to reset the WDT, secondly how do we clear
it. Finally, we have to tell the PIC programming software to enable the
WDT inside the PIC. Let’s look at these separately.

WDT Times

 The PIC data sheet specifies that the WDT has a period from start to
finish of 18mS. This is dependant several factors, such as the supply
voltage, temperature of the PIC etc. The reason for the approximation is
because the WDT clock is supplied by an internal RC network. The time
for an RC network to charge depends on the supply voltage. It also
depends on the component values, which will change slightly depending
on their temperature. So, for the sake of simplicity, just take it that the
WDT will reset every 18mS. We can, however, make this longer. Inside
the PIC is a thing called a Prescaler. We can program this prescaler to
divide the RC clock. The more we divide the RC clock by, the longer it
takes for the WDT to reset.

The prescaler is located in the OPTION register at address 81h, bits 0 to
2 inclusive. Below is a table showing the bit assignments with the division
rates and the time for the WDT to time out:

Remember these times are irrespective of your external clock frequency.
Think of these times as real time, rather than clock times. To help make
this clear, let us suppose we want the WDT to reset our PIC after about
half a second as a failsafe. The nearest we have is 576mS, or 0.576
seconds. All we do is send b’101’ to our OPTION register, as follows:

movlw b’101’ ;This is 0x05 in Hex
movwf 81h ;This is the Option Register

Simple, really. Now, there is a catch. By default the prescaler is
assigned to the other internal timer. This means that we have to change
the prescaler over to the WDT. First, we have to reset the other counter
to 0 first. We then have to change to Bank 1 to assign the prescaler to
the WDT and to set up the time, and then come back to Bank 0. The
code is below, where xx is the prescaler time:

bcf STATUS,0 ;make sure we are in bank 0
clrf 01h ;address of the other timer – TMR0

Bit

2,1,0

Rate WDT Time

0,0,0 1:1 18mS
0,0,1 1:2 36mS
0,1,0 1:4 72mS
0,1,1 1:8 144mS
1,0,0 1:16 288mS
1,0,1 1:32 576mS
1,1,0 1:64 1.1Seconds
1,1,1 1:128 2.3Seconds

bsf STATUS,0 ;switch to bank 1
clrwdt ;reset the WDT and prescaler
movlw b’1xxx’ ;Select the new prescaler value and assign
movwf OPTION ;it to WDT
bcf STATUS,0 ;come back to bank 0

The CLRWDT command above is how we clear the WDT before it resets
the PIC. So, all we need to do is calculate where in our program the
WDT will time out, and then enter the CLRWDT command just before this
point to ensure the PIC doesn’t reset. If your program is long, bear in
mind that you may need more than one CLRWDT. For example, if we
use the default time of 18mS, then we need to make sure that the
program will see CLRWDT every 18mS.

So now we come to the point where we need to work out how long our
code takes in real time. The principle is very simple, but could cause you
to pull your hair out!

Instruction Timing

As you are probably already aware, the PIC takes the external clock
timing and divides it by 4. This internal time is called an instruction cycle.
Now if we have, say, a 4MHz xtal connected to the PIC, internally the PIC
will run at 1MHz. In timing terms, this is 1/(4MHz/4) = 1uS. Now, some
instructions take just one instruction cycle to complete, i.e. 1uS using a
4MHz crystal, while others take two cycles – 2uS – to complete. The data
sheet tells us how many cycles each instruction takes. The easiest way
to remember this is quite simple. Assume ALL instructions take 1 cycle.
But, if an instruction causes the program to go somewhere else, then it
will take 2 cycles. Let me give you a couple of examples. The movwf
command takes only one cycle, because it is only moving data from one
place to another. The goto command takes 2 cycles, because it is
causing the Program Counter (PC) to go elsewhere in the program. The
RETURN command takes 2 cycles, because it is causing the PC to go
back in the program. I think you can see the pattern here. However,
there are four commands which can take 1 or 2 cycles. These are
DECFSZ, INCFSZ, BTFSC and BTFSS. These commands have one
thing in common. They will skip the next instruction is a certain condition
is met. If that condition is not met, then the next instruction will be carried
out. For example, the DECFSZ command will decrement the value
stored in the F register by 1. If the result is not 0, then the next instruction
will be executed. This instruction therefore takes 1 cycle. If the result is
0, then the next instruction will be skipped, and the one following that will
be executed. In this instance the instruction takes 2 cycles. The reason
is that the instruction alters the value of the PC. It needs one cycle to
carry out the function, and it will need another to alter the PC by an extra
one.

To clarify this, let us look at a sample code, and work out how many
instruction cycles it takes.

 movlw 02
 movwf COUNT
loop decfsz COUNT
 goto loop
end

Our first instruction simply moves the value 02 into w. This does not
cause the program to off course, therefore it is only 1 cycle. The next
instruction is similar, in as much that it moves the contents of the w
register into COUNT. Again, this will be 1 cycle. Now, the next
instruction will first decrement COUNT by 1. This is 1 cycle. It will then
do a test to see if COUNT is equal to 0. At this stage it doesn’t, and so
we move onto the next instruction. The next instruction is a goto
statement, and so is 2 cycles long. We come back to our decfsz
instruction, which decrements COUNT by 1 again. This is another
instruction cycle. It does a test to see if COUNT is equal to 0. This time it
does, and so the next instruction is skipped. To skip the next instruction
requires another cycle. We reach the end of the program. So in total,
with the value 02 placed into COUNT, this program will take a total of 7
cycles. If we were using a 4MHz crystal for our clock, then the program
will take:

1/(4MHz/4) = 1uS per cycle, therefore 7 cycles takes 7 x 1uS = 7uS.

 So you can see that it can get a little confusing when you have
instructions like DECFSZ.

Programmer Software

 Inside the PIC there are things called ‘Fuses’. These are not the same
as the fuses you would find in a mains plug, but electronic switches which
are ‘blown’ by the programmer. Now, one of these fuses has to be
‘blown’ in order for the WDT to operate. There are two ways of doing
this. One way is to write a couple of lines at the beginning of your
program to tell the PIC programming software to enable or disable certain
fuses. The other way is to tell the PIC programming software manually
which fuses to enable. We will look at getting your program to instruct the
programming software in a later tutorial, when we look at including other
files and macros. To tell the programming software manually, varies from
program to program. The documentation that came with the programmer
should tell you how to do this. As I am using the PICALLW software,
which is linked on my main page, I will explain how to do change fuses
within this program. The fuses are configured by pressing the F3 key, or
clicking on the ‘Config’ button. Then you can select the fuse you want
enabled, in this case the WDT, by clicking on the box next to it.

Sample Program

Let us write a program, where we will turn on the WDT, and let the PIC
perform a function. We will first of all periodically clear the WDT, to show
that the program works, and then remove the CLRWDT command to
show that the PIC will indeed reset.

The program I have chosen is the one used in tutorial 9 where we cause
a row of LEDs to light up one at a time from left to right, then right to left.
The circuit is shown below, and with the RC values shown will give us a
clock frequency of 8KHz. This clock speed will allow us to actually see
the LEDs moving one by one. I chose this program because it is slow
enough for us to play with the WDT, and you can easily see when the PIC
is reset. I have removed the original comments, and I have replaced
them with a description of the WDT lines, a running total of the time from
the start (assuming a 8KHz clock), and the number of clock cycles at
each line.

TIME equ 9FH ; Variable for the delay loop.
PORTB equ 06H ; Port B address.
TRISB equ 86H ; Port B Tristate address.
PORTA equ 05H ; Port A address.
TRISA equ 85H ; Port A Tristate address.
STATUS equ 03H ; Page select register.
COUNT1 equ 0CH ; Loop register.
COUNT2 equ 0DH ; Loop register.

bsf STATUS,5 ; 1 cycle, 0.5mS
movlw 00H ; 1 cycle, 1.0mS
movwf TRISB ; 1 cycle, 1.5mS
movlw 00H ; 1 cycle, 2.0mS
movwf TRISA ; 1 cycle, 2.5mS
bcf STATUS,5 ; 1 cycle, 3.0mS
movlw 00H ; 1 cycle, 3.5mS
movwf PORTA ; 1 cycle, 4.0mS

 ; Start of main program

 RUN

movlw 01H ; 1 cycle, 4.5mS
 movwf PORTB ; 1 cycle, 5.0mS
 call DELAY ; 2 cycles, 486mS
 call DELAY ; 2 cycles, 967mS

 ; Move the bit on Port B left, then pause.

 rlf PORTB,1 ; 1 cycle, 967.5mS
 call DELAY ; 2 cycles, 1.45S
 call DELAY ; 2 cycles, 1.93S
 rlf PORTB,1 ; 1 cycle, 1.93S
 call DELAY ; 2 cycles, 2.41S
 call DELAY ; 2 cycles, 2.89S
 rlf PORTB,1 ; 1 cycle, 2.89S
 call DELAY ; 2 cycles, 3.37S
 call DELAY ; 2 cycles, 3.85S
 rlf PORTB,1 ; 1 cycle, 3.85S
 call DELAY ; 2 cycles, 4.34S
 call DELAY ; 2 cycles, 4.82S
 rlf PORTB,1 ; 1 cycle, 4.82S
 call DELAY ; 2 cycles, 5.30S
 call DELAY ; 2 cycles, 5.78S
 rlf PORTB,1 ; 1 cycle, 5.78S
 call DELAY ; 2 cycles, 6.26S
 call DELAY ; 2 cycles, 6.74S
 rlf PORTB,1 ; 1 cycle, 6.74S
 call DELAY ; 2 cycles, 7.22S

 call DELAY ; 2 cycles, 7.70S
 rlf PORTB,1 ; 1 cycle, 7.70S

 ; Now move onto Port A, and move the bit left.

 rlf PORTA,1 ; 1 cycle, 7.70S
 call DELAY ; 2 cycles, 8.19S
 call DELAY ; 2 cycles, 8.67S
 rlf PORTA,1 ; 1 cycle, 8.67S
 call DELAY ; 2 cycles, 9.15S
 call DELAY ; 2 cycles, 9.63S
 rlf PORTA,1 ; 1 cycle, 9.63S
 call DELAY ; 2 cycles, 10.11S
 call DELAY ; 2 cycles, 10.59S
 rlf PORTA,1 ; 1 cycle, 10.59S
 call DELAY ; 2 cycles, 11.07S
 call DELAY ; 2 cycles, 11.55S

; Move the bit back on Port A

rrf PORTA,1 ; 1 cycle, 11.55S
 call DELAY ; 2 cycles, 12.04S
 call DELAY ; 2 cycles, 12.52S
 rrf PORTA,1 ; 1 cycle, 12.52S
 call DELAY ; 2 cycles, 12.99S
 call DELAY ; 2 cycles, 13.48S
 rrf PORTA,1 ; 1 cycle, 13.48S
 call DELAY ; 2 cycles, 13.96S
 call DELAY ; 2 cycles, 14.44S
 rrf PORTA,1 ; 1 cycle, 14.44S

; Now move the bit back on Port B

rrf PORTB,1 ; 1 cycle, 14.44S
 call DELAY ; 2 cycles, 14.92S
 call DELAY ; 2 cycles, 15.40S
 rrf PORTB,1 ; 1 cycle, 15.40S
 call DELAY ; 2 cycles, 15.89S
 call DELAY ; 2 cycles, 16.37S
 rrf PORTB,1 ; 1 cycle, 16.37S
 call DELAY ; 2 cycles, 16.84S
 call DELAY ; 2 cycles, 17.33S
 rrf PORTB,1 ; 1 cycle, 17.33S
 call DELAY ; 2 cycles, 17.81S
 call DELAY ; 2 cycles, 18.29S
 rrf PORTB,1 ; 1 cycle, 18.29S
 call DELAY ; 2 cycles, 18.77S
 call DELAY ; 2 cycles, 19.25S
 rrf PORTB,1 ; 1 cycle, 19.25S
 call DELAY ; 2 cycles, 19.73S

 call DELAY ; 2 cycles, 20.22S
 rrf PORTB,1 ; 1 cycle, 20.22S
 call DELAY ; 2 cycles, 20.70S
 call DELAY ; 2 cycles, 21.18S

 goto RUN ; 2 cycles, 21.18S

 ; Subroutine to give a delay between bit movements.
 ;Total of 957 cycles, 480mS

DELAY
 movlw TIME ; 1 cycle
 movwf COUNT1 ; 1 cycle

LOOP1 ;
 decfsz COUNT1 ; 9F x 1 cycle + 1 cycle = 160 cycles
 goto LOOP1 ; 9E x 2 cycles = 316 cycles
 movwf COUNT1 ; 1 cycle

LOOP2 ;
 decfsz COUNT1 ; 9F x 1 cycle + 1 cycle = 256 cycles
 goto LOOP2 ; 9E x 2 cycles = 316 cycles

return ; 2 cycles

 END ;

With an 8KHz clock, it takes just under 1 second for the next LED
illuminates, and it takes a total of about 21 seconds to run from one end
to the other and back again i.e. to go through the routine once only. The
delay routine takes 480mS, and we are calling it twice before moving the
bit on the ports. Now, we need to periodically reset the WDT. The
largest time we can set the WDT is 2.3 seconds, and the next one down
form this is 1.1 seconds. We have two options here. We could make a
call to a subroutine to clear the WDT after the two delays have finished,
or we could incorporate the CLRWDT within the delay itself. I have
decided, for no real reason at all, to incorporate the CLRWDT within the
delay loop.

TIME equ 9FH ; Variable for the delay loop.
PORTB equ 06H ; Port B address.
TRISB equ 86H ; Port B Tristate address.
PORTA equ 05H ; Port A address.
TRISA equ 85H ; Port A Tristate address.
STATUS equ 03H ; Page select register.

COUNT1 equ 0CH ; Loop register.
COUNT2 equ 0DH ; Loop register.

OPT equ 81h ; Option Register to control the
WDT

;*************Set up the ports, WDT and prescaler******************

 clrf 01h ;Clear TMR0
 bsf STATUS,5 ;Switch to bank 1
 clrwdt ;reset the WDT and prescaler
 movlw b’1101’ ;Select the new prescaler value and
assign
 movwf OPT ;it to WDT

movlw 00H ; Now set up the ports
movwf TRISB ;
movlw 00H ;
movwf TRISA ;
bcf STATUS,5 ;Come back to bank 0

movlw 00H ;
movwf PORTA ;

 ;*************Start of main program*****************************

 RUN

movlw 01H ;
 movwf PORTB ;
 call DELAY ;
 call DELAY ;

 ; *************Move the bit on Port B left, then pause.**************

 rlf PORTB,1 ;
 call DELAY ;
 call DELAY ;
 rlf PORTB,1 ;
 call DELAY ;
 call DELAY ;
 rlf PORTB,1 ;
 call DELAY ;
 call DELAY ;
 rlf PORTB,1 ;
 call DELAY ;

 call DELAY ;
 rlf PORTB,1 ;
 call DELAY ;
 call DELAY ;
 rlf PORTB,1 ;
 call DELAY ;
 call DELAY ;
 rlf PORTB,1 ;
 call DELAY ;
 call DELAY ;
 rlf PORTB,1 ;

; *************Now move onto Port A, and move the bit left.***********

 rlf PORTA,1 ;
 call DELAY ;
 call DELAY ;
 rlf PORTA,1 ;
 call DELAY ;
 call DELAY ;
 rlf PORTA,1 ;
 call DELAY ;
 call DELAY ;
 rlf PORTA,1 ;
 call DELAY ;
 call DELAY ;

 ;************** Move the bit back on Port A************************

 rrf PORTA,1 ;
 call DELAY ;
 call DELAY ;
 rrf PORTA,1 ;
 call DELAY ;
 call DELAY ;
 rrf PORTA,1 ;
 call DELAY ;
 call DELAY ;
 rrf PORTA,1 ;

 ;****************** Now move the bit back on Port B******************

 rrf PORTB,1 ;
 call DELAY ;
 call DELAY ;
 rrf PORTB,1 ;
 call DELAY ;
 call DELAY ;
 rrf PORTB,1 ;
 call DELAY ;

 call DELAY ;
 rrf PORTB,1 ;
 call DELAY ;
 call DELAY ;
 rrf PORTB,1 ;
 call DELAY ;
 call DELAY ;
 rrf PORTB,1 ;
 call DELAY ;
 call DELAY ;
 rrf PORTB,1 ;
 call DELAY ;
 call DELAY ;

 goto RUN ;

; ******************Subroutine to give a delay between bit
movements.******

 DELAY

movlw TIME ;
 movwf COUNT1 ;

LOOP1 ;
 decfsz COUNT1 ;
 goto LOOP1 ;
 movwf COUNT1 ;

LOOP2 ;
 decfsz COUNT1 ;
 goto LOOP2

;;;
;; This part resets the WDT ;;
;;Comment out or remove this command to see the WDT ;;
;; in action. It should reset the PIC ;;
;;;

 clrwdt ;This simply resets the WDT.

;***************Return from our original DELAY routine***************

 return ;

END ;

If you comment out, or remove the CLRWDT command, you will find that
the PIC will not go past lighting the second LED. This is because the
WDT is resetting the PIC. With the CLRWDT in place, the program works
as it should.

