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This paper presents a perceptual system that exploits human caregivers as catalysts
for the humanoid robot Cog to perceive and learn about objects, scenes, people, and the
robot itself. A broad spectrum of machine learning problems are addressed for object
recognition across several categorization levels. The paper introduces a new complex
approach to object recognition based on the integration of multiple percepts. Training
data for all learning mechanisms is automatically generated from actions by an embodied
agent, so that the robot develops categorization autonomously.

Cognitive capabilities of the humanoid robot are developmentally created, starting
from infant-like abilities for detecting, segmenting, and recognizing percepts over multiple
sensing modalities. Human caregivers provide a helping hand for communicating such
information to the robot, by acting on the objects, inducing their compliant perception
from these human-robot interactions.
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1. Introduction

This paper introduces a new complex approach to object recognition for the hu-
manoid robot Cog. Objects may have different meanings in different contexts - a
rod is labelled as a pendulum if oscillating with a fixed end-point. From a visual
image, a large piece of fabric on the floor is most often a tapestry, while it is most
likely a bed sheet if it is found on a bed. But if a person is able to feel the fabric’s
material or texture, or the sound that it makes (or not) when grasped with other
materials, then he might determine easily the fabric’s true function. Object recog-
nition draws on many sensory modalities and object’s behavior, which inspired this
paper’s approach. Hence, an object will be recognized based on:

• local features such as its color
• the sound it produces or often associated to it
• being estimated (or not) as a face or the robot own body
• cross-modal features (using visual/sound patterns)
• contextual features, used to identify the identity, location, size, angle and

depth most probable for an object or person given the image of a scene
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• typical scene in which they occur

This paper exploits the fact that several recognition problems in different fields
are closely tied. For instance, a common definition of the computer vision problem
of object recognition1 is:
Definition We are given a database of object models and a view of the real world.
For each object in the model database, the object recognition and localization problem
consists in answering the following two questions:

. Is the object present in the observed scene?

. If present, what are the 3D pose parameters (translation and rotation pa-
rameters) with respect to the sensor coordinate system?

If possible, the system should learn unknown objects from the observed data.

This definition relies on a very strong assumption: Objects are recognized by
their appearance solely. This paper advocates a more general approach. All of the
following are sometimes true:

. Objects are recognized by their appearance - color, luminance, shape, texture

. Objects have other physical features, such as mass, of a dynamic nature

. The dynamic behavior of an object varies depending on its actuation

. Temporal information of the object motion structure – the kinematics – is
necessary for identifying functional constraints2

. Objects are situated in the world, which may change an object’s meaning
depending on context

. Objects have an underlying hierarchic tree structure - which contains in-
formation concerning objects that are reducible to other objects, i.e., that
originated by assembling several objects

. There is a set of actions that can be exerted on an object, and another set
of actions that an object can be used for (e.g., a nail can be hammered,
while a hammer is used for hammering). Therefore, a set of affordances3

also intrinsically define (albeit not uniquely) an object.

1.1. Complex Integration of Cognitive Functions

Solutions to tackle all the previous issues led to the development of a complex
cognitive system for the humanoid robot Cog4, as shown in Figure 1, to acquire
categorical information about actions, scenes, objects, people and the robot itself.
This paper concentrates on a specific key portion of such framework – object recog-
nition – which is of paramount importance for the overall system performance.
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Fig. 1. Four main modules for Cog’s cognitive system. It includes learning about objects from
human demonstration. This is followed by object recognition that updates knowledge concerning
an object. The robot then executes tasks according to its embedded knowledge of the object, to
extract percepts per si. This paper concentrates on key issues for object recognition, presenting
the modules enclosed by the large squares.

2. Object Detection/Recognition

Object Segmentation: A vast set of human-robot interactive techniques 5 were
developed to introduce the humanoid robot Cog knowledge concerning the visual
appearance of objects from human (or the robot itself) actions. Percepts segmented
as object templates from the robot’s surrounding world are then converted into an
useful format through a template matching based object recognition scheme, which
enables the robot to recognize object templates under different perspective views.

2.1. Template Matching – Color Histograms

The object recognition algorithm needs to cluster object templates by classes ac-
cording to their identity. Such task was implemented through color histograms –
objects are classified based on the relative distribution of their color pixels. Since
object’s masks are available, external global features do not affect recognition, and
hence color histograms are appropriate. A multi-target tracking algorithm4 keeps
track of object locations as the visual percepts change due to movement of the
robot’s active head. Ideally, a human actor should expose the robot to several views
of the object being tracked (if the object appearance is view-dependent), in order
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Table 1. (left) Recognition errors. It is shown the number of matches evaluated from a total of
11 scenes (objects are segmented and recognized more than once per scene). Incorrect matches
occurred due to color similarity among big/small sofas or between different objects. Missed matches
result from drastic variations in light sources (right) sofa is segmented and recognized.

to link them to the same object.
Recognition works as follows. Quantization of each of the three color chan-

nels originates 83 groups Gi of similar colors. The number of image pixels nGi

indexed to a group is stored as a percentage of the total number of pixels. The
first 20 color histograms of an object category are saved into memory and updated
thereafter. New object templates are classified according to their similarity with
other object templates previously recognized for all object categories, by comput-
ing p =

∑83

i=1 minimum
(
nGi , nG′i

)
. If p < 0.7 for all of the 20 histograms in an

object category, then the object does not belong to that category. If this happens
for all categories, then it is a new object. If p ≥ 0.7, then a match occurs, and the
object is assigned to the category with maximum p.

Whenever an object is recognized into a given category, the average color his-
togram which originated a better match is updated. Given an average histogram
which is the result of averaging m color histograms, the updating consists of com-
puting the weighted average between this histogram (weight m) and the new color
histograms (unit weight). This has the advantage that color histograms evolve as
more samples are obtained to represent different views of an object.

Experimental Results: Table 1 presents quantitative performance statistics for
this algorithm (it was also applied for assisting the construction of 3D maps of
scenes6). It shows the system running on the humanoid robot Cog, while recognizing
previously learned objects. Incorrect matches occurred due to color similarity among
different objects (such as a big and a small sofa). Errors arising from labelling an
object in the database as a new object are chiefly due to drastic variations in light
sources. Qualitative results from an on-line experiment of several minutes for object
segmentation, tracking and recognition of new objects on the humanoid robot are
shown in Figures 2 and 3.
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Fig. 2. Sequence from an on-line tracking and recognition experiment of several minutes on the
humanoid robot Cog. (1) The robot is tracking a toy car (top row), and new template instances
of it are being inserted into a database. A random set of templates from this database is shown
on the bottom row. (2) A new object (a toy train) is presented. It was never seen before, so it
is not recognized and a new category is created for it. (3) The toy train is tracked. (4) A new,
unknown object presented, for which a new category is created on the object recognition database.
(5) Templates from the new object are stored.
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Fig. 3. Sequence from an on-line experiment of several minutes on the humanoid robot Cog. (1)
The robot detects and segments a new object – a sofa; (2) New object is correctly assigned to a
new category; (3) Object, not being tracked, is recognized from previous templates (as shown by
the two sofa templates mapped to it); (4-5-6) Same sequence for a smaller sofa.

Out of around 100 samples from on-line experiments, recognition accuracy av-
erage was of 95%. The recognition accuracy depends however on the object be-
ing recognized. For instance, several experiments shown the algorithm not capable
to differentiate among different people’s faces, although it differentiated correctly
between faces and other objects. This demonstrates the need for an independent
algorithm for face recognition, which is described hereafter.

3. Face Detection/Recognition

Humans are especially good for recognizing faces, being such skill rather robust,
considering the large variability of face features due to viewing conditions, poses,
emotional expressions, and visual distractions such as haircut variability or glasses,
among others. Faces play a major social role to convey identity and emotion, and
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Fig. 4. Approach for segmenting and recognizing faces and objects. Training data for object/face
recognition is extracted by keeping objects and others faces in memory for a while, generating
this way a collection of training samples consisting of multiple segmentations of objects and faces.
(left) on-line experiment on Cog (right) schematic organization. 1) Object segmentation 2) Face
detection and segmentation 3) Multiple object tracking 4) Object Recognition 5) Face Recognition.

also to extract information concerning others intentions and living habits.
The problem of face identification is organized as shown in Figure 4, which also

shows the similar organization used to recognize objects. Training data is automat-
ically generated by detecting and tracking multiple faces and objects over time4.
Batches of faces from one person (or batches of object’s templates) are then inserted
into the database. If more than 60% of this batch matches an individual (or object,
respectively), it is recognized as such. Otherwise, a new entry is created on the
database which corresponds to a new person (or a new object), and the learning
algorithm is updated. Indeed, people often have available a few seconds of visual
information concerning the visual appearance of other people before having to take
a recognition decision, which is the motivation behind this approach.

Face Detection: Faces in cluttered scenes are located by a computationally ef-
ficient algorithm (developed by Paul Viola’s group at MIT), which is applied to
each video frame (acquired by a foveal camera). If a face is detected, the algorithm
estimates a window containing that face, as shown in Figure 4.

3.1. Face Recognition – Eigenfaces

Appearance-based approaches project face images into a linear subspace of reduced
dimensions7. In order to efficiently describe a collection of face images, this sub-
space is determined using Principal Component Analysis (PCA) on a set of train-
ing images. The corresponding eigenvectors are denominated eigenfaces7, because
they are face-like in appearance (see Figure 5). Eigenfeatures, such as eigeneyes
or eigenmouth for the detection of facial features8, is an alternative variant for
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Fig. 5. a) Face image samples are shown for each of three people out of a database of six; b)
Average face image for three people on the database, together with three eigenfaces for each one;
c) Confusion table with face recognition results.

the eigenfaces method. In feature-based approaches, geometric face features, such
as eyebrow’s thickness or invariant moments, are extracted to represent a face9.
However, feature extraction poses serious problems for such techniques9.

Let the training set of M face images from a person n be {φ1, φ2, . . . φM} (see
Figure 5). The average face image of this set is defined by ψ = 1/M

∑M
i=1 φi. The

covariance matrix for the set of training faces is thus given by (1):

Cφn =
1
M

M∑

i=1

ΓiΓT
i = AAT (1)

being Γn = φn − ψ the difference of each image from the mean, and A =
[Γ1, Γ2, . . . , ΓM ]. Cropped faces are first re-scaled to 128 × 128 images (size S =
1282). Determining the eigenvectors and eigenvalues of the S2 size covariance ma-
trix C is untractable. However, C rank does not exceed M − 1. For M < S2 there
are only M − 1 eigenvectors associated to non-zero eigenvalues, rather than S2. Let
vi be the eigenvectors of the M ×M matrix AT A. The eigenfaces µi are given by:

µi =
M∑

k=1

vikΓk, i = 1, . . . , M (2)

The number of basis functions is further reduced from M to M’ by selecting
only the most meaningful M ′ eigenvectors (with largest associated eigenvalues) and
ignoring all the others. Classification of a face image φ consists of projecting it
into eigenface components, by correlating the eigenvectors with it, for obtaining the
coefficients wi = µi(φ − ψ), i = 1, . . . , M ′ of this projection. The weights wi form
a vector Ω = {w1, w2, . . . , wM ′}. A face is then classified by selecting the minimum
L2 distance to each object’s coefficients in the database εφ =‖ Ω − Ωk ‖ where
Ωk describes the kth face class in the database. If εφ is below a threshold, then it
corresponds to a new face.
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Experimental Results: The training data set contains a lot of variation (see
Figure fig-eigenfaces for a few demonstrative samples). Validation data corresponds
to a random 20% of all the data. The confusion Table in Figure 5 presents results for
recognizing three different people, being the average recognition accuracy of 88.9%.

4. Scene Recognition

Given the image of an object, its meaning is often a function of the surrounding
context. Context cues are useful to remove such ambiguity. Ideally, contextual fea-
tures should incorporate the functional constraints faced by people, objects or even
scenes (eg. people cannot fly and offices have doors). Hence, functionality plays a
more important role than more ambiguous and variable features (such as color,
which selection might depend on human preferences). As such, texture properties
seem appropriate as contextual features. Although environmental textures are also
often human-dependent, global features such as door placement, desks and shelves
location, wall division or furniture geometry usually follow a predetermined pat-
tern which presents low variability. Therefore, in order to incorporate such global
constraints, features will be averaged to a low resolution spatial configuration.

Wavelets10 were selected as contextual features. Processing is applied iteratively
through the low frequency branch of the transform over T = 5 scales, while higher
frequencies along the vertical, horizontal and diagonal orientations are stored (due
to signal polarity, this corresponds to a compact representation of six orientations
in three images). The input is thus represented by v(x, y) = v(~p) = {vk(x, y), k =
1, . . . , N}, with N=3T=15. Each wavelet component at the ith level has dimensions
256/2i × 256/2i, and is down-sampled to a 8× 8 image:

v̄(x, y) =
∑

i,j

v(i, j)h(i− x, j − y) (3)

where h(x,y) is a Gaussian window. Thus, v̄(x, y) has dimension 960. Similarly
to other approaches11, the dimensionality problem is reduced to become tractable
by applying Principal Component Analysis (PCA). The image features v̄(~p) are
decomposed into the basis functions given by the PCA, encoding the main spectral
characteristics of a scene with a coarse description of its spatial structure:

v(~p) =
D∑

i=1

ciϕ
i
k(~p) , ci =

∑

~p,k

vk(~p)ϕi
k(~p) (4)

where the functions ϕi
k(~p) are the eigenfunctions of the covariance operator given

by vk(~p). These functions incorporate both spatial and spectral information. The
decomposition coefficients are obtained by projecting the image features vk(~p) into
the principal components ci, used hereafter as input context features.
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Lets now split image measurements ~vIO into two sets vIO = (vI , vO) =

(vB~p,ε
, vB̄~p,ε

), where B̄ is the complementary of B. If it is assumed that in the pres-
ence of an object, intrinsic object features (~vI ∈ B) and context features (~vO ∈ B̄)
are independent, then P (~vIO|~x, on) = p(~vI |~x, on)p(~vO|~x, on). These two conditional
PDFs obtained refer to different sets of features11:

Local information – p(~vI |~x, on) Corresponds to the object/face recognition
schemes based on local features described in Sections 2 and 3. Assumes
p(on| ~vIO) ' p(on|~vI), so that relevant features are inside the neighborhood
B – local features which belong to the object and not to the background.

Contextual information – p(~vO|~x, on) Represents the object conditional PDF
given a set of contextual features, which provides priors on the object pres-
ence, location, depth, size and orientation. Assumes p(on| ~vIO) ' p(on|~vO)

Neglecting ~vI , the vector ~c = ~vIO = {ci, i = 1, . . . , D} denotes the resulting
D-dimensional input vector, with D = Em, 2 ≤ D ≤ Tho, where m denotes a
class, Tho an upper threshold and Em denotes the number of eigenvalues within
5% of the maximum eigenvalue. These features can be viewed as a scene’s holistic12

representation since all the regions of the image contribute to all the coefficients,
as objects are not encoded individually. The effect of neglecting ~vI is reduced by
mapping the foveal camera (which grabs data for the object recognition scheme
based on local features) into the image from the peripheral view camera, where the
weight of the local features ~vI is strongly attenuated. The vector ~p is thus given in
wide field of view retinal coordinates.

A collection of images is automatically annotated by the robot6 and used as
training data. Mixture models are applied to find interesting places to put a bounded
number of local kernels that can model large neighborhoods. In D-dimensions a mix-
ture model is denoted by density factorization over multivariate Gaussians (spherical
Gaussians were selected for faster processing times), for each object class n:

p(~c|on) =
∑M

m=1 bmp(~c|on, gm) , p(~c|on, gm) = G(~c, ~µm,n, Cm,n) = e−1/2(~c−~µm)C−1
m (~c−~µm)

(2π)D/2|Cm|1/2

where |.|1/2 is the square root of the determinant, gm refers to the mth Gaussian
with mean ~µm and covariance matrix Cm, M is the number of Gaussian clusters, and
bm = p(gm) are the weights of the local models. The estimation of the parameters
will follow the EM algorithm13:

E-step for k-iteration From the observed data ~c, this step computes the a-
posteriori probabilities ek

m,n(l) of the clusters:

ek
m,n(l) = p(cm,n|~c) =

bk
m,nG(~c, ~µk

m,n, Ck
m,n)

∑M
m=1 bk

m,nG(~c, ~µk
m,n, Ck

m,n)
(5)
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Fig. 6. Test images (wide field of view) organized with respect to p(on|~c). Top row: on = scene1,
p(scene1|~c) > 0.5; Bottom row: on = scene2, p(scene2|~c) > 0.5. Scene descriptions shown in the
right column are built on-line, automatically6.

M-step for k-iteration : cluster parameters are estimated according to the max-
imization of the join likelihood of the L training data samples:

bk+1
m,n = 1/L

L∑

l=1

ek
m,n(l) (6)

µk+1
m,n =< ~c >m=

∑L
l=1 ek

m,n(l)~cl∑L
l=1 ek

m,n(l)
(7)

Ck+1
m,n =

∑L
l=1 ek

m,n(l)(~cl − ~µk+1
m,n)(~cl − ~µk+1

m,n)T

∑L
l=1 ek

m,n(l)
(8)

All vectors are column vectors and <>m in (7) represents the weighted aver-
age with respect to the posterior probabilities of cluster m. The EM algorithm
converges as soon as the cost gradient is small enough or a maximum num-
ber of iterations is reached. The probability density function (PDF) for an ob-
ject n is then given by Bayes’ rule p(on|~c) = p(~c|on)p(on)/p(~c), where p(~c) =
p(~c|on)p(on) + p(~c|¬on)p(¬on). The same method applies for the out-of-class PDF
p(~c|¬on) which represent the statistical feature distribution for the input data in
which on is not present.

Finally, it is necessary to select the number M of gaussian clusters. This num-
ber can be selected as the one that maximizes the join likelihood of the data. An
agglomerative clustering approach based on the Rissanen Minimum Description
Length (MDL) order identification criterion14 was implemented to automatically
estimate M . Figure 6 shows results for classifying two different scenes. Each time
a human presents a scene object to the robot, both foveal and wide field of view
images are saved and automatically annotated to the corresponding scene6.

Contextual cues are not only useful for scene or object classification, but also
for the selection of an object’s attentional focus, scale or orientation in an image.
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5. Object/People Recognition from Contextual Features

Objects in the world are situated, in the sense that they usually appear in specific
places. Children are pretty good at learning the relative probability distribution of
objects in a scene – for instance, books are often found on top of shelves. The scene
context puts a very important constraint on the type of places in which a certain
object might be found.

The same way we wish to be able to determine relations among objects (e.g.,
chairs are most probable in front of desks), it is also extremely useful to extract
relations among people as well as in between people and objects. For instance, people
usually sit on desks, and therefore might be expected to appear on places on top of
chairs or in front of tables, as well as in walking places such as corridors, but not
in a ceiling! From a humanoid point of view, contextual selection of the attentional
focus is very important both to constrain the search space for identifying or locating
objects (optimizes computational resources) and also to determine common places
on a scene to drop or store objects such as tools or toys.

A model for the contextual control of the attentional focus (location and orien-
tation), scale selection and depth inference is hereafter presented which, contrary to
other approaches11, does not neglect dependency among the input state dimensions.
The output space is defined by the 6-dimensional vector ~x = (~p, d, ~s, φ), where ~p

is a 2-dimensional position vector, d is the object’s depth6, ~s = (w, h) is a vector
containing the principal components of the ellipse that models the 2D size retinal
size of the object, and φ is the orientation of such ellipse. Given the context ~c, one
needs to evaluate the PDF p(~x|on,~c) from a mixture of (spherical) Gaussians13,

p(~x,~c|on) =

M∑

m=1

bm,nG(~x, ~ηm,n, Xm,n)G(~c, ~µm,n, Cm,n) (9)

The mean of the new Gaussian G(~x, ~ηm,n, Xm,n) is now a function: ~η =
f(~c, βm,n), that depends on ~c and on a set of parameters βm,n. A locally afine
model was chosen for f , with {βm,n = (~am,n, Ai,n): ~ηm,n = ~am,n + AT~c}. The
learning equations become now13:

E-step for k-iteration From the observed data ~c and ~x, this step computes the
a-posteriori probabilities ek

m,n(l) = p(cm,n|~c, ~x) of the clusters:

ek
m,n(l) =

bk
m,nG(~x, ~ηk

m,n, Xk
m,n)G(~c, ~µk

m,n, Ck
m,n)

∑M
m=1 bk

m,nG(~x, ~ηk
m,n, Xk

m,n)G(~c, ~µk
m,n, Ck

m,n)

M-step for k-iteration : cluster parameters are estimated according to (where m
indexes the M clusters, and l indexes the number L of samples):

Ck+1
m,n =< (~c− ~

µk+1
m,n)(~c− ~

µk+1
m,n)T >m (10)

Ak+1
m,n = (Ck+1

m,n )−1 < (~c− ~µ)(~x− ~η)T >m (11)
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Fig. 7. Algorithmic structure for learning to locate objects and people from contextual and hu-
man cues. Training data is acquired from the object/face segmentation and recognition modules.
Temporal constancy of such data is maintained by the multiple object tracking algorithm.

ak+1
m,n =< (~x− (Ak+1

m,n)T~c) >m (12)

Xk+1
m,n =< (~x− ~ak+1

m,n − (Ak+1
m,n)T~c)(~x− ~ak+1

m,n − (Ak+1
m,n)T~c)T >m

The parameters bk+1
m,n and means µk+1

m,n are estimated as before. The conditional
probability follows then from the joint PDF of the presence of an object on, at the
spatial location p, with pose φ, size ~s and depth d, given a set of contextual image
measurements ~c

p(~x|on,~c) =

∑M
m=1 bk

m,nG(~x, ~ηk
m,n, Xk

m,n)G(~c, ~µk
m,n, Ck

m,n)
∑M

m=1 bk
m,nG(~c, ~µk

m,n, Ck
m,n)

Object detection and recognition requires the evaluation of this PDF at different
locations in the parameter space. The mixture of gaussians is used to learn spatial
distributions of objects from the spatial distribution of frequencies in an image.

Results and Discussion: Figure 8 presents results for selection of the attentional
focus for objects from the low-level cues given by the distribution of frequencies
computed by wavelet decomposition. Some furniture objects were not moved (such
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as the sofas), while others were moved in different degrees: the chair appeared in
several positions during the experiment, and so thus the chair’s templates centroids,
while the table and door suffered mildly displacements. Still, errors on the head gaz-
ing control added considerable location variability whenever a non-movable object
was segmented and annotated. It demonstrates that, given an holistic characteri-
zation of a scene (by PCA on the image wavelet decomposition coefficients), one
can estimate the appropriate places whether objects often appear, such as a chair
in front of a table, even if no chair is visible at the time – which also informs that
regions in front of tables are good candidates to place a chair. Object occlusions by
people are not relevant, since local features are neglected, favoring contextual ones.

Fig. 8. Localizing and recognizing objects from contextual cues (top) Samples of scene images are
shown on the first column. The next five columns show probable locations based on context for
finding a door, the smaller sofa, the bigger sofa, the table and the chair, respectively. Even if the
object is not visible or present, the system estimates the places at which there is a high probability
of finding such object. Two such examples are shown for the chair. Occlusion by humans do not
change significantly the context. (bottom) Results in another day, with different lightning.
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6. Auditory Perception: Acoustic Segmentation and Recognition

A human caregiver introduces a robot to a rich world of visual information con-
cerning objects’ visual appearance and shape. But there are cases for which visual
recognition is not appropriate (for instance, objects might not be visible to the
robot). It is of paramount importance to refer to perception over other perceptual
modalities in such situations.

We are interested in detecting conditions that repeat with a rate consistent with
what a human can easily produce and perceive (e.g., waving a flag or clapping). We
will consider anything above 10Hz to be too fast (e.g., the vibration of a violin
string), and anything below 0.1Hz to be too slow (e.g., the daily rise and fall of the
sun). Such a restriction is related to the idea of natural kinds15, where perception
is based on the physical dimensions and practical interests of the observer.

6.1. Acoustic Segmentation

Acoustic signals have a rich structure around and above the kHz range, for which
the Fourier transform and related transforms are very useful. But not so much
for detecting gross repetition around the single Hz range. The sound generated
by a moving object can be quite complicated, since any constraints due to inertia
or continuity are much weaker than for the physical trajectory of a mass moving
through space. This led us to the development of a robust periodicity detector:

Period estimation – The term period refers strictly to event-scale repetition (Hz

range). For every sample of the signal, we determine how long it takes for
the signal to return to the same value from the same direction (increasing or
decreasing), if it ever does. For this comparison, signal values are quantizing
adaptively into discrete ranges. Intervals are computed in one pass using
a look-up table that, as we scan through the signal, stores the time of the
last occurrence of a value/direction pair. The next step is to find the most
common interval using a histogram (which requires quantization of interval
values), giving us an initial estimate pestimate for the event period.

Clustering – Drift and variability in the period is explicitly taken into account
as follows. We cluster samples in rising and falling intervals of the signal,
using that estimate to limit the width of our clusters but not to constrain
the distance between clusters. This is a good match with real signals we
see that are generated from human action, where the periodicity is rarely
very precise. Clustering is performed individually for each of the quantized
ranges and directions (increasing or decreasing), and then combined after-
wards. Starting from the first signal sample not assigned to a cluster, our
algorithm runs iteratively until all samples are assigned, creating new clus-
ters as necessary. A sample extracted at time t is assigned to a cluster with
center ci if ‖ ci − t ‖2< pestimate/2. The cluster center is the average time
coordinate of the samples assigned to it, weighted according to their values.
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Merging – Clusters from different quantized ranges and directions are merged into
a single cluster if ‖ ci − cj ‖2< pestimate/2.

Segmentation – We find the average interval between neighboring cluster centers
for positive and negative derivatives, and break the signal into discrete
periods based on these centers. Notice that we do not rely on an assumption
of a constant period for segmenting the signal into repeating units.

The output of this entire process is an estimate of the average period of the
signal, a segmentation of the signal into repeating units, and a confidence value
that reflects how periodic the signal really is. The period estimation process is
applied at multiple temporal scales. This sound segmentation algorithm generates
incrementally training data for a sound recognition scheme: sound models of objects
are first learned from experimental human/robot manipulation, enabling their a-
posteriori identification with or without the agents actuation.

6.2. Sound Recognition

The repetitive nature of the sound generated by an object under periodic motion can
be analyzed to extract an acoustic ‘signature’ for that object. We search for repeti-
tion in a set of frequency bands independently, then collect those frequency bands
whose energies oscillate together with a similar period. Specifically, the acoustic
signature for an object is obtained by applying the following steps:

(1) Detection of the period of repetition for each frequency band (Section 6.1).
(2) A period histogram is constructed to accumulate votes for frequency bands hav-

ing the same estimated period (or half the period – it is common to have sounds
that occur once per repetition, for example at one endpoint of the trajectory,
or twice per repetition, for example at two instants of maximum velocity). The
histogram is smoothened by adding votes for each bin of the histogram to their
immediate neighbors as well.

(3) The maximum entry in the period histogram is selected as the reference period.
All frequency bands corresponding to this maximum are collected and their
responses over the reference period are stored in a database of acoustic signa-
tures. Since the same objects can be shaken or waved at different velocities, it is
important to normalize temporal information relative to the reference period.

A collection of annotated acoustic signatures for each object are used as input
data (see Figure 9) for a sound recognition algorithm by applying the eigenobjects
method, which is also used for face recognition. A sound image is represented as a
linear combination of base sound signatures (or eigensounds). Only eigensounds cor-
responding to the three highest eigenvalues – which represent a large portion of the
sound’s energy – are retained. Classification consists of projecting novel sounds to
this space, determining the coefficients of this projection, computing the L2 distance
to each object’s coefficients in the database, and selecting the class corresponding
to the minimum distance.
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2) Average 
sound images

3) Eigenobjects corresponding 
to the three highest eigenvalues

1) 7 random sound samples for each of 4 objects. From top to 
bottom: hammer, cube rattle, car and snake rattle, respectively.

kH
z

Normalized time

Fig. 9. Sound segmentation and recognition. Acoustic signatures for four objects are shown along
the rows. (1) Seven sound segmentation samples are shown for each object, from a total of 28
(car), 49 (cube rattle), 23 (snake rattle) and 34 (hammer) samples. (2) Average acoustic signature
for each object. The vertical axis corresponds to the frequency bands and the horizontal axis to
time normalized by the period. (3) Eigensounds corresponding to the three highest eigenvalues.

Cross-modal information aids the acquisition and learning of unimodal percepts
and consequent categorization in a child’s early infancy. Similarly, visual data is
employed here to guide the annotation of auditory data to implement a sound
recognition algorithm. Training samples for the sound recognition algorithm are
classified into different categories by the visual object recognition system or from
information from the visual object tracking system. This enables the system, after
training, to classify the sounds of objects not visible.

Experimental Results: The system was evaluated quantitatively be random se-
lection of 10% of the segmented data for validation, and the remaining data for
training. This process was randomly repeated three times. It is worth noticing that
even samples received within a short time of each other often do not look too sim-
ilar, due to background acoustic noise, noise on the segmentation process, other
objects’ sounds during experiments, and variability on how objects are moved and
presented to the robot. For example, the car object is heard both alone and with a
rattle (either visible or hidden).

The recognition rate for the three runs averaged to 82% (86.7%, 80% and 80%).
Recognition rates by object category were: 67% for the car, 91.7% for the cube
rattle, 77.8% for the snake rattle and 83.3% for the hammer. Most errors arise
from mismatches between car and hammer sounds. Such errors could be avoided
by extending our sound recognition method to use derived features such as the
onset/decay rate of a sound, which is clearly distinct for the car and the hammer
(the latter generates sounds with abrupt rises of energy and exponential decays,
while sound energy from the toy car is much smoother). Instead, we will show in
the following section that these differences can be captured by cross-modal features
to correctly classify these objects.
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7. Cross-Modal Object Segmentation/Recognition

Different objects have distinct acoustic-visual patterns which are a rich source of in-
formation for object recognition, if we can recover them. The relationship between
object motion and the sound generated varies in an object-specific way. A ham-
mer causes sound after striking an object. A toy truck causes sound while moving
rapidly with wheels spinning; it is quiet when changing direction. These statements
are truly cross-modal in nature. Features extracted from the visual and acoustic
segmentations are what is needed to build an object recognition system. Each type
of features are important for recognition when the other is absent. But when both
are present, then we can do even better by looking at the relationship between the
visual motion of an object and the sound it generates. Is there a loud bang at an
extreme of the physical trajectory? If so we might be looking at a hammer. Are
the bangs soft relative to the visual trajectory? Perhaps it is a bell. Such relational
features can only be defined and factored into recognition if we can relate or bind
visual and acoustic signals.

7.1. Binding

Due to physical constraints, the set of sounds that can be generated by manipulating
an object is often quite small. For toys which are suited to one specific kind of
manipulation - as rattles encourage shaking - there is even more structure to the
sound they generate16. When sound is produced through motion for such objects
the audio signal is highly correlated both with the motion of the object and its
identity. The spatial trajectory can be applied to associate the visual appearance
of objects manipulated by humans or the robot itself to the sound they produce.

A binding algorithm was developed to associate cross-modal, locally periodic
signals, by which we mean signals that have locally consistent periodicity, but may
experience global drift and variation in that rhythm over time. The detection of
periodic cross-modal signals over an interval of seconds as described in the previ-
ous section is a necessary (but not sufficient) condition for a binding. The extra
constraints that must be met for binding to occur are now described. Signals are
compared by matching the cluster centers determined as in the previous section.
Each peak within a cluster from the visual signal is associated to a temporally close
(within a maximum distance of half a visual period) peak from the acoustic signal.
Binding occurs if the visual period matches the acoustic one, or if it matches half
the acoustic period, within a tolerance of 60ms.

7.2. Recognition

The feature space for cross-modal recognition consists therefore of:

. Sound/Visual period ratios – the sound energy of a hammer peaks once per
visual period, while the sound energy of a car peaks twice (for forward and
backward movement).
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. Visual/Sound peak energy ratios – the hammer upon impact creates high peaks
of sound energy relative to the amplitude of the visual trajectory. Although such
measure depends on the distance of the object to the robot, the energy of both
acoustic and visual signals will generally decrease with depth (the sound energy
disperses through the air and the visual trajectory reduces in apparent scale).

Human or robot actions are therefore used to create associations along different
sensor modalities, and objects can be recognized from the characteristics of such
associations. Our original approach can differentiate objects from both their vi-
sual and acoustic backgrounds by finding pixels and frequency bands (respectively)
that are oscillating together. This is accomplished through dynamic programming,
applied to match the sound energy to the visual trajectory signal. Formally, let
S = (S1, . . . , Sn) and V = (V1, . . . , Vm) be sequences of sound and visual trajec-
tory energies segmented from n and m periods of the sound and visual trajectory
signals, respectively. Due to noise, n may be different to m. If the estimated sound
period is half the visual one, then V corresponds to energies segmented with 2m

half periods (given by the distance between maximum and minimum peaks). A
matching path P = (P1, . . . , Pl) defines an alignment between S and M , where
max(m, n) ≤ l ≤ m + n − 1, and Pk = (i, j), a match k between sound cluster j

and visual cluster i. The matching constraints are imposed by:

The boundary conditions are P1 = (1, 1) and Pl = (m,n).
Temporal continuity satisfies Pk+1 ∈ {(i + 1, j + 1), (i + 1, j), (i, j + 1)}. This

restricts steps to adjacent elements of P .

The function cost ci,j is given by the square difference between Vi and Sj periods.
The best matching path W can be found efficiently using dynamic programming,
by incrementally building an m × n table caching the optimum cost at each table
cell, together with the link corresponding to that optimum. The binding W will
then result by tracing back through these links, as in the Viterbi algorithm.

Experimental Results: Figure 10 shows cross-modal features for a set of four
objects. It would be hard to cluster automatically such data into groups for classi-
fication. But as in the sound recognition algorithm, training data is automatically
annotated by visual recognition and tracking. After training, objects can be catego-
rized from cross-modal cues alone. The system was evaluated by selecting randomly
10% of the data for validation, and the remaining data for training. This process
was randomly repeated 15 times. The recognition rate averaged over all these runs
were, by object category: 86.7% for the cube rattle, 100% for both the car and the
snake rattle, and 83% for the hammer. The overall recognition rate was 92.1%. Such
results demonstrate the potential for recognition using cross-modal cues.

7.3. Self-Recognition

Lets turn now to the robot’s perception of its own body16. Cog treats proprioceptive
feedback from its joints as just another sensory modality in which periodic events
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Fig. 10. Object recognition from cross-modal clues. The feature space consists of period and
peak energy ratios. The confusion matrix for a four-class recognition experiment is shown. The
period ratio is enough to separate the cluster of the car object from all the others. Similarly, the
snake rattle is very distinct, since it requires large visual trajectories for producing soft sounds.
Errors for categorizing a hammer originated exclusively from erroneous matches with the cube
rattle, because hammering is characterized by high energy ratios, and very soft bangs are hard to
identify correctly. The cube rattle generates higher energy ratios than the snake rattle. False cube
recognitions resulted mostly from samples with low energy ratios being mistaken for the snake.

may occur. These events can be bound to the visual appearance of its moving body
part (if it is visible) and the sound that the part makes, if any (in fact Cog’s arms
are quite noisy, making an audible ”whirr − whirr” when they move back and
forth). Proprioceptive feedback provides very useful reference signals to identify
appearances of the robot’s body in different modalities. That is why the binding
algorithm is extended to include proprioceptive data. As shown in Figure 11, the
binding algorithm was used not only to identify the robot’s own acoustic rhythms,
but also to identify visually the robot’s mirror image (an important milestone to-
wards development of a child’s theory of mind17).

8. Conclusions

Although the potential for expanding this work is vast, from a practical perspective
complex levels of functionality have already been accomplished. Lets consider again
Figures 4 and 11. Figure 11 shows a partial snapshot of the robot’s state during
one experiment. The robot’s experience of an event is rich, with many visual and
acoustic segmentations generated as the event continues, relevant prior segmenta-
tions recalled using object recognition, the relationship between data from different
senses detected and stored, and objects tracked to be further used by statistical
learning processes for object location from contextual features.

Objects have complex uses, come in various colors, sound differently and appear
in the world in ways constrained by the surrounding scene structure. Since these
object properties are multi-modal, multiple sensorial input have to be processed.
Each individual object property is important for recognition, but if more than one
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Fig. 11. Self-recognition. a) Like a child interested in his own reflection, the robot needs to integrate
visual cues from a mirror with proprioceptive cues from its body for self-recognition; b) Visual
templates associated to the robot’s body; c) On-line recognition experiment on the robot Cog.
It shows both object visual and sound segmentation, visual object tracking and recognition, and
linking of acoustic and visual percepts to the robot’s body.

communication channel is available, such as the visual and auditory channels, both
sources of information can be correlated for extracting richer pieces of information,
as exemplified by the cross-modal object recognition algorithm. This new approach
enabled us to disambiguate object identity in cases where one perceptual modality
alone could fail. We demonstrated in this paper how to take advantage of multiple
perceptual information – the whole is truly greater than the sum of the parts.
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