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1. Overview 
Interpretation of sensor data is a challenging task, whether attempted by man or machine.  The 
volume of data presented for interpretation can often preclude the use of time-intensive 
analysis techniques.  Sensor channels by their very nature focus on targeted types of 
information and are unable to obtain complementary information that might aid in 
interpretation.  Additionally, human experience and world knowledge are often required to 
associate sensed phenomena with likely occurrences in the world. 

This report describes a software system, the Analyst’s Assistant, created in a project effort 
involving MIT CSAIL and MIT Lincoln Laboratory from 2008 to 2012.  Design and 
implementation of the Analyst’s Assistant has explored synergies possible in collaborative, 
language-interactive human–system interpretation of sensor data, specifically targeting 
interpretation of events involving vehicles in urban and rural settings on the basis of vehicle 
track data—sequences of timestamped positions for sensed vehicles.  We have used this 
project as a means of elaborating and demonstrating a number of emerging intelligent systems 
techniques, both individually and in combination.  These are: 

• a strategy for performing automated event recognition by matching scene information 
to language-based representations of the temporal unfolding of events, 

• a technique for summarizing sequences of events by minimizing redundancy in the 
coverage of scene information, 

• a user-driven approach to partitioning and scheduling subtasks in collaborative user–
system interpretation of data, facilitated by a robust natural language interface, and 

• a suite of capabilities for coordinating the handling of natural language and GUI 
references to scene entities during an analysis session. 

Together, these techniques enable the Analyst’s Assistant to benefit from both human and 
software contributions to interpretation.  In large part, this is made possible by infusing natural 
language throughout the design of the Analyst’s Assistant.  Natural language is used not only as 
a key channel of interaction between the human and system, but as well, the internal 
representation of the system is designed from the lowest level using language-motivated 
concepts, and knowledge of what happens during particular types of events is also coded in a 
language-motivated way.  This allows the internal operation of the Analyst’s Assistant to be 
intuitively understandable to humans, so that human and system may interact on a number of 
levels, not just concerning the end products of interpretation. 

Within this report, Section 2 outlines the functionality and architecture of the Analyst’s 
Assistant, which integrates and extends functionality provided by the IMPACT reasoning 
system, the START natural language processing system, and a Web-based GUI interface.  Next, 
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Section 3 presents specific contributions of the Analyst’s Assistant concerning event 
recognition, summarization of events, language-facilitated user–system collaboration, and 
support for handling multi-modal references to scene entities.  Section 4 summarizes the effort 
to date, and the report ends with two appendices: a listing of “event models” used for event 
recognition within the Analyst’s Assistant, and a record of an extended interaction session with 
the system regarding the uncovering of an IED emplacement activity sequence carried out by 
vehicles within the dataset utilized by the Analyst’s Assistant. 

2. Functionality and Architecture 
The Analyst’s Assistant is designed to support collaborative interpretation of end-to-end geo-
spatial track data.  This type of data can be collected from a variety of sources, including remote 
sensing and by cooperative transmissions.  The particular dataset used for the development 
and demonstration of the Analyst’s Assistant was collected by Lincoln Laboratory in 2007 during 
an experiment which involved dozens of vehicles engaged in scripted activities in urban and 
rural areas in and around the Lubbock, Texas area.  Added background clutter, in the form of 
hundreds of vehicle tracks in the vicinity of the scripted activities, was hand selected for a 2 1/2 
hour period.  In addition, the Analyst’s Assistant has been supplied with a database of publicly 
available geographic information system (GIS) data, which specifies approximately 25,000 
named and categorized road segments (highway, local road, other) for the region in and near 
Lubbock, Texas. 

A typical interpretation goal for analysts working with vehicle track data is to identify suspicious 
activities on the part of a few vehicles within a much larger context of everyday activity 
conducted by the majority of vehicles.  The Analyst’s Assistant is designed to help its user 
uncover and explain these suspicious activities, either forensically or in real time as the 
activities unfold.  To this end, the Analyst’s Assistant provides a natural language interface that 
allows its user to both control the focus of attention of the system and pose specific requests 
like “Do any of those cars make a long stop?”, “Where do the possible perpetrators travel 
from?”, “Do any of these cars meet?”, “Where do the meeting cars go?” and “Do any of these 
cars follow each other?”.  In this manner, the user and system are able to elaborate a network 
of vehicles and places involved in a suspicious activity.  Along the way, bindings may be 
assigned to names like “the detonation site”, “the meeting site”, “the possible perpetrators” 
and “the meeting cars”, and the user can refer to these sets by name or refer to recently-
mentioned entities as “those cars”, “that time”, and so forth.  The Analyst’s Assistant also 
provides a summarization capability, where the system recognizes all instances of several dozen 
types of events for a focus spatial region or focus set of vehicles over a particular interval of 
time, then filters the list of recognized events to remove redundant information. 
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Figure 1 illustrates the system’s response to a user request in a sample analysis sequence.  At 
this point in the interpretation, the user has identified a vehicle of interest, V518, and has 
focused the system’s interpretation on a short interval of space and time in which that vehicle 
and 16 other vehicles appear.  The user asks “Do any cars follow other cars?” and is presented 
with a list of four instances of following that have been identified by the system. 

 

 

Figure 1: An interaction with the Analyst’s Assistant. 

 

The Analyst’s Assistant is constructed using three components: the IMPACT reasoning system, 
the START information access system, and a Web-based GUI interface.  These components are 
depicted in Figure 2. 
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Figure 2: Major components of the Analyst's Assistant. 

The user interacts directly with the Web Interface.  Through this interface, the user can view a 
static or animated map of vehicles on roads, enter natural language requests, view and select 
elements from natural language responses to requests, select positions in the map, and operate 
a number of GUI controls such as buttons and sliders.  Some user requests are handled directly 
within the user interface, while other requests are forwarded to START and IMPACT.  START 
interprets natural language requests and encodes them in a structured form for submission to 
IMPACT.  IMPACT maintains a database of road coordinates plus timestamped vehicle positions 
and responds to a range of requests concerning this data, including requests about the 
occurrence of specific types of events.  The user interface then presents the results of requests 
to START and IMPACT, either graphically or in language. 

In the design of the Analyst’s Assistant, an effort has been made to integrate language at a 
deep level within data analysis procedures.  By this strategy, language is used not only to 
express the results of analysis—recognized instances of events—but also lower-level aspects of 
the scene: individual objects and abstractions involved in the activities, attributes of those 
objects and abstractions, and instantaneous values and changes in those attributes.  In this 
manner, language serves as a framework for structuring the interpretation, aligning the 
interpretation with human conceptualization of scene entities and activities.  This in turn can 
help facilitate system–human interaction in collaborative interpretation of the scene activity. 

The Analyst’s Assistant also addresses considerations of scalability.  The dataset operated on by 
the system contains approximately 2 million timestamped vehicle positions and 25 thousand 
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road segments, yet user interaction with the system must occur in real time for the human 
user.  In addition, attention has been given to questions of generality of the approach, so that 
similar capabilities can potentially be demonstrated on other types of datasets.  A subset of the 
techniques developed for Analyst’s Assistant has recently been applied in an exploratory 
manner in the recognition of human-oriented events in ground-level surveillance video and also 
to the envisioning of actions postulated as steps in observed plans. 

2.1 IMPACT 
IMPACT is a system for recognizing events and reasoning about events, given low-level, 
timestamped information about an unfolding scene, plus models of what typically happens 
during different types of events, and, in some applications, externally-supplied assertions that 
particular events are occurring.  The design of IMPACT builds on the presumption that language 
is critically involved in the process of reasoning about events, not only governing the top-level 
expression of event occurrences like “proceeding through an intersection” and “following 
another vehicle”, but also much lower-level assertions about states and changes in a scene, 
such as “ceasing to be in an intersection” or “speed exceeding a previous speed”.  IMPACT 
consists of approximately 50,000 lines of Java code operating in conjunction with a PostgreSQL 
database with PostGIS geometric utilities, and it contains facilities for interacting through 
several external interfaces, maintaining information alternatively in database and main-
memory formats, and processing data through a range of operations and matching capabilities. 

In keeping with the position that language is critical to the process of reasoning about events, 
all information within the IMPACT system is depicted in language, as are all requests to the 
system and all responses issued by the system.  This is facilitated by a representation called 
Möbius [Borchardt, 2014], which encodes simple language in parsed form, including both 
syntactic and semantic information.  Möbius is intended to be a streamlined, intuitively-usable 
representation, incorporating just enough syntactic and semantic expressiveness to facilitate 
the representation of simple assertions.  As an example, a Möbius assertion of the occurrence 
of an event might be as follows: 

proceed( 
  subject:vehicle "V253", 
  through:intersection intersection( 
    article: the, of: (:road "Indiana Ave", and:road "96th Street")), 
  from:time "2013-10-14T11:47:35", 
  to:time "2013-10-14T11:47:39"). 

 
whereas a lower-level assertion comparing speeds might be as follows: 

exceed( 
  subject:attribute speed( 
    article: the, of:vehicle “V253”, at:time “2013-10-14T11:35:25”), 
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  object:attribute speed( 
    article: the, of:vehicle “V253”, at:time “2013-10-14T11:35:24”)). 

 
Within IMPACT, Möbius serves as a substrate for encoding a cognitively-motivated and 
language-based representation of “what happens” during particular types of events.  This 
representation is called transition space, and was originally described in [Borchardt, 1992] and 
[Borchardt, 1994], with elaborations in [Katz et al., 2005] and [Katz et al., 2007].  A description 
of the encoding of transition space assertions within Möbius appears in [Borchardt, 2014]. 

In the transition space framework, “what happens” during events is described using a hierarchy 
of five quantities: 

objects are concrete or abstract entities of importance in a situation, represented as parsable 
strings—e.g., the road “Chicago Ave”, the location “(-101.932745, 033.509693)”, the 
vehicle “V418”, or the time “2007-09-27T10:20:00.458”, 

attributes are language-motivated properties, relationships, and other functions of the 
participants—e.g., “position” or “speed” of a vehicle, “distance” between two vehicles, 
a vehicle being “on” a road, or a vehicle being “at” an intersection, 

states are instantaneous values of attributes—e.g., the speed of a vehicle at a particular time, 
or whether or not a vehicle is on a road at a particular time, 

changes are comparisons of attribute values between time points—e.g., an “increase” or 
“decrease” in the distance between two vehicles, a “change” in a vehicle’s heading, or a 
vehicle “ceasing to be” at an intersection, and 

events are collections of changes and states brought into focus for a particular analysis—e.g., 
“V507 meets with V509 from 09:58:12.319 to 10:08:19.531.”. 

All five types of quantities draw their members from language. For instance, if, in language, we 
are able to express a relationship “in front of”, then in the representation, we also allow this 
relationship as an attribute. Objects include vehicles, locations and roads, for example, but also 
other entities that appear in language, such as intersections, time intervals, areas and events. 

In addition to language-inspired constraints on the representation, there are also cognitively-
inspired constraints. These are motivated by several considerations from the cognitive 
psychology literature (e.g., [Miller and Johnson-Laird, 1976]): time is depicted as a sequence of 
moments, attributes are taken to apply to one or two objects and have a range that is either 
qualitative or quantitative, attributes are typically compared for relative values, changes are 
assessed by looking at two moments, and events are characterized as complex patterns of 
change. Given these constraints, if we assume that each attribute has a “null” value plus one or 
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more non-null values that can be compared qualitatively or quantitatively, we are presented 
with a set of ten varieties of change assessed between pairs of time points, as depicted in 
Figure 3. 

 

Figure 3: Ten varieties of change. 

Using these varieties of change, we construct event models that depict the temporal unfolding 
of particular types of events.  For instance, the event of a vehicle turning left or right at an 
intersection might be described as follows: 

• between “time 1” and “time 2”, the vehicle enters the intersection (being “at” the 
intersection appears, while the vehicle’s speed does not disappear), 

• between “time 2” and “time 3”, the vehicle may or may not come to a temporary stop (put 
simply: being at the intersection does not disappear), 

• between “time 3” and “time 4”, the vehicle executes its turning activity (being at the 
intersection does not disappear, speed and turning rate do not disappear, and turning 
direction does not change), and 

• between “time 4” and “time 5”, the vehicle exits the intersection (being at the intersection 
disappears while speed does not disappear). 

Given a library of event models for common types of events in a domain, it is possible to 
recognize instances of those events through pattern matching between the models, on one 
hand, and, on the other hand, changes and states that have been identified in a scene.  IMPACT 
performs this matching in such a way as to allow individual time intervals in the models (e.g., 
from “time 1” to “time 2” in the above model) to be matched to any number of sampling 
intervals of scene data, as needed to facilitate a complete match for the model.  In this manner, 
an event model such as the one described above might be matched in one instance to a short 
sequence of data in the scene—say 3–5 seconds for a vehicle that turns without stopping at an 
intersection—and in another instance to a much longer sequence of data in the scene—20 
seconds or more for a vehicle that stops before turning at an intersection. 
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2.2 START 
START is a language-based information access system that has been in development for 
approximately 25 years [Katz, 1990; Katz, 1997; Katz et al., 2006].  In its most general question-
answering application, START is available as a public server at http://start.csail.mit.edu/.  START 
answers questions in a range of domains including geography, arts and entertainment, history, 
and science, handling over a million requests per year from users around the world.  In addition 
to the general-purpose public START server, several special-purpose servers have been created 
for specific topic areas.  Also, several strategies pioneered by the START system contributed to 
the performance of IBM’s Watson system in its 2011 Jeopardy! challenge. 

In its traditional role, START accepts English questions, possibly containing grammatical or 
spelling errors, and offers responses that draw on information sources that include structured, 
semi-structured, and unstructured materials.  Some of these materials are maintained locally 
and some are accessed remotely through the Internet.  A particular emphasis of START is that 
of providing high-precision information access, such that the user may maintain a fair degree of 
confidence that a response, if returned by the system, is appropriate to the submitted question.   

START uses tags called natural language annotations to index the information sources at its 
disposal [Katz, 1997; Katz et al., 2006]. These tags are supplied by a knowledge engineer when 
START is configured for use.  Natural language annotations are English phrases and sentences 
that may contain typed variables, as, for example 

number people live in city. 

as an annotation for a table of city populations.  Natural language annotations describe the 
content of the information sources they are associated with, using language as a representation 
of that content. 

START precompiles its base of natural language annotations into nested ternary expressions, 
which are constituent–relation–constituent triples that capture much of the most salient 
information in a syntactic parse tree in a form well-suited to matching [Katz, 1990]. When a 
user submits an English question to START, the question is also translated into nested ternary 
expressions, and START uses the nested ternary expression representation as a basis for 
matching the submitted question to stored annotations, assisted by an array of techniques that 
include matching through synonymy and hyponymy, the application of structural 
transformation rules [Katz and Levin, 1988], a reference resolution mechanism, an external 
gazetteer for matching terms to typed variables, and a mechanism for decomposing complex 
questions syntactically into subquestions for independent processing [Katz et al., 2005].  Once a 
question has been matched to one or more natural language annotations, the information 
sources associated with those annotations can be accessed to provide responses to the user. 
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Figure 4 illustrates an example of the public START server in use. 

 

Figure 4: START handling a comparative question about cities’ populations. 

For structured materials such as databases, START can be configured to issue SQL requests in 
response to user queries, or it can be configured to issue symbolic requests in a format suitable 
for other, external information servers or systems.  For the Analyst’s Assistant, START has been 
configured to issue Möbius language requests to IMPACT.  This linkage enables the user to pose 
a wide range of natural language requests to the system: requests for state information (“How 
fast is car 125 going at 12:03?”), searches (“Which vehicles were within 500 meters of the 
detonation site between 10:30 and 11:30?”), processing directives (“Please focus on V200 
between 9:30 and 10:30.” or “Animate those vehicles at those times.”), and requests 
concerning events (“Do any cars travel north on Chicago Avenue between 11:15 and 11:20?”). 

2.3 Graphical User Interface 
The graphical user interface for the Analyst’s Assistant is a standalone Web application coded in 
Ruby on Rails.  The interface utilizes Google Maps utilities to enable display, zoom and pan of 
underlying roads and geographical features, plus overlay of flags and icons for individual 
vehicles in displays and animations.  Local operations can be carried out within the interface, 
including the running and re-running of animations and browsing within a history of 
request/response interactions, and AJAX technology is used to facilitate interactions between 
the interface and START plus IMPACT. 
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The graphical user interface for the Analyst’s Assistant displays a toolbar from which several 
interaction panes can be accessed.  These include panes for: input of natural language requests, 
viewing of natural language responses from the system, buffering of input sequences of natural 
language requests, viewing the history of requests and responses, running animations, and 
viewing user-created spatial graphs of interconnected positions.  Figure 5 provides a screen 
shot of the graphical user interface in action, running an animation involving two vehicles. 

 

 

Figure 5: Sample interaction with the graphical user interface. 

3. Key Ideas 
Construction of the Analyst’s Assistant has enabled us to advance the development of several 
emerging intelligent systems capabilities: event recognition, summarization of events, 
collaborative and scalable user–system interpretation of data, and multi-modal labeling and 
reference resolution.  The following sections describe these efforts. 
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3.1 Event Recognition using Language-Based Representations 
Event recognition from video and other sensor data has received a fair amount of attention 
over a number of years.  Reviews of work in video event recognition can be found in [Buxton, 
2003], [Hu et al., 2004], [Turaga et al., 2008] and [Lavee et al., 2009].  The analyzed data range 
from close-up indoor surveillance video to long-standoff aerial video, and the recognized events 
span from what might be called “poses” to “movements” to larger “actions” and “scenarios”.  
Techniques used in these systems are varied: predominantly quantitative, although some 
symbolic and logic-based approaches are also employed.  Specifically for aerial video, less work 
has been pursued regarding event recognition, primarily because automatically extracted 
vehicle tracks are often incomplete.  Some approaches are [Burns et al., 2006], where more 
localized events are detected (e.g., vehicles traveling in a convoy), and [Porter et al., 2009], 
where localized events (meetings) are detected, and this information is used to infer attributes 
over collections of tracks. 

To our knowledge, very little work has been done in coupling language primitives to interpreted 
video and other sensor data, and using these language primitives as a basis for recognizing 
events and forming higher-level language descriptions.  One example is the work of Siskind and 
his colleagues [Siskind, 2003; Narayanaswamy et al., 2014], which deals with close-up 
observation of human activities.  Design of the Analyst’s Assistant follows from the belief that 
language is critical to the recognition of events, that it is language that provides an appropriate, 
common medium for abstracting events across domains, contexts and sensor types and 
provides a basis for system generation of justifications and explanations of conclusions. 

Using language as a framework for representing what happens during the temporal unfolding 
of events has, in our experience, greatly simplified the task of creating the functionality needed 
to provide coordinated event recognition, summarization and question answering capabilities 
regarding timestamped sensor data.  In the development of these capabilities, what otherwise 
might be viewed as an extremely complex learning task requiring a considerable amount of 
training data can instead be approached by leveraging human guidance—introspection and 
interview—in articulating the objects, attributes, states and changes involved in the unfolding 
of particular types of events. 

For the Analyst’s Assistant, the approach to developing the event recognition, summarization 
and question answering capabilities has been largely iterative, proceeding from an enumeration 
of objects and attributes relevant to our expected question answering functionality, to the use 
of these objects and attributes to create event models that describe particular types of events 
relevant to our expected question answering, event recognition and summarization 
functionality.  Event models initially inspired by human knowledge have then been refined 
through a “test, critique and modify” cycle as these models have been applied to the event 
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recognition task.  In some cases, refinement of our event models for event recognition has led 
to the introduction of new attributes.  Also, in some cases, considerations of performance in 
the task of summarization have led to further refinements in our event models.  This iterative 
process has been greatly facilitated by the fact that all elements of the representation, being 
articulated in language, are transparent to human understanding and scrutiny in assessing the 
suitability of their use in particular, tested instances of question answering, event recognition, 
or summarization by the system as a whole. 

Commencing with the lowest level of the representation, Figure 6 lists the object types 
enumerated within the Analyst’s Assistant as a result of this iterative process.  In this list, each 
object type appears with a sample object instance as encoded in the Möbius language. 

distance  "0250 m" 
elapsed time  "P0000-00-00T00:02:00" 
event   make(subject:vehicle "V233", 

     object: stop(article: a, adjective: long)) 
heading   "145 deg" 
intersection  intersection(article: the, 

     of: (:road "83rd St", and:road "Clinton Ave")) 
named heading  west 
position  "(-101.933206, 033.517764)" 
road   "Indiana Ave" 
speed   "10.2 m/s" 
time   "2007-09-27T09:50:38.176" 
turning direction left 
turning rate  "23 deg/s" 
vehicle   "V127" 

 
Figure 6: Object types and sample values within the Analyst’s Assistant. 

 
Figure 7 lists attributes used within the Analyst’s Assistant, using a notation that abbreviates 
the underlying Möbius encoding.  Timestamped values for the first attribute, vehicle position, 
are supplied to the application.  Values for the remaining attributes are computed by the 
application using this information plus information regarding the locations of road segments in 
the geographical region of interest for the application. 

the position of <vehicle>     (qualitative) 
the speed of <vehicle>      (quantitative) 
the heading of <vehicle>     (qualitative) 
the named heading of <vehicle>     (qualitative) 
the turning rate of <vehicle>     (quantitative) 
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the turning direction of <vehicle>    (qualitative) 
<vehicle> being on <road>     (boolean) 
<vehicle> being at <intersection>    (boolean) 
the distance between <vehicle> and <vehicle>   (quantitative) 
<vehicle> being in front of <vehicle>    (boolean) 
<vehicle> being in back of <vehicle>    (boolean) 
<vehicle> being next to <vehicle>    (boolean) 
the occurrence of <event>     (boolean) 
the elapsed time from <time> to <time>    (quantitative) 
the distance between <position> and <position>   (quantitative) 
the turning direction between <heading> and <heading> (qualitative) 

 
Figure 7: Attributes within the Analyst’s Assistant. 

 
In turn, states and changes involving the object types and attributes of Figures 6 and 7 are then 
used to construct event models for 35 types of events within the Analyst’s Assistant, as listed in 
Figure 8, again abbreviating the underlying Möbius encoding. 

 

<vehicle> accelerates. 
<vehicle> accelerates to <speed>. 
<vehicle> decelerates. 
<vehicle> hesitates. 
<vehicle> makes a U-turn. 
<vehicle> moves. 
<vehicle> does not move. 
<vehicle> does not turn. 
<vehicle> travels <named heading>. 
<vehicle> travels <named heading> on <road>. 
<vehicle> travels on <road>. 
<vehicle> turns sharply. 
<vehicle> turns <turning direction>. 
<vehicle> turns. 
<vehicle> enters <intersection>. 
<vehicle> exits <intersection>. 
<vehicle> makes a U-turn at <intersection>. 
<vehicle> proceeds through <intersection>. 

<vehicle> stops at <intersection>. 
<vehicle> turns <turning direction> at 
     <intersection>. 
<vehicle> makes a long stop. 
<vehicle> makes a medium-length stop. 
<vehicle> makes a short stop. 
<vehicle> makes a stop at <position>. 
<vehicle> makes a stop for <duration>. 
<vehicle> makes a stop on <road>. 
<vehicle> travels from the area within 
     <distance> of <position> to the area within 
     <distance> of <position>.    (4 models) 
<vehicle> travels from <position> to <position>. 
<vehicle> approaches <vehicle>. 
<vehicle> follows <vehicle> along <road>. 
<vehicle> meets with <vehicle>. 
<vehicle> pulls away from <vehicle>. 

 
Figure 8: Event models within the Analyst’s Assistant. 
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Complete descriptions of the 35 event models appear in Appendix A.  As an example, Figure 9 
depicts an event model for one vehicle approaching a second vehicle, using a graphical notation 
that organizes the presentation of changes, states and other assertions within the event model. 

 

Figure 9: Event model for a vehicle approaching a vehicle. 
 

In this event model, vehicle 1 maintains speed above a minimum threshold over an interval of 
at least 2 seconds, while vehicle 2 remains in front of vehicle 1 and the distance between the 
two vehicles decreases. 

IMPACT matches event models to scene information using a strategy called core–periphery 
matching, which allows the system to stretch the intervals of event models (or “pattern 
events”) in time, as necessary, to match the timing of observed changes in a scene.  The core–
periphery matching algorithm proceeds in a hierarchical manner.  Given instructions to identify 
instances of a particular event model, the algorithm first identifies matches for individual 
changes in the first interval (or “transition”) of the event model and combines these change 
matches to enumerate possible matches for that entire transition.  Each subsequent transition 
in the event model is then matched in a similar manner, followed by an additional step in which 
candidate delimiting times are established between matches for the preceding transition and 
matches for the most recent transition. 
 
Figure 10 illustrates the match of a single pattern change, an “increase”, in an event model.  
Suppose this pattern change is being matched to a sequence of scene changes as indicated 
below this change.  The “increase” can match a number of subsequences of this sequence of 
scene changes, within the region containing changes of type “increase” and “not change”.  Note 
that not all subsequences of this region will match the pattern change, however.  In particular, 
the subsequences containing only changes of type “not change” do not imply an increase by 
themselves, but must be extended to include at least one scene change of type “increase”. 
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Figure 10: Matching a single pattern change to scene data. 
 
A compact description of how a pattern change can match various subsequences of a sequence 
of scene changes is to first identify “cores” of a match: subsequences for which, in turn, every 
one of their subsequences is also a match to the pattern change.  Match “cores” for the 
example in Figure 10 are illustrated as thick black bars under the scene changes.  Next, 
surrounding each core, we can identify a “periphery”: an extended subsequence for which any 
of its subsequences will be a match for the original pattern change only if at least some portion 
of a “core” is also present in that subsequence.  Match “peripheries” for the example in Figure 
10 are illustrated as thin black bars deemed to extend as well through the thick black bars. 
 
The next step is to consider a column of a pattern event.  Figure 11 presents a possible 3-
element column of an event model, having an “increase” in some attribute of a first object or 
pair of objects (not shown), a “decrease” in some other attribute of some other objects, and a 
“disappear” in some other attribute of some other objects.  We assume the matcher has 
matched these associated attributes and objects appropriately, maintaining consistent bindings 
for object variables that appear, and here we are only concerned with how to match the 
changes.  The right side of Figure 11 contains a schematic illustration of some sample core–
periphery matches for the three depicted changes.  To form a composite match for the entire 
column of the event model, we need to find an earliest and latest time point for an interval in 
which all three changes can be matched.  This is illustrated by blue vertical bars.  We also want 
to calculate how much “give” there might be in the ending time point for the column match—
how much earlier we might place this time point and still succeed in matching all of the 
changes.  This is illustrated by a dotted blue line.  If the ending time point for the column match 
is placed before this time, this will result in a failure for the second change match, involving the 
change “decrease”. 
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Figure 11: Combining change matches into a transition match. 
 
Finally, suppose we have a second column of changes in the pattern event model—a second 
“transition”—specifying an “increase”, a “not disappear” and an “appear” in the same three 
attributes.  Suppose further that the core–periphery matches for those changes are as depicted 
by brown bars in Figure 12, using bindings that are consistent with the bindings applied in 
matching the first transition of the event model.  The earliest and latest time points for a time 
interval supporting a match for the second transition are indicated by orange vertical bars.  At 
this point, we would like to determine a suitable delimiting time to separate the match for the 
first transition from the match for the second transition of the event model.  In this case we can 
choose the second transition’s earliest match time as the delimiting time between the 
transitions, as this preserves all of the underlying change matches. 
 

 
 

Figure 12: Combining transition matches. 
 
This process repeats, progressing through the intervals from left to right in the event model.  
One useful heuristic we have found is to match all columns with “definite” changes (of the 10 
possible changes, those that assure us that something has indeed changed—”appear”, 
“disappear”, “change”, “increase” and “decrease”) as tightly as possible, while matching 
columns without any definite changes as loosely as possible.  This has the effect of generating 
tighter beginning and ending times for events which begin or end with definite changes, and it 
allows us to more readily isolate definite changes that appear within events. 
 
The matcher is incomplete, as there are many additional matches to be found that have only 
slight differences in delimiting times.  The matcher is sound in that all matches do faithfully 
match pattern changes to appropriate sequences of scene changes.  The matcher is efficient in 



17 
 

practice, as it abandons non-matches quickly and spends most of its time elaborating the 
details of ultimately successful matches. 
 
Event recognition in the Analyst’s Assistant proceeds from largely top-down influences, starting 
with the direction to identify possible instances of a particular event type, say a “U-turn” event, 
which leads to the direction to identify possible matches for the first transition of that event, 
which in turn leads to the direction to identify possible matches for individual changes specified 
within the first transition of that event.  Once appropriate change matches have been 
identified, they are assembled into appropriate transition matches and event matches in 
accordance with the structure of the targeted event models. 
 
One aspect of the event recognition process that occurs in a strictly bottom-up manner 
concerns the “reification” of events—recognition of one particular type of event in a first cycle, 
leading to the system recording new state- and change-level information about the identified 
event occurrences, so that the matcher may be deployed in a second cycle to recognize 
additional “events about events”.  Within the Analyst’s Assistant, this sort of approach was 
required to recognize instances of a vehicle traveling from an origin to a destination.  
Intuitively, traveling from an origin to a destination can be thought of making a fairly long stop 
at the origin, then proceeding for an interval of time while not making any long stops (possibly 
stopping briefly at a stop sign or traffic signal, for example), then making a fairly long stop at 
the destination.  The Analyst’s Assistant recognizes instances of this sort of traveling by first 
recognizing instances of making long stops, using the event model illustrated in Figure 13. 
 

 
Figure 13: Event model for making a long stop. 

 
Once the system has identified instances of vehicles making long stops, it then creates a 
number of new “objects” to represent those events, objects like the following, in Möbius: 
 

make(subject:vehicle "V345", object: stop(article: a, adjective: long)) . 
 
The system then records information about the occurrence of the long stops by employing a 
new attribute  “the occurrence of <event>”, or, in Möbius, 
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occurrence(article: the, of:event []) 
 
applied to the new event-objects.  This attribute specifies whether the occurrence of a 
particular event is, at any particular time point, present or absent.  Having recorded the event 
occurrence information at the level of states and changes, the system is then in the position to 
recognize instances of traveling from an origin to a destination, using the event model 
illustrates in Figure 14.   
 

 
Figure 14: Event model for traveling from an origin to a destination. 

 
A match for this event model will begin with a vehicle culminating a first long stop, it will then 
proceed through an interval in which the vehicle is not making any long stops, and it will end 
with the vehicle initiating a second long stop. 

3.2 Summarization by Covering Scene Information 
The event recognition apparatus of the Analyst’s Assistant enables the system either to identify 
instances of a single type of event—e.g., in response to a targeted query like “Do any vehicles 
make a long stop?”—or to identify instances of many types of events at once.  When humans 
observe a scene and describe its activity, if instances of many types of events might be found in 
the scene, humans will nonetheless refrain from exhaustively listing all identified event 
instances in forming a description of the scene.  Rather, they will offer a selection of event 
instances that summarize the observed situation according to accepted conversational 
conventions such as outlined by Grice [1975]: 

The maxim of quantity:  Provide as much information as is required for the current 
purposes of the exchange, but do not provide more information than is required. 

The maxim of quality:  Try to make your contribution one that is true. 

The maxim of relation:  Be relevant. 
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The maxim of manner:  Be perspicuous.  (Avoid obscurity of expression, avoid 
ambiguity, be brief and be orderly.) 

Implicit in both Grice’s maxim of quantity and maxim of manner is the notion of avoiding 
redundancy.  Regarding event recognition, it is of little use to mention event instances that 
provide no additional information about an unfolding scene relative to other event instances 
that describe the same phenomena.  Within the Analyst’s Assistant, we have implemented a 
summarization algorithm that follows this strategy.  Each recognized event instance is said to 
“cover” a subset of the scene information corresponding to a set of assertions at the lowest 
level of the transition space representation—assertions that various quantities at various times 
“equal”, “do not equal”, “exceed” or “do not exceed” various other quantities at various times.  
To form a summary of observed activity, we exclude from the description particular event 
instances that fail to uniquely cover any scene information relative to the scene information 
covered by other event instances retained in the description.  When considering event 
instances for exclusion, we start with events that have smaller coverage of scene information 
and proceed to events that have larger coverage of scene information. 

As an example, in one interaction with the Analyst’s Assistant, an instance of “turning right at 
an intersection” was recognized, as depicted in Figure 15. 

 

Figure 15: Event instance of “turning right at an intersection”. 
 
Also, an instance of “entering an intersection” was recognized, as depicted in Figure 16. 
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Figure 16: Event instance of “entering an intersection”. 
 

Since the instance of entering the intersection does not cover any scene information that is not 
also covered by the instance of turning right at the intersection, the summarization algorithm 
excludes mention of the instance of entering the intersection in its generated description of the 
scene activity. 

A complementary summarization strategy implemented within the Analyst’s Assistant is to 
exclude particular attributes, or particular types of states or changes of particular attributes, 
from the calculations of scene information coverage for the purpose of retaining or excluding 
events from the description.  This enables the generated summary to focus on events involving 
the most significant attributes, states and changes.  By this strategy, the following are excluded 
from coverage calculations within the Analyst’s Assistant: 

• all constraints on the durations of time intervals within event models 
• information concerning instantaneous values and across-time comparisons of speed for 

vehicles, 
• information concerning instantaneous values and across-time comparisons of turning 

rate, plus information about the absence of a turning rate for a vehicle, 
• information about the presence or absence, particular values, and across-time 

comparisons of distance between vehicles, 
• information about the presence or absence, particular values, and across-time 

comparisons of vehicles being in front of or in back of other vehicles. 

Using the two above-described strategies in tandem, the summarization capability of the 
Analyst’s Assistant will typically eliminate approximately 2/3 of the recognized event instances 
from inclusion in its summary of an analyzed activity.  For example, in one interaction for which 
the Analyst’s Assistant has interpreted the activity within 500 meters of a specified position 
over an interval of 2 minutes, the full set of recognized event instances for vehicle V030 is as 
depicted in Figure 17. 

V030 moves from 10:08:38.102 to 10:08:52.171. 
V030 travels on County Road 7300 from 10:08:38.102 to 10:08:52.171. 
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V030 does not turn from 10:08:38.102 to 10:08:48.231. 
V030 travels west from 10:08:38.102 to 10:08:48.231. 
V030 travels west on County Road 7300 from 10:08:38.102 to 10:08:48.231. 
V030 decelerates from 10:08:43.729 to 10:08:52.171. 
V030 approaches V201 from 10:08:44.292 to 10:08:51.045. 
V030 accelerates from 10:08:53.296 to 10:09:03.426. 
V030 accelerates to 16.9 m/s from 10:08:53.296 to 10:09:03.426. 
V030 proceeds through the intersection of County Road 1800 and County Road 7300 from 

10:08:54.422 to 10:09:00.612. 
V030 enters the intersection of County Road 1800 and County Road 7300 from 10:08:54.422 to 

10:08:54.984. 
V030 does not turn from 10:08:54.984 to 10:09:25.373. 
V030 travels west from 10:08:54.984 to 10:09:25.373. 
V030 travels west on County Road 7300 from 10:08:54.984 to 10:09:25.373. 
V030 exits the intersection of County Road 1800 and County Road 7300 from 10:09:00.049 to 

10:09:00.612. 
V030 accelerates from 10:09:05.114 to 10:09:10.742. 
V030 accelerates to 18.8 m/s from 10:09:05.114 to 10:09:10.742. 
V030 decelerates from 10:09:10.742 to 10:09:14.681. 
V030 accelerates from 10:09:14.681 to 10:09:17.495. 
V030 accelerates to 18.2 m/s from 10:09:14.681 to 10:09:17.495. 
V030 decelerates from 10:09:17.495 to 10:09:27.061. 
V030 makes a U-turn from 10:09:25.936 to 10:09:32.126. 
V030 turns left from 10:09:25.936 to 10:09:32.126. 
V030 turns from 10:09:25.936 to 10:09:32.126. 
V030 decelerates from 10:09:28.750 to 10:09:31.001. 
V030 accelerates from 10:09:31.001 to 10:09:43.381. 
V030 accelerates to 22.5 m/s from 10:09:31.001 to 10:09:43.381. 
V030 does not turn from 10:09:36.628 to 10:09:50.134. 
V030 travels east from 10:09:36.628 to 10:09:50.134. 
V030 travels east on County Road 7300 from 10:09:36.628 to 10:09:50.134. 
V030 decelerates from 10:09:43.944 to 10:09:46.195. 
V030 accelerates from 10:09:46.195 to 10:09:48.446. 
V030 accelerates to 22.2 m/s from 10:09:46.195 to 10:09:48.446. 
V030 enters the intersection of County Road 1800 and County Road 7300 from 10:09:55.199 to 

10:09:55.762. 
Figure 17: All recognized event instances involving V030 in one example. 

 
Following application of the summarization strategies, the reduced description provided by the 
system is as depicted in Figure 18.  In particular, it should be noted that the inclusion of event 
instances involving traveling in a particular direction on a road has forced the exclusion of 
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events involving traveling in that direction or simply moving, that inclusion of an event of 
“proceeding through an intersection” has forced the exclusion of events involving entering and 
exiting the intersection, and inclusion of an event describing a U-turn has forced the exclusion 
of an event involving the vehicle turning left. 

V030 travels on County Road 7300 from 10:08:38.102 to 10:08:52.171. 
V030 travels west on County Road 7300 from 10:08:38.102 to 10:08:48.231. 
V030 accelerates to 16.9 m/s from 10:08:53.296 to 10:09:03.426. 
V030 proceeds through the intersection of County Road 1800 and County Road 7300 from 

10:08:54.422 to 10:09:00.612. 
V030 travels west on County Road 7300 from 10:08:54.984 to 10:09:25.373. 
V030 makes a U-turn from 10:09:25.936 to 10:09:32.126. 
V030 accelerates to 22.5 m/s from 10:09:31.001 to 10:09:43.381. 
V030 travels east on County Road 7300 from 10:09:36.628 to 10:09:50.134. 
V030 enters the intersection of County Road 1800 and County Road 7300 from 10:09:55.199 to 

10:09:55.762. 
Figure 18: Summary of event instances involving V030 in the example. 

3.3 Collaborative and Scalable User–System Interpretation of Data 
Humans and software systems have distinct capabilities related to the analysis of sensor data, 
and it is important to leverage these relative capabilities in order to achieve high quality, time 
efficiency, and scalability in the interpretation of data.  The Analyst’s Assistant has been 
designed to partition analysis subtasks between the human and software system, with the 
human generally performing higher-level interpretive tasks, and the system performing lower-
level interpretive tasks.  Joint human–system interpretation of data is then facilitated by 
encoding all system data and partial results using language-based representations and by 
incorporating a robust natural language interface between the user and system, enabling the 
user to enter requests in language and view system responses rendered in language. 

Particular tasks carried out by the human user of the Analyst’s Assistant are: 

• controlling the focus of processing for the analysis to cover particular spatial regions of 
the map or particular sets of vehicles, considered over particular intervals of time, 

• steering the analysis between broad consideration of many event types to more limited 
consideration of specific types of events or drill-down to underlying information about 
states, and 

• interpreting recognized events as elements of larger plans carried out by scene actors. 

In return, the system carries out the following tasks: 

• recognizing individual instances of events, based on scene information, 
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• forming summaries of event activity for a focus region or set of vehicles, and 
• responding to a range of natural language requests placed by the user. 

Allowing the user to control the focus of processing serves as one element of a larger strategy 
of timing the execution of various analysis tasks for efficiency; tasks whose results are likely to 
support multiple follow-on tasks are executed earlier, while tasks unlikely or unable to support 
follow-on tasks are executed as late as possible, only when needed.  The Analyst’s Assistant 
executes various analysis tasks at three distinct times: 

• in a preprocessing step, vehicle position information is enhanced for use in multiple 
analysis sessions by multiple users, 

• in a user-directed “focus” step during an analysis session, state and change information 
is calculated for a subset of the data, preparing the system for recognition of events on 
that data subset, and 

• in an on-demand processing step during an analysis session, specific user requests are 
handled, using information prepared during the preprocessing and focus steps.  

During the preprocessing step, accomplished before the first user analysis session, the Analyst’s 
Assistant takes timestamped vehicle position information and road network data from its 
supplied dataset and calculates instantaneous speeds, headings, turning rates and turning 
directions for vehicles, plus instances of vehicles being on various roads.  These state 
calculations are then integrated within the dataset operated upon by the system.  The 
preprocessing step is designed to incorporate less computationally-expensive calculations that 
are broadly needed for follow-on calculations during data analysis and that could potentially be 
carried out in real time in a pipelined manner during data capture. 

In contrast, the focus step and on-demand processing steps are designed to incorporate more 
computationally-expensive calculations that are only needed if they are of particular interest to 
the human user.  The focus step is triggered by user requests to analyze subsets of the data 
covering particular spatial regions or particular sets of vehicles over specified intervals of time. 
This step prepares the system to perform on-demand event recognition on the focus region or 
set of vehicles. 

The following are examples of natural language requests that trigger the focusing step.  The 
START system, acting as the natural language interpretation component of the Analyst’s 
Assistant, also accepts many natural language variants of each type of request: 

Focus on the area within 500 meters of 101.914764 W 33.511973 N between 10:01 and 10:04. 
Analyze the area within 1000 meters of site 21-1 from 10:17 to 10:22. 
Interpret the activity of V200 from 9:34 to 9:37. 
Focus on the suspicious vehicles between 10:28 and 10:35. 
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During the focus step, the system calculates instances of vehicles being “at” various 
intersections, spatial relationships (distance, being “in front of”, “in back of” or “next to”) for 
pairs of vehicles that are sufficiently close to one another, and relative changes for all attributes 
for which state information has been calculated.  Also during the focus step, all relevant state 
and change information is assembled into a main-memory cache for quick matching to event 
models. 

During the on-demand processing step, the user may pose targeted natural language requests 
to the system.  Requests concerning the occurrence of specific types of events are processed 
relative to the current focus area or set of vehicles.  Examples of these types of requests are: 

Are any cars following V518? 
Where do those cars go? 
Do any of these cars meet? 

 
In response to these types of requests, the system identifies and lists occurrences of the 
specified types of events, restricting its search to the time interval and spatial region or set of 
vehicles specified by the user during the focus step. 

During the on-demand processing step, the user also exerts control over another aspect of the 
data interpretation: breadth of the analysis, ranging from the consideration of many types of 
events to more limited consideration of individual types of events or even lower-level 
inspection of underlying states for vehicles involved in the activity.  Consideration of many 
types of events occurs when the user submits a request to view all events identified by the 
system for the current focus region or set of vehicles, or if the user requests a summary of 
these events, or, optionally, if the user restricts the listing of all events or a summary of events 
to only those pertaining to a specified set of vehicles.  The following are examples of these 
types of requests: 

Give me a complete list of the events. 
What are the main activities? 
What are all of the events that occur for V030? 
Summarize events for V507. 

 
Requests for specific types of events can be as illustrated previously, or in the following 
examples: 

Which cars travel through the intersection of 90th St and Chicago Ave? 
Does V477 make a short stop? 
When does V201 turn left? 
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Requests for state information can be as in the following examples: 

Which cars are on 93rd Street between 9:40 and 9:41?  
What is the heading of V258 at 9:44:24? 
Where is the intersection of 82nd Street and Memphis Ave? 
Is V047's speed ever greater than 35 mph between 9:50 and 9:55? 

 
Using a combination of requests that concern many types of events, requests that concern 
individual types of events, and requests that concern underlying states, the user can gain an 
understanding of significant activities taking place within a focus region or for a focus set of 
vehicles, plus underlying data support for those interpretations.  Progressing to new focus 
regions, sets of vehicles and times, the user can gain an understanding of larger activities of 
interest.  Typically, this might concern the execution of various plans on the part of adversaries.  
Appendix B illustrates use of the Analyst’s Assistant in uncovering an enacted IED emplacement 
and detonation sequence of activity captured within its supplied dataset. 

To support the user in the interpretation of larger sequences of activity, the Analyst’s Assistant 
provides a record-keeping mechanism whereby the user can designate significant locations, 
vehicles and times, plus associations between these entities.  This record is referred to as the 
“activity graph”.  The user can specify significant entities using requests such as the following: 

Include V321 in the activity graph. 
Please put that location in the activity graph. 

 
Examples of requests that designate associations between entities are: 

Associate the stationary vehicle with site 1. 
Link the stop site with 10:20 AM in the activity graph. 

 
Once the user has specified a set of significant entities and associations between those entities, 
the user can query the system for elements of this record as illustrated in the following 
examples: 

What vehicles are connected with site 1? 
What locations are linked to V101? 
What times are associated with the stop site? 

 
Also, the user can inspect the record of significant entities and associations graphically.  This 
capability is illustrated in Appendix B, in the context of the IED emplacement interpretation 
example given there. 
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In response to the tasks carried out within an analysis session by the user of the Analyst’s 
Assistant, the system carries out a complementary range of tasks, including major tasks such as 
performing event recognition, summarizing event sequences, shifting the focus of the system, 
and maintaining the activity graph, but also including supporting tasks such as opening and 
closing datasets, assigning and updating temporary names to scene entities and sets of scene 
entities, retrieval and search over state information for the dataset, and displaying animations 
of scene activity.  Coordination of user and system tasks is facilitated by the natural language 
interface of the system, as well as the displays, buttons and menu commands of the system’s 
graphical user interface. 

3.4 Multi-Modal Labeling and Reference Resolution  
The Analyst’s Assistant is designed to employ language-motivated representations throughout 
its operation.  This design strategy benefits user–system collaboration by ensuring that data 
entities operated on by the system can be easily articulated in language output generated by 
the system, and it also simplifies the task of interpreting the user’s natural language input in 
terms of system data entities and operations on those entities. 

One mechanism that contributes significantly to the system’s ability to interpret natural 
language input from the user is a capability for flexible resolution of natural language and 
graphical references to data entities.  Natural language references can be proper names or 
literal values like “Indiana Avenue” or “2:10 PM”, they can be indirect references to recently-
concerned elements using phrases such as “those roads” or “that time”, or they can be user-
defined names like “the suspicious vehicles” or “the meeting spot”.  Graphical references can 
be mouse clicks on the map, or they can be mouse selections of elements listed in natural 
language output of the system. 

The most specific varieties of requests to the Analyst’s Assistant contain proper names or literal 
values.  An example of such a request is 

Is V149 on Chicago Avenue between 10:20 AM and 10:25 AM? 
 
The START system, acting as the natural language front end of the Analyst’s Assistant, interprets 
proper names and literal values directly, using pre-defined strategies for translating these 
natural language references to data entities.  Many data entities can be expressed in multiple 
ways in natural language.  For example, a vehicle might be “V248”, “vehicle 248” or “car 248”, a 
road might be “Chicago Avenue” or “Chicago Ave”, and a time might be “10:20 AM” or 
“10:20:00.000”. 

In place of proper names and literals, the user may leave one or more elements of a request 
unspecified or specifically targeted by the request, as in the following examples. 
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Is V149 on Chicago Avenue at some time? 
Which vehicles are on Chicago Ave between 10:20 AM and 10:25 AM? 

 
In these examples, the phrases “some time” and “which vehicles” leave particular elements 
unspecified, to be filled by data values.  Whether an element has been explicitly specified, as by 
a proper name or literal, or left unspecified, as by the references illustrated above, the Analyst’s 
Assistant will maintain a record of the sets of data entities that become associated with these 
references.  This record is maintained within the IMPACT reasoning system, and it enables the 
user to employ references like “those roads” and “that vehicle” in subsequent requests.  As an 
example, following the request “Is V149 on Chicago Avenue at some time?”, the user might 
submit a request 

Is V149 driving faster than 40 miles per hour at those times? 
 
In this instance, the Analyst’s Assistant will interpret “those times” to be the most recent times 
concerned in a request–response cycle, and as a result, this request will be interpreted as a 
request to determine if V149 has traveled faster than 40 mph at those particular times when it 
was on Chicago Avenue. 

The IMPACT reasoning system retains sets of most-recently-concerned values for vehicles, 
roads, positions and times.  An additional mechanism ensures that these values are re-used in 
the proper context, however.  If the request “Which vehicles are on Chicago Ave between 10:20 
AM and 10:25 AM?” is followed by the request 

Please animate those vehicles at those times. 
 
then the system must ensure that each vehicle is animated only at those times for which that 
particular vehicle was on Chicago Avenue, rather than at all of the times for which any vehicle 
was found to be on Chicago Avenue.  IMPACT records these correspondences by maintaining a 
partially-resolved constraint system that includes combinations of values—particular vehicles 
associated with particular times, particular locations associated with particular vehicles and 
particular times, and so forth.  This partially-resolved constraint system is updated with each 
subsequent request that refers to previous values, possibly becoming more constrained with 
fewer value combinations retained.  In this manner, the system can process a sequence of 
requests such as the following: 

Which vehicles are on Chicago Ave between 10:20 AM and 10:25 AM? 
Are those vehicles traveling faster than 40 miles per hour at any of those times? 
Please animate those vehicles at those times. 
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In processing this sequence, the system first identifies vehicles on Chicago Avenue during the 
specified interval of time.  It then records a set of vehicle–time pairs: vehicles found to be on 
Chicago Avenue paired with times at which those vehicles were on Chicago Avenue.  Next, the 
system constrains this list of pairs to include only those vehicle–time combinations for which 
the vehicle was traveling faster than 40 mph.  Finally, the system animates the remaining, 
reduced set of vehicles and times. 

The Analyst’s Assistant also contains a mechanism for “assigning” sets of values to particular 
names.  If the user enters a request such as 

Remember those positions as the “possible meeting sites”. 
 
then the IMPACT system will create a separate record of the association between the name 
“possible meeting sites” and the positions most recently considered within preceding requests.  
The user may then modify the set of values assigned to that name with requests like 

Include site 1 in the possible meeting sites. 
Retain only those locations in the possible meeting sites. 
Please remove the monitored positions from the possible meeting sites. 

 
where “site 1” and “the monitored positions” are other, used-defined sets of positions.  
However, the associations of values and names such as these remain otherwise fixed, in line 
with common language usage.  As an example, if the user has declared a name “possible 
lookout vehicles” to correspond to a set of vehicles 

Please store those cars as the “possible lookout vehicles”. 
 
and then the user submits two follow-on requests in sequence 

Which of the possible lookout vehicles are within 100 meters of site 10 between 10:00 AM and 
10:10 AM? 

Which of the possible lookout vehicles are within 100 meters of site 15 between 10:30 AM and 
10:40 AM? 

 
the system will process each of these two requests independently, each time starting with the 
set of vehicles assigned to the name “possible lookout vehicles”. 

In addition to natural language reference handling for the Analyst’s Assistant, the system also 
handles graphical references to locations.  This occurs in two forms.  First, the user may click on 
a map position, which automatically updates the system’s record of most recently-concerned 
positions to correspond to that position.  This enables the user to employ natural language 
expressions such as “that position” or “there” to refer to the clicked position in subsequent 
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requests.  Second, the user may click on a listed position in a natural language response 
generated by the system.  This also updates the system’s record of most recently-concerned 
positions.  In this manner, the user may employ whichever mode of specification of positions is 
most suitable at a particular point in the analysis: literal coordinates, reference to a recently-
concerned position, reference to a named position, clicked position on the map, or clicked 
position in a natural language response. 

4. Conclusions 
The Analyst’s Assistant serves as a demonstration of functionality for collaborative human–
system interpretation of sensor data, with the system’s implementation grounded in language-
based representations at all levels of its processing.  From the supplied data expressed in terms 
of timestamped vehicle positions plus static road segment positions, the system computes 
states and changes in language-oriented attributes, and by comparing this computed scene 
information with language-based models of the temporal unfolding of various types of events, 
the system recognizes instances of those events.  Operations for performing event recognition, 
summarization, focusing of attention for the system, and other tasks are expressed internally 
using language, supporting the interpretation of user-submitted, free natural language requests 
and the generation of descriptive natural language responses. 

Two broad capabilities are exhibited by the Analyst’s Assistant.  The first concerns recognition 
of events and summarization of event sequences.  For this capability, it has been found to be 
quite useful to construct event models using the transition space representation, then match 
these event models to scene data using the “core–periphery” matching scheme.  Construction 
of the event models is straightforward, easily debugged, and sufficient to yield comprehensible 
explanations of the event recognition and summarization process applied to particular 
instances of scene data.  The second broad capability concerns support for collaboration 
between a human user and the system.  Providing a language-centered, mixed-modal user 
interface coupled with an appropriate request set allows the user to effectively partition human 
and software responsibilities according to relative abilities and context-dependent preferences 
of the user.  In particular, the user is able to schedule processing tasks for efficient execution by 
choosing between focusing steps, which prepare system capabilities for targeted interpretation 
of particular subsets of the data, with specific interpretation requests chosen to expedite the 
interpretation of activities within those focus contexts.  A flexible reference handling 
mechanism also helps reduce cognitive overload on the part of the user by making system-
maintained records of recently-concerned data items and results easily accessible to the user in 
subsequent interpretation steps. 
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There are a number of unfinished aspects of the Analyst’s Assistant.  Provided with the 
opportunity, we hope to extend this work by completing the following: 

• adding coverage of new event types: possible pick-ups and drop-offs of people and 
items, distinguishing “following” a vehicle from “tailing” or “chasing” it, interpreting 
larger activities like “canvassing” or “patrolling” an area; 

• fine-tuning the event models for maximal performance, given additional dataset 
examples for development and testing; 

• enabling the user to customize event models for recognition in particular situations and 
enabling the user to define new types of events for recognition, using language-
motivated descriptions of those events; 

• application of the Analyst’s Assistant to related types of datasets: vehicle movement 
data acquired through other types of sensors, air/sea/rail transport, and overhead 
observation of human activities; 

• generating more compact summaries, particularly with respect to reducing redundancy 
that arises from partially-overlapping event descriptions and incorporating natural 
language phrasings that lead to concise, readily comprehended event listings within 
summaries; also, user-controlled level of detail in summaries; 

• constructing explanations of system reasoning, in particular concerning why the system 
has or has not concluded that particular types of events have occurred in particular 
situations; 

• increasing the system’s coverage of alternative ways in which the user may express 
requests in natural language; 

• increasing the range of ways in which users may reference previously-mentioned 
quantities, including additional integration of reference-handling mechanisms for the 
natural language and graphical interaction modalities. 

A. Event Models Used within the Analyst’s Assistant 
The following 35 event models are defined within the Analyst’s Assistant.  The event models are 
listed here in a form that converts parts of the underlying Möbius to text and presents a 
graphical arrangement of changes, states and other assertions within each event model. All 
event types except those describing travel from one location to another location are used by 
the summarization capability.  Event types used to answer event-specific natural language 
queries are: accelerate or decelerate, move or not move, turn or not turn, travel a heading on a 
road, turn a direction, stop or proceed through or turn a direction at an intersection, make a 
short or medium-length or long stop, travel from the area within a distance of a position to the 
area within a second distance of a second position, follow a vehicle, and meet with a vehicle. 
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Movement Events 
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Intersection Events 
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Stopping Events 
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Traveling Events 
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Two-Vehicle Events 
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B. Sample Interpretation Sequence 
Following is a recorded interaction sequence with the Analyst’s Assistant, illustrating the 
interpretation of vehicle activities that have occurred within the 2 1/2 hour time period covered 
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by the system’s supplied dataset.  Included within the analyzed data segment is a physically-
enacted, simulated IED emplacement and detonation, and the goal of the interaction sequence 
here is to uncover portions of this included activity in a feed-forward manner, as if responding 
to real-time inflow of data. 

The interaction sequence begins with the user having just initialized a new session.  The system 
then presents an alert to the user: 

Alert: Suspicious activity at 9:30am near a possible cache at 101.932 W 33.512 N. 
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The user starts the analysis by assigning a natural language name to the coordinate position 
indicated by the alert, calling this location the “suspected cache”.  The Analyst’s Assistant 
allows its user to assign names to locations, vehicles, times, roads, and sets of these quantities.  
The names can then be used freely in subsequent natural language requests to the system. 
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Next, the user instructs the system to analyze all activity within a small radius of the suspected 
cache, over a 30-minute time period surrounding the time of the alert.  This is the “focus” step 
described in Section 3.3, and it causes the system to calculate relevant attribute states and 
changes within the specified spatial region and time interval, in preparation for subsequent 
event recognition.  Following this focus step, the system can perform either on-demand 
recognition of particular types of events in response to specific user requests, or it can perform 
broad event recognition and summarization in response to a more general request by the user.  
States and changes need not be recalculated for the specified region prior to each subsequent 
event recognition step concerning that region.  The focus step carried out here takes 
approximately 12 seconds to complete. 
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Following this focus step, the user requests a broad summary of events identified within the 
specified region.  The system searches for instances of 30 types of events, using the matching 
strategy described in Section 3.1, and then it applies the summarization strategy described in 
Section 3.2.  The result is a list of 12 event instances involving two vehicles, V509 and V240.  
The event recognition and summarization steps, in combination, take approximately 10 seconds 
to complete. 

Of interest among the listed events is the relatively long stop V509 has made on Clinton Ave, 
lasting about 13 minutes from 9:27 AM to 9:40 AM.  The other vehicle, V240, passes through 
the focus region but does not stop. 
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The next several steps illustrate a capability within the Analyst’s Assistant that allows the user 
to note significant locations, vehicles and times and then specify associations between these 
quantities.  The system can then display these associations later for review or reporting. 

First, the user specifies an association between vehicle V509 and the suspected cache. 
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Next, the user associates the suspected cache with the starting time of V509’s stop near that 
location. 
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The user then requests a display of the “activity graph”—the accumulated set of significant 
items and their associations.  In this case, the activity graph consists of simply the suspected 
cache and the associated vehicle and time. 
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The user then instructs the system to refocus its analysis on vehicle V509 over a 45-minute time 
period starting before V509’s stop on Clinton Ave and continuing for approximately 20 minutes 
after that stop.  This type of “focusing” operation is not limited to a specific spatial region, but 
rather extends to cover all activities conducted by the specified vehicle or set of vehicles during 
the specified time period.  For the request submitted here, the system takes about 17 seconds 
to complete its analysis. 
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This time, instead of asking the system to summarize all events for the focus region, the user 
submits a targeted request for instances of one type of event: traveling from a relatively long 
stop at one location to a relatively long stop at another location.  In response, the system 
reports that V509 has traveled from its original location near the suspected cache to a new 
location specified in coordinates.  This system takes about 2 seconds to respond to this request. 
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The user clicks on the travel destination coordinates in the system’s response and is given the 
option of placing a colored flag on the map at that location.  In this case, the user declines to 
place a flag on the map.  However, selection of the travel destination coordinates in itself 
primes this location to serve as a target of subsequent natural language references to a location 
of current interest—references like “that location” or “there”—using mechanisms described in 
Section 3.4. 
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An explicit reference of this sort is made next, with the user requesting that the system record a 
permanent name for the position referred to as “that location”.  The new name is “site 1”. 
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At this point, the user would like to discover what types of activities are taking place at V509’s 
destination point, “site 1”.  The user submits a request to focus the system’s analysis on a 
spatial region surrounding this location, for a period of time beginning just before V509 arrives 
at the site and continuing up to 10:00 AM. 
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The user then asks the system to identify all instances of a range of event types within the focus 
region and time interval, then summarize its findings.  The system reports 18 event instances, 
the last three viewable through scrolling of the output pane. 
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The 18 reported events involve three vehicles: V507, V509 and V258.  Of particular interest are 
the occurrences of V507 and V509 each stopping for approximately 9 minutes at this location, 
overlapping temporally and spatially with one another to an extent that is sufficient for the 
system to conclude that the cars are “meeting”.  V258 travels through the focus region but does 
not interact with either V507 or V509 in a significant way. 
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At this point, the user would like to be able to track the activities of both V509 and V507.  The 
user assigns a name to these two vehicles: the “suspicious vehicles”. 

 

 

  



54 
 

The user also creates a more informative name for “site 1”, calling this position the “meeting 
site”. 
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The user then submits requests, omitted here, instructing the system to associate the 
suspicious vehicles and the beginning time of their meeting with the “meeting site” and to 
associate the “suspected cache” with the “meeting site”.  The user then asks the system to 
display an updated version of its activity graph, containing the two locations and their 
associated vehicles and times. 
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At this point, the user is aware that V507 and V509 have engaged in a meeting and that V509 
has traveled to the meeting site from the suspected cache location.  The user does not know 
what V507 has done prior to the meeting, however.  The user could ask the system to focus on 
V507’s activity over a time period preceding the meeting, then summarize events that the 
system has observed.  Alternatively, the user can inspect the data stream directly by asking the 
system to display an animation of V507’s positions over a period of time.  The user does this, 
requesting an animation over a 30-minute time window ending just after V507 has arrived at 
the meeting site. 
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In the displayed animation, V507 is shown to be stationary at a location from the beginning of 
the recorded data segment, approximately 9:27 AM, to approximately 9:39 AM. 
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V507 then proceeds eastbound on 114th Street, then maneuvers through several other streets 
before reaching the meeting site. 
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The user clicks on V507’s initial position in this animation, creating a graphical marker at this 
point and enabling the position to be referenced in natural language requests. 
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The user then asks the system to name this new location the “rural site”. 
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The user then includes the rural site in the activity graph, associated with vehicle V507, the 
time of interest, and with the meeting site. 

At this point, the user returns to an interpretation of unfolding events, asking the system to 
analyze the two suspicious vehicles, V509 and V507, over a period going forward from their 
encounter at the “meeting site”, until 10:20 AM. 
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Once again, the user asks the system to recognize a specific, targeted type of event, rather than 
summarize all events.  In this case, the user asks whether either of the suspicious cars follows 
the other car during the focus interval.  The system responds that V509 follows V507 along a 
series of 9 street segments from 9:53 AM to 9:58 AM. 
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The user then continues with a question about where the suspicious vehicles are going.  The 
system responds that both vehicles travel from their positions near the meeting site to 
destinations close to one another, arriving around 9:58 AM, and that V509 subsequently travels 
onward from that location to another location, beginning at 10:08 AM and ending at about 
10:16 AM. 
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The user then selects the destination of V507 during the joint V507–V509 transit and asks the 
system to remember this location as the “stop site”. 
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The stop site is then linked to the meeting site and also associated with the two suspicious 
vehicles and their time of arrival at the stop site. 

The user also wants to note the final destination of V509.  To do this, the user opens a history 
pane in the user interface, navigates to the recent request–response pair concerning travel by 
V509 and V507, and selects the second destination of V509 from the recorded response. 

 

 

  



66 
 

The user then asks the system to remember this location as the “second rural site”. 
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After submitting requests to link the second rural site to the stop site and also to associate the 
second rural site with V509 and the time of V509’s arrival, the user asks the system to once 
again display its activity map. 

Reconstructing the activity, the user observes that V507 and V509 begin at different locations, 
with V509 stopped near the possible cache of the original alert. 
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Both vehicles then proceed to the meeting site, arriving around 9:44 AM. 
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From the meeting site, V509 follows V507 to a second site, the “stop site”, arriving at about 
9:58 AM.  From the stop site, V509 progresses to the second rural site, arriving approximately 
10:16 AM. 

 

 

At this stage in the analysis, the user has formed an interpretation of the overall activity in 
which V509 may have retrieved an Improvised Explosive Device or explosive-making materials 
at the cache, met with V507, progressed to a new site, then progressed to a site likely to be the 
location of IED emplacement, given that V507 has recently lingered at a site close to that 
position, prior to meeting with V509.  The user may then issue an alert so that the potential IED 
attack can be averted before it can be carried through to completion. 

References 
Borchardt, G. C. (1992). “Understanding Causal Descriptions of Physical Systems.” In 

Proceedings of the AAAI Tenth National Conference on Artificial Intelligence, 2–8. 



70 
 

Borchardt, G. C. (1994). Thinking between the Lines: Computers and the Comprehension of 
Causal Descriptions, MIT Press. 

Borchardt, G. C. (2014). Möbius Language Reference, Version 1.2, Technical Report MIT-CSAIL-
TR-2014-005, MIT Computer Science and Artificial Intelligence Laboratory. 

Burns, J. B., Connolly, C. I., Thomere, J. F., and Wolverton, M. J. (2006). “Event Recognition in 
Airborne Motion Imagery.” In Capturing and Using Patterns for Evidence Detection, 
Papers from the AAAI Fall Symposium, AAAI Press. 

Buxton, H. (2003). “Learning and Understanding Dynamic Scene Activity: A Review.” In Image 
and Vision Computing, Vol. 21, 125–136. 

Grice, H. P. (1975). “Logic and Conversation.” In Cole, P. and Morgan, J. L. (eds.), Syntax and 
Semantics, Volume 3: Speech Acts, Academic Press, 41–58. 

Hu, W., Tan, T., Wang, L., and Maybank, S. (2004). “A Survey on Visual Surveillance of Object 
Motion and Behaviors.” In IEEE Transactions on Systems, Man, and Cybernetics, Vol. 34, 
No. 3, 334–352. 

Katz, B. (1990). “Using English for Indexing and Retrieving.” In Artificial Intelligence at MIT: 
Expanding Frontiers, Vol. 1, Cambridge, Massachusetts, 134–165. 

Katz, B. (1997). “Annotating the World Wide Web Using Natural Language.” In Proceedings of 
the 5th RIAO Conference on Computer Assisted Information Searching on the Internet 
(RIAO ‘97), Montreal, Canada, 136–155. 

Katz, B., Borchardt, G., and Felshin, S. (2005). “Syntactic and Semantic Decomposition Strategies 
for Question Answering from Multiple Resources.” In Proceedings of the AAAI 2005 
Workshop on Inference for Textual Question Answering, 35–41. 

Katz, B., Borchardt, G., and Felshin, S. (2006). “Natural Language Annotations for Question 
Answering.” In Proceedings of  the 19th International FLAIRS Conference (FLAIRS 2006), 
Melbourne Beach, Florida, 303–306. 

Katz, B., Borchardt, G., Felshin, S., and Mora, F. (2007). “Harnessing Language in Mobile 
Environments.”  In Proceedings of the First IEEE International Conference on Semantic 
Computing (ICSC 2007), 421–428. 

Katz, B. and Levin, B. (1988). “Exploiting Lexical Regularities in Designing Natural Language 
Systems.”  In Proceedings of the 12th International Conference on Computational 
Linguistics (COLING '88), Budapest, Hungary. 

Lavee, G., Rivlin, E., and Rudzsky, M. (2009). “Understanding Video Events: A Survey of Methods 
for Automatic Interpretation of Semantic Occurrences in Video.” In IEEE Transactions on 
Systems, Man, and Cybernetics — Part C: Applications and Reviews, Vol. 39, No. 5, 489–
504. 

Miller, G. A. and Johnson-Laird, P. N. (1976). Language and Perception, Harvard University 
Press. 



71 
 

Narayanaswamy, S., Barbu, A., and Siskind, J. M. (2014). “Seeing What You’re Told: Sentence-
Guided Activity Recognition in Video.” In Proceedings of the 27th IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR 2014), to appear. 

Porter, R., Ruggiero, C., and Morrison, J.D. (2009). “A Framework for Activity Detection in Wide-
Area Motion Imagery.” In Rahman, Z.-U., Reichenbach, S. E., and Neifeld, M. A. (eds.), 
Proceedings Vol. 7341, Visual Information Processing XVIII. 

Siskind, J. M. (2003).  “Reconstructing Force-Dynamic Models from Video Sequences.” In 
Artificial Intelligence, 151, 91–154. 

Turaga, P., Chellappa, R., Subrahmanian, V.S., and Udrea, O. (2008). “Machine Recognition of 
Human Activities: A Survey.” In IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 18, No. 11, 1473–1488. 

 

 

 




