PIC miCl'OCOHtl'OllerS, for beginners too
on-line, FREE! author: Nebojsa Matic

PIC microcontrollers : low-cost computers-in-a-chip; they allow electronics designers and
hobbyists add intelligence and functions that mimic big computers for almost any electronic
product or project. The purpose of this book is not to make a microcontroller expert out of you,
but to make you equal to those who had someone to go to for their answers. Book contains many
practical examples, complete assembler instruction set, appendix on MPLAB program package and |mjierocontroller
more... i Wbt Mae

: i gy Ectnsil a friend
In this book you can find: T out s item

Practical connection samples for
Relays, Optocouplers, LCD's, Keys, Digits, A to D Converters, Serial communication etc.

Introduction to microcontrollers

Learn what they are, how they work, and how they can be helpful in your work.
Assembler language programming

How to write your first program, use of macros, addressing modes...
Instruction Set

Description, sample and purpose for using each instruction...

MPLAB program package
How to install it, how to start the first program, following the program step by step in the simulator...

CHAPTER I
INTRODUCTION TO
MICROCONTROLLERS

Introduction
History

Microcontrollers versus microprocessors

CHAPTER 1V
MPLAB

Introduction
4.1 Installing the MPLAB program

CHAPTER VII
EXAMPLES

Introduction
7.1 The microcontroller power supply

package
4.2 Welcome to MPLAB

1.1 Memory unit

1.2 Central processing unit
1.3 Buses

1.4 Input-output unit

1.5 Serial communication

1.6 Timer unit

1.7 Watchdog

1.8 Analog to digital converter
1.9 Program

CHAPTER II
MICROCONTROLLER PIC16F84

Introduction

CISC, RISC
Applications
Clock/instruction cycle
Pipelining

Pin description

2.1 Clock generator - oscillator
2.2 Reset

2.3 Central processing unit
2.4 Ports

2.5 Memory organization

2.6 Interrupts

2.7 Free timer TMRO

2.8 EEPROM Data memory

CHAPTER III1
ASSEMBLY LANGUAGE
PROGRAMMING

Introduction

3.1 Representing numbers in assembler

3.2 Assembly language elements
3.3 Writing a sample program
3.4 Control directives

3.5 Files created as a result of program

translation

4.3 Designing a project

4.4 Creating a new Assembler file
4.5 Writing a program

4.6 Toolbar icons

4.7 MPSIM simulator

CHAPTER V
MACROS AND SUBPROGRAMS

Introduction

5.1 Macros

5.2 Subprograms

5.3 Macros used in the examples

CHAPTER VI
EXAMPLES FOR SUBSYSTEMS
WITHIN MICROCONTROLLER

Introduction

6.1 Writing to and reading from
EEPROM

6.2 Processing interrupt caused by
changes on pins RB4-RB7

6.3 Processing interrupt caused by
change on pin RBO

6.4 Processing interrupt caused by
overflow on timer TMRO

6.5 Processing interrupt caused by
overflow on TMRO connected to
external input (TOCKI)

7.2 LED diodes
7.3 Push buttons
7.4 Optocouplers
7.4.1 Optocoupler on input line
7.4.2 Optocoupler on output line
7.5 Relay
7.6 Generating sound
7.7 Shift reqgisters
7.7.1 Input shift register
7.7.2 Output shift register
7.8 7-segment display (multiplexing)

7.9 LCD display
7.10 Software SCI communication

CHAPTER 1

Introduction to Microcontrollers

Introduction

History
Microcontrollers versus microprocessors

1.1 Memory unit

1.2 Central processing unit
1.3 Buses

1.4 Input-output unit

1.5 Serial communication
1.6 Timer unit

1.7 Watchdog
1.8 Analog to digital converter

1.9 Program

Introduction

Circumstances that we find ourselves in today in the field of microcontrollers had
their beginnings in the development of technology of integrated circuits. This
development has made it possible to store hundreds of thousands of transistors into
one chip. That was a prerequisite for production of microprocessors , and the first
computers were made by adding external peripherals such as memory, input-output
lines, timers and other. Further increasing of the volume of the package resulted in
creation of integrated circuits. These integrated circuits contained both processor and
peripherals. That is how the first chip containing a microcomputer , or what would
later be known as a microcontroller came about.

History

It was year 1969, and a team of Japanese engineers from the BUSICOM company
arrived to United States with a request that a few integrated circuits for calculators
be made using their projects. The proposition was set to INTEL, and Marcian Hoff
was responsible for the project. Since he was the one who has had experience in
working with a computer (PC) PDPS8, it occured to him to suggest a fundamentally
different solution instead of the suggested construction. This solution presumed that
the function of the integrated circuit is determined by a program stored in it. That
meant that configuration would be more simple, but that it would require far more
memory than the project that was proposed by Japanese engineers would require.
After a while, though Japanese engineers tried finding an easier solution, Marcian's
idea won, and the first microprocessor was born. In transforming an idea into a

ready made product , Frederico Faggin was a major help to INTEL. He transferred to
INTEL, and in only 9 months had succeeded in making a product from its first
conception. INTEL obtained the rights to sell this integral block in 1971. First, they
bought the license from the BUSICOM company who had no idea what treasure they
had. During that year, there appeared on the market a microprocessor called 4004.
That was the first 4-bit microprocessor with the speed of 6 000 operations per
second. Not long after that, American company CTC requested from INTEL and Texas
Instruments to make an 8-bit microprocessor for use in terminals. Even though CTC
gave up this idea in the end, Intel and Texas Instruments kept working on the
microprocessor and in April of 1972, first 8-bit microprocessor appeard on the
market under a name 8008. It was able to address 16Kb of memory, and it had 45
instructions and the speed of 300 000 operations per second. That microprocessor
was the predecessor of all today's microprocessors. Intel kept their developments up
in April of 1974, and they put on the market the 8-bit processor under a name 8080
which was able to address 64Kb of memory, and which had 75 instructions, and the
price began at $360.

In another American company Motorola, they realized quickly what was happening,
so they put out on the market an 8-bit microprocessor 6800. Chief constructor was
Chuck Peddle, and along with the processor itself, Motorola was the first company to
make other peripherals such as 6820 and 6850. At that time many companies
recognized greater importance of microprocessors and began their own
developments. Chuck Peddle leaved Motorola to join MOS Technology and kept
working intensively on developing microprocessors.

At the WESCON exhibit in United States in 1975, a critical event took place in the
history of microprocessors. The MOS Technology announced it was marketing
microprocessors 6501 and 6502 at $25 each, which buyers could purchase
immediately. This was so sensational that many thought it was some kind of a scam,
considering that competitors were selling 8080 and 6800 at $179 each. As an answer
to its competitor, both Intel and Motorola lowered their prices on the first day of the
exhibit down to $69.95 per microprocessor. Motorola quickly brought suit against
MOS Technology and Chuck Peddle for copying the protected 6800. MOS Technology
stopped making 6501, but kept producing 6502. The 6502 was a 8-bit
microprocessor with 56 instructions and a capability of directly addressing 64Kb of
memory. Due to low cost , 6502 becomes very popular, so it was installed into
computers such as: KIM-1, Apple I, Apple II, Atari, Comodore, Acorn, Oric, Galeb,
Orao, Ultra, and many others. Soon appeared several makers of 6502 (Rockwell,
Sznertek, GTE, NCR, Ricoh, and Comodore takes over MOS Technology) which was
at the time of its prosperity sold at a rate of 15 million processors a year!

Others were not giving up though. Frederico Faggin leaves Intel, and starts his own
Zilog Inc.

In 1976 Zilog announced the Z80. During the making of this microprocessor, Faggin
made a pivotal decision. Knowing that a great deal of programs have been already
developed for 8080, Faggin realized that many would stay faithful to that
microprocessor because of great expenditure which redoing of all of the programs
would result in. Thus he decided that a new processor had to be compatible with
8080, or that it had to be capable of performing all of the programs which had
already been written for 8080. Beside these characteristics, many new ones have
been added, so that Z80 was a very powerful microprocessor in its time. It was able
to address directly 64 Kb of memory, it had 176 instructions, a large number of
registers, a built in option for refreshing the dynamic RAM memory, single-supply,

greater speed of work etc. Z80 was a great success and everybody converted from
8080 to Z80. It could be said that Z80 was without a doubt commercially most
successful 8-bit microprocessor of that time. Besides Zilog, other new manufacturers
like Mostek, NEC, SHARP, and SGS also appeared. Z80 was the heart of many
computers like Spectrum, Partner, TRS703, Z-3 .

In 1976, Intel came up with an improved version of 8-bit microprocessor named
8085. However, Z80 was so much better that Intel soon lost the battle. Altough a
few more processors appeared on the market (6809, 2650, SC/MP etc.), everything
was actually already decided. There weren't any more great improvements to make
manufacturers convert to something new, so 6502 and Z80 along with 6800
remained as main representatives of the 8-bit microprocessors of that time.

Microcontrollers versus Microprocessors

Microcontroller differs from a microprocessor in many ways. First and the most
important is its functionality. In order for a microprocessor to be used, other
components such as memory, or components for receiving and sending data must be
added to it. In short that means that microprocessor is the very heart of the
computer. On the other hand, microcontroller is designed to be all of that in one. No
other external components are needed for its application because all necessary
peripherals are already built into it. Thus, we save the time and space needed to
construct devices.

1.1 Memory unit

Memory is part of the microcontroller whose function is to store data.

The easiest way to explain it is to describe it as one big closet with lots of drawers. If
we suppose that we marked the drawers in such a way that they can not be
confused, any of their contents will then be easily accessible. It is enough to know
the designation of the drawer and so its contents will be known to us for sure.

mem.location 0

mem location 1

Example of simplified model of a
N P Tela . mermary unit. For a specific input we
T DA e L N K - L. L i i |-I s

get a corresponding output. Line R
determines wheather we are reading
frorm or writing to memary

N y . from orwritin g to memo
Addresses > L Data >
— T
1] | I
mem location 14

I R
| T ganidi i
L

il

Memory components are exactly like that. For a certain input we get the contents of
a certain addressed memory location and that's all. Two new concepts are brought to
us: addressing and memory location. Memory consists of all memory locations, and
addressing is nothing but selecting one of them. This means that we need to select
the desired memory location on one hand, and on the other hand we need to wait for
the contents of that location. Beside reading from a memory location, memory must
also provide for writing onto it. This is done by supplying an additional line called
control line. We will designate this line as R/W (read/write). Control line is used in
the following way: if r/w=1, reading is done, and if opposite is true then writing is
done on the memory location. Memory is the first element, and we need a few
operation of our microcontroller .

1.2 Central Processing Unit

Let add 3 more memory locations to a specific block that will have a built in
capability to multiply, divide, subtract, and move its contents from one memory
location onto another. The part we just added in is called "central processing unit"
(CPU). Its memory locations are called registers.

redgister 1
register 2 o .
g Example of simplified central processing
P otar 2 unit with three registers
i I'L-"}\::]I-_ll.'\.v'l ! -
|
— -
< Addreceeac <1 I™.
Addresses [P N Ny
N —T— S DMata ~
< [Lata
. T 1
A0 “ b
< Controllines e
. ontrotlines CPU
\‘\j T

Registers are therefore memory locations whose role is to help with performing
various mathematical operations or any other operations with data wherever data
can be found. Look at the current situation. We have two independent entities
(memory and CPU) which are interconnected, and thus any exchange of data is
hindered, as well as its functionality. If, for example, we wish to add the contents of
two memory locations and return the result again back to memory, we would need a
connection between memory and CPU. Simply stated, we must have some "way"
through data goes from one block to another.

1.3 Bus

That "way" is called "bus". Physically, it represents a group of 8, 16, or more wires
There are two types of buses: address and data bus. The first one consists of as
many lines as the amount of memory we wish to address, and the other one is as
wide as data, in our case 8 bits or the connection line. First one serves to transmit
address from CPU memory, and the second to connect all blocks inside the
microcontroller.

merm location 0 Connecting memory and central unit

merm location 4 using husses in order to gain on
' functionality

mem.location 2

: register 1
MEMORY 4 Data N register 2
' B register 3
1
Addresses
memm location 14 | ™ .
Control lines

mem location 15 | T = CPU

As far as functionality, the situation has improved, but a new problem has also
appeared: we have a unit that's capable of working by itself, but which does not
have any contact with the outside world, or with us! In order to remove this
deficiency, let's add a block which contains several memory locations whose one end
is connected to the data bus, and the other has connection with the output lines on
the microcontroller which can be seen as pins on the electronic component.

1.4 Input-output unit

Those locations we've just added are called "ports". There are several types of ports
: input, output or bidiectional ports. When working with ports, first of all it is
necessary to choose which port we need to work with, and then to send data to, or
take it from the port.

R y
nput - Ea_ta
register &]*— Example of a simplified
input-output unit that provides
Cigtout — cormmunication with external
P Data world
register —
-1 I~
P s
< liata b
N, = - e
N P O unit
-l b

When working with it the port acts like a memory location. Something is simply
being written into or read from it, and it could be noticed on the pins of the
microcontroller.

1.5 Serial communication

Beside stated above we've added to the already existing unit the possibility of
communication with an outside world. However, this way of communicating has its
drawbacks. One of the basic drawbacks is the number of lines which need to be used
in order to transfer data. What if it is being transferred to a distance of several
kilometers? The number of lines times number of kilometers doesn't promise the
economy of the project. It leaves us having to reduce the number of lines in such a
way that we don't lessen its functionality. Suppose we are working with three lines
only, and that one line is used for sending data, other for receiving, and the third
one is used as a reference line for both the input and the output side. In order for
this to work, we need to set the rules of exchange of data. These rules are called
protocol. Protocol is therefore defined in advance so there wouldn't be any
misunderstanding between the sides that are communicating with each other. For
example, if one man is speaking in French, and the other in English, it is highly
unlikely that they will quickly and effectively understand each other. Let's suppose
we have the following protocol. The logical unit "1" is set up on the transmitting line
until transfer begins. Once the transfer starts, we lower the transmission line to
logical "0" for a period of time (which we will designate as T), so the receiving side
will know that it is receiving data, and so it will activate its mechanism for reception.

Let's go back now to the transmission side and start putting logic zeros and ones
onto the transmitter line in the order from a bit of the lowest value to a bit of the
highest value. Let each bit stay on line for a time period which is equal to T, and in
the end, or after the 8th bit, let us bring the logical unit "1" back on the line which
will mark the end of the transmission of one data. The protocol we've just described
is called in professional literature NRZ (Non-Return to Zero).

Recejver i Feceiving line
trancmittar - "
st —_——L [ransmitmng line

reqister .

- — Healaranca Ine
. . Serial unit used to send
A I, Aot biied rsales bios dlenn
e adid, Ul Oy Jy uifree
& | 149 "y - 1 | [——"
N, T S Serial iines
Y o wmm .
“ b unit

As we have separate lines for receiving and sending, it is possible to receive and
send data (info.) at the same time. So called full-duplex mode block which enables
this way of communication is called a serial communication block. Unlike the parallel
transmission, data moves here bit by bit, or in a series of bits what defines the term
serial communication comes from. After the reception of data we need to read it
from the receiving location and store it in memory as opposed to sending where the
process is reversed. Data goes from memory through the bus to the sending
location, and then to the receiving unit according to the protocol.

1.6 Timer unit

Since we have the serial communication explained, we can receive, send and process
data.

Free-run —— Signal
counter

Tirner unit generates signals in

Timer unit LA
regular time intercals

However, in order to utilize it in industry we need a few additionally blocks. One of
those is the timer block which is significant to us because it can give us information
about time, duration, protocol etc. The basic unit of the timer is a free-run counter
which is in fact a register whose numeric value increments by one in even intervals,
so that by taking its value during periods T1 and T2 and on the basis of their
difference we can determine how much time has elapsed. This is a very important
part of the microcontroller whose understanding requires most of our time.

1.7 Watchdog

One more thing is requiring our attention is a flawless functioning of the
microcontroller

during its run-time. Suppose that as a result of some interference (which often does
occur in industry) our microcontroller stops executing the program, or worse, it
starts working incorrectly.

Of course, when this happens with a computer, we simply reset it and it will keep
working. However, there is no reset button we can push on the microcontroller and
thus solve our problem. To overcome this obstacle, we need to introduce one more
block called watchdog. This block is in fact another free-run counter where our
program needs to write a zero in every time it executes correctly. In case that
program gets "stuck", zero will not be written in, and counter alone will reset the
microcontroller upon achieving its maximum value. This will result in executing the
program again, and correctly this time around. That is an important element of every
program to be reliable without man's supervision.

1.8 Analog to Digital Converter

As the peripheral signals usually are substantially different from the ones that
microcontroller can understand (zero and one), they have to be converted into a
pattern which can be comprehended by a microcontroller. This task is performed by
a block for analog to digital conversion or by an ADC. This block is responsible for
converting an information about some analog value to a binary number and for
follow it through to a CPU block so that CPU block can further process it.

ADC register) Block for converting an
Analog input analogue to a digital form

Data
AD converter

Finnaly, the microcontroller is now completed, and all we need to do now is to
assemble it into an electronic component where it will access inner blocks through
the outside pins. The picture below shows what a microcontroller looks like inside.

Physical configuration of the interior of a microcontroller

Thin lines which lead from the center towards the sides of the microcontroller
represent wires connecting inner blocks with the pins on the housing of the

microcontroller so called bonding lines. Chart on the following page represents the
center section of a microcontroller.

Input — - redister .
Pt -~ Receiving d AD input
Output —® | Transmitting AID
Feference =—t— i
register converter
A1
I it A
IV L U
. s . M o— =
- . i redster < Liddld
Serial 1™ = . o
. .
it P— -) L.
R [ITLr 1™
e =
T e 1 1ArA)
=i alizi e .
: N P
| mem location O | N I N |
i I M RN
I : — =1 [>
I mem ocAanon 1ol P o———— [T N R
lmemlocation 1 o ¥ 0O uiit
I rrmmer Lmm om0
|IIIUIII.IU'\.;LIILIUIIL |
. | register 1|
:] [.
MEMORIJA >] register 2|
' } | register3 |
Addresses
rmern. location 14]
| | - WiR Zontrol
| rmern. location 15 | » lines CPU
_ -
Free tm” Independent
Lounter counter
Timer Watchdog
unit timer

Microcontroller outline with its basic elements and internal connections

For a real application, a microcontroller alone is not enough. Beside a

microcontroller, we need a program that would be executed, and a few more
elements which make up a interface logic towards the elements of regulation (which
will be discussed in later chapters).

1.9 Program

Program writing is a special field of work with microcontrollers and is called
"programming". Try to write a small program in a language that we will make up
ourselves first and then would be understood by anyone.

START

REGISTER1=MEMORY LOCATION_A
REGISTER2=MEMORY LOCATION_B

PORTA=REGISTER1 + REGISTER2
END

The program adds the contents of two memory locations, and views their sum on
port A. The first line of the program stands for moving the contents of memory
location "A" into one of the registers of central processing unit. As we need the other
data as well, we will also move it into the other register of the central processing
unit. The next instruction instructs the central processing unit to add the contents of
those two registers and send a result to port A, so that sum of that addition would
be visible to the outside world. For a more complex problem, program that works on
its solution will be bigger.

Programming can be done in several languages such as Assembler, C and Basic
which are most commonly used languages. Assembler belongs to lower level
languages that are programmed slowly, but take up the least amount of space in
memory and gives the best results where the speed of program execution is
concerned. As it is the most commonly used language in programming
microcontrollers it will be discussed in a later chapter. Programs in C language are
easier to be written, easier to be understood, but are slower in executing from
assembler programs. Basic is the easiest one to learn, and its instructions are
nearest a man's way of reasoning, but like C programming language it is also slower
than assembler. In any case, before you make up your mind about one of these
languages you need to consider carefully the demands for execution speed, for the
size of memory and for the amount of time available for its assembly.

After the program is written, we would install the microcontroller into a device and
run it. In order to do this we need to add a few more external components necessary
for its work. First we must give life to a microcontroller by connecting it to a power
supply (power needed for operation of all electronic instruments) and oscillator
whose role is similar to the role that heart plays in a human body. Based on its
clocks microcontroller executes instructions of a program. As it receives supply
microcontroller will perform a small check up on itself, look up the beginning of the
program and start executing it. How the device will work depends on many
parameters, the most important of which is the skillfulness of the developer of
hardware, and on programmer's expertise in getting the maximum out of the device
with his program.

CHAPTER 2
Microcontroller PIC16F84

Introduction

CISC, RISC
Applications
Clock/instruction cycle
Pipelining

Pin description

2.1 Clock generator - oscillator
2.2 Reset

2.3 Central processing unit
2.4 Ports

2.5 Memory organization

2.6 Interrupts

2.7 Free timer TMRO

2.8 EEPROM Data memory

Introduction

PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Its
general structure is shown on the following map representing basic blocks.

Program memory (FLASH)- for storing a written program.
Since memory made in FLASH technology can be programmed and cleared more
than once, it makes this microcontroller suitable for device development.

EEPROM - data memory that needs to be saved when there is no supply.

It is usually used for storing important data that must not be lost if power supply
suddenly stops. For instance, one such data is an assigned temperature in
temperature regulators. If during a loss of power supply this data was lost, we would
have to make the adjustment once again upon return of supply. Thus our device
looses on self-reliance.

RAM - data memory used by a program during its execution.
In RAM are stored all inter-results or temporary data during run-time.

PORTA and PORTB are physical connections between the microcontroller and the
outside world. Port A has five, and port B has eight pins.

FREE-RUN TIMER is an 8-bit register inside a microcontroller that works
independently of the program. On every fourth clock of the oscillator it increments its

value until it reaches the maximum (255), and then it starts counting over again
from zero. As we know the exact timing between each two increments of the timer
contents, timer can be used for measuring time which is very useful with some
devices.

CENTRAL PROCESSING UNIT has a role of connective element between other
blocks in the microcontroller. It coordinates the work of other blocks and executes
the user program.

i f
Data [

i

ey w— | LFU jAe— i memo

EEPROM | FLATH

1
[Prooram
i Program
]

¥ ¥

PORTA FORTE

PICT16F 84 microcontroller outline

Harvard von-Neumann
=]
5 z
o g T &
EE M—<w CFU +——w E CPU » =2
N "B | BE
= 3
& &

Harvard vs. won Neuman Block Architecturaes

CISC, RISC

It has already been said that PIC16F84 has a RISC architecture. This term is often
found in computer literature, and it needs to be explained here in more detail.
Harvard architecture is a newer concept than von-Neumann's. It rose out of the need
to speed up the work of a microcontroller. In Harvard architecture, data bus and

address bus are separate. Thus a greater flow of data is possible through the central
processing unit, and of course, a greater speed of work. Separating a program from
data memory makes it further possible for instructions not to have to be 8-bit words.
PIC16F84 uses 14 bits for instructions which allows for all instructions to be one
word instructions. It is also typical for Harvard architecture to have fewer
instructions than von-Neumann's, and to have instructions usually executed in one
cycle.

Microcontrollers with Harvard architecture are also called "RISC microcontrollers".
RISC stands for Reduced Instruction Set Computer. Microcontrollers with von-
Neumann's architecture are called 'CISC microcontrollers'. Title CISC stands for
Complex Instruction Set Computer.

Since PIC16F84 is a RISC microcontroller, that means that it has a reduced set of
instructions, more precisely 35 instructions . (ex. Intel's and Motorola's
microcontrollers have over hundred instructions) All of these instructions are
executed in one cycle except for jump and branch instructions. According to what its
maker says, PIC16F84 usually reaches results of 2:1 in code compression and 4:1 in
speed in relation to other 8-bit microcontrollers in its class.

Applications

PIC16F84 perfectly fits many uses, from automotive industries and controlling home
appliances to industrial instruments, remote sensors, electrical door locks and safety
devices. It is also ideal for smart cards as well as for battery supplied devices
because of its low consumption.

EEPROM memory makes it easier to apply microcontrollers to devices where
permanent storage of various parameters is needed (codes for transmitters, motor
speed, receiver frequencies, etc.). Low cost, low consumption, easy handling and
flexibility make PIC16F84 applicable even in areas where microcontrollers had not
previously been considered (example: timer functions, interface replacement in
larger systems, coprocessor applications, etc.).

In System Programmability of this chip (along with using only two pins in data
transfer) makes possible the flexibility of a product, after assembling and testing
have been completed. This capability can be used to create assembly-line
production, to store calibration data available only after final testing, or it can be
used to improve programs on finished products.

Clock / instruction cycle

Clock is microcontroller's main starter, and is obtained from an external component
called an "oscillator". If we want to compare a microcontroller with a time clock, our
"clock" would then be a ticking sound we hear from the time clock. In that case,
oscillator could be compared to a spring that is wound so time clock can run. Also,
force used to wind the time clock can be compared to an electrical supply.

Clock from the oscillator enters a microcontroller via OSC1 pin where internal circuit
of a microcontroller divides the clock into four even clocks Q1, Q2, Q3, and Q4 which

do not overlap. These four clocks make up one instruction cycle (also called machine
cycle) during which one instruction is executed.

Execution of instruction starts by calling an instruction that is next in string.
Instruction is called from program memory on every Q1 and is written in instruction
register on Q4. Decoding and execution of instruction are done between the next Q1
and Q4 cycles. On the following diagram we can see the relationship between
instruction cycle and clock of the oscillator (OSC1) as well as that of internal clocks
Q1-Q4. Program counter (PC) holds information about the address of the next
instruction.

@

I

C

C

L

I
L™

C

L

I

C

C

1L

21
| | | |
Q? 1 ; 1 1 ;
el — [— [— [
@3 | — e — !
PR _ 1 _ 1 _ 1
L L] L] L] |
1 1 1 1
pe K P ﬂ{ P & T ;
| | | |
| |
T T] |
Toemaz NETTEC] |

TaR ST
Ul [HPC+

Cloclkdinsruction Cycle

Pipelining

Instruction cycle consists of cycles Q1, Q2, Q3 and Q4. Cycles of calling and
executing instructions are connected in such a way that in order to make a call, one
instruction cycle is needed, and one more is needed for decoding and execution.
However, due to pipelining, each instruction is effectively executed in one cycle. If
instruction causes a change on program counter, and PC doesn't point to the
following but to some other address (which can be the case with jumps or with
calling subprograms), two cycles are needed for executing an instruction. This is so
because instruction must be processed again, but this time from the right address.
Cycle of calling begins with Q1 clock, by writing into instruction register (IR).
Decoding and executing begins with Q2, Q3 and Q4 clocks.

TCYD TG TCYZ TCY3 TCW4 TCYS

1. MIOWLW S5h Fetch Execute

2. MOvWF PORTE Fetchz Execute?

3.CALL SUB_A Fetchs Executed

4. BSF PORTA, BiTZ [Forced NOFP) Fetcihg Fiush

5. Instruction &@ address SUB_1 Fetch SUB_1 |IExecuteSUB_1

FetchSlUE 1 + 1

TCYO reads in instruction MOVLW 55h (it doesn't matter to us what instruction was
executed, because there is no rectangle pictured on the bottom).

TCY1 executes instruction MOVLW 55h and reads in MOVWF PORTB.

TCY2 executes MOVWF PORTB and reads in CALL SUB_1.

TCY3 executes a call of a subprogram CALL SUB_1, and reads in instruction BSF
PORTA, BIT3. As this instruction is not the one we need, or is not the first instruction
of a subprogram SUB_1 whose execution is next in order, instruction must be read in
again. This is a good example of an instruction needing more than one cycle.

TCY4 instruction cycle is totally used up for reading in the first instruction from a
subprogram at address SUB_1.

TCY5 executes the first instruction from a subprogram SUB_1 and reads in the next
one.

Pin description

PIC16F84 has a total of 18 pins. It is most frequently found in a DIP18 type of case
but can also be found in SMD case which is smaller from a DIP. DIP is an
abbreviation for Dual In Package. SMD is an abbreviation for Surface Mount Devices
suggesting that holes for pins to go through when mounting, aren't necessary in
soldering this type of a component.

1 L) 13
Oraz Rad [
2 17
[[roo [
a 16
(AR oCK 51 [
d 13
MTLR (%1
%% pic =<l
B['u'ss 16F84 ‘dd :1!3
[IrE0ANT reT [
T 12
1 [33:3] REG []
2] 1
[|re= RES
9 10
[Jres RE4[]

Pins on PIC16F84 microcontroller have the following meaning:

Pin
Pin
Pin

no.1 RA2 Second pin on port A. Has no additional function
no.2 RA3 Third pin on port A. Has no additional function.
no.3 RA4 Fourth pin on port A. TOCK1 which functions as a timer is also found

on this pin

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

no.4 MCLR Reset input and Vpp programming voltage of a microcontroller
no.5 Vss Ground of power supply.

no.6 RBO Zero pin on port B. Interrupt input is an additional function.
no.7 RB1 First pin on port B. No additional function.

no.8 RB2 Second pin on port B. No additional function.

no.9 RB3 Third pin on port B. No additional function.

no.10 RB4 Fourth pin on port B. No additional function.

no.11 RB5 Fifth pin on port B. No additional function.

no.12 RB6 Sixth pin on port B. 'Clock’' line in program mode.

no.13 RB7 Seventh pin on port B. 'Data’' line in program mode.

no.14 Vdd Positive power supply pole.

no.15 OSC2 Pin assigned for connecting with an oscillator

no.16 OSC1 Pin assigned for connecting with an oscillator

no.17 RA2 Second pin on port A. No additional function

no.18 RA1 First pin on port A. No additional function.

2.1 Clock generator - oscillator

Oscillator circuit is used for providing a microcontroller with a clock. Clock is needed
so that microcontroller could execute a program or program instructions.

Types of oscillators

PIC16F84 can work with four different configurations of an oscillator. Since
configurations with crystal oscillator and resistor-capacitor (RC) are the ones that are
used most frequently, these are the only ones we will mention here. Microcontroller
type with a crystal oscillator has in its designation XT, and a microcontroller with
resistor-capacitor pair has a designation RC. This is important because you need to
mention the type of oscillator when buying a microcontroller.

XT Oscillator

Crystal oscillator is kept in metal
housing with two pins where you have
written down the frequency at which
crystal oscillates. One ceramic capacitor
of 30pF whose other end is connected to
the ground needs to be connected with
each pin.

Oscillator and capacitors can be packed
in joint case with three pins. Such
element is called ceramic resonator and
is represented in charts like the one
below. Center pins of the element is the
ground, while end pins are connected
with OSC1 and OSC2 pins on the
microcontroller. When designing a
device, the rule is to place an oscillator
nearer a microcontroller, so as to avoid
any interference on lines on which
microcontroller is receiving a clock.

RC Oscillator

1 ¥ 12

M onna [=F1] ml

L [To" [nTall J

2 17

Iy T ron 1

4 H)

! | 16 osci o

|1 RATOCK] el — —

s s r—
A== P | |
LIMCLRE e~ ™SS2 | |

5 i 14 | wTal -
My ASCHA yaall | = T |
[LI A | |~ | =
1| - | osCz | =t

!_ REOANT vy] !_I

Connecting the quartz oscillator to give
clock to a microcontroller

13
raif]
17
roa]
16
ke]_I'I| |
13 [=]
05C2 T |
14
wdd [

Connecting a resonator onto a
micracontroller

In applications where great time precision is not necessary, RC oscillator offers
additional savings during purchase. Resonant frequency of RC oscillator depends on
supply voltage rate, resistance R, capacity C and working temperature. It should be
mentioned here that resonant frequency is also influenced by normal variations in
process parameters, by tolerance of external R and C components, etc.

woo

H%
i - Clack
I
E? PIC1EFR4
VEs —
OSCCLKOUT
Clodud

Above diagram shows how RC oscillator is connected with PIC16F84. With value of
resistor R being below 2.2k, oscillator can become unstable, or it can even stop the
oscillation. With very high value of R (ex.1M) oscillator becomes very sensitive to
noise and humidity. It is recommended that value of resistor R should be between 3
and 100k. Even though oscillator will work without an external capacitor (C=0pF),
capacitor above 20pF should still be used for noise and stability. No matter which
oscillator is being used, in order to get a clock that microcontroller works upon, a
clock of the oscillator must be divided by 4. Oscillator clock divided by 4 can also be

obtained on OSC2/CLKOUT pin, and can be used for testing or synchronizing other
logical circuits.

.2
.18
1.8

3049

]

1

1 I

] R

18
—1F
1=
1R
18
1.8

|

L
C
L
L
C
e
L
C
L
L
C
L

Felationship between a clock and a number of instruction cycles

Following a supply, oscillator starts oscillating. Oscillation at first has an unstable
period and amplitude, but after some period of time it becomes stabilized.

+H T

“oltage

o

Crystal start up time Time

Signal of an oscillator clock after receiving the supply of a microcontroller

To prevent such inaccurate clock from influencing microcontroller's performance, we
need to keep the microcontroller in reset state during stabilization of oscillator's
clock. Diagram above shows a typical shape of a signal which microcontroller gets
from the quartz oscillator.

2.2 Reset

Reset is used for putting the microcontroller into a 'known' condition. That practically
means that microcontroller can behave rather inaccurately under certain undesirable
conditions. In order to continue its proper functioning it has to be reset, meaning all
registers would be placed in a starting position. Reset is not only used when
microcontroller doesn't behave the way we want it to, but can also be used when
trying out a device as an interrupt in program execution, or to get a microcontroller

ready when loading a program.
T 13
R0z Rad
17
R0z R0
1

&

<
=}
=]

jra}
N o 0 N e 10 N e

In order to prevent from bringing a logical zero to
MCLR pin accidentally (line above it means that
reset is activated by a logical zero), MCLR has to
be connected via resistor to the positive supply
pole. Resistor should be between 5 and 10K. This
kind of resistor whose function is to keep a certain
line on a logical one as a preventive, is called a pull

up.

RHT K]

MCLR PIC

s 16FE4
||
REOANT

RE1

LIsing the internal reset circuit

Microcontroller PIC16F84 knows several sources of resets:

a) Reset during power on, POR (Power-On Reset)

b) Reset during regular work by bringing logical zero to MCLR microcontroller's pin.
¢) Reset during SLEEP regime

d) Reset at watchdog timer (WDT) overflow

e) Reset during at WDT overflow during SLEEP work regime.

The most important reset sources are a) and b). The first one occurs each time a
power supply is brought to the microcontroller and serves to bring all registers to a
starting position initial state. The second one is a product of purposeful bringing in of
a logical zero to MCLR pin during normal operation of the microcontroller. This
second one is often used in program development.

During a reset, RAM memory locations are not being reset. They are unknown during
a power up and are not changed at any reset. Unlike these, SFR registers are reset
to a starting position initial state. One of the most important effects of a reset is
setting a program counter (PC) to zero (0000h) , which enables the program to start
executing from the first written instruction.

Reset at supply voltage drop below the permissible (Brown-out
Reset)

Impulse for resetting during voltage voltage-up is generated by microcontroller itself
when it detects an increase in supply Vdd (in a range from 1.2V to 1.8V). That
impulse lasts 72ms which is enough time for an oscillator to get stabilized. These
72ms are provided by an internal PWRT timer which has its own RC oscillator.
Microcontroller is in a reset mode as long as PWRT is active. However, as device is
working, problem arises when supply doesn't drop to zero but falls below the limit
that guarantees microcontroller's proper functioning. This is a likely case in practice,
especially in industrial environment where disturbances and instability of supply are
an everyday occurrence. To solve this problem we need to make sure that
microcontroller is in a reset state each time supply falls below the approved limit.

Ve S
Reset zignal T2 ms "

Woo
Reset signal | <72 ms "ﬁ"l—

DD ——

Y {
_.................'}....lrg..... -
Recet sianal I H—
SEEiEigns _— T2 ms

If, according to electrical specification, internal reset circuit of a microcontroller can
not satisfy the needs, special electronic components can be used which are capable
of generating the desired reset signal. Beside this function, they can also function in
watching over supply voltage. If voltage drops below specified level, a logical zero
would appear on MCLR pin which holds the microcontroller in reset state until voltage
is not within limits that guarantee accurate performance.

2.3 Central Processing Unit

Central processing unit (CPU) is the brain of a microcontroller. That part is
responsible for finding and fetching the right instruction which needs to be executed,
for decoding that instruction, and finally for its execution.

Central processing unit connects all parts of the microcontroller into one whole.
Surely, its most important function is to decode program instructions. When
programmer writes a program, instructions have a clear form like MOVLW 0x20.
However, in order for a microcontroller to understand that, this 'letter' form of an
instruction must be translated into a series of zeros and ones which is called an
'opcode’. This transition from a letter to binary form is done by translators such as
assembler translator (also known as an assembler). Instruction thus fetched from
program memory must be decoded by a central processing unit. We can then select
from the table of all the instructions a set of actions which execute a assigned task
defined by instruction. As instructions may within themselves contain assignments
which require different transfers of data from one memory into another, from
memory onto ports, or some other calculations, CPU must be connected with all
parts of the microcontroller. This is made possible through a data bus and an
address bus.

Arithmetic logic unit is responsible for performing operations of adding, subtracting,
moving (left or right within a register) and logic operations. Moving data inside a
register is also known as 'shifting'. PIC16F84 contains an 8-bit arithmetic logic unit
and 8-bit work registers.

In instructions with two operands, ordinarily one operand is in work register (W
register), and the other is one of the registers or a constant. By operand we mean
the contents on which some operation is being done, and a register is any one of the
GPR or SFR registers. GPR is an abbreviation for 'General Purposes Registers', and
SFR for 'Special Function Registers'. In instructions with one operand, an operand is
either W register or one of the registers. As an addition in doing operations in
arithmetic and logic, ALU controls status bits (bits found in STATUS register).
Execution of some instructions affects status bits, which depends on the result itself.
Depending on which instruction is being executed, ALU can affect values of Carry
(C), Digit Carry (DC), and Zero (Z) bits in STATUS register.

STATUS Register

RAMN-0 RAM-O 2AM-0 RAV-1T RAM-T RAM-: RAA-x RAM-x
IRP RP1 RPO | TO | PD z o C
hit?

Legend:
R = Readahle hit W ='Writable hit
U = Unimglemented bit, read az '00 - n = Yalue at power-on reset

bit 7 IRP (Register Bank Select bit)
Bit whose role is to be an eighth bit for purposes of indirect addressing the internal

RAM.
1 = bank 2 and 3
0 = bank 0 and 1 (from 00h to FFh)

bits 6:5 RP1:RPO (Register Bank Select bits)

These two bits are upper part of the address for direct addressing. As instructions
which address the memory directly have only seven bits, they need one more bit in
order to address all 256 bytes which is how many bytes PIC16F84 has. RP1 bit is not
used, but is left for some future expansions of this microcontroller.

01 = first bank

00 = zero bank

bit 4 TO Time-out ; Watchdog overflow.

Bit is set after turning on the supply and execution of CLRWDT and SLEEP
instructions. Bit is reset when watchdog gets to the end signaling that overflow took
place.

1 = overflow did not occur

0 = overflow did occur

bit 3 PD (Power-down bit)

This bit is set whenever power supply is brought to a microcontroller : as it starts
running, after each regular reset and after execution of instruction CLRWDT.
Instruction SLEEP resets it when microcontroller falls into low consumption mode. Its
repeated setting is possible via reset or by turning the supply off/on . Setting can be
triggered also by a signal on RBO/INT pin, change on RB port, upon writing to
internal DATA EEPROM, and by a Watchdog.

1 = after supply has been turned on

0 = executing SLEEP instruction

bit 2 Z (Zero bit) Indication of a zero result

This bit is set when the result of an executed arithmetic or logic operation is zero.
1 = result equals zero

0 = result does not equal zero

bit 1 DC (Digit Carry) DC Transfer

Bit affected by operations of addition, subtraction. Unlike C bit, this bit represents
transfer from the fourth resulting place. It is set in case of subtracting smaller from
greater number and is reset in the other case.

1 = transfer occurred on the fourth bit according to the order of the result

0 = transfer did not occur

DC bit is affected by ADDWF, ADDLW, SUBLW, SUBWF instructions.

bit 0 C (Carry) Transfer

Bit that is affected by operations of addition, subtraction and shifting.
1 = transfer occurred from the highest resulting bit

0 = transfer did not occur

C bit is affected by ADDWF, ADDLW, SUBLW, SUBWF instructions.

2.4 Ports

Term "port" refers to a group of pins on a microcontroller which can be accessed
simultaneously, or on which we can set the desired combination of zeros and ones,
or read from them an existing status. Physically, port is a register inside a
microcontroller which is connected by wires to the pins of a microcontroller. Ports
represent physical connection of Central Processing Unit with an outside world.
Microcontroller uses them in order to monitor or control other components or
devices. Due to functionality, some pins have twofold roles like PA4/TOCKI for
instance, which is in the same time the fourth bit of port A and an external input for
free-run counter. Selection of one of these two pin functions is done in one of the
configuration registers. An illustration of this is the fifth bit TOCS in OPTION register.
By selecting one of the functions the other one is disabled.

All port pins can be designated as input or output, according to the needs of a device
that's being developed. In order to define a pin as input or output pin, the right
combination of zeros and ones must be written in TRIS register. If the appropriate
bit of TRIS register contains logical "1", then that pin is an input pin, and if the
opposite is true, it's an output pin. Every port has its proper TRIS register. Thus, port
A has TRISA, and port B has TRISB. Pin direction can be changed during the course
of work which is particularly fitting for one-line communication where data flow
constantly changes direction. PORTA and PORTB state registers are located in bank
0, while TRISA and TRISB pin direction registers are located in bank 1.

PORTB and TRISB

PORTB has adjoined 8 pins. The appropriate register for data direction is TRISB.
Setting a bit in TRISB register defines the corresponding port pin as input, and
resetting a bit in TRISB register defines the corresponding port pin as output.

Fort B reqister
Anything written to
this register direcily

Fort B pin affects the pins of
port B
;
/ /
- ff
!
Register for designating PORTEB
pin input or output | Ll /
1 - mnput - g r a
0 - ovitpast = [\:Il
eea]

!
Llelelolelelole)

TRISB

O
®
(5
= 5
®
@
@
®

Each PORTB pin has a weak internal pull-up resistor (resistor which defines a line to
logic one) which can be activated by resetting the seventh bit RBPU in OPTION
register. These 'pull-up' resistors are automatically being turned off when port pin is
configured as an output. When a microcontroller is started, pull-ups are disabled.

Four pins PORTB, RB7:RB4 can cause an interrupt which occurs when their status
changes from logical one into logical zero and opposite. Only pins configured as input
can cause this interrupt to occur (if any RB7:RB4 pin is configured as an output, an
interrupt won't be generated at the change of status.) This interrupt option along
with internal pull-up resistors makes it easier to solve common problems we find in
practice like for instance that of matrix keyboard. If rows on the keyboard are
connected to these pins, each push on a key will then cause an interrupt. A
microcontroller will determine which key is at hand while processing an interrupt It is
not recommended to refer to port B at the same time that interrupt is being
processed.

bsf STATUS, RPO ;Bankl

movilw 0xO0F ;Defining input and output pins
movwf TRISB ;Writing to TRISB register

bcf STATUS, RPO ;BankO

bsf PORTB, 4 ;PORTB <7:4>=0

bsf PORTB, 5
bsf PORTB, 6
bsf PORTB, 7

The above example shows how pins 0, 1, 2, and 3 are designated input, and pins 4,
5, 6, and 7 for output, after which PORTB output pins are set to one.

PORTA and TRISA

PORTA has 5 adjoining pins. The corresponding register for data direction is TRISA at
address 85h. Like with port B, setting a bit in TRISA register defines also the
corresponding port pin as input, and clearing a bit in TRISA register defines the
corresponding port pin as output.

It is important to note that PORTA pin RA4 can be input only. On that pin is also
situated an external input for timer TMRO. Whether RA4 will be a standard input or
an input for a counter depends on TOCS bit (TMRO Clock Source Select bit). This pin
enables the timer TMRO to increment either from internal oscillator or via external
impulses on RA4/TOCKI pin.

..

RA4 pin can be designated output, but in that case it has to be externally
connected to PULL-UP resistor.

}

Configuring port A:

bsf STATUS, RPO ;Bankl

movilw b'11111100' ;Defining input and output pins
movwf TRISA ;Writing to TRISA register

bcf STATUS, RPO ;BankO

Example shows how pins 0, 1, 2, 3, and 4 are designated input, and pins 5, 6, and 7
output. After this, it is possible to read the pins RA2, RA3, RA4, and to set logical
zero or one to pins RAO and RAL.

Port A register
Anything written
to this register

Fort A pin directly affecis
the pins of port A
J
/ L
o i
i
/ 4
PORTA
Register for deignating ! / e
pin input or output RAZ [/
1 - input RAZ E - a
0 - output - \::'f

!
Llelelolelelole)

TRISA

2.5 Memory organization

PIC16F84 has two separate memory blocks, one for data and the other for program.
EEPROM memory with GPR and SFR registers in RAM memory make up the data
block, while FLASH memory makes up the program block.

Program memory

Program memory has been carried out in FLASH technology which makes it possible
to program a microcontroller many times before it's installed into a device, and even
after its installment if eventual changes in program or process parameters should
occur. The size of program memory is 1024 locations with 14 bits width where
locations zero and four are reserved for reset and interrupt vector.

Data memory

Data memory consists of EEPROM and RAM memories. EEPROM memory consists of
64 eight bit locations whose contents is not lost during loosing of power supply.
EEPROM is not directly addressable, but is accessed indirectly through EEADR and
EEDATA registers. As EEPROM memory usually serves for storing important
parameters (for example, of a given temperature in temperature regulators) , there
is a strict procedure for writing in EEPROM which must be followed in order to avoid

accidental writing. RAM memory for data occupies space on a memory map from
location 0x0C to 0x4F which comes to 68 locations. Locations of RAM memory are
also called GPR registers which is an abbreviation for General Purpose Registers. GPR
registers can be accessed regardless of which bank is selected at the moment.

SFR registers

Registers which take up first 12 locations in banks 0 and 1 are registers of
specialized function assigned with certain blocks of the microcontroller. These are
called Special Function Registers.

—| EEDATA |

“B
Addres EEpROM for
b J
Stack level 1 00k data b4x5
Stack level 2 o h -~
: e . e
| = . | T
|t . F
| LI T T T T T T T =%
Stackgvel & Program | 1| ——1— 1+ EE
1 L 1 - 3Fh
Addrans “ o aunter Qr
T — e || -~ . |
Bus 4 L - Lata Bus |
. 4 |
1 [=had=s Rty L~ |
! T T !
| A N [
| = 1 PRI ! -
_ | Arcress i Aridress
= = . = =
Gy W, s py D000k 0ok THOF " THOF] G0k
Gih THRG CFTR gth
02h FCL FEL 82h
v o v e O e R T ER | sk
05k FORTA TRES 85h Accessing
0&h PORTE TRIER g6h these
07k 87h focations
Program memary » 05k EEDATA EECOHT | 88k has the
1024514 — Dh ERLDR EECONZ 7 | @3h same restlt
Oah POLATH POLATH regardless
0Bh INTCON INTCON of the bank
T OCh 3
: frorn which
i : we are
i B8 bytes RAM memory 41 : making an
GPR E SoCess
' registers i
LAkh Lrh i
Sth DOk Lipirglernen
e
A memary
locations, by
regding
thers
We always
1FFFh 7Fh FFh get 0¥
Bankd Bank1
A r)
Lo
L - Jreegireo]l - 0 - - - 00 -]

STATUS register

Memory organization of microcontroller PIC16F84

Memory Banks

Beside this 'length' division to SFR and GPR registers, memory map is also divided in
'width' (see preceding map) to two areas called 'banks'. Selecting one of the banks is
done via RPO bit in STATUS register.

Example:
bcf STATUS, RPO

Instruction BCF clears bit RPO (RP0=0) in STATUS register and thus sets up bank 0.

bsf STATUS, RPO
Instruction BSF sets the bit RPO (RPO=1) in STATUS register and thus sets up bank1.

It is useful to consider what would happen if the wrong bank was selected. Let's
assume that we have selected bank 0 at the beginning of the program, and that we
now want to write to certain register located in bank 1, say TRISB. Although we
specified the name of the register TRISB, data will be actually stored to a bank 0
register at the appropriate address, which is PORTB in our example.

BANKO macro

Bcf STATUS, RPO ; Select
memory bank O

endm

BANK1 macro

Bsf STATUS, RPO ; Select
memory bank 1

endm

Bank selection can be also made via directive banksel after which name of the
register to be accessed is specified. In this manner, there is no need to memorize
which register is in which bank.

o Locations OCh - 4Fh are general purpose registers (GPR) which are used as RAM
&) memory. When locations 8Ch - CFh in Bank 1 are accessed, we actually access
* the exact same locations in Bank 0. In other words , whenever you wish to

" access one of the GPR registers, there is no need to worry about which bank we
£ arein!

Program Counter

Program counter (PC) is a 13-bit register that contains the address of the instruction
being executed. It is physically carried out as a combination of a 5-bit register
PCLATH for the five higher bits of the address, and the 8-bit register PCL for the
lower 8 bits of the address.

By its incrementing or change (i.e. in case of jumps) microcontroller executes
program instructions step-by-step.

Stack

PIC16F84 has a 13-bit stack with 8 levels, or in other words, a group of 8 memory
locations, 13 bits wide, with special purpose. Its basic role is to keep the value of
program counter after a jump from the main program to an address of a subprogram
. In order for a program to know how to go back to the point where it started from, it
has to return the value of a program counter from a stack. When moving from a
program to a subprogram, program counter is being pushed onto a stack (example
of this is CALL instruction). When executing instructions such as RETURN, RETLW or

RETFIE which were executed at the end of a subprogram, program counter was
taken from a stack so that program could continue where was stopped before it was
interrupted. These operations of placing on and taking off from a program counter
stack are called PUSH and POP, and are named according to similar instructions on
some bigger microcontrollers.

In System Programming

In order to program a program memory, microcontroller must be set to special
working mode by bringing up MCLR pin to 13.5V, and supply voltage Vdd has to be
stabilized between 4.5V to 5.5V. Program memory can be programmed serially using
two 'data/clock’ pins which must previously be separated from device lines, so that
errors wouldn't come up during programming.

Addressing modes

RAM memory locations can be accessed directly or indirectly.

Direct Addressing

Direct Addressing is done through a 9-bit address. This address is obtained by
connecting 7th bit of direct address of an instruction with two bits (RP1, RPQ) from
STATUS register as is shown on the following picture. Any access to SFR registers is
an example of direct addressing.

Bsf STATUS, RPO ;Bankl

movlw OxFF ; w=0xXFF

movwf TRISA ;address of TRISA register is taken from
;instruction movwf

Stk ancl Gth
bits of
STATUS
reglstar \ Seven bits from instructions
FP1 RPZ2 J
(T + [[T T TTT]
o v
Sefectod oo 01
bank
oo
ar
Selectad focation
nc
4F
TF

BankO Bank1

Direct addressing

Indirect Addressing

Indirect unlike direct addressing does not take an address from an instruction but
derives it from IRP bit of STATUS and FSR registers. Addressed location is accessed
via INDF register which in fact holds the address indicated by a FSR. In other words,
any instruction which uses INDF as its register in reality accesses data indicated by a
FSR register. Let's say, for instance, that one general purpose register (GPR) at
address OFh contains a value of 20. By writing a value of OFh in FSR register we will
get a register indicator at address OFh, and by reading from INDF register, we will
get a value of 20, which means that we have read from the first register its value
without accessing it directly (but via FSR and INDF). It appears that this type of
addressing does not have any advantages over direct addressing, but certain needs
do exist during programming which can be solved smoothly only through indirect
addressing.

Indirect addressing is very convenient for manipulating data arrays located in GPR
registers. In this case, it is necessary to initialize FSR register with a starting address
of the array, and the rest of the data can be accessed by incrementing the FSR
register.

Seventh bit of
STATLS
reqister
IRP 7 0
1 I T T T T T T 1
I IR TR I | | | | F=ER
I. T | | | | | | | |
e i ______________________________
| !
- | I
AT I -
e I T
Selected | oo o
bank i
1 nn
v
/ 0g
Selected locgtion _ pooee
oc
4F
TF
Banko Bank1

Indirect addressing

Such examples include sending a set of data via serial communication, working with
buffers and indicators (which will be discussed further in a chapter with examples),
or erasing a part of RAM memory (16 locations) as in the following instance.

Mowlw 0x0OC ;initialization of starting address
Mowvwf F3ER ;F3R indicates address 0x0C

LOoOP clrf INDF ;INDF = 0O
inct F3SR ;address = initial address + 1
btf=s=s F3R, 4 ;are all locations erased
goto loop ;no, go through a loop again

CONTINUE
: ; ¥e3, continue with program

Reading data from INDF register when the contents of FSR register is equal to zero
returns the value of zero, and writing to it results in NOP operation (no operation).

2.6 Interrupts

Interrupts are a mechanism of a microcontroller which enables it to respond to some
events at the moment they occur, regardless of what microcontroller is doing at the
time. This is a very important part, because it provides connection between a
microcontroller and environment which surrounds it. Generally, each interrupt
changes the program flow, interrupts it and after executing an interrupt subprogram
(interrupt routine) it continues from that same point on.

PIC1EFE4
1
|: RAZ Point at which
2 an interruot
|: (=% _ accured
Program execution
3 flow
[] reaimock ’
4
+3y L
[MCLR subprogram
5 where interrupt is
i [] ves processed
RBONNT 5]
Ti |-"r
g REt Continuation of
[REZ the narmal Return from
prograrm subprogram
= d execution
[l rez o

One of the possible sources of interrupt and how it affects the main program

Control register of an interrupt is called INTCON and can be accessed regardless of
the bank selected. Its role is to allow or disallowed interrupts, and in case they are
not allowed, it registers single interrupt requests through its own bits.

INTCON Register

RAN-0 RANV-0 RAY-0 BRAM-D RAMV-D RANV-D RANV-0 RAV-0

GIE | EEIE [TOIE | INTE | RBIE | TQIF | INTF | REIF

hit?

Legend:
R = Readable bit W =""fitable bit
Il = Unimplemented bit, read as '0' - n =%alue at power-on reset

Bit 7 GIE (Global Interrupt Enable bit) Bit which enables or disables all interrupts.
1 = all interrupts are enabled
0 = all interrupts are disabled

Bit 6 EEIE (EEPROM Write Complete Interrupt Enable bit) Bit which enables an
interrupt at the end of a writing routine to EEPROM
1 = interrupt enabled

0 = interrupt disabled
If EEIE and EEIF (which is in EECON1 register) are set simultaneously , an interrupt
will occur.

bit 5 TOIE (TMRO Overflow Interrupt Enable bit) Bit which enables interrupts during
counter TMRO overflow.

1 = interrupt enabled

0 = interrupt disabled

If TOIE and TOIF are set simultaneously, interrupt will occur.

bit 4 INTE (INT External Interrupt Enable bit) Bit which enables external interrupt
from pin RBO/INT.

1 = external interrupt enabled

0 = external interrupt disabled

If INTE and INTF are set simultaneously, an interrupt will occur.

bit 3 RBIE (RB port change Interrupt Enable bit) Enables interrupts to occur at the
change of status of pins 4, 5, 6, and 7 of port B.

1 = enables interrupts at the change of status

0 =interrupts disabled at the change of status

If RBIE and RBIF are simultaneously set, an interrupt will occur.

bit 2 TOIF (TMRO Overflow Interrupt Flag bit) Overflow of counter TMRO.
1 = counter changed its status from FFh to 00h

0 = overflow did not occur

Bit must be cleared in program in order for an interrupt to be detected.

bit 1 INTF (INT External Interrupt Flag bit) External interrupt occurred.

1 = interrupt occurred

0 = interrupt did not occur

If a rising or falling edge was detected on pin RBO/INT, (which is defined with bit
INTEDG in OPTION register), bit INTF is set.

bit 0 RBIF (RB Port Change Interrupt Flag bit) Bit which informs about changes on
pins 4, 5, 6 and 7 of port B.

1 = at least one pin has changed its status

0 = no change occurred on any of the pins

Bit has to be cleared in an interrupt subroutine to be able to detect further
interrupts.

INTERRLIPT

EEIE @ EEIF
_G/D = cr/c _A
e — e A
ToiE / £ e / TaiF .
[__ T
) - . FR i T
¢ o ¢ T O
nEIE PR Y . DORIF b —
P 3 3 rd i LY — —
e s S y A
GIE 0 o &0 d \ I
T -~ na Y
....... oo iWNTE 2 Fan o a NMIF ", I
F P i I "
F # S d |
T o o % - R
i
i
i
i
i
i

Simplified outline of PIC1E6FE4 microcontroller interrupt

PIC16F84 has four interrupt sources:

1. Termination of writing data to EEPROM

2. TMRO interrupt caused by timer overflow

3. Interrupt during alteration on RB4, RB5, RB6 and RB7 pins of port B.
4. External interrupt from RBO/INT pin of microcontroller

Generally speaking, each interrupt source has two bits joined to it. One enables
interrupts, and the other detects when interrupts occur. There is one common bit
called GIE which can be used to disallow or enable all interrupts simultaneously. This
bit is very useful when writing a program because it allows for all interrupts to be
disabled for a period of time, so that execution of some important part of a program
would not be interrupted. When instruction which resets GIE bit was executed
(GIE=0, all interrupts disallowed), any interrupt that remained unsolved should be
ignored. Interrupts which remained unsolved and were ignored, are processed when
GIE bit (GIE=1, all interrupts allowed) would be cleared. When interrupt was
answered, GIE bit was cleared so that any additional interrupts would be disabled,
return address was pushed onto stack and address 0004h was written in program
counter - only after this does replying to an interrupt begin! After interrupt is
processed, bit whose setting caused an interrupt must be cleared, or interrupt
routine would automatically be processed over again during a return to the main
program.

Keeping the contents of important registers

Only return value of program counter is stored on a stack during an interrupt (by
return value of program counter we mean the address of the instruction which was
to be executed, but wasn't because interrupt occurred). Keeping only the value of
program counter is often not enough. Some registers which are already in use in the
main program can also be in use in interrupt routine. If they were not retained, main
program would during a return from an interrupt routine get completely different
values in those registers, which would cause an error in the program. One example

for such a case is contents of the work register W. If we suppose that main program
was using work register W for some of its operations, and if it had stored in it some
value that's important for the following instruction, then an interrupt which occurs
before that instruction would change the value of work register W which would
directly be influenced the main program.

Procedure of recording important registers before going to an interrupt routine is
called PUSH, while the procedure which brings recorded values back, is called POP.
PUSH and POP are instructions with some other microcontrollers (Intel), but are so
widely accepted that a whole operation is named after them. PIC16F84 does not
have instructions like PUSH and POP, and they have to be programmed.

Befare the interrupt
occured, working
register YW had the
- value!
— r .
Instruction no. N Intermipt nterropt
Fallowing - subpragrarm
instruction after an where interrupt
interrupt checks processing has
out the value of changed wnrlf .
wiork register W + register ¥ to Y
getum o |
A main
Instruction no. N+ 1 —» |5 W= 7 program

ND‘_‘ _}YES

Common error: saving the value wasn't done before entering the interrupt
routine

Due to simplicity and frequent usage, these parts of the program can be made as
macros. The concept of a Macro is explained in "Program assembly language". In the
following example, contents of W and STATUS registers are stored in W_TEMP and
STATUS_TEMP variables prior to interrupt routine. At the beginning of PUSH routine
we need to check presently selected bank because W_TEMP and STATUS_TEMP are
found in bank 0. For exchange of data between these registers, SWAPF instruction is
used instead of MOVF because it does not affect the STATUS register bits.

Example is an assembler program for following steps:

1. Testing the current bank
2. Storing W register regardless of the current bank

3. Storing STATUS register in bank 0.

4. Executing interrupt routine for interrupt processing (ISR)
5. Restores STATUS register

6. Restores W register

If there are some more variables or registers that need to be stored, then they need
to be kept after storing STATUS register (step 3), and brought back before STATUS
register is restored (step 5).

Fush
BTFSS STATUS, RPO
GOTCD EPOCLEAR
BCF STATUS, RRPO
MOVANE W TEMP
SWAPE STATLIS, W
MOWVYE STATUS_TEMP
BSF STATUS_TEMP 1
GOTO ISE_Code
RPOCLEAR
MOAANE WY TEMP
SWAPE STATLUIS, W
MOWAE STATUIS_TEMP

ISR_Code

[Interrupt subprogram)

Pop
SWaPF STATUS_TEME, W
MOWAWE STATUS
BTFSS STATUS, RPO
GOTO Return WREG
BCF STATUS, RPO
SWaPF W_TEMP, F
SWAPE W_TEMP, W
BSF STATLUS, RPO
FETFIE

FetLrn_\WREG
SWaPF W_TEMP, F
SWAPE W_TEMP, W
RETFIE

L

-

-

e e e e ma e e e e

—_— e

a

Bank D

fes

MO, goto BankO

Save W register

W oo - STATLS
STATUS_TEMP «- W
RPO(STATUS_TEMPI=1
Push completed

Save W register
Wil - STATLIS
STATUS_TEMP - W

W - STATUS_TEMP

STATUS = -\

Bank1?

M,

YES, go to Bankl

Feturn cortents of W register

Return to Bankl
POP complete

Feturn cortents of W register

; POP completed

The same example can be carried out using macros, thus getting a more legible
program. Macros that are already defined can be used for writing new macros.
Macros BANK1 and BANKO which are explained in "Memory organization" chapter are
used with macros 'push' and 'pop'.

push macro

rmovwf W Termp SV Temp < - W

swapf ‘W _Termnp,F 1 Swap themn

BAMEKL yMacro for switching to Bank1
swapf OPTION_REG,\W S - DOFTION_REG

movwf COpHon_Temp yOpHon_Temp <- W

BAMED ymacro for switching to Banko
swapf STATLIS, W W - STATUS

movwf Stat Temp JStat_Ternp <-W

endmm JEnd aof push macro

pop M ack o

swapf Stat_Temp,'\W ;W < - Stat_Temp

rmovwf STATLS JSTATUS - W

BAMEL sMacro for switching to Bank1
swapf Option_Temp, W s - Cption_Temp

movwf COPTION_REG JOPTION_REG «<- WY

BAMED yMacro for switching to Banko
swapf W_Temp,'W W - W Temp

endm JEnd of a pop macro

External interrupt on RBO/INT pin of microcontroller

External interrupt on RBO/INT pin is triggered by rising signal edge (if bit INTEDG=1
in OPTION<6> register), or falling edge (if INTEDG=0). When correct signal appears
on INT pin, INTF bit is set in INTCON register. INTF bit (INTCON<1>) must be
cleared in interrupt routine, so that interrupt wouldn't occur again while going back
to the main program. This is an important part of the program which programmer
must not forget, or program will constantly go into interrupt routine. Interrupt can be
turned off by resetting INTE control bit (INTCON<4>). Possible application of this
interrupt could be measuring the impulse width or pause length, i.e. input signal
frequency. Impulse duration can be measured by first enabling the interrupt on rising
edge, and upon its appearing, starting the timer and then enabling the interrupt on
falling edge. Timer should be stopped upon the appearing of falling edge - measured
time period represents the impulse duration.

Interrupt during a TMRO counter overflow

Overflow of TMRO counter (from FFh to 00h) will set TOIF (INTCON<2>) bit. This is
very important interrupt because many real problems can be solved using this
interrupt. One of the examples is time measurement. If we know how much time
counter needs in order to complete one cycle from 00h to FFh, then a number of
interrupts multiplied by that amount of time will yield the total of elapsed time. In
interrupt routine some variable would be incremented in RAM memory, value of that
variable multiplied by the amount of time the counter needs to count through a
whole cycle, would yield total elapsed time. Interrupt can be turned on/off by
setting/resetting TOIE (INTCON<5>) bit.

Interrupt upon a change on pins 4, 5, 6 and 7 of port B

Change of input signal on PORTB <7:4> sets RBIF (INTCON<O0>) bit. Four pins RB7,
RB6, RB5 and RB4 of port B, can trigger an interrupt which occurs when status on

them changes from logic one to logic zero, or vice versa. For pins to be sensitive to
this change, they must be defined as input. If any one of them is defined as output,
interrupt will not be generated at the change of status. If they are defined as input,
their current state is compared to the old value which was stored at the last reading
from port B.

Interrupt upon finishing write-subroutine to EEPROM

This interrupt is of practical nature only. Since writing to one EEPROM location takes
about 10ms (which is a long time in the notion of a microcontroller), it doesn't pay
off to a microcontroller to wait for writing to end. Thus interrupt mechanism is added
which allows the microcontroller to continue executing the main program, while
writing in EEPROM is being done in the background. When writing is completed,
interrupt informs the microcontroller that writing has ended. EEIF bit, through which
this informing is done, is found in EECON1 register. Occurrence of an interrupt can
be disabled by resetting the EEIE bit in INTCON register.

Interrupt initialization

In order to use an interrupt mechanism of a microcontroller, some preparatory tasks
need to be performed. These procedures are in short called "initialization". By
initialization we define to what interrupts the microcontroller will respond, and which
ones it will ignore. If we do not set the bit that allows a certain interrupt, program
will not execute an interrupt subprogram. Through this we can obtain control over
interrupt occurrence, which is very useful.

clrf INTCOM r all interrupts disabhled
mowlw B'O0010000!¢ !} external interrupt only iz enabled
hsf INTCOMN, GIE » ooourrence of interrupts allowed

The above example shows initialization of external interrupt on RBO pin of a
microcontroller. Where we see one being set, that means that interrupt is enabled.
Occurrence of other interrupts is not allowed, and interrupts are disabled altogether
until GIE bit is set to one.

The following example shows a typical way of handling interrupts. PIC16F84 has got
a single location for storing the address of an interrupt subroutine. This means that
first we need to detect which interrupt is at hand (if more than one interrupt source
is available), and then we can execute that part of a program which refers to that
interrupt.

org ISE_ADDE

htfsc INTCON, GIE
goto ISR ADE

PUSH

bhtfsc INTCON, REIF
goto ISE PORTE
htfsc INTCON, INTF
goto ISR _REO

bhtfsc INTCON, TOIF
goto ISR THRO
BANE]L

Btf=sc EECON1, EEIF
goto ISE _EEPRON
BANED

ISR _PORTE

goto END T3E
ISR _REOD

goto END T3E
ISR _THRO

goto END T3E
ISR _EEPRCH

goto END T3E
END ISR
FOF

RETFIE

;ISR _ADDE iz interrupt routine address
;IE bhit turned off?

;no, oo back to the heginning

;keep the contents of important registers
;change on pins 4, 5, 6 and 7 of port EB?
sjump to that section

;external interrupt occured?

;jup to that part

soverflow of timer TMEREO?

sjump to that section

;Bankl hecause of EECON1

;WwEiting to EEPROM completed?

sjump to that section

;BankO

;zection of code which is processed by an
;interrupt ?

;jump to the exit of an interrupt

;zection of code processing an interrupt?
;jump to exit of an interrupt.

;zection of code processing an interrupt
;jump to the exit of an interrupt

;zection of code which processes an interrupt
;jump to an exit from an interrupt.

-

shringing back the contents of important
;registers
;return and setting of GIE bhit

Return from interrupt routine can be accomplished with instructions RETURN, RETLW and RETFII
recommended that instruction RETFIE be used because that instruction is the only one which
automatically sets the GIE bit which allows new interrupts to occur.

2.7 Free-run timer TMRO

Timers are usually the most complicated parts of a microcontroller, so it is necessary
to set aside more time for understanding them thoroughly. Through their application
it is possible to establish relations between a real dimension such as "time" and a
variable which represents status of a timer within a microcontroller. Physically, timer
is a register whose value is continually increasing to 255, and then it starts all over
again: 0, 1, 2, 3, 4...255....0,1, 2, 3...... etc.

ot 7 TMRO

LOOOOOOO DOOOOODT -

INTCON TOF .123.255.0.1.2.255.0.1..

| |

Oscillator clock

PS? PS1 PSO S [I
a o O0— Prescaler 1.2 — | |1 L1 LI 1

0 1— Prescater 14— _[| [|____

1 0—s Prescaler 1.8 — _| |

a
a
[LE

— |
OOOCOOmOT

OPTION PZ2 P31 PEO

Felation between the timer TMED and prescaler

This incrementing is done in the background of everything a microcontroller does. It
is up to programmer to think up a way how he will take advantage of this
characteristic for his needs. One of the ways is increasing some variable on each
timer overflow. If we know how much time a timer needs to make one complete
round, then multiplying the value of a variable by that time will yield the total
amount of elapsed time.

PIC16F84 has an 8-bit timer. Number of bits determines what value timer counts to
before starting to count from zero again. In the case of an 8-bit timer, that number

is 256. A simplified scheme of relation between a timer and a prescaler is
represented on the previous diagram. Prescaler is a name for the part of a
microcontroller which divides oscillator clock before it will reach logic that increases
timer status. Number which divides a clock is defined through first three bits in
OPTION register. The highest divisor is 256. This actually means that only at every
256th clock, timer value would increase by one. This provides us with the ability to
measure longer timer periods.

]
]
]
]

ek B)
LI ILE g T

(]

i it T
HIEE R AT

]
(]

I ia e R AR
HEE S LI L g T

L)

bl P S A I iad
= RS HRC R R RLT Fa HEE S

b
b
b
b

18

e
]

[RE18y

]
]
]
]

e W o R T e T e O o T o R o T o W o T o

—

—

U T T R T L W R U B U B W

LU
i

Timerd

TIC L

GIE bit

[—)

[

[S

|

—

_,1
o

e

L

LA

e

£

e

|

Maote: 1 Interrugpt flag bit TOIF iz examined &t the new place at each @1 cycle
CLKOUT exists only in RC oscillator mode

Time diagram of interrupt occurence with TMRO timer

After each count up to 255, timer resets its value to zero and starts with a new cycle
of counting to 255. During each transition from 255 to zero, TOIF bit in INTCOM
register is set. If interrupts are allowed to occur, this can be taken advantage of in
generating interrupts and in processing interrupt routine. It is up to programmer to
reset TOIF bit in interrupt routine, so that new interrupt, or new overflow could be
detected. Beside the internal oscillator clock, timer status can also be increased by
the external clock on RA4/TOCKI pin. Choosing one of these two options is done in
OPTION register through TOCS bit. If this option of external clock was selected, it
would be possible to define the edge of a signal (rising or falling), on which timer
would increase its value.

hletal bugles

-

Inductive sensor

Motor axis of the
working machine

)]k] —

+12 +3
~ | T T
| |
| |
L ol
w || gl
] ¥ =
¥ Tex e aprrreenss
L |“H‘H'Il.ll.|-l\l
| = S——
| A
F = . o
F 7 A
F . Ea
Py S

o == oy 2 2 oy =

Determining a number of full axis turns of the motor

In practice, one of the typical example that is solved via external clock and a timer is
counting full turns of an axis of some production machine, like transformer winder
for instance. Let's wind four metal screws on the axis of a winder. These four screws

will represent metal convexity. Let's place now the inductive sensor at a distance of

5mm from the head of a screw. Inductive sensor will generate the falling signal
every time the head of the screw is parallel with sensor head. Each signal will

represent one fourth of a full turn, and the sum of all full turns will be found in TMRO
timer. Program can easily read this data from the timer through a data bus.

The following example illustrates how to initialize timer to signal falling edges from
external clock source with a prescaler 1:4. Timer works in "polig" mode.

clrf THMRO
clrf TINTCCON

bsf 3TATU3, RFO
movlw B'O00110001°

TO_OVFL

btfss INTCCOM, TOIF

goto TO OVFL

-

: THRO=0O

;Interrupts and TOIF=0 disallowed
:Bankl because of OPTICN REG
falling edge selected external

;prescaler 1:4,

;olock source and pull up

;on port B activated
movwE OPTION REG ;OPTION REG <- W

;interrupt has not occured yet,

;selected resistors

;testing overflow bit

wait

=15 I
i
I
|
n | P
e Y .4
1 | . .
i- ped interrupt
-t tea - |) prescaler | — -
M | ™y
i i I
i i -
MCLR o - ! _
B [Aon — |
Lo - - nd
| . . . o o o o
W oIy (1800 (0
‘. St A N S Mt A
~
[b ormann T
A= I W IV - .,
! i Y
{ I I
. ! | |
FE1 /
|
REZ2
1
REz Diata Bus

; [(Part of the program which processes data regarding a nuwber of turns)

-

goto TO OVFL

;waiting for new overflow

The same example can be carried out through an interrupt in the following way:

push macro

mowf W Temp s Temp - WY

swapf W_Temp,F 1 Swap them

BAMNE L sMacro for switching to Bank1
swapf OPTIOM _REG W W - OFTION_REG

movwl COpton_Temp JOptHon_Temp <- W

BAMED smacro for switching to Banko
swapf STATUS,W S - STATLIS

movwf Stat Temnp ;5tat_Termnp -\

endm JEnd of push macro

pop i ack o

swapf Stat_Ternp,W W - Stat Temp

mowwt STATUS JSTATUS - W

BAME L sMacro for switching to Bank1
swapf Option_Termp, W 1W< - Option_Temp

movwf OFTION_REG JOPTION_REG <- W

BAMNED sMacro for switching to Banko
swapf W_Ternp,W SV - W Temp

endmmn JEnd of a pop macro

Prescaler can be assigned either timer TMRO or a watchdog. Watchdog is a
mechanism which microcontroller uses to defend itself against programs getting
stuck. As with any other electrical circuit, so with a microcontroller too can occur
failure, or some work impairment. Unfortunately, microcontroller also has program
where problems can occur as well. When this happens, microcontroller will stop
working and will remain in that state until someone resets it. Because of this,
watchdog mechanism has been introduced. After a certain period of time, watchdog
resets the microcontroller (microcontroller in fact resets itself). Watchdog works on a
simple principle: if timer overflow occurs, microcontroller is reset, and it starts
executing a program all over again. In this way, reset will occur in case of both
correct and incorrect functioning. Next step is preventing reset in case of correct
functioning, which is done by writing zero in WDT register (instruction CLRWDT)
every time it nears its overflow. Thus program will prevent a reset as long as it's
executing correctly. Once it gets stuck, zero will not be written, overflow of WDT
timer and a reset will occur which will bring the microcontroller back to correct
functioning again.

Prescaler is accorded to timer TMRO, or to watchdog timer trough PSA bit in OPTION
register. By clearing PSA bit, prescaler will be accorded to timer TMRO. When
prescaler is accorded to timer TMRO, all instructions of writing to TMRO register
(CLRF TMRO, MOVWF TMRO, BSF TMRQO,...) will clear prescaler. When prescaler is
assigned to a watchdog timer, only CLRWDT instruction will clear a prescaler and
watchdog timer at the same time . Prescaler change is completely under
programmer's control, and can be changed while program is running.

..

There is only one prescaler and one timer. Depending on the needs, they are
assigned either to timer TMRO or to a watchdog.

OPTION Control Register

RN RN RN R RN FM-1 R FAMN-1
[Fer0 | mtEDc | Tocs | TosE [psa Ps2 PS1 Pso |
hit ¥ hit 0
Legend:

R = Readable bit W = writable bit
1= Unimplemented bit, read as '0° -n=Value at POR reset

bit 7 RBPU (PORTB Pull-up Enable bit)

This bit turns internal pull-up resistors on port B on or off.
1 = 'pull-up' resistors turned on

0 = 'pull-up' resistors turned off

bit 6 INTEDG (Interrupt Edge Select bit)

If occurrence of interrupts was enabled, this bit would determine at what edge
interrupt on RBO/INT pin would occur.

1 = rising edge

0 = falling edge

bit 5 TOCS (TMRO Clock Source Select bit)

This pin enables a free-run timer to increment its value either from an internal
oscillator, i.e. every 1/4 of oscillator clock, or via external impulses on RA4/TOCKI
pin.

1 = external impulses

0 = 1/4 internal clock

bit 4 TOSE (TMRO Source Edge Select bit)

If trigger TMRO was enabled with impulses from a RA4/TOCKI pin, this bit would
determine whether it would be on the rising or falling edge of a signal.

1 = falling edge

0 = rising edge

bit 3 PSA (Prescaler Assignment bit)

Bit which assigns prescaler between TMRO and watchdog timer.
1 = prescaler is assigned to watchdog timer.

0 = prescaler is assigned to free timer TMRO

Bit 0:2 PSO0, PS1, PS2 (Prescaler Rate Select bit)

In case of 4MHz oscillator, one instruction cycle (4 internal clocks) lasts 1ps.
Numbers in the following table show the time period in us between incrementing TMR
or WDT.

Bits ThWREO WDT
aan 1:2 1:1
ool 1:4 1:2
010 1:8 1:4
0ii 116 1:8
iGd 1:32 1:18
101 1: 69 1:32
iid 1128 1:69
111 1256 1128

2.8 EEPROM Data memory

PIC16F84 has 64 bytes of EEPROM memory locations on addresses from 00h to 63h
that can be written to or read from. The most important characteristic of this
memory is that it does not lose its contents with the loss of power supply. Data can
be retained in EEPROM without power supply for up to 40 years (as manufacturer of
PIC16F84 microcontroller states), and up to 1 million cycles of writing can be
executed.

In practice, EEPROM memory is used for storing important data or process
parameters.

One such parameter is a given temperature, assigned when setting up a temperature
regulator to some process. If that data wasn't retained, it would be necessary to
adjust a given temperature after each loss of supply. Since this is very impractical
(and even dangerous), manufacturers of microcontrollers have began installing one
smaller type of EEPROM memory.

EEPROM memory is placed in a special memory space and can be accessed through
special registers. These registers are:

EEDATA Holds read data or that to be written.
EEADR Contains an address of EEPROM location being accessed.
EECON1 Contains control bits.

EECON2 This register does not exist physically and serves to protect EEPROM
from accidental writing.

EECON1 register is a control register with five implemented bits. Bits 5, 6 and 7 are
not used, and by reading always are zero. Interpretation of EECON1 register bits
follows.

EECON1 Register

U-0 U-0 U-0 RA-1 RAN-1 RMx RSO RiS-x
| — | — | — | eeF M) wrerr | wrEN | wr RO |
bit 7 Bt 0

Legend:
R = Readable bit W = Writable bit

= Unimplemented bit, read as '0° -n=\alue at POR reset

bit 4 EEIF (EEPROM Write Operation Interrupt Flag bit) Bit used to inform that
writing data to EEPROM has ended.

When writing has terminated, this bit would be set automatically. Programmer must
clear EEIF bit in his program in order to detect new termination of writing.

1 = writing terminated

0 = writing not terminated yet, or has not started

bit 3 WRERR (Write EEPROM Error Flag) Error during writing to EEPROM

This bit was set only in cases when writing to EEPROM had been interrupted by a
reset signal or by running out of time in watchdog timer (if activated).

1 = error occurred

0 = error did not occur

bit 2 WREN (EEPROM Write Enable bit) Enables writing to EEPROM

If this bit was not set, microcontroller would not allow writing to EEPROM.
1 = writing allowed

0 = writing disallowed

bit 1 WR (Write Control bit)

Setting of this bit initializes writing data from EEDATA register to the address
specified trough EEADR register.

1 = initializes writing

0 = does not initialize writing

bit 0 RD (Read Control bit)

Setting this bit initializes transfer of data from address defined in EEADR to EEDATA
register. Since time is not as essential in reading data as in writing, data from
EEDATA can already be used further in the next instruction.

1 = initializes reading

0 = does not initialize reading

Reading from EEPROM Memory

Setting the RD bit initializes transfer of data from address found in EEADR register to
EEDATA register. As in reading data we don't need so much time as in writing, data
taken over from EEDATA register can already be used further in the next instruction.

Sample of the part of a program which reads data in EEPROM, could look something
like the following:

bet STATUZ, RPO sbank0, khecause EEADE iz at 0%h
mowlw O0x00 ;address of location bheing read
mowvwEf EEALDE ;address transferred to EELDR
hst STATUZ, RPO sbhankl because EECON1 iz at &8h
hst EECON1, ERD ;reading from EEPROH

bet STATUZ, RPO :Bank0 because EEDATL iz at 0Sh
mowt EEDATA, W ;W <—— EEDATAL

After the last program instruction, contents from an EEPROM address zero can be
found in working register w.

Writing to EEPROM Memory

In order to write data to EEPROM location, programmer must first write address to
EEADR register and data to EEDATA register. Only then is it useful to set WR bit
which sets the whole action in motion. WR bit will be reset, and EEIF bit set following
a writing what may be used in processing interrupts. Values 55h and AAh are the
first and the second key whose disallow for accidental writing to EEPROM to occur.
These two values are written to EECON2 which serves only that purpose, to receive
these two values and thus prevent any accidental writing to EEPROM memory.
Program lines marked as 1, 2, 3, and 4 must be executed in that order in even time
intervals. Therefore, it is very important to turn off interrupts which could change the
timing needed for executing instructions. After writing, interrupts can be enabled
again .

Example of the part of a program which writes data OxEE to first location in EEPROM
memory could look something like the following:

bet STATUZ, RPO sbhank0, because EEADE is at 0%h
mowlw 0x00 ;address of location bheing
;sWritten to
mowwEt EELADE ;saddress bheing transferred Lo
;EEADER
wowvlw OxEE swrite the walus OxEE
mowwE EEDATAR ;data goes to EEDATA register
bhsf 3TATUZ, RPO ;Bankl khecause EEADE iz at 0Sh
boef INTCON, GIE ;all interrupts are disabled
bhsf EECON1, WEREN ;WEiting enabled
mowvlw 55h
1) mowwt EECONZ ;first key 55h —-> EECONZ
2] mowvlw ALkh
3) mowvwE EECONZ ;second key Lih —-> EECON:E
4] bhsf EECON1,WE ;initialises writing
bhef INTCON, GIE rinterrupts are enabled

It is recommended that WREN be turned off the whole time except when writing data to EEPRON
that possibility of accidental writing would be minimal.
All writing to EEPROM will automatically clear a location prior to writing a new!

CHAPTER 3

Assembly Language Programming

Introduction

1 Representing numbers in assembler
2 Assembly language elements

3 Writing a sample program

4 Control directives

3.
3.
3.
3

(D
>
Q.
(@]

FRE

CONFIG
Processor

3.5 Files created as a result of program translation

Introduction

The ability to communicate is of great importance in any field. However, it is only
possible if both communication partners know the same language, i.e follow the
same rules during communication. Using these principles as a starting point, we can
also define communication that occurs between microcontrollers and man . Language
that microcontroller and man use to communicate is called "assembly language". The

title itself has no deeper meaning, and is analogue to names of other languages , ex.
English or French. More precisely, "assembly language" is just a passing solution.
Programs written in assembly language must be translated into a "language of zeros
and ones" in order for a microcontroller to understand it. "Assembly language" and
"assembler" are two different notions. The first represents a set of rules used in
writing a program for a microcontroller, and the other is a program on the personal
computer which translates assembly language into a language of zeros and ones. A

program that is translated into "zeros" and "ones" is also called "machine language".

1 e 13
Raz Rai]
1T
b3 3] ||
1&
RadTockl osci[]
1=
WeLR GEG2
Program.asm | |Tranzslatory |Programhes| Programmer PIC :1|4
wss JRFE4 wad[]
11
- REOANT ReTH]
1z
REA rea]]
1
RE2 real]
10
RES RE4]]

The process of communication between a man and a microcontroller

Physically, "Program" represents a file on the computer disc (or in the memory if it
is read in a microcontroller), and is written according to the rules of assembler or
some other language for microcontroller programming. Man can understand
assembler language as it consists of alphabet signs and words. When writing a
program, certain rules must be followed in order to reach a desired effect. A
Translator interprets each instruction written in assembly language as a series of
zeros and ones which have a meaning for the internal logic of the microcontroller.
Lets take for instance the instruction "RETURN" that a microcontroller uses to return
from a sub-program.

When the assembler translates it, we get a 14-bit series of zeros and ones which the
microcontroller knows how to interpret.

Example: RETURN 00 0000 0000 1000

Similar to the above instance, each assembler instruction is interpreted as
corresponding to a series of zeros and ones.

The place where this translation of assembly language is found, is called an
"execution" file. We will often meet the name "HEX" file. This name comes from a
hexadecimal representation of that file, as well as from the suffix "hex" in the title,
ex. "test.hex". Once it is generated, the execution file is read in a microcontroller
through a programmer.

An Assembly Language program is written in a program for text processing
(editor) and is capable of producing an ASCII file on the computer disc or in
specialized surroundings such as MPLAB,which will be explained in the next chapter.

3.1 Representing numbers in assembler

In assembly language MPLAB, numbers can be represented in decimal, hexadecimal
or binary form. We will illustrate this with a number 240:

.240 decimal
OxFO hexadecimal
b'11110000' binary

Decimal numbers start with a dot, hexadecimal with 0x, and binary start with b with
the number itself under quotes '.

3.2 Assembly language elements

Basic elements of assembly language are:

Labels
Instructions
Operands
Directives
Comments

Labels

A Label is a textual designation (generally an easy-to-read word) for a line in a
program, or section of a program where the micro can jump to - or even the
beginning of set of lines of a program. It can also be used to execute program
branching (such as Goto) and the program can even have a condition that
must be met for the Goto instruction to be executed. It is important for a label to
start with a letter of the alphabet or with an underline "_". The length of the label
can be up to 32 characters. It is also important that a label starts in the first clumn.

first column —I *

Correctly written labels

Start
_end
P123
Is_it_higger?

Incorrectly written labels

Start - oz not beain in first column
2_end - beging with & number!

Instructions

Instructions are already defined by the use of a specific microcontroller, so it only
remains for us to follow the instructions for their use in assembly language. The way
we write an instruction is also called instruction "syntax". In the following example,
we can recognize a mistake in writing because instructions movlp and gotto do not
exist for the PIC16F84 microcontroller.

Correctly written instructions

oy | H'O1FF'
goto Start

Incorrectly written instructions
movip H'O1FF
gotto Start

Operands

Operands are the instruction elements for the instruction is being executed. They are
usually registers or variables or constants.

Typical operands

moviw H'FF "
movwt LEVEL

Operand as a

variable LEVEL in Operand as a
the memory of a hexadecimal
micracaontraiier number

Comments

Comment is a series of words that a programmer writes to make the program more
clear and legible. It is placed after an instruction, and must start with a semicolon

n,n
7 .

Directives

A directive is similar to an instruction, but unlike an instruction it is independent on
the microcontroller model, and represents a characteristic of the assembly language
itself. Directives are usually given purposeful meanings via variables or registers. For
example, LEVEL can be a designation for a variable in RAM memory at address ODh.
In this way, the variable at that address can be accessed via LEVEL designation. This
is far easier for a programmer to understand than for him to try to remember
address 0Dh contains information about LEVEL.

Some frequently used directives:

PROCESSOR 16F84
#inchude

“p16f84.inc™

__CONFIG _CP_OFF & _WDT_OFF & _PWRTE_ON & _XT_O0SC

3.3 Writing a sample program

The following example illustrates a simple program written in assembly language
respecting the basic rules.

When writing a program, beside mandatory rules, there are also some rules that are
not written down but need to be followed. One of them is to write the name of the
program at the beginning, what the program does, its version, date when it was
written, type of microcontroller it was written for, and the programmer's name.

Basic

infarrmation
on the
pragrarm

—

Directive =

PROCESSOR. 16F84

#include "p16f34.inc™

Inclusion of
a macro

Comment &

org 0x00
goto Main
org 0x04
goto Main

#ginclude "hank.inc"”

Labe| #&————

Instruction

Main

BANKA1
moviw 0x00

Cperand

movwi TRISB
BANKD

Loop

1
moviw 0xFF
movwi PORTB
goto Loop

end

; Program for initialization of port B and setting pins to status of logic one
i Wersion 1.0 Date: 10,10,1999,

MCU:PICL16FE4 written bw: John Smith

1 Declaration and configuration of a processar

; Processor title

_ CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & XT_OSC

; Start of program
; Reset vector
; 5o to the beginning of Main

; Interrupt vectar

; Interrupt vectar
3 Interrupt routine doesn't exist

1 Beqginning of the main program
; Select memory bank 1
; Port B pins are output
i Select memory bank 0
; Set all ones to port B
3 Program rermains in the loop

; Mecessary marking the end of a program

Since this data isn't important for the assembly translator, it is written as
comments. It should be noted that a comment always begins with a semicolon and
it can be placed in a new row or it can follow an instruction.

After the opening comment has been written, the directive must be included. This is

shown in the example above.

In order to function properly, we must define several microcontroller parameters
such as: - type of oscillator,

- whether watchdog timer is turned on, and

- whether internal reset circuit is enabled.

All this is defined by the following directive:

_CONFIG _CP_OFF& _WDT_OFF&PWRTE_ON&XT_OSC

When all the needed elements have been defined, we can start writing a program.
First, it is necessary to determine an address from which the microcontroller starts,
following a power supply start-up. This is (org 0x00).

The address from which the program starts if an interrupt occurs is (org 0x04).
Since this is a simple program, it will be enough to direct the microcontroller to the
beginning of a program with a "goto Main" instruction.

The instructions found in the Main select memory bankl (BANK1) in order to access
TRISB register, so that port B can be declared as an output (movlw 0x00, movwf
TRISB).

The next step is to select memory bank 0 and place status of logic one on port B
(movlw OxFF, movwf PORTB), and thus the main program is finished.

We need to make another loop where the micro will be held so it doesn't "wander" if
an error occurs. For that purpose, one infinite loop is made where the micro is

retained while power is connected. The necessary "end" at the end of each program
informs the assembly translator that no more instructions are in the program.

3.4 Control directives

3.1 #DEFINE Exchanges one part of text for another

Syntax:
#define<text> [<another text>]

Description:
Each time <text> appears in the program , it will be exchanged for <another text >.

Example:

#define turned_on 1
#define turned_off 0

Similar directives: #UNDEFINE, IFDEF,IFNDEF

3.2 INCLUDE Include an additional file in @ program

Syntax:
#include <file_name>
#include "file_name"

Description:

An application of this directive has the effect as though the entire file was copied to a
place where the "include" directive was found. If the file name is in the square
brackets, we are dealing with a system file, and if it is inside quotation marks, we
are dealing with a user file. The directive "include" contributes to a better layout of
the main program.

Example:
#include <regs.h>
#include "subprog.asm"

3.3 CONSTANT Gives a constant numeric value to the
textual designation

Syntax:
Constant <name>=<value>

Description:
Each time that <name> appears in program, it will be replaced with <value>.

Example:
Constant MAXIMUM=100
Constant Length=30

Similar directives: SET, VARIABLE

3.4 VARIABLE Gives a variable numeric value to textual
designation

Syntax:
Variable<name>=<value>

Description:

By using this directive, textual designation changes with particular value.

It differs from CONSTANT directive in that after applying the directive, the value of
textual designation can be changed.

Example:
variable level=20
variable time=13

Similar directives: SET, CONSTANT

3.5 SET Defining assembler variable

Syntax:
<name_variable>set<value>

Description:

To the variable <name_variable> is added expression <value>. SET directive is
similar to EQU, but with SET directive name of the variable can be redefined
following a definition.

Example:
level set 0
length set 12
level set 45

Similar directives: EQU, VARIABLE

3.6 EQU Defining assembler constant

Syntax:
<name_constant> equ <value>

Description:
To the name of a constant <name_constant> is added value <value>

Example:
five equ 5
six equ 6
seven equ 7

Similar instructions: SET

3.7 ORG Defines an address from which the program is
stored in microcontroller memory

Syntax:
<label>org<value>

Description:
This is the most frequently used directive. With the help of this directive we define
where some part of a program will be start in the program memory.

Example:

Start org 0x00
movlw OxFF
movwf PORTB

The first two instructions following the first 'org' directive are stored from address
00, and the other two from address 10.

3.8 END End of program

Syntax:
end

Description:
At the end of each program it is necessary to place 'end' directive so that assembly

translator would know that there are no more instructions in the program.

Example:

movlw OxFF
movwf PORTB
end

3.9 IF Conditional program branching

Syntax:
if<conditional_term>

Description:

If condition in <conditional_term> was met, part of the program which follows IF
directive would be executed. And if it wasn't, then the part following ELSE or ENDIF
directive would be executed.

Example:

if level=100
goto FILL

else

goto DISCHARGE
endif

Similar directives: #ELSE, ENDIF

3.10 ELSE The alternative to 'IF' program block with
conditional terms

Syntax:
Else

Description:
Used with IF directive as an alternative if conditional term is incorrect.

Example:

If time< 50

goto SPEED UP

else goto SLOW DOWN
endif

Similar instructions: ENDIF, IF

3.11 ENDIF End of conditional program section

Syntax:

endif

Description:
Directive is written at the end of a conditional block to inform the assembly
translator that it is the end of the conditional block

Example:

If level=100
goto LOADS
else

goto UNLOADS
endif

Similar directives: ELSE, IF

3.12 WHILE Execution of program section as long as
condition is met

Syntax:
while<condition>

endw

Description:

Program lines between WHILE and ENDW would be executed as long as condition
was met. If a condition stopped being valid, program would continue executing
instructions following ENDW line. Number of instructions between WHILE and ENDW
can be 100 at the most, and number of executions 256.

Example:
While i<10
i=i+1

endw

3.13 ENDW End of conditional part of the program

Syntax:
endw

Description:

Instruction is written at the end of the conditional WHILE block, so that assembly
translator would know that it is the end of the conditional block

Example:

while 1i<10

i=i+1

endw

Similar directives: WHILE

3.14 IFDEF Execution of a part of the program if symbol

was defined

Syntax:
ifdef<designation>

Description:

If designation <designation> was previously defined (most commonly by #DEFINE
instruction), instructions which follow would be executed until ELSE or ENDIF
directives are not would be reached.

Example:
#define test

ifdef test ;how the test was defined
...... ; instructions from these lines would execute

Similar directives: #DEFINE, ELSE, ENDIF, IFNDEF, #UNDEFINE

3.15 IFNDEF Execution of a part of the program if symbol
was defined

Syntax:
ifndef<designation>

Description:

If designation <designation> was not previously defined, or if its definition was
erased with directive #UNDEFINE, instructions which follow would be executed until
ELSE or ENDIF directives would be reached.

Example:
#define test

ifndef test ;how the test was undefined
..... .; 1instructions from these lines would execute

Similar directives: #DEFINE, ELSE, ENDIF, IFDEF, #UNDEFINE

3.16 CBLOCK Defining a block for the named constants

Syntax:
Cblock [<term>]

<label>[:<increment>], <label>[:<increment>]......
endc

Description:

Directive is used to give values to named constants. Each following term receives a
value greater by one than its precursor. If <increment> parameter is also given,
then value given in <increment> parameter is added to the following constant.

Value of <term> parameter is the starting value. If it is not given, it is considered to
be zero.

Example:

Cblock 0x02

First, second, third ;first=0x02, second=0x03, third=0x04
endc

cblock 0x02
first : 4, second : 2, third ;first=0x06, second=0x08, third=0x09
endc

Similar directives: ENDC

3.17 ENDC End of constant block definition

Syntax:
endc

Description:

Directive was used at the end of a definition of a block of constants so assembly
translator could know that there are no more constants.

Similar directives: CBLOCK

3.18 DB Defining one byte data

Syntax:
[<label>]db <term> [, <term>,..... ,<term>]

Description:
Directive reserves a byte in program memory. When there are more terms which
need to be assigned a byte each, they will be assigned one after another.

Example:
do 't', O0x0f, 'e', 's', 0x12

Similar instructions: DE, DT

3.19 DE Defining the EEPROM memory byte

Syntax:
[<term>] de <term> [, <term>,..... , <term>]

Description:

Directive is used for defining EEPROM memory byte. Even though it was first
intended only for EEPROM memory, it could be used for any other location in any
memory.

Example:

org H'2100'
de "Version 1.0" , O

Similar instructions: DB, DT

3.20 DT Defining the data table
Syntax:

[<label>] dt <term> [, <term>,......... , <term>]
Description:

Directive generates RETLW series of instructions, one instruction per each term.

Example:
dt "Message", O
dt first, second, third

Similar directives: DB, DE

3.21 _CONFIG Setting the configurational bits

Syntax:
_ _config<term> or_ _config<address>,<term>

Description:
Oscillator, watchdog timer application and internal reset circuit are defined. Before
using this directive, the processor must be defined using PROCESSOR directive.

Example:
_CONFIG _CP_OFF&_WDT_OFF&_PWRTE_ON&_XT_0OSC

Similar directives: _IDLOCS, PROCESSOR

3.22 PROCESSOR Defining microcontroller model

Syntax:
Processor <microcontroller_type>

Description:
Instruction sets the type of microcontroller where programming is done.

Example:
processor 16F84

3.5 Files created as a result of program translation

As a result of the process of translating a program written in assembler language we
get files like:

e Executing file (Program_Name.HEX)
e Program errors file (Program_Name.ERR)
e List file (Program_Name.LST)

The first file contains translated program which was read in microcontroller by
programming. Its contents can not give any information to programmer, so it will not
be considered any further.

The second file contains possible errors that were made in the process of writing,

and which were noticed by assembly translator during translation process. Errors can
be discovered in a "list" file as well. This file is more suitable though when program is
big and viewing the 'list' file takes longer.

The third file is the most useful to programmer. Much information is contained in it,
like information about positioning instructions and variables in memory, or error
signalization.

Example of 'list' file for the program in this chapter follows. At the top of each page
is stated information about the file name, date when it was translated, and page
number. First column contains an address in program memory where a instruction
from that row is placed. Second column contains a value of any variable defined by
one of the directives : SET, EQU, VARIABLE, CONSTANT or CBLOCK. Third column is
reserved for the form of a translated instruction which PIC is executing. The fourth
column contains assembler instructions and programmer's comments. Possible errors
will appear between rows following a line in which the error occurred.

L!‘ Makro: Proba.lat [

MPASM 02 _40Released PROBA . 25M 4-Zg-Z000 713117 PAGE 1
LOC OBJECT CODE LINE SOURCE TEXT
VWALITE

aoool ;Program for injitialization of port B and setbing its pins
aoooz ;to the state of logic one

aoooz ;Wersiom: 1.0 Date: 10_05_Z000. METT: PIC1&FS84 Tritten
00004 ;by: Petar Petrowic
oooos

aaooe ;Declaration and configuaration of the processor

00007 PROCESSOR 1&FE4

00008 #include "pl&éf8d inc" ;Processor title

ooool LIST

aaooz ;P16F84_ TINC Standard Header File, VWersion z.00 Microchip
;Technoloogy, Inc.

oolze LIST

oooos
007 ZFFFl ooolo CONFIG _CP_OFF & WDT_OFF & _PWRTE ON & _XT 0OZC
oooll
oooc 000l COMNSTANT BASE = OxOc
oool3
oool4 ;Btart of a program
aoao 0ools org O=x00 ;Beset wecktor
oooo 305 0oole goto Main ;G0 to the beginning of the main program
oool?
ooola ;Incerrpt wvector
ooog aools org Ozx04 ;Interript wector
ooog z80k5 aooza goto Main sInterrpt rowutine does not exist
000z 1
000zz ;Beginming of the main program
00o0z3 finclude "Bank. inc" ; File with macros
|:||:||:||:|l I;**
oooaz Makros BAMEO and BANKEL
|:||:||:||:|3 ;_*******t*****t*****t*****t*****t******************t*****t****
00004
oooo oolo oools W_Tenp Sat EBASE+4
oooo ooll ooode Stat Temp sat BASE+E
oooo oolE oooo7? Option Temp j=1=1 BASE+E
oooog
oooos
00olo BAMED WACYKD
0ooll bef STATUOS RPO ; Select memory bank 0O
00o0ls endm
oool3
00ol4 EBANEL hT=Nad ul
oools bsft STATUOS RPO ; Select memory bank 1
o0ole endo
ooo1?
ooos oooz4 Main
ooozE BANEL ; Select memory bank 1
o005 183 H b=f BETATOS ,RFO ; Belect memory bank 1

oooe 2000 00026 mowlw 000
Message [30E] 0 Register in operand not in barnk 0. Ensure that bank bits are
correct.

aooy ooges aooz? wmovwf TRISE ;Port B pins are output
ooozs
ooozs BANED ;helect memory bank 0

ooog 1z83 I bef BETATUE, RPO ;Belect memory bank 0

ooos 30FF 00030 mowlw OxFF

OooaA o0gs 0003l wovwf PORTE ;Bet. all ones to port B
ooo03E

oaoE Z80E uln]n bcici Loop goto Laoop ; Program stays in the loop
o004
aoozs EMD ;Mecessary marking the end of a program

MEMORT TISACGE MAP ('X' = Used, '=!' = Tmused)

D000 1 M- 0000000 — = —mm e mm e mm e mm e

At the end of the "list" file there is a table of symbols used in a program. Useful
element of 'list' file is a graph of memory utilization. At the very end, there is an
error statistic as well as the amount of remaining program

CHAPTER 4
MPLAB

Introduction

4.1 Installing the MPLAB program package
4.2 Welcome to MPLAB

4.3 Designing a project

4.4 Designing new Assembler file

4.5 Writing a program

4.6 Toolbar icons

4.7 MPSIM simulator

Introduction

MPLAB is a Windows program package that makes writing and developing a program
easier. It could best be described as developing environment for a standard program
language that is intended for programming a PC. Some operations which were done
from the instruction line with a large number of parameters until the discovery of IDE
"Integrated Development Environment" are now made easier by using the MPLAB.
Still, our tastes differ, so even today some programmers prefer the standard editors
and compilers from instruction line. In any case, the written program is legible, and
a well documented help is also available.

4.1 Installing the program -MPLAB

MPLAB consists of several parts:

- Grouping the projects files into one project (Project Manager)

- Generating and processing a program (Text Editor)

- Simulator of the written program used for simulating program function on the
microcontroller.

Besides these, there are support systems for Microchip products such as PICStart
Plus and ICD (In Circuit Debugger). As this book does not cover them , they will be
mentioned as options only.

Minimal hardware requirements for starting the MPLAB are:

- PC compatible computer 486 or higher

: Microsoft Windows 3.1x or Windows 95 and new versions of the Windows operating
system

+ VGA graphic card

- 8MB memory (32MB recommended)

- 20MBs of free space on hard disk

- Mouse

In order to start the MPLAB we need to install it first. Installing is a process of
copying MPLAB files from the CD onto a hard disc of your computer. There is an
option on each new window which helps you return to a previous one, so errors
should not present a problem or become a stressful experience. Installation itself
works much the same as installation of most Windows programs. First you get the
Welcome screen, then you can choose the options followed by installation itself, and,
at the end, you get the message which says your installed program is ready to start.

Steps for installing MPLAB:

. Start-up the Microsoft Windows

. Place the Microchip CD into CD ROM drive

. Click on START in the bottom left corner of the screen and choose the RUN option
. Click on BROWSE and select CD ROM drive of your computer.

. Find directory called MPLAB on your CD ROM

. Click on MPLAB v6.31.EXE and then on OK .

. Click again on OK in your RUN window

NoOoulhWN -

Installing begins after these seven steps. The following images explain specific
installation stages. At the very beginning, small blue window will appear to notify you
that the installation has begun.

MPLAB 6.31 Installation

Initializing Wize Installation Wizard. ..

Initializing Wise Installation Wizard

The following window will warn you to close all the running applications, or
preferably run this installation program from a re-boot.

42 MPLAB® ¥6.31 Installation on Windows XP x|

Welcome!
Thiz inztallation program will install the MPLAB®E +E.31.

It iz preferable to run thiz ingtallation program from a re-boot
prior o running any other applicationz. This will ensure the
roikirmunn arnount of spetern dilz that rmay be loaded inta mernon.

o may ty ko cloze all other applications before continuing but
it iz not guaranteed that zome dlls may not alkeady be lbaded
inko MEmo.

There are system dllz that may require updating, and can naot
be replaced if in uze.

Fresz the Mext button to start the installation. vou can press
the Cancel button nowe if you do not want to install the
MPLAE® wE 31 at thiz time.

bicrochip MPLAE® [DE

Cancel |

Welcome screen and an advice to re-boot prior to installation

Next is Software License Agreement window. In order to proceed with the
installation, read the conditions, select the option "I Agree" and click on NEXT.

2 MPLAB® ¥6.31 Software License Agreement S x|

IMP ORTANT. i’
YOU MUST ACCEPT THE TERMS AND
CONDITIONS OF THIS LICENSE AGREEMENT

TO RECEIVE & LICENSE FOR THE
ACCOMPANYING SOFTWARE, TO ACCEPT

THE TERMS OF THIS LICENSE, CLICK "I

ACCEPT" OF OFEN THIS PACKACE AND

PROCEED WITH THE DOWHNLOAD OR

INATALL IF YOU DO NOT ACCEPT THESE
LICENSE TERMS, CLICK "I DO HOT ACCEPT,"

OR DO NOT OPEN THIS PACKAGE,

DOWHLOAD, OR INSTALL THIS SOFTWARE.

MPLAB ™ IDE LICENSE hd
| Agree Prit
" | Dizagee
Microchip MPLAB® [DE
< Back LCancel

Software License Agreement window

The following window concerns the installation folder. Unless there is a specific
reason for changing the default destination, you should leave it be.

.Eg- MPLABR ¥6.31 Installation B |

Select Destination Directory

Fleaze select the directon where the MPLABE «E.21 files are
to be installed.

C:5Proagram Filez\MFPLAB IDE Browse |

ticrochip MPLAE® [DE

¢ Back

LCancel |

Determining the destination directory for MPLAB

Next option is meant for users who owned previous version(s) of MPLAB. Purpose of
the option is to backup all files that will replaced during the installation of the latest
version. Assuming that this is our first installation of MPLAB, you should leave NO

selected and click on NEXT.

42 MPLAB® ¥6.31 Installation i x|

Select Destination Directory

Pleasze zelect the directon where the MPLAB® &3 files are
to be installed.

C:AProgram Files\MPLAE IDE Browse |

Microchip MPLAB® [DE

LCancel |

Option to backup old files from the previous version

< Back

Installation Wizard will ask you if you want to create shortcuts to access MPLAB from
the start menu. Click on NEXT to proceed with installation.

<2 MPLAB® ¥6.31 Installation x|

Add to Start Menu?

Do you want to create shortcuts o access the installed files?

* eg
" Mo

Microchip MPLAB® [DE

< Back

Adding MPLAB to the Start Menu

It is certainly useful to have MPLAB icon on desktop if you will be using the program
frequently. We suggest clicking on Yes. Then, click on NEXT to proceed with
installation.

{4, MPLAB® v6.31 Installation i x|

Add to Desktop?

Do yow want ta create a shortcut for MPLABE |DE and place it
an the desktop?

* eg
" Mo

Microchip MPLAB® [DE

LCancel |

< Back

Adding MPLAB to the Start Menu

Ready to install! Click on NEXT to start copying the necessary files to your PC.

<24 MPLAB® ¥6.31 Installation x|
Ready to Install!

'ou are niow ready toinstall the MPLAE € wE 31,

Fress the Hext button to begin the inztallation or the Back
button ko reenter the installation infarmation.

Microchip MPLAB® [DE

< Back

LCancel |

Screen prior to installation

Installation does not take long, and the installation flow can be monitored on a small
window in the right corner of the screen.

Copying file:
C:AProgram FilezshMPLAB IDENDIENSCLE wilder. dll

Installation flow

After installation have been completed, there are two dialog screens, one for the last
minute information regarding program versions and corrections, and the other is the

welcome screen. If text files (Readme.txt) have opened, they would need to be
closed.

<2 MPLAB® ¥6.31 Installation i x|
View README Files?

MPLAE IDE has aszociated README files that contains
important infarmation, such as device support and known
ISELIEE.

Wwhould vou like to view these files now?

i+ es
" Mo

Please review these files.

Microchip MPLAB® [DE

LCancel |

View README files?

In order to install the USB device driver for MPLAB ICD2 you need to follow the
instructions that will be displayed by executing Ddicd2XP.htm in the explorer window
that has been opened during this installation. The installation is automatic when the
MPLAB ICD2 is connected to the USB port. The instructions are for reference.

By clicking on Finish, installation of MPLAB is finished.

42 MPLAB® v6.31 Installation : x|
Installation Completed!

The MPLAB® v6.31 haz been succeszsfully inztalled.

ou will need to ingtall the Hardware diver for the parallel port.
After thiz inztallation, 1Esplarer will be opened with HT ML help
ko aszizt you . Please follow the directions provided.

[f wou require and can suppart LUSE pou will be prompted
automatically to inztall the driver when vou connect your
device. v'ou may follow the instructions provided from the ktml
files that will now be dizplayed, provided the system supports
ISE Mwindows 98, Windows ME Windows 2000 and
Windowes #P

Prezz the Finizh buttan ta exit this installatian.

Microchip MPLAB® [DE

4.2 Program package MPLAB

Following the installation procedure, you can launch MPLAB by double-clicking the
desktop icon. As you can see, MPLAB has the familiar look of Windows programs: a
drop menu (uppermost line with standard options - File, Edit..etc.), toolbar
(illustrated shortcuts for common actions) and a status line below the working area.
There is a rule of thumb in Windows of taking the most frequently used program
options and placing them below the menu, too. Thus, we can access them more
quickly and speed up the work. In other words, what you have in the toolbar you
also have in the menu.

.:n\ MPLAB IDE w631

Eie Edt Wiew Proct Debugger Prograsmer o0 Cenfigre Window el
Dk i ma | 2? | gesan

| =] |

The screen after starting MPLAB

4.3 Designing a project

Preparing the program for loading into microcontroller can boil down to few basic
steps:

1. Designing a project
2. Writing the program
3. Converting to zero-one code comprehensible by microcontroller, i.e. compiling.

a MPLAB IDE vE.31

Fie Edt View | Project Debugger Prograsmer Too Configurs Window Help

Find iy Arafeck Fies. ..

Seve Profect

SV Project A,

Wickd Fbac ba Prafecks’

Flemave File From Project s

Sofeck Longuage Tookato: ..
Set Langusge Tool Locations...

[07] e] 1
Opening a new project

To create a project, click on the option PROJECT and the click on PROJECT WIZARD,
which will open the following window..

Project Wizard

Welcome!

Thiz wizard helps you create and configure a new MPLAE
project.

To continue, click Mext.

Cancel Help

Creating a new project

Click on NEXT to continue. Next thing to do is to choose the appropriate
microcontroller. In our case, it is PIC16F84A.

Project Wizard

Step One:
Select a device

Device:

PIC1EF244, |

PICTEFE13 -
FIC1EF23
FIC1EF34

FIC1EFE7
FIC1EFE70
FIC1EFE b

< Back I MHest » I Cancel Help

Choosing the appropriate microcontroller

Next step is defining the program language to be used. In our case it is Assembler,
so we will select that option as shown on the image below.

Project Wizard

Step Two:
Select a language toolsuite

Active Toolzuite: IMichchip MPASM Toalzuite j

— T oolzuite Contents

bP&S M Azzembler [mpazmiin,exe]

FMPLIME Object Linker [mplink. exe]

— Location
C:%Program Files\MPLAR IDEMMCHIP T oolssmpasrmwin, ex Browse... |
Help! My Suite lsn't Listed! | ™7 Show all inztalled toolzuites

< Back I MHest » I Cancel Help

Selecting a language toolsuite

All that is left is to name our project. The name should reflect the purpose and
content of the program. Project can be stored in any folder according to your needs.
It is a good thing to have that folder remind you of PIC microcontrollers; we named
the folder simply PIC in the image below.

Project Wizard

Step Three:
MHame your project

— Project Hame
IT et

— Praoject Directary

IE:"-.F'IE Browse... |

< Back I MHest » I Cancel Help

Naming the project
Upon naming the project, click on NEXT to open the summary window.

Project Wizard 2 X

Summary

Click. Finizh' to create the project with thesze parameters.

Project Parameters

Device: PICIGFE44
Toolsuite: Microchip MPASHM Taalzuite
File: C:APICAT est.mcp

A, new work.zpace will be created. and the new project added
to that workspace.

< Back

Cancel Help

Summary containing the defined parameters

Click on FINISH to create the project. The summary window contains the project
parameters.

4.4 Creating a new assembler file

When 'project’ part of the job is done, the following screen should appear.

..“ MPLAB IDE vE.31

Eie Edt Wiew Propct Debugger Prograsmer o0 Coffigoe Window bl
DEW|imE|=? | |deRB &n

] = e]

New project opened

Next step is writing the program, which requires new file to be opened. Click on FILE
> NEW, opening the text window within the MPLAB working area (new window
represents the file program will be written to). Upon opening the new file, it should
be saved to folder C:\PIC under a name "Blink.asm", to reflect the nature of the
program (example for blinking diodes on microcontroller port B).

New file, "Blink.asm" should now be included into the project. Right-click on the
source file in the window "Test.msw". This will open a small window with two
available options - choose the first one, "Add Files".

I Test.mow ;lﬂlﬁl

=1 T_Est.mcp

HE:-Elder' F F\Ijlj F||E":1| "
Chject Fi Filkar

Library Fre
i Linker Scripks

Inserting new Assembler file into project

In a newly opened browse window find our PIC folder and select the file "Blink.asm",
as shown on the image below.

Add Files to Project i 2=
Look i | L PIC | « & cf EB-

Ll

Fil= name: |Elink Open

Filez af type: I.-’-'-.sseml:ll_l,l Source Filesz [*. azm) j Cancel |

A

Selecting the desired file

The looks of the project window after the file blink.asm has been included is shown
in the image below.

Il Test.mcw ;lﬂlﬁl

=l Test.mcp®

= Source Files

- - Blink.asm
.. Header Files
Chject Files
i Library Files
e Linker Scripks

4.5 Writing a program

Only after all of the preceding operations have been completed we are able to start
writing a program. This sample program is fairly simple and serves to illustrate
creation of a project.

—[5)

Main

Loop

Nersion:

1.0 Date:

PROCESS0R 16£84
#include "plefdd. inc™

Fage

Frogram: Elink.asm
1l ef 1

;Program for setting port B pins to logical one.
25.04.2003 MCU:PIC1eFS54 Author:Petar Petrowic

pEEFEE Deeclarations and microkontroller conficguration *+%%*

__CONFIG CP_OFF & WDT OFF & PWRTE ON & _®T _OSC

Chlock
endc

O 0c

ORG =00
goto HMain
IRz O=x04
goto Main

banksel TRISE
clrf TEISE
banksel PORTE
movly Oxf£f

wovwE PORTE
goto Loop
End

-

-

T he W hm W W hm

p¥EFEE Declaration of wariahles ##+%#*%

Eeginning of R4l

» No wariahles

PREFEEY Program memory Structure FEEEE

Rezet wector
After reset jump to location

Interrupt vector
no interrupt routine

Begimming of the program

SJelect the bank containing TREISE
Port B is output

SJelect the bank containing PORTE
W=FF

et all ones to port B

Juop to label Loop

You should re-write the program to the newly opened window or just copy/paste it

from the disk.

.:n'l MPLAB IDE v6.31

Fle Edt Wiw Project Debupger Prograsmer oo: Confue Window Heb

DL ima 8| |dw@b &n

= Test.mecp
= Sourca Files
Blink, s

Header Fies
ijach Fles
Library Fles
Linker Scripts

B C P Blink.asm

FTEETY DggclATAT

PROCEZZD
#incinde

Chlock OxOC
s

ORC
gota

Q=00
Hain

oxna
Main

Hain
“1xf TRIZE
moviw Gpff

movet FORTE
Loap

iProgram for seutning port B pins to logical one.
Wargien! 1.0 Dats:! 25.04.2003F BMCU:PICLEFSd Aurher!Patar Panzevie

__CONFIG _CP_OFF & _WOT_OFF & _PWRTE_ON & _XI_DSC

s##er+ Daclaration of wariables

FEET Progral BEROEY STEMCTUrE

banksel TRISE

banksel PORTH

gota Leop

ions and microkontroller configueation

P LEiS4
fplid@g, dnc®

i Baginning of RAM
} Ne variablas

J hazar veceor

i Afgwr resst jusp to locacion

; INCRETUPT WEOLOY

PoES IAEEEEURE Foubing

i Beginning of the program
i Salect the kbank containing TRIZE
5 Pere B ia surpue

; Selact the bank conktsining PORTE
i W=FF
i SeT all ones o porc B
; Jump ke label Lesop

T o naa Coll s Wi

Main window with blink.asm program

When the program is copied to "Blink.asm" window, we can use PROJECT -> BUILD
ALL command to translate the program to executable HEX form. The last sentence in
the window is the most important one, because it shows whether translation was
successful or not. "BUILD SUCCEEDED" is a message stating that translation was
successful and that there were no errors.

In case that error does show up, you need to double click on error message in
'Output' window. This will automatically take you to the assembler program, to the
line where the error was encountered.

4.6 Toolbar icons

The following table contains detailed description of each toolbar icon.

New Assembler file. It is commonly used for including an Assembler file into existing project.

Open an existing Assembler file.

oo

Save program (Assembler file)

Cut text. This and the following 3 icons are standard for all text processors. As every program code is
actually a text file, these options are commonly used.

Copy text. Unlike the previous one, this icon leaves the selected text on screen while storing it into
clipboard.

Paste text. When part of the text is copied or cut, it is stored to clipboard, where it can be called upon
via this command.

Print open file in which Assembler program is located.

Help for the project section and the entire MPLAB.

Create a new project. This command is straightforward as it avoids the use of Wizard - just name the
project and type the path line to the appropriate folder.

BB =088 =

Open the existing project. Project opened in this way keeps all the previous settings.

i

Save Workspace. Workspace saved in this way keeps all the parameter and window settings, so that
when it's loaded you get the exact look of the work area it had at the moment of saving. Save your
project frequently, especially if you work with multiple windows in simulator and you have them
arranged to your liking.

£zl

Build options.

®

When eventual errors have been spotted during the simulation process, program needs to be repaired.
As simulator uses HEX file as its input, program should be translated anew in order to take the changes
to the simulator. This icon (Make) translates the project from the start and creates the latest version of
the HEX file for the simulator.

Similar to the previous icon, except that the whole project is translated and not just the Assembler file
whose code has been changed.

4.7 MPSIM Simulator

Simulator is part of the MPLAB environment which provides a better insight into the
workings of a microcontroller. Through a simulator, we can monitor current variable
values, register values and status of port pins. Truthfully, simulator does not have
the same value in all programs. If a program is simple (like the one given here as an
example), simulation is not of great importance because setting port B pins to logic
one is not a difficult task. However, simulator can be of great help with more
complicated programs which include timers, different conditions where something
happens and other similar requirements (especially with mathematical operations).
Simulation, as the name indicates "simulates the work of a microcontroller". As
microcontroller executes instructions one by one, simulator is conceived -
programmer moves through a program step-by-step (line-by-line) and follows what
goes on with data within the microcontroller. When writing is completed, it is a good
trait for a programmer to first test his program in a simulator, and then run itin a
real situation. Unfortunately, as with many other good habits, man tends to avoid
this one too, more or less. Reasons for this are partly personality, and partly a lack
of good simulators.

Debugger

Select Tool d v Mone

Clear Memaory # MPLAE ICm 2
[MPLAE LCE om0
MPLAE SIM

MPLAE ICE 2000
MELAE SIME0

Starting the program simulation

Simulator is activated by clicking on DEBUGGER > SELECT TOOL > MPLAB SIM, as
shown in the image above. Four new icons appear to the right. They are related to
simulator only, and have the following meaning:

Start the program execution at full speed. When started, simulator executes the program until "paused"
by the icon below (just as with cassette or CD player).

5 | =

Stops full-speed program execution. After this icon has been clicked, program execution may be
continued step-by-step or at full-speed.

Step Into icon. Step-by-step program execution. Clicking on this icon executes the succeeding program
line. It enters the macros and subroutines.

Same as the previous icon, except it does not enter the macros and subroutines.

= ||

Resets the microcontroller. Clicking on this icon positions the program counter to the beginning of
program and simulation may begin.

First thing we need to do, as in a real situation, is to reset a microcontroller with
DEBUGGER > RESET command or by clicking on the reset icon. This command
results in green marker line positioned at the beginning of the program, and program
counter PCL is positioned at zero which can also be seen in Special Functions
Registers window.

Wi

Project
Cikpuk

Disassembly
Hardware Stack,
Progranm Merary
File Reqisters
EEPROM

Lz Pixcel

Watch

Special Function Registers

Simulatar Trace

One of the main simulator features is the ability to view register status within a
microcontroller. These registers are also called special function registers, or SFR

registers. We can get a window with SFR registers by clicking on VIEW > SPECIAL
FUNCTION REGISTERS.

Beside SFR registers, it is useful to have an insight into file registers. Window with
file registers can be opened by clicking on VIEW > FILE REGISTERS.

If there are variables in the program, it is good to monitor them, too. Each variable
is assigned one window (Watch Windows) by clicking on VIEW > WATCH.

an MPLAB IDE v6.31 : =i
Eie Edt Wiew Projct Debugger Prograsmmer 000 Configre Window bl

[DEW| i mE (8% o@D S| o unnpE

= Test.mcp Address © SFR Heume I Fex I Decimal E Binary Char I:,
B 5“;;‘;\ UREG FF 285 11111111
s o onon mor -- [— -
He ot oot THED on 0 OOO0G000
m:';i‘“ o002 Bl o 10 00001010 j
Unker Sorgts 0003 STATOS 1c 28 00011100
o004 FSR oo 0 00o0CoOO
onas PORTA oo 0 00000000
0008 PORTE FF 255 11111111
008 00000000

I File Registers

iFragram for setting port B pins to legical one,

:Varriom: 1.0 Date: 25.04.2000 HCU: PICLEFE4 Author:

Deeclarations and microkoncroller coniigurar

PEOCESSOR LGE04
Finclude "pl&f3d.inc”

__COMFIC _CF_OFF < WDT_OFF & _PURTE_ON & _XT_C

FUETTY Declaration of wariables "¥=@~

Chlack 000
sndo

: Baginming of BAM
: Mo varisbles

¢ Program Semcry FUENCCUre ¥EEEE

kG
goto

O=00
Main

: Bemet vector
; AfCOY Teset Jump TO

Locac

O Ox04d : Ismarcupt wector

gota Hain F no interrupt routine =
LH

[Edce [et inzs, cols G W

[PICI5FB4R. poilza We

Simulator with open SFR registers and File registers windows

When all the variables and registers of interest are placed on the simulator working
area, simulation may begin. Next command can be either Step Into or Step Over, as
we may want to go into subroutines or not. Same commands can be issued via
keyboard, by clicking F7 or F8.

In the SFR registers window, we can observe how register W receives value OxFF and
delivers it to port B.

By clicking on F7 key again, we don't achieve anything because program has arrived
to an "infinite loop". Infinite loop is a term we will meet often. It represents a loop
from which a microcontroller cannot get out until interrupt takes place (if it is used in
a program), or until a microcontroller is reset.

CHAPTER S

Macros and subprograms

Introduction

5.1 Macros
5.2 Subprograms
5.3 Macros used in the examples

Introduction

Same or similar sequence of instructions is frequently used during programming.
Assembly language is very demanding. Programmer is required to take care of every
single detail when writing a program, because just one incorrect instruction or label
can bring about wrong results or make the program doesn't work at all. Solution to
this problem is to use already tested program parts repeatedly. For this kind of
programming logic, macros and subprograms are used.

5.1 Macros

Macro is defined with directive macro containing the name of macro and parameters
if needed. In program, definition of macro has to be placed before the instruction line
where macro is called upon. When during program execution macro is encountered,
it is replaced with an appropriate set of instructions stated in the macro's definition.

macro_name macro parl, par2,..
set of instructions
set of instructions
endm

The simplest use of macro could be naming a set of repetitive instructions to avoid
errors during retyping. As an example, we could use a macro for selecting a bank of
SFR registers or for a global permission of interrupts. It is much easier to have a
macro BANK1 in a program than having to memorize which status bit defines the
mentioned bank. This is illustrated below: banks 0 and 1 are selected by setting or
clearing bit 5 (RPO) of status register, while interrupts are enabled by bit 7 of
INTCON register. First two macros are used for selecting a bank, while other two
enable and disable interrupts.

bank0 macro ; Macro bankO
bcf STATUS, RPO ; Reset RPO bit = Bank0
endm ; End of macro

bank1 macro
bsf STATUS, RPO
endm

enableint macro
bsf INTCON, 7
endm

disableint macro
bcf INTCON, 7
endm

A
A

I

I
I

A

A
A

A

Macro bank1
Set RPO bit = Bankl
End of macro

Interrupts are globally enabled

» Set the bit
» End of macro

; Interrupts are globally disabled
; Reset the bit
; End of macro

These macros are to be saved in a special file with extension INC (abbrev. for
INCLUDE file). The following image shows the file bank.inc which contains two
macros, bank0 and bankl1.

..

Macros BankO and Bank1 are given for illustrational purposes more than
practical, since directive BANKSEL NameSFR does the same job. Just write
BANKSEL TRISB and the bank containing the TRISB register will be selected.

First macroin File bank.inc stored
the file hank.inc an the computer disk

/

¢ v

bef STATUS RPO

endm —— end of macro

MACro narme - Dank0 macro
Second

rmacra inthe

file hank.inc l
macro hame L 02Nk macro

bsf STATUS RPO
endm 4 end of macro

As can be seen above, first four macros do not have parameters. However,
parameters can be used if needed. This will be illustrated with the following macros,
used for changing direction of pins on ports. Pin is designated as input if the
appropriate bit is set (with the position matching the appropriate pin of TRISB
register, bankl) , otherwise it's output.

input macro parl, par2 ; Macro input

bank1 ; In order to access TRIS registers
bsf parl, par2 ; Set the given bit - 1 = input
bankO ; Macro for selecting bank0

endm ; End of macro

output macro parl, par2 ; Macro output

bank1l ; In order to access TRIS registers
bcf pari, par2 ; Reset the given bit - 0 = output
bankO ; Macro for selecting bank0

endm ; End of macro

Macro with parameters can be called upon in following way:
output TRISB, 7 ; pin RB7 is output

When calling macro first parameter TRISB takes place of the first parameter, parl, in
macro's definition. Parameter 7 takes place of parameter par2, thus generating the
following code:

output TRISB, 7 ; Macro output
bsf STATUS, RPO ; Set RPO bit = BANK1
bcf TRISB, 7 ; Designate RB7 as output
bcf STATUS, RPO ; Reset RPO bit = BANKO
endm ; End of macro

Apparently, programs that use macros are much more legible and flexible. Main
drawback of macros is the amount of memory used - every time macro name is
encountered in the program, the appropriate code from the definition is inserted.
This doesn't necessarily have to be a problem, but be warned if you plan to use
sizeable macros frequently in your program.

In case that macro uses labels, they have to be defined as local using the directive
local. As an example, below is the macro for calling certain function if carry bit in
STATUS register is set. If this is not the case, next instruction in order is executed.

callc macro label ; Macro callc
local Exit ; Defining local label within macro

bnc Exit ; If C=0 jump to Exit and exit macro

call label ; If C=1 call subprogram at the
; address label outside macro
Exit ; Local label within macro
endm ; End of macro

5.2 Subprograms

Subprogram represents a set of instructions beginning with a label and ending with
the instruction return or retlw. Its main advantage over macro is that this set of
instructions is placed in only one location of program memory. These will be
executed every time instruction call subprogram_name is encountered in program.
Upon reaching return instruction, program execution continues at the line succeeding
the one subprogram was called from. Definition of subprogram can be located
anywhere in the program, regardless of the lines in which it is called.

Label ; subprogram is called with "call Label"
set of instructions
set of instructions
set of instructions
return or retlw

With macros, use of input and output parameters is very significant. With
subprograms, it is not possible to define parameters within the subprogram as can
be done with macros. Still, subprogram can use predefined variables from the main
program as its parameters.

Common course of events would be: defining variables, calling the subprogram that
uses them, and then reading the variables which may have been changed by the
subprogram.

The following example, addition.asm adds two variables, PAR1 and PAR2, and stores
the result to variable RES. As 2-byte variables are in question, lower and higher byte
has to be defined for each of these. The program itself is quite simple; it first adds
lower bytes of variables PAR1 and PAR2, then it adds higher bytes. If two lower
bytes total exceeds 255 (maximum for a byte) carry is added to variable RESH.

Basic difference between macro and subprogram is that the macro
stands for its definition code (sparing the programmer from
additional typing) and can have its own parameters while
subprogram saves memory, but cannot have its own parameters.

..

Program: addition. asm
— H —

;Program for adding two le-bit numbers
;¥ersion: 1.0 Date: £5.04.2003 MCU: PIClaFS54

PROCESSOR 16£544 ; Defining the processor
#include "plefsdi.inc”™ ! Microchip®=z INC f£ile
_ COHFIG _CP_OFF & _WDT_OFF &« _FWRTE_ON & _XT_03C

Chlock (O0=x0C sBAM starting address
PARIH ;Parameter 1 higher byte
PARIL rParameter 1 lower byte
PARZH sParameter Z higher bvte
PARZL ;Parameter Z lower byte
FESH shigher byte of result
RESL ;lower byte of result
endc !End of wariables

ORG 0=x00 ;Reset wector

goto Start

Start MwEiting walues to wariables
movlw 0x01 ;PAR1 =0x0104
movwE PAR1H
movlw O0x04
mowvwf TARLL

movlwy 0x07 FPARZ=0:0705
movwE PARZH

movlw O0x05

movwE PARZL

Main main progran
call Addle ;Calling subprogram addle
Loop goto Loop ;remain at this line
Addle reubprogram for adding 2 lée-bit rambers
clrf REZH ;RESH=0
movrE PARIL ,w su=PARI1L
addwf FPARZL ,w suw=t+PARZL
movwE RESL ;RESL=w
htfsc STATUS,C rdoes result exceed 2552
inct RESH, £ rif true increment BEZH by one
movE PARIH ,w suw=PAR1H
aidwf PARZH ,w suw=u+PARZ
addwf RESH,E (RESH=w
return rreturn from subprogram
end send of program

5.3 Macros used in the examples

Examples given in chapter 6 frequently use macros ifbit, ifnotbit, digbyte, and
pausems, so these will be explained in detail. The most important thing is to
comprehend the function of the following macros and the way to use them, without

unnecessary bothering with the algorithms itself. All macros are included in the file
mikroel84.inc for easier reference.

5.3.1 Jump to label if bit is set

ifbit macro parl, par2, par3
btfsc parl, par2
goto par3
endm

Macro is called with : ifbit Register, bit, label
5.3.2 Jump to label if bit is cleared
ifnotbit macro parl, par2, par3
btfss parl, par2
goto par3
endm

Macro is called with : ifnotbit Register, bit, label

Next example shows how to use a macro. Pin 0 on port A is checked and if set,
program jumps to label /edoff, otherwise macro ifnotbit executes, directing the
program to label /edon.

Inthis line we
include the file —
with macros

Macros are
called in these
lines. The
effect is same
as it we had all
the instructions
frammacro's
definition at
this paint.

Program: macrotest. asm

— 5

Program for testing macroz ifbit and ifnotbhit
;Wersion: 1.0 Date: Z25.04.2003 MCU:PICleFS4

PROCESSOR 15£544 ;Defining the processor
Hinclude "plef8dd.inc™ ;Microchip®s INC file
__CONFIG _CP_OFF & _WDT OFF & _PWRTE_ON & _XT_03C

Chlock 0x0C JBAM starting address
endc ;Mo wariables

ORG Ox0n :Bezet wvector

goto Jtart

Grart bsf ATATUI REPO
hsf TRIZ4,0
bct TRIZE,T

bct STATUS,RPO

;3electing the bank containing TRISA
;TRIZAO=]1, meaning the pin is input
PTRISETY=0, meaning the pin is output
s3electing the bank containing POETA

w include "mikroeldd.inc' ;Our INC file with 2 macros

Main Jmain program
| w ifhit PORTA,0,Ledoff :if bit RAO=1 switch on LED
| g ifnotbit PORTA,O0, Ledon ;if bit RAO=0 switch off LED

goto Main ;repeat all
Ledon

b=f PORTE,7 ;83witch on LED on BE7

goto Main
Ledoff

hct PORTE,7 ;awitch off LED on BEY

goto Main
End

5.3.3 Extracting ones, tens and hundreds from variable

Typical use for this macro is displaying variables on LCD or 7seg display.

digbyte

Positive

PonO

macro par0
local Pon0
local Exitl
local Exit2
local Positive
local Negative
clrf Digl

clrf Dig2

clrf Dig3

movf par0, w
movwf Digtemp
moviw .100
incf Digl
subwf Digtemp
btfsc STATUS, C

;computing hundreds digit

goto Pon0
decf Digl, w
addwf Digtemp, f
Exitl moviw .10 ;computing tens digit
incf Dig2, f
subwf Digtemp, f
btfsc STATUS, C
goto Exitl
decf Dig2, f
addwf Digtemp, f
Exit2 movf Digtemp, w ;computing ones digit
movwf Dig3
endm

Macro is called with :

movlw .156 ; w = 156
movwf RES ; RES =w
digbyte RES ; now Decl<-1, Dec2<-5, Dec3<-6

The following example shows how to use macro digbyte in program. At the
beginning, we have to define variables for storing the result, Dig1, Dig2, Dig3, as
well as auxiliary variable Digtemp.

|I Program: extractingdigits .asm
[]

;Program for extracting digits from numerical walue
;Version: 1.0 Date: 2Z5.04.2003 MCU:PIC16FS4
PROCESSOR 15f544 ;Defining the processor
#include "plef3d4i.inc®™ ; Microchip's INC file
___CDHFIG CP OFF & WDT OFF & PWRTE ON & ET OSC
Chlock Ox0OC JRAM starting address
RES ;Humerical walue
Digtemp ;auxiliary wvariahle
Digil ;First digit
Digz ;Recond digit
Digs ;Third digit
endc ;end of wariabhles
ORG Q=00 ;Reset wector
goto Stcart
include "dighyte.inc'™ ;ineluding file with macro
Gtart movlw Oxff ;=255
movwE RES ;REZ=255
Main Jmain program
digbyte RES ;ealling a macro
Loop goto Loop ;remain at this line
end ;end of program

5.3.4 Generating pause in miliseconds (1~65535ms)
Purpose of this macro is to provide exact time delays in program.

pausems macro parl

local Loopl
local dechi
local Delaylms
local Loop2
local End

movlw high parl ; Higher byte of parameter 1 goes to HIcnt
movwf Hlcnt
moviw low parl ; Lower byte of parameter 1 goes to LOcnt
movwf LOcnt

Loop1l
movf LOcnt, f ; Decrease HIcnt and LOcnt necessary
btfsc STATUS, Z ; number of times and call subprogram Delaylms
goto dechi

call Delaylms

decf LOcnt, f

goto Loop1l
dechi

movf Hlcnt, f

btfsc STATUS, Z

goto End

call Delaylms

decf Hicnt, f

decf LOcnt, f

goto Loopl
Delaylms: ; Delaylms produces a one milisecond delay

moviw .100 ; 100*¥10us=1ms

movwf LOOPcnt ; LOOPcnt<-100
Loop2:

nop

nop

nop

nop

nop

nop

nop

decfsz LOOPcnt, f

goto Loop2 ; Time period necessary to execute loop Loop2

return ; equals 10us
End

endm

This macro is written for an 4MHz oscillator. For instance, with 8MHz oscillator, pause
will be halved. It has very wide range of applications, from simple code such as
blinking diodes to highly complicated programs that demand accurate timing.
Following example demonstrates use of macro pausems in a program. At the
beginning of the program we have to define auxiliary variables HIcnt, LOcnt, and
LOPcnt.

~&

Main

Loop

Program: ledblink . asm

;Wersion: 1.0 Date:

PROCESSOR 16f844

;Program for blinking LED diodes on port B
25.04.2003 MCU:PIC15FE4

;Defining the processor

f#include "plefS4i.inc™ ;MNicrochip’s INC f£file
_ CONFIG CP OFF & WDT OFF & PWRTE ON & XT OSC

Chlock 0=x0C
HIcnt

Loont
LoOPent

ende

ORG Qx00
goto Main
ORG Dx04
goto Main

s PFAM starting address
;higher byte of macro par.
;lower byte of macro par.
Jmacro wvariable

;end of wvariables

;Reset wector

;Interrupt wector
;no interrupt routine

include "pause.inc®™ ;ineluding file with macro

banksel TRI3E
clrf TEIZE
banksel PORTE

movlw Ox00
movwE PORTE
pausems .500
movlw Oxff
movwE PORTE
pausems .500
goto Loop
End

;Main program

;8el. bank containing TRISE
;Port B is output

;8el. bank containing PORTE

;Awiteh off diodes on port B

;500 milisecond delay (0.5sec)
;B3witeh on diodes on port B

;500 milisecond delay (0.5sec)
;Jurnp to label Loop

CHAPTER 6

Examples for subsystems within
microcontroller

Introduction

6.1 Writing to and reading from EEPROM

6.2 Processing interrupt caused by changes on pins RB4-RB7

6.3 Processing interrupt caused by change on pin RBO

6.4 Processing interrupt caused by overflow on timer TMRO

6.5 Processing interrupt caused by overflow on TMRO connected to external input

TOCKI

Introduction

Every microcontroller comprises a number of subsystems allowing for flexibility and
wide range of applications. These include internal EEPROM memory, AD converters,
serial or other form of communication, timers, interrupts, etc. Two most commonly
utilized elements are interrupts and timers. One of these or several in combination
can create a basis for useful and practical programs.

6.1 Writing to and reading from EEPROM

Program "eeprom.asm" uses EEPROM memory for storing certain microcontroller
parameters. Transfer of data between RAM and EEPROM has two steps - calling
macros eewrite and eeread. Macro eewrite writes certain variable to a given address,
while eeread reads the given address of EEPROM and stores the value to a variable.

Macro eewrite writes the address to EEADR register and the variable to EEDATA
register. It then calls the subprogram which executes the standard procedure for
initialization of writing data (setting WREN bit in EECON1 register and writing control
bytes 0x55 and OxAA to EECON2).

Program: EEPROI. IHC

eeread

EZread

&

eeWrite macro addr ,prom

movly addr
movwi EEADE
movE prom,w
movwf EEDATA
call EZwrite
pausens .10
endm

E2write

bcf INTCON, ZIE
bsf STATUE, RPO
bsf EECONL,WREN
movlw Ox55
mowwf EECONZ
movlwy Oxaa
movwf EECONZ
bsf EECONL,WE
bocf STATUE, RPO
return

macro addr,prom
movlw addr
movwi EEADE
call EZread
movwf prom

erndn

bsf STATU3,RPOD
bsf EECONL,ED
bocf STATUE, RPO
movE EEDATA W
return

;Pazz the parameters Lo subprogram EZwrite

'Call EZ2write which initializes writing data
lims delay

;dizable all interrupts
;eelect bank 1

;set WEEN bit in EECONL
rwrite 0x55 to EECONZ

;Wwrite Oxaa to EECONZ, as
swriting confirmation
;8et bit WR to initialize writing

;Pazz the parameters Lo subprogramn EZread

;Call E2write which initializes reading data

For data to be actually stored in EEPROM, 10ms delay is necessary. This is achieved
by using macro pausems. In case that this pause is unacceptable for any reason,
problem can be solved by using an interrupt for signaling that data is written to

EEPROM

eewrite

addr

var

eeread

addr

var

macro addr, var

Destination address. With PIC16F84, there are 68 bytes
of EEPROM for a total address range of 0x00 - 0x44.
Name of the variable to be stored to EPROM

macro addr, var

Destination address. With PIC16F84, there are 68 bytes
of EEPROM for a total address range of 0x00 - 0x44.
Name of the variable into which data read from EPROM will be stored.

Example: Variable volume, which is set via buttons RAO and RA1, will be stored to
the address 0 of EEPROM. After reboot, when the program is started, it first loads
the last known value of variable volume from EEPROM.

&l

pr¥%e® Declaring and confiquring a microcontroller F*&#F

PROCESSOR 1654
#include "plefSd. inc”

__CONFIG _CP_OFF & _WDT_OFF & _PWRTE_ON & _XT_0SC

J**FF% Declaring wariabhles #*%%%%

:ﬂ'ﬁ?f?f?f

Main

Loop

Chlock 0x0c ; BAM starting address
HIcnt

Llcnt

LOOPent

wolume

endec

Structure of program memory FEEEE

aRG 0x00 ;Reget wector

goto Main

ORG 004 rInterrupt wectokr
goto HMain ;no interrupt routine

include "mikroeldd.inc”
include "button.inc”
include "eeprom.inc”

;Main program
banksel TRIGE
clrf TRIZE
banksel PORTE

Program: EEFROM. ASHM

egeread 0x00,volume :Read the prewviouz wvalue of wolune

movwE FPORTE

button PORTA,0,0,Increase
button PORTA,1,0,Decrease
goto Loop

Increase

incf wolume ,f ;Increaze wvolume by 1

movE wolume, T ;display on port E
movwEt PORTE

eewrite O0x00,volune JWrite To eeprom,
goto Loop

Decreasze

decf wolume,f ;Decreazse wvolume by 1

movE wolume, W sdisplay on port E
movwf PORTE

eewrite 0x00,wolune MMrite to eepron,
goto Loop

org O0x2100 satarting value of EEPROM address =zero

addrezz Q=00

addrezz 0x00

de .5 ;after the microcontroller is programmed is 0x05

Erel

6.2 Processing interrupt caused by changes on pins
RB4-RB7

Program "intportb.asm" illustrates how interrupt can be employed for indicating
changes on pins RB4-RB7. Upon pushing any of the buttons, program enters the
interrupt routine and determines which pin caused an interrupt. This program could
be utilized in systems with battery power supply, where power consumption plays an
important role. It is useful to set microcontroller to low consumption mode with a
sleep instruction. Microcontroller is practically on stand-by, saving energy until the
occurrence of interrupt.

1 b 13
Rz Réd
zll: :1|? +_‘J5_V
_FHPS Rt :1|E IHz
. [roamockl 0301 [Jrmm—rpd
T—% MCLR HECE 1 -'E 1 EH 2] =
5] PIC 14 45y
E'u'ss 16F84 v :||;_T
Eﬁ -lr REDANT re7 ———
o 12 T T T2
= RE1 res [1
g 11
—E RE2 res [9
- i
= —{|Fe2 re4 [}
=l r

Example of processing interrupt caused by changes on pins RB4-RB7

5

FProgram: INTPORTE.AGM

;ewF*F Declaring and configquring a microcontroller ####%

sEEEET T
-

Main

Loop

IsR

Ledd

Ledl

Ledz

Leds

PROCESSOR. 16£54

#include "plefid.inc™

__CONFIG _CP_OFF & _WDT OFF & _PWRTE_ON & _XT_O05C

Jtructure of program memory FEEEF

o =00
goto Main
org 0x04
goto ISR

banksel TRIZE
movlw Ox£0
mowwrl TRISE
banksel PORTE
movlw Oxff
movwi PORTE
h=f INTCON,REIE
hsf INTCON,GIE

goto Loop

hcf INTCON,FEIF

bt fs= PORTE,7
goto LedO

bt fs= PORTE, G
goto Ledl

bt fs= PORTE,S
goto Led:Z
btfs= PORTE, 4
goto Led3
retfie

bhcif PORTE, O
retfie

hcif PORTE, 1L
retfie

bhcf PORTE,Z
retfie

bhcf PORTE, 3
retfie

Exnd

;Higher four LED diodeszs are on

;interrupt upon pin change enabled

;all interrupts are enabled

;Main loop

Clears the flag that indicates BB interrupt
;took place thus enabling detection of

;hewy interrupts in main program

;Determining which button caused the interrupt

siwitch off

rAwitech off

sewitch off

siwitch off

diode

diode

diode

diode

6.3 Processing interrupt caused by change on pin RBO

Example "intrb0.asm" demonstrates use of interrupt RBO/INT. Upon falling edge of
the impulse coming to RBO/INT pin, program jumps to subprogram for processing
interrupt. This routine then performs a certain operation, in our case it blinks the
LED diode on PORTB, 7.

1 bl 13
;R.uz Rad :1lr
+3
Rz R0
; JE tMHT
e [l Faar o) GEC [—_|:|:}
. 10K i 15 =
5 T 0502 7
= PIC 14+
vss JRFG4 idd =T LD
] 13
REDANT RET [—T— ﬁ
T 12
r.: REA RES [] _J.
11 -
< REZ res []
0
RES Rre4[]
_—

Example of processing interrupt caused by changes on pin RBO

|I Program: INTEED. &35M
[

JFFFF® Declaring and configqurihg a nicrocontroller *++%*
PROCESSOR 15854
Hinclude "plaf8d.inc™
__COMFIG CP_OFF & _WDT_OFF & _PWRTE_ON & _XT_03C

JEFEEE Sfructure of program menory FEEEE

org Ox00
goto Main
org Ox04d
goto ISR
Main
banksel TRISE
movlw b'0o0ooool! ;BEO0 iz input, the rest are output
movwf TRISE
banksel O0PTION _REG
bocf OFTION_REG, INTEDG ;interrupt occurs at faling edge
hsf OPTION _REG,NOT_FEFPO ;internal pull-up rezistors are off
banksel PORTE
clrf PORTE
h=f PORTE,7 ;Only LED diode PORTE,7 is on
h=f INTCON, INTE ;interrupt FEO enabled
hsf INTCON, GIE rall interrupts enabled
Loop
goto Loop ;Main loop
IR
bcf INTCON, INTF ;Clears the flag that indicates BE interrupt
:took place thus enabling detection of
;New interrupts inh main program
bhtfss PORTE,7 :I= LED7T onz
goto Lahbl
bcf PORTE,7 ;If true switch off LED7Y
retfie
Labl
hsf PORTE,7 :If false switch on LED7
retfie
Exnd

6.4 Processing interrupt caused by overflow on timer
TMRO

Program "inttmr0.asm" illustrates how interrupt TMRO can be employed for
generating specific periods of time. Diodes on port B are switched on and off

alternately every second. Interrupt is generated every 5.088ms; in interrupt routine
variable cnt is incremented to the cap of 196, thus generating approx. 1 second
pause (5.088ms*196 is actually 0.99248s). Pay attention to initialization of OPTION
register which enables this mode of work for timer TMRO.

+3f
1 Sap 13
Rz ratld
[] 2 17
[Rag R :1|E iz
ReAToCK o5ci [l——tm—ih
i 15 =
T1
la] WIR pic 52 [TH| o
1 H 1l
v 16F84 oo T
] 13 A | ED
REOANT RET]—:n—ﬁ—
12 LED
REA REG
- 3 11 LED
RE2 RES _—l:l—ﬁ—-
El 10 2 LED
RE3 FE4 _—l:l—i'—-

LED

LED

—
1

LED
1
—

ﬁ LED

Example of processing interrupt caused by overflow on timer TMRO

|I Program: INTTMRO.A3M
[]

;s * % Declaring and configuring a microcontroller ####%

PROCESSOR 16£54
#include “"plefsd. inc”

__ COHFIG _CP_OFF & _WDT_OFF & _FWRTE_ON & _XT_O03C
;¥%%%% Declaring wariahles ##%%+%%
cnt equ Ox0Oc

JEFEEEE BCructure of program memory TEEEE

ORG 0x00 ;Beset wector
goto Main
OBz Ox0d rInterrupt wector
goto IR
Main
banksel TRISE
clrf TREIAE ;Port E is output
movlw TRIZA ;Port A is input
movrlw E'lo000lon' rS%et prescaler to THMERO
bapksel O0PTION_REG
movwi OFTION _FEG :ps = 3E=> THRO iz incremented every 3Zus
banksel PORTE
clrf PORTE ;811 the diodes are off by default
het INTCON,TOIE 'Enable THMRD interrupt
movlw .96 ;Initialize THRO
sO0verflow occurs
;every [255-96)%32us=5.0588ms
movrwE THRO ;3tart the counter
b=sf INTCON,GIE ;Interrupts are globally enabled
clrf cnt
loop
goto loop ;Bemain at this line
ISR
movlw .96 ;Initialize TMRO to ensure next interrupt
;in Sms

mo vt THEO
hct INTCON,TOIF ;clear int. flag

incf cnt,F

movlw .19 ;Has one second elapsed?(ls-196*5.038 ns)
subwf cnt,

bt fg= 3TATUS,Z

retfie

comt PORTE ;£ sIf true, comnplement the walues of port E
clrf cnt ;and set the initial walue of wariable cnt
ret fie ;If false, exit the interrupt routine

End ;End of program

Freetime in the Free time in the

main program main pragram 1

TMRO=85 37 . 255,095 97 . 255,095 97 .
E 3 E E 3
TMRO=255 0 Loop Loop
goto Loop goto Loop

ISR 2"

TMRO=96 -a— Interrupt routine

IMTCOM. TOIF=0

RETFIE

6.5 Processing interrupt caused by overflow on TMRO
connected to external input (TOCKI)

Counter TMRO increments upon signal change on pin RA4/TOCKI. Prescaler is set to
4, meaning that TMRO will be incremented on every fourth impulse. Pay attention to
initialization of OPTION register which enables this mode of work for timer TMRO
(this mode is common for devices such as counters).

b

1 at 13
Ra2 rai]
g0 4. W i
3 6 +MHZ
ROHT K| osct [——1-h
i 15 [=]
T
& RR pic 052 F—TH| ..
q S 1
YT Y T | S— |
6 13 A LED
RECANT RET [——— i|
12 LED
RE1 REE
- 2 _11 LED
REZ RES [F——— ﬁ
3 10 A LED
REZ red [—— i|
—_— ﬁ LED
_ ﬁ LED
- ﬁ LED
—_ ﬁ LED

Example of processing interrupt caused by overflow on timer TMRO
connected to TOCKI

Program: INTTMRO_a.a3M

&l

;%F*F Declaring and configuring a microcontroller ##&#%%

JFEFFF Declaring constants *FF%FF

sEEEEE
v

Main

loop

IsR

PROCESSOR lofgd

#include "plEfEd.inc”

__CONFIG CP OFF & WDT OFF & PWRTE ON & _XT_05C

nim_rev egu 100;

Structure of program memory FEEEF

ORG =00
goto Main
aORG 0=04
goto ISR

banksel TRISE
clrf TEIRE
movlw TREISA
movlw E'l0l00001'!

movwt OFTION REG
banksel PORTE
clrf FPORTE

hst INTCON,TOIE
movlw 256

sublw num_rewv

mo rwE THMERO

hsf INTCON,GIE

movE THEO, T
subhlw . 256
movwi PORTE
goto loop

movrlw L 256

{1-256)

-

.
-

sublw broj obrtaja

movwE THRO

bct INTCON, TOIF ;

ret fie

End

-

; Reset wector

; Interrupt wector

} Port B iz input
; Port A i= output
; External impulses on TOCKEI increment

: THMEO
; ps = 4 THRO increments ewvery 4 impulses
; i.e. 1 rewolution = 4 impulses

; 411 diodes are off by default

! Enable THRO interrupt

; Initialize THMEO so that overflow
; occurs every 100 rewolutions,

; i1.e. THRO iz set to 156

; 2B6-156=100)

; Btart the counter

; Interrupts are globally enabled
Display number of remaining rewvolutions
on port B
minbher of remaining revolutions=2Z36-THRO
Femain at this line

Initialize TMRO s0 it can count next
100 revolutions

clear int. fleqg
return to main program

End of program

CHAPTER 7

Examples

Introduction

1 Supplying the microcontroller
2 LED diodes

3 Push buttons

4 Optocoupler

4.1 Optocouper on input line
4.2 Optocoupler on output line
5
6
7
7.
7.

7.
7.
7.
7.
7.
7.
7.

Relay
Generating sound

Shift registers

1 Input shift register

2 Output shift register

7.8 7-seg display (multiplexing)
7.9 LCD display

7.10 Software SCI communication

7.

7.
7.
7.

Introduction

Examples given in this chapter will show you how to connect the PIC microcontroller
with other peripheral components or devices when developing your own
microcontroller system. Each example contains detailed description of hardware with
electrical outline and comments on the program. All programs can be taken directly
from the 'MikroElektronika' Internet presentation.

7.1 Supplying the microcontroller

Generally speaking, the correct voltage supply is of utmost importance for the proper
functioning of the microcontroller system. It can easily be compared to a man
breathing in the air. It is more likely that a man who is breathing in fresh air will live
longer than a man who's living in a polluted environment.

For a proper function of any microcontroller, it is necessary to provide a stable
source of supply, a sure reset when you turn it on and an oscillator. According to
technical specifications by the manufacturer of PIC microcontroller, supply voltage
should move between 2.0V to 6.0V in all versions. The simplest solution to the
source of supply is using the voltage stabilizer LM7805 which gives stable +5V on its
output. One such source is shown in the picture below.

T

TO-Z4

Transfaormer

BaOZ1000

220N~

LM7 205
2 ca I:E‘i

Cl=22pF, C2 = 100uF,
03 = 0pF, R = 1K

In order to function properly, or in order to have stable 5V at the output (pin 3),
input voltage on pin 1 of LM7805 should be between 7V through 24V. Depending on
current consumption of device we will use the appropriate type of voltage stabilizer
LM7805. There are several versions of LM7805. For current consumption of up to 1A
we should use the version in TO-220 case with the capability of additional cooling. If
the total consumption is 50mA, we can use 78L05 (stabilizer version in small TO - 92
packaging for current of up to 100mA).

7.2 LED diodes

LEDs are surely one of the most commonly used elements in electronics. LED is an
abbreviation for 'Light Emitting Diode'. When choosing a LED, several parameters
should be looked at: diameter, which is usually 3 or 5 mm (millimeters), working
current which is usually about 10mA (It can be as low as 2mA for LEDs with high
efficiency - high light output), and color of course, which can be red or green though
there are also orange, blue, yellow....

LEDs must be connected around the correct way, in order to emit light and the
current-limiting resistor must be the correct value so that the LED is not damaged
or burn out (overheated). The positive of the supply is taken to the anode, and the
cathode goes to the negative or ground of the project (circuit). In order to identify
each lead, the cathode is the shorter lead and the LED "bulb" usually has a cut or
"flat" on the cathode side. Diodes will emit light only if current is flowing from anode
to cathode. Otherwise, its PN junction is reverse biased and current won't flow. In
order to connect a LED correctly, a resistor must be added in series that to limit the
amount of current through the diode, so that it does not burn out. The value of the
resistor is determined by the amount of current you want to flow through the LED.
Maximum current flow trough LED was defined by manufacturer.

To determine the value of the dropper-resistor, we +3¥
need to know the value of the supply voltage. From

this we subtract the characteristic voltage drop ofa — -+ —— .
LED. This value will range from 1.2v to 1.6v Ur I R ¢'
depending on the color of the LED. The answer is

the value of Ur. Using this value and the currentwe ~ &~ A
want to flow through the LED (0.002A to 0.01A) we Ud l Y ‘}
can work out the value of the resistor from the --¥—— —

formula R=Ur/1I. = ilat” LED

LEDs are connected to a microcontroller in two ways. One is to switch them on with
logic zero, and other to switch them on with logic one. The first is called NEGATIVE
logic and the other is called POSITIVE logic. The next diagram shows how to connect
POSITIVE logic. Since POSITIVE logic provides a voltage of +5V to the diode and
dropper resistor, it will emit light each time a pin of port B is provided with a logic 1.
The other way is to connect all anodes to +5V and to deliver logical zero to cathodes.

+ay
1[L :1|a.
Rz Fid
E E 4 T
EHM R0 :1|E AMHz
+EHM’I’0CKI 051 jh J —— |
T =
' ——|WR pjc osczf] —T—|3| +5y
1 k] 1d
wss 1GER4 wd]—T
E 13 3300 AR M
—{|REOANT rRET[—/——m—r
T 1z 3E0ce AR (T
—T|red REE[—T—F——+
= 2 11 3300 '\ LD
—|REz RES
o AL 1] AR T
RE32 %1
3300 AR
3300 i:," [Tai]
3300 LED
1 ﬁ_l
3300 AR (M
—1 —

Connecting LED diodes to PORTB microcontroller

The following example initializes port B as output and alternately switches on and off
LED diodes every 0.5sec. For pause we used macro pausems, which is defined in the
file mikroel84.inc.

— &l

;**###

Main

Loop

Program: LED. 23

peEFEF Declaring and configuring a microcontroller ##FF#F

PROCESSOR 16L£54
ginclude "plefsd.inc”

_CONFIG _CP_OFF & _WDT_OFF & _PWRTE_ON & _XT_03C

pewswF Declaring wariableg ##F#®

Chlock 0x0C ;FAM starting address

HIcnt ;haxiliary wariables for macro pausens
LOcnt

LOOPent

endc

Jtructure of program memory FEEEF

ORG Ox00 :Bezet wvector

goto Main

ORG Ox04d ;Interrupt vector
goto Main ;ho interrupt routine

include "mikroelSd.ine”

;Main program

banksal TRIZE :3elect bank containing TRIZE
clrf TEISE ;Port B iz output

banksel PORTE ;3elect bank containing PORTE
movlw Ox00 ;3witch off diodes on port B
movwi FPORTE

pausemns . 500 2500mz delay (0.5sec)

movlw Oxff ;3witch on diodes on portu B
movwi FPORTE

pausems . 500 ;500m= delay (0.5sec)

goto Loop ;JdJump to label Loop

End

7.3 Push buttons

Buttons are mechanical devices used to execute a break or make connection
between two points. They come in different sizes and with different purposes.
Buttons that are used here are also called "dip-buttons". They are soldered directly
onto a printed board and are common in electronics. They have four pins (two for
each contact) which give them mechanical stability.

+ay
‘Pull-up' resistor
- -
=0 =0
=t =t
1 et 12
[|rez rat [
F4 1w
{|Ras Real] 4MHz
T'{L T] [—
‘ f-l' 5V o [resrockt osct [F—-7
o

HELR pIC %3¢ [———
vss C1GFB4 wad [T
REOANT RET

[

M
—=o p—?

- ;; o

g

= 0

} |||_|

B

reset
REA1 REB&

I

1
1
1
REZ RES[]
1
FE3 FE4]]

Example of connecting buttons to microcontroller pins

Button function is simple. When we push a button, two contacts are joined together
and connection is made. Still, it isn't all that simple. The problem lies in the nature of
voltage as an electrical dimension, and in the imperfection of mechanical contacts.
That is to say, before contact is made or cut off, there is a short time period when
vibration (oscillation) can occur as a result of unevenness of mechanical contacts, or
as a result of the different speed in pushing a button (this depends on person who
pushes the button). The term given to this phenomena is called SWITCH (CONTACT)
DEBOUNCE. If this is overlooked when program is written, an error can occur, or the
program can produce more than one output pulse for a single button push. In order
to avoid this, we can introduce a small delay when we detect the closing of a
contact. This will ensure that the push of a button is interpreted as a single pulse.
The debounce delay is produced in software and the length of the delay depends on
the button, and the purpose of the button. The problem can be partially solved by
adding a capacitor across the button, but a well-designed program is a much-better
answer. The program can be adjusted until false detection is completely eliminated.
Image below shows what actually happens when button is pushed.

M
pull-down I"H’

WA M
pull-up Vi L
T
]
’ﬂ
Button is pressed {4 id Button is released

As buttons are very common element in electronics, it would be smart to have a
macro for detecting the button is pushed. Macro will be called button. Button has
several parameters that deserve additional explanation.

button macro port, pin, hilo, label

Port is a microcontroller's port to which a button is connected. In case of a PIC16F84
microcontroller, it can be PORTA or PORTB.

Pin is port's pin to which the button is connected.

HiLo can be '0' or '1' which represents the state when the button is pushed.

Label is a destination address for jump to a service subprogram which will handle
the event (button pushed).

&
[]
button macro port,pin hilo,label
local Pushedl
local Pushed:2
local Exitl
local Exit:
ifndef debhouncedelay
#define debouncedelay
endif
if hilo==
ifhit port,pin,Exitl
pausens debouncedelay
Puzhedl
ifnothit port,pin, Pushedl
pausens debouncedelay
goto label

.10

Exitl

else
ifnothit port,pin, Exits
pausenzs debouncedelay

Pushed:z
ifbit port,pin, Pushed:
pausens debouncedelay
goto lahel

Exitz

endif

endm

Hacro: EWTTON. INC |

;11 labels used are local

:Thiz enables to define a debounce
;delay in the main program

spull-up
;If one, button is not pushed
l0mz debounce delay

Mait until released and
sthen Jump to a specified label

;pull -dowm
:If zero, button iz not pushed
:l0mz debounce delay

Wait until released and
;then jump to a specified label

Example 1:

button PORTA, 3, 1, Button1l

Button T1 is connected to pin RA3 and to the mass across a pull-down resistor, so it
generates logical one upon push. When the button is released, program jumps to the

label Buttonl.
Example 2:

button PORTA, 2, 0, Button2

Button T1 is connected to pin RA1 and to the mass across a pull-up resistor, so it
generates logical zero upon push. When the button is released, program jumps to

the label Button?2.

The following example illustrates use of macro button in a program. Buttons are
connected to the supply across pull-up resistors and connect to the mass when

pushed. Variable cnt is displayed on port B LEDs; cnt is incremented by pushing the
button RAO, and is decremented by pushing the button RAL.

|I Frogram: EUTTON. A3M
[]

pRFFEF Declaring and configuring a microcontroller w#&+%#

PROCESSOE 16f54
#include "plefad. inc™

__CONFIG CP _OFF & WDT OFF & PWRTE ON & _XT O0SC

p¥eE%E % Declaring wariahles #%+%##

Chlock 0x0C ;BAM starting address
HIcnt

Locnt

LOOPcnt

cnt

enda

JEFEEFE BTructure of program nemory FEEEE

ORG Ox00 ;Beset wector

goto Main

ORG 0x04 ;Interrupt wector
goto HMain ;ho interrupt routine

include "mikroeldd.ine”
include "hutton.inc™
Main ;Main program
input PORTL, O
input PORTA, QO
banksel TRISE
clrf TRIZE
bankzsel PORTE
clrf cnt

Loop
button PORTA,OQ,0,Increase
button PORTA, 1,0, Decrease
goto Loop
Increase
incf cnt £
movrif cnt,w
movwE PORTE
goto Loop
Decrease

dect cnt, £
movrif cnt,w
movwf PORTE
goto Loop

End

It is important to note that this kind of debouncing has certain drawbacks, mainly
concerning the idle periods of microcontroller. Namely, microcontroller is in the state
of waiting from the moment the button is pushed until it is released, which can be a
very long time period in certain applications. if you want the program to be attending
to a number of things at the same time, different approach should be used from the

start. Solution is to use the interrupt routine for each push of a button, which will
occur periodically with pause adequate to compensate for repeated pushes of button.

The idea is simple. Every 10ms, button state will be checked upon and compared to
the previous input state. This comparison can detect rising or falling edge of the
signal. In case that states are same, there were apparently no changes. In case of
change from 0 to a 1, rising edge occurred. If succeeding 3 or 4 checks yield the
same result (logical one), we can be positive that the button is pushed.

button v v
A O S S
interrupt _ _ _
PV= previous value Pv=0 PV=0 PV=1 PV=1 PV=1 PV=0
M= new value MW=0 MNW=1 HNV=1 NV=1 NV=0 NV=0

7.4 Optocouplers

Optocouplers were discovered right after photo-transistors (like any other transistor,
except it is stimulated by light), by combining a LED and photo-transistor in the
same case. The purpose of an optocoupler is to separate two parts of a circuit.

This is done for a number of reasons:

e Interference. Typical examples are industrial units with lots of interferences
which affect signals in the wires. If these interferences affected the function
of control section, errors would occur and the unit would stop working.

e Simultaneous separation and intensification of a signal. Typical examples are
relays which require higher current than microcontroller pin can provide.
Usually, optocoupler is used for separating microcontroller supply and relay
supply.

e In case of a breakdown, optocoupled part of device stays safe in its casing,
reducing the repair costs.

Optocouplers can be used as either input or output devices. They can have additional
functions such as intensification of a signal or Schmitt triggering (the output of a
Schmitt trigger is either 0 or 1 - it changes slow rising and falling waveforms into
definite low or high values). Optocouplers come as a single unit or in groups of two
or more in one casing.

Each optocoupler needs two supplies in order to function. They can be used with one
supply, but the voltage isolation feature, which is their primary purpose, is lost.

7.4.1 Optocoupler on an input line

The way it works is simple: when a signal arrives, the LED within the optocoupler is
turned on, and it illuminates the base of a photo-transistor within the same case.
When the transistor is activated, the voltage between collector and emitter falls to
0.7V or less and the microcontroller sees this as a logic zero on its RA4 pin.

The example below is a simplified model of a counter, element commonly utilized in
industry (it is used for counting products on a production line, determining motor
speed, counting the number of revolutions of an axis, etc). We will have sensor set
off the LED every time axis makes a full revolution. LED in turn will 'send' a signal by
means of photo-transistor to a microcontroller input RA4 (TOCKI). As prescaler is set
to 1:2 in this example, every second signal will increment TMRO. Current status of
the counter is displayed on PORTB LEDs.

| L 12
| R RA[]
I T
| Futci Rreold dhHz
1E
' RAATOCKL 04]—_,_—l'
12 | - 15 =
[WCLR s [J—— 1
| L PIC “*2H s =] |
| wss 1GFB4 v [T
=3 13
I - ! REOANT reT[]
1z
— RE1 REG[]
11
EZ\J‘! . REZ RES
] .
REZ RE4[]

Example of optocoupler on an input line

5

ORG
goto

QRG
goto

Main

movlw
mowrwE
movlw
movwE
movlw

mowrwE

clrif
clrif

Loop movE
movrat

goto

End

PROCESSOR lefa4d
#include "plefdd. inc™

=00
Main

0x04
Main

banksel TRIGA

Oxef

TEIZL

0=00

TEIZE
b'o0llo0o0!

banksel OPTION

OPTION_FEG

banksel PORTE

PORTE
THRO

THRO
FORTE
Loop

Hakxa :

OPTOIR.ACH

prwEEE Declaring and confiquring a microcontroller %%

__CONFIG CP_OFF & WDT OFF & FPWRTE_ON & _XT_0OSC

JEFEEEE SLructure of program Nemory FEEES

'Bezet wector

sInterrupt vector
;no interrupt routine

;Main program

;Initialization of port 4
JTRIZA - OxEE
sInitialization of port E
;TRIZE <- 0x00

;RAd ->= THMRO, PA3=l:z

rIncrement THRO upon falling edge
sPORTE <- 0O

;TMRO <- 0

;3end walue of the counter

;to PORTE

;Remain at thisz line

;End of program

An Optocoupler can be also used to separate the output signals. If optocoupler LED is
connected to microcontroller pin, logical zero on pin will activate optocoupler LED,

7.4.2 Optocoupler on an output line

thus activating the transistor. This will consequently switch on LED in the part of
device working on 12V. Layout of this connection is shown below.

+1 2 +1 2w

1 Nl 18
[Jraz Red [
5 i =
RA3 R[] 4hHz 2 %
3 [
o Eﬂmacm O5C1 I5|—_f_—l| i + |
_ 12
5 MR pc ©sc2 :||u|—T_" Hl 1 +.T.“’ IQ:’ relay
f[wis 16F84 waa[]
q [E}
%1 - 1E REnT i %2 F30R
e REf REG 1
o
T:HE'-Z RES :I|I EZ& |_E]— =
— [[I1]
[Jres: Re4[] = | |
CMNYT D

Example of optocoupler on output line

The program for this example is simple. By delivering a logical one to the third pin of
port A, the transistor will be activated in the optocoupler, switching on the LED in the
part of device working on 12V.

7.5 Relay

The relay is an electromechanical device, which transforms an electrical signal into
mechanical movement. It consists of a coil of insulated wire on a metal core, and a
metal armature with one or more contacts. When a supply voltage was delivered to
the coil, current would flow and a magnetic field would be produced that moves the
armature to close one set of contacts and/or open another set. When power is
removed from the relay, the magnetic flux in the coil collapses and produces a fairly
high voltage in the opposite direction. This voltage can damage the driver transistor
and thus a reverse-biased diode is connected across the coil to "short-out" the spike
when it occurs.

Raz Rat]
7
Rba R0 Z1IE 4hiHz
+5y RadTOCK 05c1 [l—— | B
10K = |= AOHz
————C

WIR pic @5¢2[]

wss 16 F84 wa:!—"'
REMNT RET

|—|'¢“11~" T o R T
T
=

]
T 1z
¢ re REG /
2 11
[Jre2 RES]
— o 1z
h [resz RE4[] LOAD
. Rectifier
Protective =
dinde *Tuv -
|
T1 '
10k = | 7 LS T J
1 *| Relay o

10K
| gy
4

Connecting a relay to the microcontroller via transistor

Since microcontroller cannot provide sufficient supply for a relay coil (approx.
100+mA is required; microcontroller pin can provide up to 25mA), a transistor is
used for adjustment purposes, its collector circuit containing the relay coil. When a
logical one is delivered to transistor base, transistor activates the relay, which then,
using its contacts, connects other elements in the circuit. Purpose of the resistor at
the transistor base is to keep a logical zero on base to prevent the relay from
activating by mistake. This ensures that only a clean logical one on RA3 activates the
relay.

a2 Rai] |

Ris RAOH - amHz L
R OCK] GSCe Iﬁ_—i' | -

1= | [=]
HCLR pIC V52 [—— .

i o o 1L s

+
h
=

vss C1GFB4 wad [T
1

—
=
-
1
o n +
=1z
+
n
s
1

REOANT RET a
H e ~ 220v
EI;HE1 RE6 Iy S0Hz
[re= rES[] I —
= T: RE3 b4 :1|'j LOAD
. Fectifier
Frotective -
dinde + T 129 9 -

I

5
o

Optocoupler
supply

H1181

/

coil

Connecting the optocoupler and relay to a microcontroller

A relay can also be activated via an optocoupler which at the same time amplifies the
current related to the output of the microcontroller and provides a high degree of
isolation. High current optocouplers usually contain a 'Darlington' output transistor to
provide high output current.

Connecting via an optocoupler is recommended especially for microcontroller
applications, where relays are used fro starting high power load, such as motors or
heaters, whose voltage instability can put the microcontroller at risk. In our example,
when LED is activated on some of the output port pins, the relay is started. Below is
the program needed to activate the relay, and includes some of the already
discussed macros.

Program: FELAY . &3M

&

se¥®a® Declaring and configquring a microcontroller +&#F

=EEEE T
r

=EETEEN
r

=EETEEN
r

Main

Loop

On

O£t

PROCES30R 16£84
ginclude "plefsd, inc™

__CONFIG CP_OFF & WDT OFF & FWRTE_ON & _XT_0OSC

Declaring wariabhlezg #*%%%%*

Chlock Ox0C
HIcnt
LOcnt
LOOPcnt
endc

Declaring hardware ###%%

#define FELAY PORTA ,3

:BAM ztarting address

;Belay iz located on the third pin
;of port 4

Jtructure of program nemory TEEES

ORE Q=00
goto Main

R =04
goto Main

#include "mikroel8d.inc”
#ginclude "button. inc™

banksel TRISA
movlyw bf 000101117
movwt TRISL
movly (Ox00

movwf TRISE
banksel PORTE

clrf FORTE
button PORTA, 0, 0O, On
button PORTA, 1, 0O, Off
goto Loop

bsf BELAY
goto Loop

bocf BELAY
goto Loop

End

sRBeset wector

sInterrupt vector
;no interrupt routine

:Macros

;Beginning of the program

rInitializing port A
;TRISA <— Ox17
;Initiali=zing port B
;TRISE «<- 0O=00

JPORTE <- 0x00

Button 1
:Button 2

Turn on relay

;Turn off relay

;End of program

7.6 Generating sound

In microcontroller systems, beeper is used for indicating certain occurrences, such as
push of a button or an error. To have the beeper started, it needs to be delivered a
string in binary code - in this way, you can create sounds according to your needs.
Connecting the beeper is fairly simple: one pin is connected to the mass, and the
other to the microcontroller pin through a capacitor, as shown on the following
image.

= o 1 L 12
Ore R
2 1T
m e = R RA0—— 4MHz
||+ - H 1
[redmock osc]—I_f_—uljl
4 15 =
—L: WIR pjc ose2 :1|4+5—VT_|| I = .r
T2 B —{|ws 16FB4 v —T
et i 5]
1 ‘ il [|reoaT RET[]
[v] = T 1z .
[Jre4 reG[] }
a 1
| [rez RES[]
- = = Q 16
[rez Fe4]]

S I I

As with a button, you can employ a macro that will deliver a BEEP ROUTINE into a
program when needed. Macro BEEP has two arguments:

BEEP macro freq , duration:

freq: frequency of the sound. The higher number produces higher frequency
duration: sound duration. Higher the number, longer the sound.

Example 1: BEEP OxFF, 0x02

The output has the highest frequency and duration at 2 cycles per 65.3mS which
gives 130.6 mS

Example2: BEEP 0x90, 0x05
The output has a frequency of 0x90 and duration of 5 cycles per 65.3mS. It is best
to determine these macro parameters through experimentation and select the sound

that best suits the application.

The following is the BEEP Macro listing:

Haara:

&

pRFFFF Declaring constants FEEEF

pEEEEEY Macyos FEEEE

EEETP macro freg,duration
movlw fregq
movwf Eeep TEMPL
movlw duration
call BEEP=uh
endn

BEEPinit macro
bef BEEPport
bstf STATUS ,BPOD
bect BEEPLris=
bef STATUS ,RPO
endm

;ﬂ'ﬂ' wEW Pdengr amj wEwEEw

BEEFsub mowvwf Beep TEMPE
clrf THMR.O
bef BEEPport
hsf STATUS ,RPO
bect BEEEPport
movlw PRESCheep
movwE OPTION REG
bef STATUS, RPO

BEEPa bcf INTCON, TOIF

BEEEPFL b=t BEEEPport
call EB_Wait
bcf EEEPport
call EB_Wait
btfszs INTCOMN,TOIF
goto EEETh
decfsz Beep TEMPZ, 1
goto EEEFPa
RETUEN

B _Wait mowfw EBeep TEMFP1
mnovwf EBeep TEMPS

B _Waita decfsz FBeep TEMF3,1
goto B _Waita
FETURHN

EEEF .INC

CONSTANT PREZCheep = b'00000111' ; 65,3 ms per cycle

;eet the sound duration
;initialize the counter

;8et prescaler for THRO

:0PTION «<- W

;clear TMRO Overflow
sduration of logical
;duration of logical
scheck TMRO Overflow

;2kip if set
:Is Beep TEMPEZ = 0 =7

Flag
ey

rrl:lrr
Flag,

;If not, Jump back to EEEP

The following example shows the use of a macro in a program. The program
produces two melodies which are obtained by pressing T1 or T2. Some of the
previously discussed macros are included in the program.

Program: EEEF. & GM

&

;%% % Declaring and configquring a microcontroller ##%#%%

:Wﬂ".\".\".\'

DROCESSOR lefa4
#include "plefdd. inc”

__ CONFIG CP_OFF & WDT OFF & PWRTE ON & T _0SC

Declaring wariahles *%%%%

Chlock O0x0OC

FREACwait
Beep TEMF1
Beep TEMPZ
Beep TEMP3
HIcnt
LOcnt
LooPcnt
ando

;BAM strating address

;Belongs to macro "BEEP™

shuxiliary wariable for macro pausens

JF%%F% Declaring hardware *%%%*

#define BEEPport PORTA,S
#define BEEPtris TRISA,3

;Port and pin beeper is located at

FEHEFFE ZtLructure of program Lemory FEEEE

Main

Loop

Plavl

Plavyz

QRG 0x00
goto Main
ORG Q=04

goto HMain

;Bezet wector

rInterrupt vector
no intertupt routine

include "mikroel&d.inc”
include "button.inc”

include "heep.inc™

banksel TRIZA

movlw bf00010111

movwE TERISA
banksel IMORTE

BEEPinit

button PORTA, 0,0,
button PORTA, 1,0,

goto Loop

BEEF 0OxFF,
EEEF 0Ox50,
EEEF 0OxCO,
BEEF 0OxFF,
goto Loop

EEEF 0Oxbhb,
BEEF 0Ox57,
BEEP 0OxaZ,
BEEFP 0Ox53,
goto Loop
End

=0z
0x05
0x03
0x03

0«0z
0x05
0x03
=03

Beginning of the program

;Initializing port A
JTRISA <- 0x17

rInitializing Beeper

Playl :Button 1
Playz ;Button 2

;First tune

rhecond tune

;End of program

7.7 Shift registers

There are two types of shift registers: input and output. Input shift registers
receive data in parallel, through 8 lines and then send it serially through two lines to
a microcontroller. Output shift registers work in the opposite direction; they
receive serial data and on a "latch" line signal, they turn it into parallel data. Shift
registers are generally used to expand the number of input-output lines of a
microcontroller. They are not so much in use any more though, because most
modern microcontrollers have a large number of pins. However, their use with
microcontrollers such as PIC16F84 is very important.

7.7.1 Input shift register 74HC597

Input shift registers transform parallel data into serial data and transfers it to a
microcontroller. Their working is quite simple. There are four lines for the transfer of
data: Clock, Latch, Load and Data. Data is first read from the input pins by an
internal register through a 'latch' signal. Then, with a 'load’' signal, data is transferred
from the input latch register to the shift register, and from there it is serially
transferred to a microcontroller via 'data’ and 'clock’ lines.

14

. Input
E— latch
F_5] register

Shift
register

Parallel input

iz 5]

| H | 9 Serial
output

Latch 14

Clock 1
Load 2

An outline of the connection of the shift register 74HC597 to a micro, is shown
below.

Connector
\ +$] Sl 12
e ——————[|Raz RAd I—‘
a — z 1T
m
o 1—[Rip1 v-:c]J q RAZ Rl (3 e
Fy] M 7} Bln . (roaTock osci[] r |
: [BInl Serizkl ul X —T: MLE sz 154'7_' II:I |
.2 n skl ula
4 afl]zkl | - PIC]14 v
af————] i+ paralsir —]vss 16F84 e
= nl - E 11 3300% ol 1]
alF—— []rns vt
- = I ———|reomnT RET
o] A— [ke f——1— T 1z §E0ce A
T ey = 1 — [|rei RES i
2 10 resed |—T & z 11 330m ST]
iz Selsk lald—— ;.I: REZ R [T am -
I21]
= 74HCEST = RS Red
iy ﬁi
3300 i:ll"' LED
— ﬁi

In order to simplify the main program, a macro can be used for the input shift
register. Macro HC597 has two parameters:

HC597 macro Var, Varl

Var variable where data from shift register input pins is transferred
Varl loop counter

Example: HC597 data, counter

Data from the input pins of the shift register is stored in data variable. Timer/counter
variable is used as a loop counter.

Macro listing:

|I Hacro: HCS37.INC
O

HCS97 macro YVar,Varl

Local Loop ;Local lahbel
movlwy .5 ;Transfer eight bhits
movywE Varl ;Initializing counter
h=t Latch ;Receive pin states into input latch
nop
hct Latch
hci Load ;Transfer the contents of input latch to
;3HIFT redq.
nop
h=t Load
Loop rlf Var £ ;Rotate "Var”™ one place to the left
htfss Data !I=z Data line = ™17 2
hct Var , 0 ;If not, clear bit '0' in Var
htfsc Data ;Is Data line = "0 =2
hst Var , 0 ;If not, set bit 'O
h=t Clock ;Generate one clock
nop
hct Clock
decfsz Varl,f ;Has 8 bits been receiwed ?
goto Loop 'If not, repeat
L=tk

Example of how to use the HC597 macro is given in the following program. Program
receives data from a parallel input of the shift register and moves it serially into the
RX variable of the microcontroller. LEDs connected to port B will indicate the result of
the data input.

&

s EETTT
-

sEEEEE
r

sHEHTFERE
v

s EETTT
.

Main

Loop

Declaring and configquring a microcontroller ##%%#

DPROCESSOR 16£34
#include "plefad.inc™

__CONFIG CP_OFF & WDT OFF & PWRTE ON & _XT_OSC

Delaring wariahles *##%%

Chlock 0x0C JBAM =tarting address
B

CountiPI

endc

Declaring the hardware #*#%%¥

Frogram: HCFA7. &AM

#define Data PORTA,0 ;any other I/70 pin could be used

#define Clock PORTA,1
#define LatchPORTA,Z
#define Load PORTA,S

Jtructure of program Memory FEEEF

QR 0x00 (Reszet wector

goto Main

ORG Ox0d ;Interrupt vector
goto Main ;ho interrupt routine

#ginclude "hci97.inc'™

Beginning of the program

banksel TRIZA

movlw b7 000100017 ;Initializing port &
movwi TRIZL JTRIBA - 0Oxll
clrf TRISE !Pinzs of porta B are output

banksal PORTA

clrf FORTA sPORTA <- 0Ox0O0

hsf Load ;Enable SHIFT register

HC597 RBX, CountiPI r3tatez of input pins of 3HIFT reg.
movf B, W ;are stored in wariabhle RX

movwEt PORTE ;iet the content of BX req. to port B
goto Loop Bepeat the loop

End End of program

7.7.2 Output shift register

Output shift registers transform serial data into parallel data. On every rising edge of
the clock, the shift register reads the value from data line, stores it in temporary
register, and then repeats this cycle 8 times. On a signal from 'latch’ line, data is

copied from the shift register to input register, thus data is transformed from serial

into parallel data.

Serial
Input

Clack 24

4]

Shift

register

|—>

Letch
register

—— A

Letch 12

Cle
Ce
Clo

F
[l
H

Parallel autput

An outline of the 74HC595 shift register connections is shown on the diagram below:

33002 - ims

T 1§,

EELT o .
._:__H_“Ej_l—t
33082 erm.

: 53051 mx s

e

"X LD T

Bici

Bicz

Bir2

Bt

Birs

B

BicT

Wiz

:[LH

Sefizkl ula

JE

[L=r1o0d

Tk

Sefl|zkl 1212

74HC595

T

&

e 12
Roz Rod
17
Rog Rad Iy .
Rt (K] e]ﬁ'l
1= —
L WIR pjc ©se2 :Jﬁl
wss 16FB4 widd
11
REOANT RET[]
1z
REA REE[]
11
REZ RESI]
10
RE3 RE4[]

Macro used in this example can be found in hc595.inc file, and is called HC595.

Macro HC595 has two parameters:

HC595 macro Var, Varl

Var variable whose contents is transferred to outputs of shift register.

Varl loop counter

Example: HC595 Data, counter

—

The data we want to transfer is stored in data variable, and counter variable is used
as a loop counter.

|I Hacro: HCES5.INC [
]

HC595 macro Var,vVarl

Local Loop ;Local label
movly .2 Transfer eight bits
movwf Varl Initializing counter
Loop rlf Var,f :Rotate "Var™ on place to the left
htf=ss STATUS,C :Is carry = "1™ 2
hct Data !If not, zet Data line to 07
htfsc 3STATUI,C :Is carry = 0" =
hst Data :If not, set Data line to 17
h=f Clock :Generate one clock
nop
bct Clock
decfsz Varl,f ;Haz eight bits been sent 7
goto Loop :If not, repeat
hst Latch :If all & bits have been sent, send the
O} ;contents of SHIFT register to output latch

hct Latch

endn

An example of how to use the HC595 macro is given in the following program. Data
from variable TX is serially transferred to shift register. LEDs connected to the
parallel output of the shift register will indicate the state of the lines. In this example
value OxCB (1100 1011) is sent so that the seventh, sixth, third, first, and zero LEDs
are illuminated.

|I Program: HC595. A5H
[]

puEFEF Declaring and configuring a microcontroller F#&%F

PROCESSOR 16£54
#include "plefdd.inc™

__CONFIG CP_OFF & WDT OFF & PWRTE ON & T 0&C

%% %% Declaring wariahles #%%®%

Chlock Ox0C ;PAM starting address

T ;Belongs to the function "HC 5957
Count5PI

endc

%% %% Declaring the hardware #*%%¥
#define Data PORTA,O
#define Clock PORTA,1
#define LatchPORTA,Z

JEFEFE Grructure of program memory FEFEF

QR 0x00 (Rezet wector

goto Main

QRG Ox04d sInterrupt wector
goto Main ;o interrupt routine

include "hcoh95. inc™

Main ;Beginning of the program
banksel TRISA
movlw bT00011000f ;Initializing port &
mowwf TRISL JTRISA - 0x13
banksel PORTA
clrf FORTA ;PORTA < - 0Ox00
movlw Oxch ;Fill Tx buffer
movwE T ;T¥ <- 1'11001011°
HC595 Tx, Count3PI

Loop goto Loop ;Remain at thisz line
End End of program

7.8 Seven-Segment Display (multiplexing)

The segments in a 7-segment display are arranged to form a single digit from 0 to F
as shown in the animation:

N
|_l

We can display a multi-digit number by connecting additional displays. Even though
LCD displays are more comfortable to work with, 7-segment displays are still
standard in the industry. This is due to their temperature robustness, visibility and
wide viewing angle. Segments are marked with non-capital letters: a, b, ¢, d, e, f, g
and dp, where dp is the decimal point. The 8 LEDs inside each display can be
arranged with a common cathode or common anode. With a common cathode
display, the common cathode must be connected to the 0V rail and the LEDs are
turned on with a logic one. Common anode displays must have the common anode
connected to the +5V rail. The segments are turned on with a logic zero. The size of
a display is measured in millimeters, the height of the digit itself (not the housing,
but the digit!). Displays are available with a digit height of 7,10, 13.5, 20, or 25
millimeters. They come in different colors, including: red, orange, and green.

The simplest way to drive a display is via a display driver. These are available for up
to 4 displays. Alternatively displays can be driven by a microcontroller and if more
than one display is required, the method of driving them is called "multiplexing."

The main difference between the two methods is the number of "drive lines." A
special driver may need only a single "clock" line and the driver chip will access all
the segments and increment the display. If a single display is to be driven from a
microcontroller, 7 lines will be needed plus one for the decimal point. For each
additional display, only one extra line is needed. To produce a 4, 5 or 6 digit display,
all the 7-segment displays are connected in parallel. The common line (the common-
cathode line) is taken out separately and this line is taken low for a short period of
time to turn on the display. Each display is turned on at a rate above 100 times per
second, and it will appear that all the displays are turned on at the same time. As
each display is turned on, the appropriate information must be delivered to it so that
it will give the correct reading. Up to 6 displays can be accessed like this without the
brightness of each display being affected. Each display is turned on very hard for
one-sixth the time and the POV (persistence of vision) of our eye thinks the display
is turned on the whole time. Therefore, the program has to ensure the proper timing,
else the unpleasant blinking of display will occur.

T
1EQR
[
Fl k| & h| 9 Fl K| & h]-
+ow 1 L — F —
Oraz Rod a a
! O =0 |0 el
5 [|ras Rad
g c - —— | =—
Orasmock osci i [} ! :D 1) DE ? :D
4 = -
d
ﬂm plC 502 —"a —
K
1“ Swl L Huss 16FB4 v JEEEEIEELEE
0 ——|REONT RET
T
—|Re REE
a 1 330
—|rE2 RES
= o & 5300
RES RE4
330
330
330
330

Connecting a microcontroller to 7-segment displays in multiplex mode
Program "7seg.asm" displays decimal value of a humber stored in variable D.
Example:

moviw .21
movilw D ; number 21 will be printed on 7seg display

Displaying digits is carried out in multiplex mode which means that the
microcontroller alternately prints ones digit and tens digit. TMRO interrupt serves for
generating a time period, so that the program enters the interrupt routine every 5ms
and performs multiplexing. In the interrupt routine, first step is deciding which
segment should be turned on. In case that the tens digit was previously on, it should
be turned off, set the mask for printing the ones digit on 7seg display which lasts
5ms, i.e. until the next interrupt.

For extracting the ones digit and the tens digit, macro digbyte is used. It stores the
hundreds digit, the tens digit, and the ones digit into variables Digl, Dig2, and Dig3.
In our case, upon macro execution, Digl will equal 0, Dig2 will equal 2, and Dig3 will
equal 1.

Realization of the macro is given in the following listing:

|I Program: DIGIT.IRC |
]

dighyte macke parl
local Ponl
local Exitl
local ExitZ
loecal Pozitiwv

clrf Digl

clrf Dig:z

clrf Digs
Pozitiv

movE parl,w
movwE Digtenp
movlw .100
Pon0
incf Digl,f
subwf Digtewp,£
btfsc STATUE,C
goto Ponn
decf Digl,f
addwf Digtewp,£
Exitl movlw .10
incf DigZ,f
subwf Digtenp,f
btfsc &STATUS,C
goto Exitl
decf DigZ,f
addwf Digtenp,f
Exitzs
movE Digtenp,w
movwf Dig3
erndn

The following example shows the use of the macro in a program. Program prints a
specified 2-digit number on a 7seg display in multiplex mode.

Program: 7seg.&3M

&

Main

Loon

I3E

Ladon

DROCESSOR PloFad

#include "plefdd.inc”

_ CONFIG

org Ox00
goto Main

org Ox04d
goto ISE

Chlock Ox0c

_CP_OFF & WDT_OFF & _PWRTE ON& XT_0SC

Beginning of the program

;Beginning of the interrupt routine

Digl Wariahle for storing the hundredsz digit of number D
Digsz ;Wariahle for storing the tens digit of mamber D
Digs ;Wariable for storing the ones digit of mamber D
Digtenp

D ;I stores the number to be displayed

One rhudiliary wariahle for multiplex disp.

W_tenp shuxiliary wariahle

ctide

include "mikroeldd.inc™

banksel TRISA
movlw b'11111100°

mowvwf TEIGSA
clrf TRIZE
movlyw b'lo0o0olo00!

movwE COPTION _REG
banksel PORTA
movlw .96

movwE THRO
movlw b'l0looooo!
movwE INTCON
movlw .21

movwE D

clrf One

clrf PORTA

goto Loon

movwt T_temp
movlw .96

mowwf THMEO

bck INTCON,TOIF
bck PORTA, O
bct PORTA, 1
movE One, £
btfsc 5TATUS,Z
goto HMzdon

bct Dne, 0

wovlw kigh Bodto7seg:;Prior to jump to lookup table,

movwE PCLATH

;BAD and R4l are output pins used for
;multiplexing

;Port B is output

;Prescaler iz 32 meaning that THE 0 is
sincremented ewvery JZms

;Supposition that 4MH=z oscilator is used

rStarting wvalue of THERD
Jinterrupt 0OCCUES BVELRY

iz 96, thus
[255-97)%32us=5, 058ns=

;THMRO interrupt enabled

;Print decimal walue 21

;Turn off both displays at the start

Main loop

;Atore the contents of W register

rInitialize TMEO to hawe the next interrupt in
sapproximately Sms

;Clear flag owverflow THREO ta be able

;Lo react to the next interrupt

;Turn off both displays

sWhich display should be onz

$If MSD was prewiously on,

;0ne stores that L3D is on

PCLATH

;register should be initialized with the higher
rbyte of the address lookup (HIGH lookup) .,

7.9 LCD Display

More microcontroller devices are using
'smart LCD' displays to output visual
information. The following discussion
covers the connection of a Hitachi LCD
display to a PIC microcontroller. LCD
displays designed around Hitachi's LCD
HD44780 module, are inexpensive, easy
to use, and it is even possible to produce
a readout using the 8 x 80 pixels of the
display. Hitachi LCD displays have a
standard ASCII set of characters plus A 16x2 line Hitachi HD44780 display
Japanese, Greek and mathematical

symbols.

For a 8-bit data bus, the display requires a +5V supply plus 11 I/O lines. For a 4-bit
data bus it only requires the supply lines plus seven extra lines. When the LCD
display is not enabled, data lines are tri-state which means they are in a state of
high impendance (as though they are disconnected) and this means they do not
interfere with the operation of the microcontroller when the display is not being
addressed.

The LCD also requires 3 "control" lines from the microcontroller.

Enable (E) This line allows access to the display through R/W and RS lines. When this
line is low, the LCD is disabled and ignores signals from R/W and RS. When
(E) line is high, the LCD checks the state of the two control lines and
responds accordingly.

Read/Write This line determines the direction of data between the LCD and

(R/W) microcontroller. When it is low, data is written to the LCD. When it is high,
data is read from the LCD.

Register select With the help of this line, the LCD interprets the type of data on data lines.

(RS) When it is low, an instruction is being written to the LCD. When it is high, a
character is being written to the LCD.

Logic status on control lines:

E 0 Access to LCD disabled
1 Access to LCD enabled

R/W 0 Writing data to LCD
1 Reading data from LCD

RS 0 Instruction
1 Character

Writing data to the LCD is done in several steps:
Set R/W bit to low

Set RS bit to logic 0 or 1 (instruction or character)
Set data to data lines (if it is writing)

Set E line to high
Set E line to low
Read data from data lines (if it is reading)

Reading data from the LCD is done in the same way, but control line R/W has to be
high. When we send a high to the LCD, it will reset and wait for instructions. Typical
instructions sent to LCD display after a reset are: turning on a display, turning on a
cursor and writing characters from left to right. When the LCD is initialized, it is
ready to continue receiving data or instructions. If it receives a character, it will write
it on the display and move the cursor one space to the right. The Cursor marks the
next location where a character will be written. When we want to write a string of
characters, first we need to set up the starting address, and then send one character
at a time. Characters that can be shown on the display are stored in data display
(DD) RAM. The size of DDRAM is 80 bytes.

The LCD display also possesses 64 bytes
of Character-Generator (CG) RAM. This

memory is used for characters defined ggdiih: Bit map Data
by the user. Data in CG RAM is

represented as an 8-bit character bit- om0 ONMCOOEDO mo
map. Each character takes up 8 bytes of oo JOMO0O oood
CG RAM, so the total number of oo OMMEEC 1o
characters, which the user can define is 001 EMOO0Om 10001
eight. In order to read in the character 00 WO OQO0 o000
bit-map to the LCD display, we must 0101 EMOOOm 10001
first set the CG RAM address to starting 010 COJWMmmEC] 01110
point (usually 0), and then write data to 0111 OO0 00000

the display. The definition of a 'special’
character is given in the picture.

Before we access DD RAM after defining a special character, the program must set
the DD RAM address. Writing and reading data from any LCD memory is done from
the last address which was set up using set-address instruction. Once the address of
DD RAM is set, a new written character will be displayed at the appropriate place on
the screen. Until now we discussed the operation of writing and reading to an LCD as
if it were an ordinary memory. But this is not so. The LCD controller needs 40 to 120
microseconds (uS) for writing and reading. Other operations can take up to 5 mS.
During that time, the microcontroller can not access the LCD, so a program needs to
know when the LCD is busy. We can solve this in two ways.

Set DD RAM address
RS |RAN| DBE7|DBR | DBS|DB4A| DE3| D2 DB | DEO
1] 1] 1 AL A | A A A | A A

Set CG RAM address
RS | RAN| DBEY|DBG | DBS| DB | DE3| DB2(DE1| DED
1]] 1] 1 A Al A A A A

Write in data to RAM
Rs|RAw| DB7| DEG | DBs| DB4| DEA| DE2| DE1| DED
1|o|D|]D|[D|[D[D|[D|[D]|D

Read data from RAM
RS | RAN| DBE7| DB DBS|DB4A| DEA| DEZ(DB | DEO
1 1 D D D D D DD]

A=address D=data

One way is to check the BUSY bit found on data line D7. This is not the best method
because LCD's can get stuck, and program will then stay forever in a loop checking
the BUSY bit. The other way is to introduce a delay in the program. The delay has to
be long enough for the LCD to finish the operation in process. Instructions for writing
to and reading from an LCD memory are shown in the previous table.

At the beginning we mentioned that we needed 11 I/O lines to communicate with an
LCD. However, we can communicate with an LCD through a 4-bit data bus. Thus we
can reduce the total number of communication lines to seven. The wiring for
connection via a 4-bit data bus is shown in the diagram below. In this example we
use an LCD display with 2x16 characters, labeled LM16X212 by Japanese maker
SHARP. The message 'character' is written in the first row: and two special
characters '~' and '}' are displayed. In the second row we have produced the word
'mikroElektronika’.

3—.— = o W=
j_f]L %}1 \\\‘;\\\\\\\\\\\\\\\\\\\\ .

e N EHEEEEEEORI000 N

T ﬂ\ e 3 .
- g;;\g 7 Y

Connecting an LCD display to a microcontroller

File Icd.inc contains a group of macros for use when working with LCD displays.

Hacro: LCD.INC

=

;****t*#*******t*#*******t#********t#********t#********t##*******t##******

r

.
-

;WWﬁﬁtﬁﬁﬁﬁﬁﬁWﬁﬁt##ﬁﬁﬁﬁWﬁﬁﬁ#WﬁﬁﬁﬁﬁﬁﬁtﬁﬁﬁﬁﬁﬁWﬁﬁtﬁﬁﬁﬁﬁﬁWﬁﬁt##ﬁﬁﬁﬁﬁﬁﬁt#ﬁﬁﬁﬁﬁﬁﬁ

CONSTANT FUNCT3ETS = b'00110000' ; §-bit mode, 2 lines
CONSTANT FUNCTSET4 = b'00100000' ; 4-bit mode, 2 lines
CONSTANT DDZERO = b'l0000000" ; Write 0 to DDRAM
CONSTANT LCDZL = b'00lolooo!

CONSTANT LCDCONT = b'0O0001100°

CONSTANT LCDEH = b'0ololoco!

rCommandz for workinhg with

LCD display

CONSTANT LCDCLE = b'00000001' ;clear display, cursor home

CONSTANT LCDCH = h'00000010" :cursor home

CONSTANT LCDCL = b'00000100" ;mowve cursor to the left

CONSTANT LCDCR = b'00000110" ;wowve cursor to the right

CONSTANT LCDSL = b'00011000" rmowe the content of display
;to the left

CONSTANT LCD3E = b'00011100" ;wmove the content of display
;Lo the right

CONSTANT LCD L1 = b'10000000" ;select line 1

CONSTANT LCDLZ = b'l1l000000" ;select line 2

;****t*#*******t*#*******t#********t#********t#********t##*******t##******

: before accessing the LCD, macro lcdinit has to
H bhe initialized
;ww

ledinit macro

bankl
clrf LCDdsport ;LCDdsport where LCD iz an output
bankn
call Delayln=s ' ma pause
call Delaylns
call Delaylns
call Delayln=s
movrlw FONCTSETS ;Begin initialization in
call Sendil ;8-bit mode
call Delaylns ;2 IE pause
call Delaylns
movlw DD ZERD ;Write 0 to DDRAM
call Sendll
movlw FUNCT3ET4 sFrom this line, LCD works in 4-bit mode
call Sendwl
;Commands for initializing LCD
locdeomd LCDZL :lcd has 2 lines
ledemd LCDCONT ;
lecdemd LEDSH H
lcdemd LCDCLE ;Clear LCD
endn

;Wﬁﬁﬁtﬁﬁﬁﬁﬁﬁﬁﬁﬁt#ﬁﬁWﬁﬁﬁﬁﬁﬁ#ﬁﬁﬁﬁﬁﬁﬁﬁtﬁﬁﬁﬁﬁﬁﬁﬁﬁtﬁﬁﬁﬁﬁﬁﬁﬁﬁt#ﬁWﬁﬁﬁﬁﬁﬁt#ﬁﬁﬁﬁﬁﬁﬁ

; ledomd sends the command to LCD (see the table abowve)

3 lcdoclr has the same meanhing as lodcomd Ox01
;w***w#w*wwww**twwwwwww**twwwwwwww*wwwwwwwww*twwwwwwww*wwwwwwwww*twwwwww*w

ledomd macro LCDcommand rSend a command to led
o] vr LD e ominat:

Using the macro for LCD support

Icdinit Macro used to initialize port connected to LCD. LCD is configured to work in 4-bit
mode.

Example: lcdinit

lcdtext Icdtext prints the text of up to 16 characters, which is specified as a macro
parameter. First parameter selects the line in which to start printing. If select is
zero, text is printed from the current cursor position.

Example: lcdtext 1, "mikroelektronika"
Icdtext 1, "Temperaturel” ;Print the text starting from line 1, character 1
Icdtext 2, "temp=" ;Print the text starting from line 2, character 1
lcdtext 0, " C" ;Print C in the rest of the line 2

lcdecmd Sends command instructions

LCDCLR = ;Clear display, cursor home
b'00000001'

LCDCH = ;Cursor home
b'00000010'

LCDCL = ;Move the cursor to the left
b'00000100'

LCDCR = ;Move the cursor to the right
b'00000110'

LCDSL = ;Move the content of display to the left
b'00011000'

LCDSR = ;Move the content of display to the right
b'00011100'

LCDL1 = ;Select line 1
b'10000000'

LCDL2 = ;Select line 2
b'11000000'

Example: lcdcmd LCDCH

Ilcdbyte Prints one byte variable and omits leading zeros
Example: lcdbyte Temperature

When working with a microcontroller the numbers are presented in a binary form. As
such, they cannot be displayed on a display. That's why it is necessary to change the
numbers from a binary system into a decimal system so they can be easily
understood. For printing the variables Icdbyte and lcdword we have used the macros
digbyte and digword which convert the numbers from binary system into a decimal
system and print the result on LCD. Main program has the purpose of demonstrating
use of LCD display. At the start it's necessary to declare variables LCDbuf, LCDtemp,
Digtemp, Digl, Dig2, and Dig3 used by the macros for LCD support. It is also
necessary to state the port of microcontroller that LCD is connected to. Program
initializes the LCD and demonstrates printing text and 8-bit variable temp.

|I Program: LCD. 23M
O

JFa%%F Declaring and conficquring a microcontroller ##%®w

DROCESSOR 16£54
#include "plefsd.inc”

__CONFIG CP_OFF & _WDT OFF & _PWRTE_ON & _XT_03C
JFEFEF Declaring wvariableg *%+%%*

Chlock 0x0C (BAM starting addrezs

HIcnt ;Belongs to macro "pausemns’
Lidcnt

LooPcnt

LCDbuf Belongs to funkctions "LCDHMx™
LCDtenp

Digtenp ;Belongs to macro "digbyte™
Digl
Dig2
Dig3

TELp
endeo

ORG Ox00 ;Rezet wector
goto Main

ORG Qw04 rIntertupt wector
goto Main ;ho interrupt routine

include "nikroelfd.inc™
include "lod. ine”

LCDdsport egu PORTE :LCD is on port Bid data lines on FE4-EE7)

B3 equ 1 !R5 line BEL
El equ 2 ;BT line BEZ
EN equ 3 ;EN line BE3

Main
movlw . Z3
movwE tenp sPut any walue to wariahle temp

;for printing on LCD

ledinit ;Incitializing LCD

Loon
ledemd Ox0Ol ;Clear LCD
ledtext 1, "mikroelektronika™ ;Print text from line 1, char 1
ledtext 2,"Proba LCD™ ;Print text from line 2, char 1
pausens 2000 12 zec pause
ledemd 001 ;Clear LCD
ledtext 1, "Temperatura™ ;Print text from line 1, char 1
ledtext 2,7 Cemp="" ;Print text from line 2, char 1
ledbyte tenp ;Print decimal walue of wariahle
ledtext O,7"C" Print text from the current
pausens . 2000 JCUrsor position

goto Loop

7.10 Serial Communication

SCI is an abbreviation for Serial Communication Interface and, as a special
subsystem, it exists on most microcontrollers. When it is not available, as is the case
with PIC16F84, it can be created in software.

Free line Free line

data

As with hardware communication, we use standard NRZ (Non Return to Zero) format
also known as 8 (9)-N-1, or 8 or 9 data bits, without parity bit and with one stop bit.
Free line is defined as the status of logic one. Start of transmission - Start Bit,
has the status of logic zero. The data bits follow the start bit (the first bit is the low
significant bit), and after the bits we place the Stop Bit of logic one. The duration
of the stop bit 'T' depends on the transmission rate and is adjusted according to the
needs of the transmission. For the transmission speed of 9600 baud, T is 104 usS.

Pin designations on RS232 connector

P
1. CD (Carrier Detect) O

2. RXD (Receive Data)

3. TXD (Transmit Data) G- ‘;_,
4. DTR (Data terminal Ready) 7 5
5. GND (Ground) 8- _;
6. DSR (Data Set Ready) 8+ 5
7. RTS (Request To Send)

8. CTS (Clear To Send) ()

9. RI (Ring Indicator) —

In order to connect a microcontroller to a serial port on a PC computer, we need to
adjust the level of the signals so communicating can take place. The signal level on a
PC is -10V for logic zero, and +10V for logic one. Since the signal level on the
microcontroller is +5V for logic one, and 0V for logic zero, we need an intermediary
stage that will convert the levels. One chip specially designed for this task is
MAX232. This chip receives signals from -10 to +10V and converts them into 0 and
5V.

The circuit for this interface is shown in the diagram below:

SUB-D 9-pin
connector an
microcontroller

syster

f'ﬂ
L

]

]

]

Feset

Serial cable
(1on1)

Receives data [Hx)

Sends data (Tx)

SUB-D 9-pin connector on PC

l\.l'\l||Cl|-F- L RO | B Bl

Urs ™ pgal®
1 1
z 2 1 T
RA R.ﬂ.]
hE 1] o AhiHz
R AT K] a5 :1|5—_,_—|' |
HTLR =
052 []————
PIC v [e I_I |
s TeFB4 d
E RE 12
RECANT T
RE RE j"-
1 6,
RE FE 1
2 5 ha
RE FE 1
3 4

Connecting a microcontroller to a PC via a MAX232 line interface chip

File RS232.inc contains a group of macros used for serial communication.

|I Hacra: Rif:i INC |
[

JEEEFT Declaring constants TEEES

CONSTANT LF = .10 ;Line Feed
CONSTANT CE = .13 ;Carriage Eeturn
CONSTANT TAE = .9 ;Tabulator
COMNSTANT B = .8 ;Backspace

;*1‘**# Macros *&&*¥

r2232init macre

bsft STATUS, RPO shank 1

hct THtris TX pin is output

bct STATUS, REO shank 0O

hst THport ;Initial state on TK @ logical "1™
ertdn

;'.\".\'?u".\".\' Suhpr.:' grams TEEEY

Sendw ;eendw zends walue of W register
movwE TxD ;TX Data-register
hct THport ;etart bitc

call Eitdelay

local i=0

while i<A Jo. O timesz starting from L3E bit
btfsc TxD,1i
call SEND] ;If i bit erquals 1, call 3END]
btfs=z TxD,i
call SENDO ;If 1 bit equals 0, call 3ENDO
i=i+l

=rele g
hst THport 2top bhit
call Eitdelavy
call Eitdelay ;Re-3ynchronization
return

SEND1
hst THport ;3et line to 1
call Eitdelay ;Delay for duration of sending 1 bit
return

SENDO
bhct THport rSet line to O
call Eitdelavy ;Delay for duration of sending 1 bit
return

Eitdelay r104dus pause heceszzary for sending 1 bit
movlw 0Ox1E ;Total delay between 2 hits
movwE EsZ3zZtemp ;9600 baud ==> 104 us

Waitloop

decfsz RsZ3iltemp,f
goto Waitlaop
return

rsZ23Ztext macroe text ;This macro prints the text from the
rparameter, of up to lo characters

locagl Message
local 3tart
locael Exit
local i=0

goto Start
Poruka dt texXt

dt 0 ;0 marks the end of the text

Ftart

Using the macro for serial communication:

rs232init
Example:

Sendw
Example:

rs232text
Example:

rs232byte
Example:

Macro for initializing the pin for transmitting data (TX-pin).
RS232init

Sending ASCII value of data found in W register.
moviw 't'
call Sendw

Sending ASCII value of a specified text
rs232 "mikroelektronika"

Sending ASCII value of decimal digits of 8-bit variable
moviw .123

movwf TXdata

rs232byte TXdata ;Send '1', '2', '3'

When rs232.inc file is used, it is necessary to declare variables Rstemp and TXD at
the beginning of the main program.

Example:

As a demonstration of a serial communication, we have an example which sends text
and the content of variable cnt. Text is sent via macro rs232text, while variable cnt
is sent via macro rs232byte. This operation repeats itself after 500ms, with
incrementing cnt in the process. This example can be easily modified to have
button(s) for sending specified data.

