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Abstract 
This paper describes an implementation 
of an attentional system for a humanoid 
robot based completely on space variant 
vision (in particular log-polar). The aim 
is that of providing the robot with a 
suitable measure of position, speed and 
saliency of possibly interesting objects 
for saccading and tracking. The major 
advantage of log-polar based imaging is 
related to the reduced number of pixel 
while maintaining a large field of view. 
This arrangement is very well suited for 
motor control, where the high-resolution 
center (fovea) allows precise positioning 
and, at the same time, the coarse 
resolution periphery permits detection of 
potential targets. Algorithms for color 
processing, optic flow, and disparity 
computation were developed within this 
architecture. The attentional modules are 
intended as the first layer of a more 
complicated system, which shall include 
learning of object recognition, trajectory 
tracking, and naïve physics 
understanding during the natural 
interaction of the robot with the 
environment. 

Introduction 
Besides the studies on artificial neural 
networks, substantial effort is devoted 
worldwide to build physical models of 
parts of biological systems with the aim 
of suggesting new solutions to robotics 

but more importantly with the ultimate 
goal of gaining a better understanding of 
how the brain of living systems solves 
the same sort of problems. Examples of 
this approach could be found in [1-6]. 
Although the “robotic” models are thus 
far only crude approximations of real 
living organisms, the motivations of the 
approach are rooted in the belief that 
“constructing” a real system might 
reveal problems and subtleties that a 
mere analysis could not. 
Along this line of research we developed 
an attentional system for a humanoid 
robot. The peculiarity of this work is in 
the use of space variant vision. In 
particular we employed log-polar 
images, which, as described later on, 
model accurately how photoreceptors are 
distributed in our retinas. Although, on a 
first inspection, it might seem that space 
variance poses more challenges than 
traditional rectangular imaging, we will 
show that very simple strategies might 
be employed to adapt the algorithms to 
the log-polar geometry. On the other 
hand, we gain (from the space variant 
sampling) the possibility to maintain a 
large field of view and at the same time 
process a limited number of pixels. This 
is advantageous since allows the system 
to be simultaneously maximally 
responsive to new events and maximally 
precise in its movements (highest 
resolution in the image center). The 
robot exploits color, motion, and 
binocular cues to derive information 



about potentially interesting targets for 
pursuit and saccading. Other interesting 
aspects, borrowed from biology, concern 
the use of inertial information to 
stabilize the visual world in spite of the 
movement of the robot or external 
disturbances. 
The experimental setup is a seven 
degrees of freedom robot head, with 
human like performance in terms of 
speed and acceleration (see Figure 1). 
For the scope of this paper, the sensory 
system consists of a pair of cameras 
(standard CCD; sub-sampling to log-
polar is carried out in software), an 
inertial sensor (InterSense IS300) which 
measures the roll, pitch, and yaw angles, 
and high resolution motor encoders 
providing the position of each joint. 
Visual processing and control are carried 
out by a set of PCs connected through a 
fast network and running a real-time OS. 
Video signals are synchronized, split, 
and sent in parallel to many nodes for 
parallel processing. Nine Pentium class 
processors are employed in the present 
implementation. 
 

 
Figure 1 The robot setup “Lazlo”. The robot 
head mounts four cameras (only two used at 
the moment). It has vergence and three 
independent tilt joints, a pan a the level of the 
neck and a roll. One of the tilt and the roll 
movements are obtained by means of a 
differential joint. 

Log-polar vision 
Among the many possible space variant 
sub-sampling procedures the one we 
used is known as log-polar. The log-
polar mapping well resembles the 
distribution of the photoreceptors in the 
primates’ retina as well as the 
geometrical transform following the 
projection of these neurons into the 
primary visual cortex [7-10]. The initial 
analytical formulation based on studies 
on the primates’ visual pathways is due 
mainly to Schwartz [11]; his model can 
be roughly summarized as follows: 
• The distribution of the 

photoreceptors in the retina is not 
uniform. They lay more densely in 
the central region called fovea, while 
they are sparser in the periphery. 
Consequently, the resolution also 
decreases moving away from the 
fovea toward the periphery. It has a 
radial symmetry, which can be 
approximated by a polar distribution. 

• The projection of the photoreceptors 
array into the primary visual cortex 
can be well described by a log-polar 
distribution mapped onto an almost 
rectangular surface (the cortex). 

From the mathematical point of view, 
the log-polar mapping can be expressed 
as a transformation between a polar 
plane (ρ,θ) (retinal plane) and a 
Cartesian plane (ξ,η) (cortical plane), as 
follows: 
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where ρ0 is the radius of the innermost 
circle, 1/q is the minimum angular 
resolution of the log-polar layout, and 
(ρ,θ) are the polar coordinates. kξ is a 
linear scaling parameter: this has been 
added to the original formulation in 
order to fit the mapping into a fixed size 
squared image (which is determined by 



the frame grabber characteristics). (ρ,θ) 
are related to the conventional Cartesian 
reference system by: 
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A pictorial example is shown in Figure 
2, where the leftmost panel (a) shows a 
Cartesian or retinal image (before sub-
sampling) and the corresponding log-
polar (or cortical) image on the right (b). 
 

 
(a) 
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Figure 2 An example of log-polar mapping, 
note as radial structures in the flower (petals) 
map to horizontal structures in the log-polar 
image. Circles, on the other hand, map to 
vertical patterns. 

Optic flow 
Optic flow as described by Horn is “the 
apparent motion of pixels in the image 
plane” [12]. Horn proposed also a 
continuity constraint for the optic flow 
involving the spatio-temporal derivatives 
of the image intensity: 
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where I is the image intensity and u,v the 
flow components. The two components 
cannot be recovered from equation (0.3) 
alone. If we assume that the flow is well 
represented by an affine model such as: 
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then a combination of equation (0.3) and 
(0.4) allows computing the parameters of 
the affine model provided we estimated 
it in at least six points – usually a least 
square approach is taken and more 
points are used. The parameters have the 
meaning of translation, divergence, curl, 
and shear. The approach is similar to that 
proposed by [13]. To take into account 
the log-polar geometry we have to 
transform further equation (0.3) into: 
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where the constants γ and g represent 
the matrix product of the image 
derivative with the log-polar Jacobian; 
for a complete derivation see [6]. 
Further, by processing the optic flow we 
can determine which parts of the image 
are moving, and consequently segment 
the target from the background (in those 
cases when they are moving differently). 
Roughly speaking, this is accomplished 
by computing the expected optic flow 
due to the movement of the camera and 
subtracting it from the actual optic flow. 
Where the two differ enough (by a 
suitable measure) the pixels could be 
identified and labeled as an independent 
moving object. 
The expected flow is determined by 
using a constant approximation of the 
image Jacobian: 
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The matrix J is estimated by incremental 
least squares and by collecting example 
pairs of the joint speed q�  versus the 
measured optic flow. An appropriate 
delay line takes care of synchronizing 
the two signals. 
The actual segmentation algorithm in 
this case develops on the Horn equation. 
It suffices to note that equation (0.3) is 
satisfied when the flow vector are in 



“agreement” with the spatio-temporal 
gradient of I. On the other hand, where 
the equation is not satisfied it means that 
the expected flow is not correct for that 
pixel. Consequently, by identifying the 
regions where the expected flow causes: 
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we can segment the ego-motion 
component from the moving object(s) 
itself/themselves. ε  in equation (0.7) is 
a suitable threshold. 
It is fair to say that various reasons not 
necessarily related to the presence of an 
object might cause the flow not to 
respect the Horn constraint. These 
include the presence of strong edges 
(where the spatial gradient is high) or 
fast movements of the head, for which 
the linear prediction model is prone to 
failure. 

Color processing 
Color processing comes in many flavors 
within our attentional system: i) a 
general-purpose color segmentation 
algorithm, ii) a color “blob” detector, 
and iii) a skin tone detector. 
The general-purpose segmentation is 
based on histograms. It is started by a 
motion sensitive cueing procedure. It 
subsequently builds a pair of histograms: 
one to represent the target (the moving 
object), and a second that contains the 
information about the background. The 
latter in continuously adapted and thus 
provides a sort of habituation to the 
color of the background. Histograms are 
constructed in the HSV color space; they 
have the form: 
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i.e. they are independent of the image 
intensity (V) and normalized to one. A 
pixel is assumed to belong to the object 

if its probability (an estimate of) 
computed as: 
 ( | , ) ( , )p object h s histo h s=  (0.9) 
is greater than a threshold and its 
histogram does not overlap with that of 
the background. 
The blob detector is based on a very 
standard region growing procedure. 
Areas of uniform color, as measured by 
taking into account hue and saturation 
only, are labeled. A further grouping and 
coherency test of the resulting regions is 
performed to eliminate spurious results 
(very likely due to noise). In spite of its 
simplicity the algorithm provide a very 
stable behavior. 
Finally a skin tone detector has been 
implemented. It is based on the 
algorithm developed in [14]. It has been 
found to improve the robot’s ability to 
interact with humans, although it is not 
sufficient, for example, to 
unambiguously detect faces. 

Disparity computation 
Binocular disparity is the strongest cue 
related to depth. In the context of 
sensori-motor coordination it can be 
used to control vergence. A suitable 
procedure to estimate the disparity of a 
target (or of a particular region of the 
image) is that of using cross-correlation 
(or another suitable distance measure) to 
find the difference in position between 
the left and right image of that particular 
region (representative of the target). 
This procedure could be implemented by 
an exhaustive search. In formula: 

( ) ( )( )arg max , , ,est U L R
d
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where the function f is the pixel 
similarity measure, U the support of f, 
and IL, IR the left and right image 
respectively. 
While this is fine in Cartesian 
coordinates, it needs to be modified in 



the log-polar domain in order to take 
into account how pixels shift under a 
Cartesian translation d. 

 ( ) ( )( ), ,L R dI I lpξ η ξ η=  (0.11) 

It is easy to verify that the 
transformation lpd itself does not depend 
on the actual images and thus can be 
computed beforehand [15]. 
In our case we chose the normalized 
cross-correlation as f in equation (0.10). 
As a consequence of the log-polar 
mapping an explicit segmentation is not 
necessary and in fact U was chosen to be 
the whole image. Disparity would be 
that of the target as long as it remains 
close to the foveae (since most of the 

pixels would belong to the target), 
otherwise the value of disparity would 
switch to that of the background. 
It is worth mentioning that the current 
implementation assumes that the 
transform from the left to the right image 
is a pure translation along the horizontal 
direction. This in reality is unlikely to be 
the case. Disparity in fact is strictly 
horizontal only when the optical axes are 
parallel (and vertically aligned). A 
further limitation might arise because of 
the distortion of the lenses. In this case 
too the “pure translation” assumption 
would fail. This was not the case in our 
configuration though. 
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Figure 3 An example of visual processing and saliency map. Basic processing modules are combined 
to produce the retinal error and the disparity signals. Each separate processing module provides a 
list of probable targets and relative bounding boxes. A voting mechanism is used to build the saliency 
map. The position of the maximum of the saliency map is the retinal error. 

 

Integration 
In order to provide the controller with a 
reasonable reference value the results 
provided by the various algorithms have 
to be integrated in a single percept. 

The two quantities relevant to the control 
of gaze direction are the position of the 
target in the left-right, up-down 
directions and the depth with respect to 
the fixation point. These two quantities 
are related to two different control 
modes: version (same control values to 



both eyes) and vergence (opposite 
commands to the eyes). The first 
quantity, apt to control version, is 
estimated by a voting mechanism. Each 
algorithm provides a list of potential 
targets and their bounding boxes in 
retinal coordinates, and consequently 
increases the saliency of the regions 
identified by the bounding boxes. The 
increment of saliency might be weighed 
to give more importance to particular 
aspects of the targets (e.g. skin tone 
versus motion). The position of the 
maximum of the saliency function 
determines what is tracked. 
Although it is not a concern here, it is 
worth noting that the weights and shape 
of the attentional regions can be 
modified on-the-fly to give more or less 
importance to different aspects of the 
observed scene, and this can be carried 
out in relation to the task or internal 
status of the robot [16]. 

Control 
Control is mostly constructed around the 
two quantities described in the previous 
section. The controller can be further 
divided into two sub-modules dealing 
respectively with gaze stabilization and 
saccadic behaviors (gaze shifting). This 
roughly reflects two distinct functional 
modes of the controller itself. Gaze 
stabilization is obtained by means of 
closed loop controllers (i.e. PID), while 
saccades are open loop. 

The control of the eyes 
For what concerns the stabilization of 
gaze, the eyes are essentially controlled 
in order to zero the retinal error: 
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where 1q� , 2q� , 3q�  are the speed of the 

joints (eye pan and common tilt), ex, ey 
the retinal error. This particular module 
does not change the vergence angle 
(which is adjusted by another control 
loop instead) and consequently 2 3q q=� � . 

A word of caution is necessary: the 
controller assumes the dynamics of the 
system is negligible. This is only 
approximately true. While stability is not 
compromised (the control loop can be 
shown to be stable by applying for 
example the visual servoing theory [17]), 
the performances could be nevertheless 
affected [18]. In our case though, the 
inertias involved are very small 
compared to the low-level PID gain and 
thus the system’s dynamics is truly 
negligible. 

Inertial stabilization 
Yet gaze stabilization can be obtained 
through other means. The general idea, 
borrowed from the biological vestibular 
stabilization mechanisms (the vestibulo-
ocular reflex see for example [19]), is 
that of using inertial sensing. In our case, 
three gyroscopes are employed arranged 
along three orthogonal directions. A 
simple controller can be formulated as 
follows: 
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with k1 and k2 two suitable gains, and 

yawω , pitchω  the angular velocity 

measured by the gyros along the yaw 
and pitch direction. The intuitive 
description of the controller is that of 
counter rotating the eyes in order to 
compensate for the movement of the 
head or body of the robot. A further loop 
exploits the roll degree of freedom to 



maintain the eyes approximately aligned 
with respect to gravity. 
A more sophisticated control schema 
(optimal in the sense of image 
stabilization) has been investigated in 
[20] together with an on-line learning 
strategy. 

Head control 
The goal of the head movements is 
simply that of repositioning the head 
after the eyes have lost their “central” 
position (symmetric vergence). 
Essentially, the controller drives the 
head joints in order to zero the deviation 
from the symmetric configuration, or, in 
the case of the tilt, from a resting 
configuration with the joints aligned. For 
example, for the pan at the level of the 
neck the controller is: 
 ( )6 2 3q PID q q= −�  (0.14) 

This strategy alone would very likely 
oscillate (or otherwise the movements 
must be kept very slow) because the 
head movements would disturb the 
movement of the eyes. A possible 
solution is that of compensating the 
movement of the head by a counter 
rotation of the eyes. This is exactly the 
inertial stabilization mechanism already 
described. There is evidence that a 
similar mechanism is employed by 
humans to coordinate the head and eyes 
[19]. This strategy is also efficient in the 
sense that it maximizes the range of 
movement of the eyes by maintaining 
them most of the time far from limit 
configurations. 

The control of vergence 
Vergence control is provided by a 
completely separated loop. Note also 
that the disparity measurement process is 
separated; this reduces the chances of a 
conflict between the pursuit and the 

“verge” behavior. The controller in this 
case tries to keep the disparity d close to 
zero. Vergence, together with the control 
of tracking, assures that the object of 
interest is kept almost in the foveae (left 
and right eyes). 

Saccades 
Saccades neatly complement the pursuit 
controllers and gaze stabilization when 
the object moves too fast to be 
appropriately followed, or, on the other 
hand when a rapid shift of attention is 
required (because a new more salient 
target appeared). When performing a 
saccade, the gaze stabilization behaviors 
get temporarily inhibited. The precise 
computation of saccades would require 
the knowledge of the mapping between 
the retinal error and the appropriate 
motor command (a learning strategy has 
been investigated in [21]). 
In our case we resorted to a simpler 
implementation by using a linear map, 
which has been tuned by hand (it is 
substantially only a gain matrix). A final 
note concerns the actual activation of 
saccades: the logic behind their 
generation simply checks whether the 
target is outside the fovea (defined by a 
threshold) but also if a refractory period 
has elapsed. The latter is required to 
stabilize the system. In fact, saccades, 
acting as a very high-gain controller, 
might lead to unstable behaviors. 
Figure 4 below is intended to give the 
general flavor of how the different 
control loops are combined and 
organized (see caption for details). 
Figure 5 shows an example trajectory: it 
is possible to note the activation of the 
two control modes (open- and closed-
loop). 
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Figure 4 A schematic of the head controller. Different signals (top) are used to build different 
independent control loop. Each module generates a velocity command. For what concerns gaze 
stabilization, the velocity commands are combined eventually by summating them. Saccades are 
independently calculated and activated only when needed by the saccade control logic. Finally 
velocity commands are sent to a low-level PID controller, which generates the appropriate signals to 
drive the motors. 
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Figure 5 Robot behavior. The plot on the left shows the horizontal component of the eye movement 
command. Note the two peaks due to the generation of two saccades. The plot on the right shows 
instead the position of the fixation point in 2D (the height is not shown) corresponding to the same 
movement on the left. 

 



Conclusions 
This paper addressed the problem of 
designing and realizing a biologically 
inspired attentional system for a 
humanoid robot. We showed through the 
use of space variant vision that it is 
possible to maximally exploit the 
available computational power without 
compromising the ability to perform 
accurate movements. The benefits are 
still moderate at the present resolution; 
64x32 pixels log-polar images were 
employed. The ratio between the log-
polar and the corresponding Cartesian 
would grow even further with the 
increase of the resolution. For instance a 
33000 pixel log-polar image would 
correspond (under certain hypothesis) to 
a million-pixel rectangular image 
(assuming that the foveal resolution is 
the same). 
We showed also how optic flow, color 
and depth cues could be estimated from 
log-polar images. Not less important, we 
showed how a simplified coordination 
schema of head and eye movements 
could be devised under the hypothesis 
that compensatory eye movement can be 
generated. 
It is important to note that the 
architecture is completely bottom-up. 
We are aware that this is a biologically 
implausible simplification; in our view 
this has to be considered only a very first 
visuo-motor coordination layer. 
Furthermore, the integration mechanism 
is not tuned on the basis of the current 
state of the robot or the task at hand. 
However, this has been already 
investigated in other contexts, by for 
example [22], and it is likely to be 
inserted in this model as investigation 
proceeds. 
Future work will include object 
recognition abilities. In this context, the 

multi-cue approach is extremely 
effective in driving the exploration of the 
environment, and thus in facilitating the 
acquisition of training samples for 
autonomous learning. 
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