
Compositional RL Agents That Follow
Language Commands in Temporal
Logic
Yen-Ling Kuo1,2*, Boris Katz1,2 and Andrei Barbu1,2

1CSAIL, MIT, Cambridge, MA, Unites States, 2CBMM, MIT, Cambridge, MA, United States

We demonstrate how a reinforcement learning agent can use compositional recurrent
neural networks to learn to carry out commands specified in linear temporal logic (LTL). Our
approach takes as input an LTL formula, structures a deep network according to the parse
of the formula, and determines satisfying actions. This compositional structure of the
network enables zero-shot generalization to significantly more complex unseen formulas.
We demonstrate this ability in multiple problem domains with both discrete and continuous
state-action spaces. In a symbolic domain, the agent finds a sequence of letters that satisfy
a specification. In a Minecraft-like environment, the agent finds a sequence of actions that
conform to a formula. In the Fetch environment, the robot finds a sequence of arm
configurations that move blocks on a table to fulfill the commands. While most prior work
can learn to execute one formula reliably, we develop a novel form of multi-task learning for
RL agents that allows them to learn from a diverse set of tasks and generalize to a new set
of diverse tasks without any additional training. The compositional structures presented
here are not specific to LTL, thus opening the path to RL agents that perform zero-shot
generalization in other compositional domains.

Keywords: reinforcement learning, linear temporal logic, compositionality, zero-shot generalization, multi-task
learning

1 INTRODUCTION

To reliably interact with humans in physical world, robots must learn to execute commands that are
extended in time while being responsive to changes in their environments. This requires the robot to
jointly represent the symbolic knowledge in language and the perceptual information from the
environment as well as generalize to different commands and maps.

A popular representation to encode complex commands is linear temporal logic, LTL (Pnueli,
1977). Commands expressed in LTL encode temporal constraints that should be true while executing
the command. Executing such commands is particularly difficult in robotics because integration is
required between the complex symbolic reasoning that finds satisfying sequences of moves for an LTL
command and data-driven perceptual capabilities required to sense the environment.While individual
formulas can be learned by deep networks with extensive experience, we demonstrate how to compose
together tasks and skills to learn a general principle of how to encode all LTL formulas and follow them
without per-formula experience. We demonstrate how to integrate the learning abilities of neural
networks with the symbolic structure of LTL commands to achieve a new capability: learning to
perform end-to-end zero-shot execution of LTL commands.

Given a command represented as an LTL formula, our approach turns that formula into a specific
recurrent deep network which encodes the meaning of that command; see Figure 1. The resulting

Edited by:
Giovanni Luca Christian Masala,

Manchester Metropolitan University,
United Kingdom

Reviewed by:
Yunchao Tang,

Zhongkai University of Agriculture and
Engineering, China
Navid Razmjooy,

Independent Researcher, Ghent,
Belgium

*Correspondence:
Yen-Ling Kuo
ylkuo@mit.edu

Specialty section:
This article was submitted to
Robot and Machine Vision,

a section of the journal
Frontiers in Robotics and AI

Received: 01 April 2021
Accepted: 16 June 2021
Published: 19 July 2021

Citation:
Kuo Y-L, Katz B and Barbu A (2021)
Compositional RL Agents That Follow

Language Commands in
Temporal Logic.

Front. Robot. AI 8:689550.
doi: 10.3389/frobt.2021.689550

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6895501

ORIGINAL RESEARCH
published: 19 July 2021

doi: 10.3389/frobt.2021.689550

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.689550&domain=pdf&date_stamp=2021-07-19
https://www.frontiersin.org/articles/10.3389/frobt.2021.689550/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.689550/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.689550/full
http://creativecommons.org/licenses/by/4.0/
mailto:ylkuo@mit.edu
https://doi.org/10.3389/frobt.2021.689550
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.689550

network takes as input the current observations of the robot,
processes it with a co-trained feature extraction network, and
predicts which actions will satisfy the formula. This
compositional approach ties together neural networks and
symbolic reasoning allowing any LTL formula to be encoded
and followed, even if it has never been seen before at
training time.

We show that the proposed compositional structure is
compatible with many planning domains and algorithms,
ranging from discrete state-action space with A2C agents to
continuous state-action space with SAC agents. In three
different domains, Symbol, Craft, Fetch, we demonstrate that
the learned agent can execute never-before-seen formulas. The
Symbol domain is more akin to Boolean satisfiability, where an
accepting string must be generated for an LTL formula. The Craft
domain is a simplified Minecraft introduced by Andreas et al.
(2017) to test the integration with robotics; see Figure 2 for an
example of the network in Figure 1 executing a command in the
Craft domain. The Fetch domain is an environment adapted from
OpenAI FetchPickAndPlace (Plappert et al., 2018) to test how the
proposed approach can be extended to continuous state-action
space. In all cases, we compare against baselines to demonstrate
that each part of our model plays a key role in encoding temporal
structures. All components of our networks are learned end-to-end
from input observations to output actions, in a process that
automatically disentangles the meaning of each sub-network
allowing us to compose sub-networks together in novel ways.

In all of our experiments, we generate random LTL formulas
and train an RL agent to follow those formulas. We find that as
with SAT instances, random LTL formulas tend to be very easy
and quite similar to one another. To that end, we develop a
mechanism for generating hard and diverse LTL formulas. This is
generally useful for other large-scale experiments on following
commands that can be encoded as LTL formulas and for checking
the accuracy and performance of LTL toolboxes.

This work makes the following contributions:

1. a trained deep network for following LTL commands in both
discrete and continuous space,

2. end-to-end zero-shot execution of novel LTL commands,
3. co-training the feature extraction with the LTL controller, and
4. an investigation of the properties of random LTL formulas.

This work can be seen as a novel approach to 1) integrating
perceptual information with symbolic knowledge and 2) composing
the policies of multi-task reinforcement learning agents in a
principled manner according to a particular logic. While we only
discuss LTL here, this approach suggests how other logics might
similarly be encoded to process the observed environment to create
new models to zero-shot generalization in reinforcement learning.
The best aspects of symbolic reasoning in robotics are compatible
with deep networks when both are correctly formulated. We focus
on command following, but in the future such methods could be
used to monitor or describe behavior.

FIGURE 1 | The proposed compositional recurrent network that encodes one formula, ◇(red ∧○blue). This formula corresponds to a command such as
“Eventually move the red block into the tray and then move in the blue block.” (A) shows the syntax tree parsed from the formula. This tree provides the structure of the
network. (B) is an example configuration of the Fetch domain, the Fetch robot is trained to move blocks of different colors in and out of the tray (i.e., the red rectangular
area on the table). (C) shows the internal structure of the composed network.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6895502

Kuo et al. Compositional RL for LTL Commands

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

This manuscript starts by discussing the related research in
learning and decomposing tasks expressed in LTL formulas. We
then present the method to compose any given LTL formula as a
policy network and explain how we can employ existing RL
algorithms to train such policy networks. Next, we demonstrate
the zero-shot generalization capability of the learned networks in
both discrete and continuous domains. We conclude the
manuscript with discussions about the pros and cons of the
proposed approach as well as the future directions to extend
this approach to make robots more reliable.

2 RELATED WORK

The most related work to what we present here is in the area of
multi-task learning and task composition. Previous work has
learned finite state machines in conjunction with robot
controllers (Araki et al., 2019). The focus in that prior work is
on training extensively with one LTL formula and then following
that formula; here we show how to zero-shot follow novel LTL
formulas on new maps.

A related line of research shows how to accelerate learning of
new LTL formulas by shaping rewards according to the structure
of the formulas (Camacho et al., 2019). Here we provide no
examples of novel formulas whereas this prior work requires tens
of thousands to millions of training steps, in the Craft domain, for
each new formula.

Compositions of LTL sub-formulas have been investigated
before. Sahni et al. (2017) show how to compose together
controllers for LTL formulas. The formulas considered are
small: the largest is well below the mean size of our formulas.
Only four formulas are tested thoroughly. Some zero-shot
generalization is achieved to four formulas which have the

same structure as those in the training set or which are
carefully stitched together by hand given knowledge of their
semantics. No general algorithm is given for how to encode an
arbitrary LTL formula, nor is it possible to automatically train on
a set of generated formulas.

LTL has been used to decompose tasks into sub-tasks, learn
policies for each of the subtasks, and to improve the reliability and
generalization capabilities of robots (Toro Icarte et al., 2018).
Their approach must re-learn each subtask; in essence, the
structure of the LTL formulas themselves plays no role. Here
we show a more extreme approach where tasks encoded in LTL
are composed together and directly followed without any task-
specific training. Moreover, Toro Icarte et al. (2018) consider only
10 tasks which are paired with training data are considered,
whereas here we execute thousands of new tasks. We adopt a
variant of the Craft domain in Andreas et al. (2017). The Craft
domain was originally developed for multi-task RL.

Recently, the structure of LTL formulas have been used to
design the models (Araki et al., 2021; Vaezipoor et al., 2021).
Similar to us, Vaezipoor et al. (2021) use the syntax tree to
construct a graph neural network to interpret a formula. They
assume an accurate event detector in both training and testing
time to track the progress of the LTL formula. Here we only need
an event detector at training time to provide reward signals and
can predict actions at testing time without such information.
Araki et al. (2021), on the other hand, decompose a formula into
subgoals, safety propositions, and event propositions, and create a
SMDP that learns options to achieve the subgoals as well as a
meta-policy to compose the subgoals. Their approach requires
retraining for a few iterations for any unseen formulas.

Safety-critical systems benefit from following constraints
expressed as LTL formulas (Alshiekh et al., 2018). Shielded
reinforcement learning prevents agents from entering states

FIGURE 2 | The model executing a novel command that was not shown at training time on a novel map. Maps and formulas are randomly generated. In this case
the robot executes □ gem∧◇ factory. (A) At testing time, the agent selects the trained sub-networks to compose a network to predict the action for each time step. (B)
The robot successfully executes the command by going to the gem, picking it up, and, while holding on to the gem, going to the factory.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6895503

Kuo et al. Compositional RL for LTL Commands

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

which violate constraints that can be expressed in LTL. This is
critical for many real-world applications such as autonomous cars
that can adapt to new environments. The approach presented here
is complementary; it could provide an effective compositional
shield that encodes new constraints. In the future, one might
even be able to learn what constraints are required to shield a
system. Several publications investigate combining Markov
decision processes and Q-learning with constraints specified in
LTL (Fu and Topcu, 2014; Sadigh et al., 2014; Wen et al., 2015).

Prior work has attempted to augment learning to satisfy
constraints with policies derived from those constraints (Li
et al., 2017; Li et al., 2018). This is a finer-grained analysis of
the formulas than we perform here. While this speeds up
learning, each formula requires significant training data.

3 MODEL

The model we introduce is presented in Figure 1. It is
inherently compositional, i.e., the structure of the model
reflects the parsing structure of the input LTL formula. In
this section, we describe how the compositional network can
be constructed. Then, we present the reward structure that
encourages the agent to follow the LTL formulas. Finally, we
discuss how to train this compositional network with two deep
reinforcement learning algorithms: Advantage Actor-Critic
and Soft Actor-Critic.

3.1 Composing LTL Formulas as Networks
Each LTL formula is parsed into a tree where the nodes are the
operators or predicates; see Figure 1A. Operator and predicates
are replaced by recurrent networks and are connected with one
another according to the parse tree of the LTL formula. Every LTL
formula generates a unique network that encodes the meaning of
that specific formula.

The model is structured in such a way that knowledge flows
between operators and predicates; see Figure 1C. Each operator
and predicate in the formula is represented by a network, shown

as a black node, selected from a trained collection of sub-
networks. Sub-networks are RNNs which maintain hidden
states over time, shown as orange arcs. Each sub-network
takes as input features extracted from the observations of the
robot using a co-trained network, shown in dotted purple lines.
At every time step, the current state of all operators is decoded
using a linear layer and passed to its children, shown in blue. This
allows models to communicate information about the current
sequence of steps to their children. The next state of each sub-
network is decoded by a linear layer and passed to its parents,
shown in green. This is the only form of communication between
sub-networks. Parents let their children know about the current
state sequence and children let the parent update their
representations based on observations. Finally, the state of the
root node is decoded by the actor and the critic into distribution
over the value of the actions the robot can take at the current time
step. Crucially, due to the compositional representation
employed, novel formulas that were never seen at training
time can be encoded and followed on novel configurations.
This couples the power of deep networks to learn to extract
features and engage in complex behaviors with knowledge about
the structure of formulas, to perform zero-shot execution.

We use the intuition developed in Kuo et al. (2020a) that
models which are composed of sub-networks can disentangle the
meaning of words in a sentence without direct supervision. In
other words, the agent is never told what ○ is supposed to mean as
opposed to gem. Yet this can be done automatically, since from the
definition of LTL formulas we understand that the computation
required for every single operator or predicate should be the same.
A learning method that attempts to find the most parsimonious
explanation of the meaning of these shared sub-networks should
then hone in on their meaning as components of LTL formulas by
virtue of being forced to share computation when the definition of
LTL formulas demands it. This intuition makes clear why the
model presented here can recompose the sub-networks into new
formulas: it has the capacity to execute recurrent computations, it
shares computations in a way that the definition of LTL requires,
and it is rewarded when it replicates the computations that are
required to satisfy LTL formulas.

3.2 Reward Structure
At training time, we supervise the agent with random LTL
formulas. Each formula is converted to a Buchi automaton
using Spot (Duret-Lutz et al., 2016). Note that we only
consider and evaluate LTL with finite traces (De Giacomo and
Vardi, 2013) here, meaning that these automata are interpreted as
having the semantics of finite automata. Each training episode
proceeds with the agent taking a sequence of actions. The
resulting world after taking each action is evaluated against
the automaton. The predicates in the possible transitions of
the automaton are evaluated. If the predicates hold, the agent
is given a small, 0.1, reward. Staying in the same non-accepting
state lowers the reward at a reward decay rate 0.8 for all three
domains. If the predicates do not hold, the agent has violated the
semantics of the LTL formula and it receives a large negative, −1,
reward. If the predicates hold and the agent is in an accepting
state, it receives a large positive, 1, reward. This reward structure

FIGURE 3 | A 7 × 7 Craft domain example showing all the various
elements available in the domain. The robot is in the top right corner and is
controlled by the RL agent presented in this manuscript.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6895504

Kuo et al. Compositional RL for LTL Commands

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

encodes the notion that agents should follow an automaton which
encodes a particular LTL formula, although agents do not have
access to the automaton directly. We employ curriculum learning
to sort generated formulas and provide shorter formulas first.
Short formulas are more likely to accept more strings and their
shallower corresponding models make error assignment more
reliable.

3.3 Training RL Agents
In prior work, when learning two different policies, the networks
for those two policies would be unrelated to one another. The
compositional networks presented here can be seen as a
principled way to share weights between these networks
informed by the structure of LTL formulas. All operators and
symbols share weights both within a formula and between
updates, i.e., there is only a single model for ○ or gem.

We train the network using actor-critic methods. Actor-critic
models learn a value function, the critic, that determines the score
of a state, and a policy, the actor, which determines what to do at a
given state. These could in principle be two separate networks.
The critic network evaluates state, s at time t, Vv(st) with learned
parameters v. The actor network evaluates the effect of action, a,
at time t, given a state st , Aθ(st , at), with learned parameters θ.

3.3.1 A2C-Based Agent for Discrete Space
In discrete state-action space, we employ an Advantage Actor-
Critic (A2C) (Sutton et al., 2000; Mnih et al., 2016) agent. A2C
models use the fact that the actor is computing an advantage, a
change in value between two states, to estimate the actor using the
value function of the critic. Practically, this means that a single
network is required from which both the actor and the critic can
be computed. The compositional model shown in Figure 1 is this
shared network between the actor and the critic. The parameter
updates of this network follow the standard methodology for
training recurrent networks with A2C presented in Mnih et al.
(2016).

3.3.2 SAC-Based Agent for Continuous Space
In continuous state-action space, we employ a Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) agent. SAC is an off-policy deep RL
algorithm in maximum entropy framework that improves
exploration and robustness in continuous state-action space.
The critic samples actions from a replay buffer to estimate the
gradients. In the case of training compositional recurrent
networks, instead of having one single replay buffer, we need
to have separate replay buffers for different formulas as the
structure of hidden states are different for different formulas.
The parameter updates of this network follow the SAC algorithm
presented in Haarnoja et al. (2018).

4 EXPERIMENTS

We demonstrate the model in three domains. The first, Symbol, is
designed to stress the symbolic reasoning abilities of RL agents.
An LTL formula is provided to an agent which must immediately
produce a satisfying assignment to that formula as a series of

symbols. The second, Craft, is designed to stress the multi-task
execution capabilities of RL agents in a robotic environment. An
LTL formula and a map containing a robot are provided to an
agent which must immediately find a sequence of moves that
result in behavior of the robot that satisfies the LTL command.
The third, Fetch, is designed to test the RL agents’ capabilities of
executing sequences of actions in a continuous state-action space.
An LTL formula and a 3D environment containing a robot are
provided to the RL agent. The robot arms can move continuously
in the 3D space where the agent needs to find a sequence of joint
movements to manipulate the objects to satisfy the LTL
command.

4.1 Training and Testing Setups
We generate various datasets to evaluate the proposed model and
three ablations of the model.

For the two discrete domains, Symbol and Craft, we generated
four datasets for each domain to include a diverse set of formulas
in training and testing. A training dataset is first generated. Note
that even in the case of the training set, our method has a
significant advantage over prior work: our training set
contains thousands to tens of thousands of formulas which are
all learned, as opposed to learning one or a small handful of
formulas. Then three test sets are generated of increasing
difficulty. A test set which has roughly the same statistics as
the training set in terms of formula length, i.e., 1–10 predicates
with an average of 8, one which has 10–15 predicates, with an
average of 13, and one which has 15–20 predicates with an
average of 18. These test sets stress the generalization
capabilities of the model and demonstrate that even when
faced with formulas that are well beyond any that have been
seen before in terms of complexity, the compositional nature of
the model often leads to correct executions.

For the continuous Fetch domain, we similarly have shorter
training formulas and longer testing formulas. Because there are
only three objects in the Fetch domain, the difficulty of a formula
is measured by the number of actions the robot needs to take and
number of objects the robot must manipulate. The training set
contains up to two events and the robot needs to manipulate up to
two objects. The test sets contain the formulas the agent has not
seen in the training set. The first test set has the same statistics as
the training. The second test set is much harder. It requires the
robot to carry out three or four events to move the objects.

4.2 Experiment Domains
4.2.1 Symbol Domain
The Symbol domain is introduced here as a new challenge for
multi-task LTL-capable agents. It removes the map and focuses
on generating accepting strings for an LTL formula. The map can
be a crutch for agents, e.g., crowded maps can have few paths
making even random exploration efficient. The absence of
particular resources on the map can also significantly simplify
the problem, e.g., if there is no gem on the map, the agent can’t
mistakenly pick up a gem. In the Symbol domain, given a fixed
inventory of symbols, the agent predicts the assignment of
symbols at each time step, a sequence of fixed length that will
be accepted by the LTL formula.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6895505

Kuo et al. Compositional RL for LTL Commands

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

In the experiments reported here, we use an environment that
has five symbols and requires satisfying sequences of length 15.
Changing the number of symbols does make the problem more
difficult but not substantially so. This is because the approach
presented here separately learns networks for each symbol
making it robust to increasing the number of symbols; adding
a symbol corresponds to adding a single sub-network.

Data generation is complicated by the fact that generating
random LTL formulas produces uninteresting and easily satisfied
instances. In a related domain, this is a well-known property of
random instances of Boolean satisfiability, SAT, problems
(Selman et al., 1996). We adapt solutions from this
community to generating interesting collections of LTL
formulas that are diverse and difficult to satisfy.

The generation process begins by sampling a formula from a
uniform distribution over trees with one parameter: the prior
distribution over the number of elements (predicates and
symbols). This formula is converted to a Buchi automaton
using Spot (Duret-Lutz et al., 2016). For a fixed n, the number
of strings up to length n that the formula accepts is computed
using a dynamic programming algorithm. This recursively
computes the number of accepted strings for each time step,
N. All formulas which have an acceptance ratio of more than
0.0001% are rejected as being too easy. Most randomly generated
formulas tend to accept almost all strings. This provides hardness
but does not guarantee variety.

In a second step, a second formula is generated as a function of
the first formula. This uses a random process that picks a random
subtree of the formula and replaces it with a new, also random,
subtree. If the second formula is rejected, the generation process
restarted based on the acceptance criteria above. If accepted,
random accepted strings are sampled from the first formula and
verified against the second. If more than 10% of strings that satisfy
the first formula also satisfy the second, it is rejected as not diverse
enough.

This may appear to be a rather laborious process, but without
ensuring both hardness and diversity, we found that the
generated formulas are uninteresting and fairly homogeneous
in what strings or robot moves they accept. This is evidenced by
the fact that without this process, there often existed a single
string or sequence of robot moves which was accepted by the
majority of generated formulas. After this more complex
generation process, the resulting dataset is far more
challenging, as is reflected in the experiments section by the
low performance of baseline methods. The statistics of the

generated datasets are shown in Table 1. The generation
process is heavily biased against short formulas as they tend to
be overly permissive and overlap with one another in meaning.

4.2.2 Craft Domain
We use the Minecraft-like world already used by several prior
multi-task learning reinforcement learning publications (Andreas
et al., 2017; Toro Icarte et al., 2018). See Figure 3 for an example
map that contains all of the elements of the Craft domain. It mixes
together unmovable objects (trees, tool sheds, workbenches, and
factories) with resources that can be manipulated (silver, grass,
gold, and gems). We generate random Craft maps with random
initial positions for the robot arm. The environment is 4-
connected with an additional “use” action for the arm which
picks up or drops the resource. The overall intent is that resources
can be collected and manipulated through multiple processing
stages resulting in a range of interesting tasks.

We extend this environment with a recycling bin so that agents
can discard items. The four trash cans hold different resources:
gold, grass, silver, and gems. This allows the agents to satisfy
formulas that require owning an item for only part of the action.

Unlike in the Symbol domain, where most random formulas
were trivially satisfied without our procedure to find hard and
diverse LTL instances, in the Craft domain, most formulas are
trivially unsatisfiable. Constraints on where the robot is at any
one time and the fact that it must traverse the map step by step,
make even basic formulas such as □GEM, the gemmust always be
held, unsatisfiable in all but the most fortunate situations. If the
robot happens to be next to the gem, this formula can be satisfied
by picking the gem up. If the robot is not next to the gem, no one
action the robot can take will satisfy this formula.

We could employ rejection sampling and resample formulas
until they can be satisfied. This would be wasteful and produce the
same results as the following transformation. Since formulas are
unsatisfiable in Craft largely because the robot does not have time
to satisfy them, we introduce a transformation that gives the robot
time. Whenever the robot needs to satisfy a predicate, we
transform that predicate into “closer(predicate) ∪ predicate,”
which states that the robot must get closer to its goal until it
is reached. To make following this command feasible, the robot is
given an additional feature which is theManhattan distance to the
predicate. This does not otherwise change the semantics of any of
the formulas, nor does it make zero-shot generalization easier as
the robot must still understand the command as a whole. The
transformation also does not count toward the formula lengths

TABLE 1 | Statistics of the generated formulas used in the Symbol domain and the Craft domain. Each test set is summarized using the mean and standard deviation of the
number of symbols in the formula, total tree nodes in the parse of the formula, depth of the parse of the formula, and the states in the Buchi automata for those formulas.

Formula set Symbols Tree nodes Tree depth Automata states

Symbol (train) 3.28 ± 0.49 9.14 ± 1.16 4.49 ± 0.96 4.21 ± 0.52
Symbol (test, 1–10) 3.36 ± 0.50 9.18 ± 1.13 4.70 ± 0.94 4.20 ± 0.45
Symbol (test, 10–15) 4.64 ± 0.77 13.05 ± 1.49 6.04 ± 1.14 5.32 ± 1.75
Symbol (test, 15–20) 6.11 ± 0.73 17.99 ± 1.42 8.05 ± 1.56 6.69 ± 3.44
Craft (train) 2.76 ± 0.63 7.94 ± 1.49 4.35 ± 1.04 3.40 ± 0.77
Craft (test, 1–10) 2.78 ± 0.64 7.83 ± 1.46 4.22 ± 0.98 3.37 ± 0.74
Craft (test, 10–15) 4.33 ± 0.82 12.94 ± 1.54 6.62 ± 1.05 3.73 ± 0.96
Craft (test, 15–20) 6.06 ± 0.75 18.14 ± 1.31 7.94 ± 1.37 4.44 ± 1.96

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6895506

Kuo et al. Compositional RL for LTL Commands

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

we produce; it merely gives the robot some time. Indeed, this
transformation actually makes learning harder because the agent
does not receive any meaningful feedback if it runs out of time. It
has no way of knowing if an episode failed because it could not
reach a goal in time or because some constraint was violated. In
the future, we intend to investigate how to make the causes of
failure more transparent to the agents, thereby hopefully speeding
up learning.

4.2.3 Fetch Domain
We modify the OpenAI FetchPickAndPlace (Plappert et al.,
2018), an environment which is used to evaluate several
reinforcement learning algorithms in continuous state-action
space, to make it compatible with multi-task learning. In our
Fetch domain, there are three blocks of different colors, red, blue,
and green, on the table the robot can interact with. We generate
random initial positions of the blocks. A corner of the table is
marked with the red rectangle to indicate the tray area. The goal
of the robot is to move the blocks in and out of the tray given the
instructions specified as LTL formulas. See Figure 1 for an
example of table configuration and the robot.

We use three predicates in this environment. Each predicate
represents one block. If a predicate is true, it indicates that the
corresponding block should be in the tray, otherwise, outside of
the tray. This can be viewed as multiple events to move the blocks.
To specify the sequence of events, we use the SALT (Bauer et al.,
2006) assertion language to synthesize the events and convert the
assertions into LTL formulas. This allows us to specify the
meaningful events and the number of events the robot should
carry out easily. The sampling procedure works as follows. We
first sample the number of events that should be in the assertion.
Then, we sample the event from the three predicates in the
sequence of events. If a predicate is included in an earlier
event, the one sampled for the later event should be negated.
This means the robot can only move a block out of the tray only if
that block has already beenmoved in the tray in the earlier events.
Similarly, we also randomly sample the “imply” operator to
connect two sets of events where the left-hand-side of imply
needs to be true in an earlier event. This sampling procedure
generates assertions such as “assert/red; !red; green/” (move the
red block in the tray, move it out, and then move the green block
in). The reward is given by the automaton converted from the
sampled SALT assertions.

This environment is more challenging than the regular Fetch
pick-and-place, and it is also harder to succeed here than in the
Craft domain, as the robot needs to produce the correct event
sequence and manipulate objects at the same time. To give the
robot more time to satisfy a predicate, similar to the Craft
domain, we also apply the transformation “closer(predicate) ∪
predicate” to indicate that the robot needs to move its gripper
closer to the block it should interact with before it can move
the block.

4.3 Generated Formulas
Four sets of formulas are generated for the experiments in the
Symbol and the Craft domains; see Table 1. The training set for
each is generated with the same mechanism as (test, 1–10),

i.e., containing formulas that have 1 and 10 symbols
(i.e., operators and predicates). Training and test sets are
randomly generated but verified to be disjoint. The test sets
are used for testing zero-shot execution. To further
demonstrate that this approach generalizes, we produce two
additional test sets of even longer formulas than those seen in
the training set. The 10–15 and 15–20 sets have longer formulas
with, 10 to 15 symbols and 15 to 20 symbols, respectively.

For the Fetch domain, the number of events in an assertion
corresponds to the size of the automaton. The training set
contains eight formulas with up to two events; four require
the robot to manipulate one object, another four require the
robot to manipulate two objects. We have four test sets in the
Fetch domain. The in-domain test set is the same as the training
formulas. We have three out-of-domain test sets, two formulas in
each set, that have no overlaps with training formulas. They have
increasing difficulties as well. The first one has the same number
of events as in training but refers to a different object and only one
object needs to bemoved. The second one is similar to the first but
the robot has to move two objects. Finally, the test set with longer
formulas which contains 3–4 events in which the robot needs to
move one or multiple objects depending on the transitions to take
in the automaton.

4.4 Hyper-Parameters
We consider only LTL formulas with finite traces (De Giacomo
and Vardi, 2013) here, although the presented method is also
compatible with executing LTL formulas in infinite time
horizons. The interpretation of the results for LTL without a
finite horizon is considerably more complex and requires new
metrics because it must consider when a model fails, not just if it
fails. In our experiments, if at the end of a rollout, the model is not
in an accepting state, it is considered to have failed and given zero
reward as if it had taken an action that violated the semantics of
the LTL formula.

In all domains, we use a gated recurrent unit, GRU (Cho et al.,
2014), for each sub-network that represents an operator or
predicate. A single linear layer per sub-network is always used
as the decoder that transmits information from children to
parents and a single linear layer transmits information from
parents to children in the model structure.

While training, the next move is an action from a distribution
over possible actions. While testing, a deterministic policy
chooses the optimal move. We observed a significant
performance drop if the agents chose deterministically at
training time or stochastically at test time. The rest of hyper-
parameters are different for different domains depending on if it
is discrete or continuous state-action space.

4.4.1 Symbol and Craft Domains
We train the Advantage Actor-Critic, A2C, model with RMSprop
(Tijmen Tieleman, 2012) optimizer for both domains. Agents
must explore the space of symbols and moves thoroughly since
our data generation process ensures that the LTL formulas are
strict and few operations result in accepting states. To encourage
this, we set a higher entropy weight of 0.1 and set the reward
decay, c, to 0.9 during training. The hidden sizes for GRUs are 64

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6895507

Kuo et al. Compositional RL for LTL Commands

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

for both domains. The Symbol domain has only one hidden layer
and the Craft domain has two hidden layers since it is
significantly more complex. We perform rolloutes for 15 time
steps at every iteration.

4.4.2 Fetch Domain
We train the Soft Actor-Critic, SAC, model with Adam (Kingma
and Ba, 2015) optimizer at initial learning rate to be 5 × 10−3.
When exploring the policy in continuous space, the SACmodel is
sensitive to the reward magnitudes. We run a grid at scale 1–15
and set a reward scale 5 to exploit the reward signal. The replay
buffer size is 5 × 104 shared across all formulas. When sampling
from replay buffer to update gradients, we make sure the agent
only samples the memory generated with the current training
formula.

The hidden size in this domain is 64 with only one hidden
layer because the dimensions of the input observations are lower
than the Craft domain. In the Fetch domain, the robot takes the
distance between the gripper and the blocks, the rotation of
blocks, and the distance between the blocks and the tray as input.
After every gradient step, we use soft target update to update the
target Q-network with the target smoothing coefficient set to
0.005. We perform rollouts for 100 time steps at every iteration,
and set the reward decay (c) to a higher value, 0.99, as moving
objects to a target location takes more time in continuous space.

4.5 Baselines
Most similar to our approach, the LTL2Actions framework
(Vaezipoor et al., 2021) also parses an LTL formula into a
syntax tree to construct a network for multi-task learning.
However, they assume that an accurate event detector is
available at training and testing time to progress the active
sub-formulas. Our method only uses an event detector at
training time to check satisfaction of a formula in order to
provide rewards but the agent does not have access to the
event detector during testing. Because of the assumption of
event detectors, we cannot directly compare our model to
LTL2Actions. Instead, we test three baselines in all domains to
understand the importance of each component we add to our
model. The “no structure, no language” baseline takes the current
state of the world and attempts to predict what action the agent
should take next. It is a standard RL agent with vanilla recurrent

network and does not observe the LTL formula at all. This is the
performance an off-the-shelf agent would have if it only knows
the environment but doesn’t know about the language command.
The “no structure” baseline takes as input the LTL formula, learns
an embedding of that formula into a single 32-dimensional
vector, and then attempts to follow it. To create the language
embeddings, each operator and predicate in the formula is
encoded as a one-hot vector. Sequences of these one-hot
vectors are passed to an RNN which is co-trained to produce
the embedding of the formula, much like the CNN that produces
an embedding of the Craft environment. The formula is provided
to every sub-network just like the observations of the
environment. This is the performance an off-the-shelf agent
would have if it does not understand compositional structure
of the formulas. The “no time” baseline is an ablation of our
model; it is structured but is missing any recurrent connections,
i.e., all symbols are feed-forward networks instead of GRUs. This
is the performance an off-the-shelf non-recurrent RL agent would
have because it cannot keep track of its progress through the
formula.

4.6 Results
The performance of the Symbol domain is reported on formula
sets of 10,000 training formulas, while the Craft domain, which is
considerably slower, is reported on 4,000 training formulas; see
Table 2. Formulas which are perfectly executed are reported as
successes, any errors are considered a failure.

“In domain” refers to training and testing on the same
formulas, it has the same size as the set of training formula
set. Note that this task is already far more complex than what
existing methods can do as the model must learn to execute
thousands of LTL formulas given the formula as input. “In
domain” set has 98% accuracy for Symbol and 82% accuracy
for Craft. Ablations of our method show that without the
particular compositional structure imposed the performance is
two-third for “no structure” and even lower for the other
ablations. Every part of our model is critical to performance as
ablating any part away hurts performance tremendously. No
previous method can learn to execute such formulas.

We then test out-of-domain test sets, each contains 100
formulas, to demonstrate that our model can zero-shot
execute new formulas. The performance on formulas that have

TABLE 2 | The performance of our model finding satisfying actions for LTL formulas. Each column summarizes the average success rate and standard deviation over three
runs for each test set.

In domain Out of domain

Length 1–10 Length 1–10 Length 10–15 Length 15–20

Symbol domain - - - -
No structure, no language 0.14 ± 0.03 0.16 ± 0.01 0.13 ± 0.02 0.10 ± 0.02
No structure 0.82 ± 0.15 0.84 ± 0.08 0.48 ± 0.08 0.27 ± 0.04
No time 0.05 ± 0.04 0.03 ± 0.02 0.02 ± 0.01 0.03 ± 0.02
Ours 0.98 ± 0.01 0.90 ± 0.01 0.57 ± 0.03 0.42 ± 0.04
Craft domain - - - -
No structure, no language 0.47 ± 0.03 0.51 ± 0.02 0.48 ± 0.08 0.44 ± 0.12
No structure 0.61 ± 0.07 0.62 ± 0.04 0.47 ± 0.10 0.44 ± 0.13
No time 0.24 ± 0.16 0.23 ± 0.07 0.18 ± 0.01 0.18 ± 0.03
Ours 0.82 ± 0.09 0.82 ± 0.13 0.72 ± 0.19 0.64 ± 0.08

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6895508

Kuo et al. Compositional RL for LTL Commands

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

similar statistics to the ones in the training degrades only slightly
when testing on new formulas, and is shown in the second
column of Table 2, “Out of domain (1–10).” This shows zero-
shot generalization and indicates that in all cases our method
generalizes well. Finally, two increasingly complex out of domain
scenarios are tested. One in which has formulas that are 1.5 times
as long, and one with formulas that are twice as long. Note the
poor performance of the baseline methods and ablations; our
method performs better.

Absolute performance is a function of howmany formulas our
model is trained with. Several thousand formulas must be seen
before generalization to new formulas and longer formulas is
reliable, see Figure 4. The Symbol domain on 1,000 and 10,000
training formulas can reach similar in-domain performance but a
25% performance difference for out of domain (65 vs. 90%
accuracy). As the number of training formulas increases,
generalization improves. To extrapolate how many formulas
would be needed for a given level of performance, we used a
least squares fit to a logarithmic function, which had R2 of 0.99.
This predicts that performance would approach 100% at around
24,000 formulas. In other words, seeing 24,000 formulas that
contain up to 10 predicates and operators is likely to be enough to
perfectly generalize to all formulas of that length. To put this into
context, with five symbols in the Symbol domain presented here,

there are approximately 1010 formulas of length 10. This means
that our network sees only one-millionth of all possible formulas
before generalizing, not including its ability to generalize to
longer formulas. Similarly in the Craft domain, 1,000 training
formulas result in 59% accuracy out of domain, while 4,000
training formulas result in 70% accuracy out of domain.
Together, these results show that our method learns to
generalize formulas and to execute them zero-shot.

The performance of the Fetch domain is reported based on
the number of events and blocks necessary to satisfy the
command; see Table 3 for the success rate for 50 runs per
formula. Our method can succeed 36% of time when a
command can be satisfied by moving one block and 12% of
time when it is required to move two blocks. Out of domain,
when formula statistics are similar to the training set, our agent
can generalize well for the commands involving one block but
much worse for commands involving two blocks. This is
because when the robot interacts with one object, it may
move other objects to inconvenient locations, which makes
it harder for the following events to be satisfied. For example, if
the block to be picked up in the next event is accidentally
pushed off the table, the robot has no way to recover and carry
out the next event in sequence. In the future, we intend to
investigate how to avoid these failure modes by providing

FIGURE4 | Performance of themodel as the number of training formulas increases. The x-axis is the number of model updates performed, each unit is 200 updates
for Craft and 500 updates for Symbol. Note that any minor error made while executing the formulas was considered a failure.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 6895509

Kuo et al. Compositional RL for LTL Commands

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

feedback to the agent during command execution. Ablations of
our method show that learning how to carry out commands in
sequence in continuous domains is challenging, none of the
existing methods can reliably execute commands and
generalize to unseen formulas.

5 CONCLUSION

We developed a principled approach to encoding the temporal
relationships required to follow LTL specifications in a
compositional recurrent network. The pros and cons of the
proposed approach are summarized as follows.

Pros: The compositional networks are cotrained with the
features extraction network. This allows robots to learn the
features that are useful for planning tasks. The compositional
structure enables zero-shot generalization to unseen LTL
formulas. Our experiments show that perfect generalization on
both Symbol and Craft appears to be within reach.

Cons: Similar to other RL algorithms, training remains
computationally expensive. Depending on the experiment and
number of formulas, training the compositional networks took
between 13 h and 3 days for Symbol and Craft and 6 days for
Fetch on an Nvidia Titan X. Note that while relatively
computationally intensive, such networks need only be trained
once for any domain; due to their ability to zero-shot generalize to
new formulas.

The proposed RL agents represent a new and powerful type of
multi-task learning, where learning occurs on one set of tasks and
generalizes to all others. Coupled with a semantic parser, this
model could execute linguistic commands that refer to temporal
relations; Wang et al. (2020) use the compositional model
presented here to provide supervision to learn a LTL semantic
parser. While we believe that such network architectures are
useful for other logics, certainly for first-order logic as it is a
subset of LTL, how to extend these ideas to other logics such as
CTL*, modal logics, or second-order logics is unclear. This has a
critical impact on language-driven robotics. Even if a model does
not explicitly parse sentences into one of these formalisms, it
must still internally possess the mechanisms that allow
generalization in these domains. Theoretically characterizing
the structures and conditions that enable neural networks to
generalize to new problems that bear some compositional
relationship to previously-seen problems is a new and exciting
area of research.

Adapting to a 3D domain proved difficult, likely because
exploration is significantly harder as the dimensionality of the
planning problem increases. Adopting a hierarchical approach
could ameliorate this problem. In the future, we also intend to
investigate what additional priors, curricula, or training
algorithms can speed up learning so we can extend to 3D
domains in a more effective time frame.

As it stands, the reward function designed here to supervise
the RL agent is powerful but lacks some critical feedback. For
example, the agents do not know what went wrong; this is the
failure mode we identified when interacting with multiple objects
in the Fetch domain. Some feedback about the constraint that was
violated could localize errors within particular sub-networks or
feature extraction networks. This would be akin to telling
someone that they should keep the blue block on the table
because they need to pick it up next–clearly very useful
information. Turning this intuition into a practical learning
mechanism remains an open problem that would make the
robots much more reliable.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Y-LK and AB designed the model, experiments, and wrote the
manuscript. Y-LK implemented the model and performed the
analysis. BK and AB provided support and guidance on
experimentation, writing, and analysis. All authors contributed
to the article and approved the submitted version.

FUNDING

This work was supported by the Center for Brains, Minds and
Machines, NSF STC award 1231216, the Toyota Research
Institute, the DARPA GAILA program, the ONR Award
No. N00014-20-1-2589, and the CBMM-Siemens Graduate
Fellowship. This research was sponsored by the
United States Air Force Research Laboratory and the

TABLE 3 | The success rate of our model finding satisfying actions for LTL formulas in Fetch domain. The formulas for in-domain and out-of-domains are grouped by number
of event and number of blocks the robot should interact with during the command execution.

In domain Out of domain

1–2 events 2 events 1–2 events 2 events 3–4 events

1 blocks 2 blocks 1 block 2 blocks 1–2 blocks

Fetch domain - - - - -
No structure, no language 0.05 0.00 0.04 0.00 0.00
No structure 0.05 0.01 0.05 0.00 0.00
No time 0.02 0.00 0.00 0.00 0.00
Ours 0.36 0.12 0.41 0.01 0.08

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 68955010

Kuo et al. Compositional RL for LTL Commands

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

United States Air Force Artificial Intelligence Accelerator and
was accomplished under Cooperative Agreement Number
FA8750-19-2-1000. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of the United States Air Force or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

ACKNOWLEDGMENTS

This manuscript is an extension of “Encoding formulas as deep
networks: Reinforcement learning for zero-shot execution of LTL
formulas” (Kuo et al., 2020b) by the same authors published at the
Conference on Intelligent Robots and Systems (IROS) 2020. The
manuscript contains over 30% new material, including additional
technical details and a new domain, Fetch, which required
substantive advances.

REFERENCES

Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., and Topcu, U. (2018).
“Safe Reinforcement Learning via Shielding,” in Thirty-Second AAAI Conference
on Artificial Intelligence, New Orleans, Louisiana, USA (AAAI Press).

Andreas, J., Klein, D., and Levine, S. (2017). Modular Multitask Reinforcement
Learning with Policy Sketches. In Proceedings of the 34th International
Conference on Machine LearningVolume 70 (JMLR. org), 166–175.

Araki, B., Li, X., Vodrahalli, K., DeCastro, J., Fry, M. J., and Rus, D. (2021). The
Logical Options Framework, in Thirty-eighth International Conference on
Machine Learning, Virtual.

Araki, B., Vodrahalli, K., Leech, T., Vasile, C.-I., Donahue, M. D., and Rus, D. L. (2019).
“Learning to Plan with Logical Automata,” in Proceedings of Robotics: Science and
Systems, Freiburg, Germany (Robotics: Science and Systems Foundation).

Bauer, A., Leucker, M., and Streit, J. (2006). “SALT-structured Assertion Language
for Temporal Logic,” in International Conference on Formal Engineering
Methods (Springer), 757–775. doi:10.1007/11901433_41

Camacho, A., Icarte, R. T., Klassen, T. Q., Valenzano, R., and McIlraith, S. A.
(2019). “LTL and beyond: Formal Languages for Reward Function Specification
in Reinforcement Learning,” in Proceedings of the 28th International Joint
Conference on Artificial Intelligence, 6065–6073.

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On the
Properties of Neural Machine Translation: Encoder-Decoder Approaches. in
EighthWorkshop on Syntax, Semantics and Structure in Statistical Translation,
Doha.

De Giacomo, G., and Vardi, M. Y. (2013). “Linear Temporal Logic and Linear
Dynamic Logic on Finite Traces,” in Twenty-Third International Joint Conference
on Artificial Intelligence (Association for Computing Machinery), 854–860.

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., and Xu, L.
(2016). “Spot 2.0 — a Framework for LTL and ω-automata Manipulation,” in
Proceedings of the 14th International Symposium on Automated Technology
for Verification and Analysis (ATVA’16), Chiba, Japan, October 17-20, 2016.

Fu, J., and Topcu, U. (2014). “Probably Approximately Correct MDP Learning and
Control with Temporal Logic Constraints,” in Proceedings of Robotics: Science
and Systems.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). “Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic
Actor,” in International Conference onMachine Learning (PMLR), 1861–1870.

Kingma, D. P., and Ba, J. (2015). “Adam: A Method for Stochastic Optimization,”
in International Conference for Learning Presentations (ICLR), Ithaca, NY
(arXiv.org).

Kuo, Y.-L., Katz, B., and Barbu, A. (2020a). “Deep Compositional Robotic Planners
that Follow Natural Language Commands,” in International Conference on
Robotics and Automation, Paris, France, 31 May-31 Aug. 2020 (IEEE).
doi:10.1109/ICRA40945.2020.9197464

Kuo, Y. L., Katz, B., and Barbu, A. (2020b). “Encoding formulas as deep networks:
Reinforcement learning for zero-shot execution of LTL formulas,” in
International Conference on Intelligent Robots and Systems (IROS), Las
Vegas, NV, October 24, 2020–January 24, 2021, 5604–5610. (IEEE).
doi:10.1109/IROS45743.2020.9341325

Li, X., Ma, Y., and Belta, C. (2018). “A Policy Search Method for Temporal Logic
Specified Reinforcement Learning Tasks,” in 2018 Annual American Control

Conference (ACC), Milwaukee, WI, USA, 27-29 June 2018 (IEEE), 240–245.
doi:10.23919/ACC.2018.8431181

Li, X., Vasile, C.-I., and Belta, C. (2017). “Reinforcement Learning with Temporal
Logic Rewards,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vancouver, BC, Canada (IEEE), 3834–3839.
doi:10.1109/IROS.2017.8206234

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).
“Asynchronous Methods for Deep Reinforcement Learning,” in International
conference on machine learning, 1928–1937.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., et al.
(2018).Multi-goal Reinforcement Learning: Challenging Robotics Environments
and Request for Research. arXiv preprint arXiv:1802.09464.

Pnueli, A. (1977). “The Temporal Logic of Programs,” in 18th Annual
Symposium on Foundations of Computer Science (IEEE), 46–57.
doi:10.1109/SFCS.1977.32

Sadigh, D., Kim, E. S., Coogan, S., Sastry, S. S., and Seshia, S. A. (2014). “A Learning
Based Approach to Control Synthesis of Markov Decision Processes for Linear
Temporal Logic Specifications,” in 53rd IEEE Conference on Decision and
Control (IEEE), 1091–1096. doi:10.1109/CDC.2014.7039527

Sahni, H., Kumar, S., Tejani, F., and Isbell, C. (2017). “Learning to Compose Skills,”
in Proceedings of NIPS 2017 Deep RL Symposium.

Selman, B., Mitchell, D. G., and Levesque, H. J. (1996). Generating Hard Satisfiability
Problems. Artif. intelligence 81, 17–29. doi:10.1016/0004-3702(95)00045-3

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). “Policy
Gradient Methods for Reinforcement Learning with Function Approximation,”
in Advances in neural information processing systems, 1057–1063.

Tijmen Tieleman, G. H. (2012). Lecture 6.5-RMSprop, Coursera: Neural Networks
for Machine learningTech. Rep.. University of Toronto.

Toro Icarte, R., Klassen, T. Q., Valenzano, R., and McIlraith, S. A. (2018).
“Teaching Multiple Tasks to an RL Agent Using LTL,” in Proceedings of
the 17th International Conference on Autonomous Agents and Multiagent
Systems), 452–461.

Vaezipoor, P., Li, A., Icarte, R. T., and McIlraith, S. (2021). Ltl2action: Generalizing
LTL Instructions for Multi-Task Rl. Thirty-eighth International Conference on
Machine Learning, Virtual.

Wang, C., Ross, C., Kuo, Y.-L., Katz, B., and Barbu, A. (2020). “Learning a Natural-
Language to LTL Executable Semantic Parser for Grounded Robotics,” in
Conference on Robot Learning (CoRL) (arXiv:2008.03277).

Wen, M., Ehlers, R., and Topcu, U. (2015). “Correct-by-synthesis Reinforcement
Learning with Temporal Logic Constraints,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany
(IEEE), 4983–4990. doi:10.1109/IROS.2015.7354078

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Kuo, Katz and Barbu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org July 2021 | Volume 8 | Article 68955011

Kuo et al. Compositional RL for LTL Commands

https://doi.org/10.1007/11901433_41
https://doi.org/10.1109/ICRA40945.2020.9197464
https://doi.org/10.1109/IROS45743.2020.9341325
https://doi.org/10.23919/ACC.2018.8431181
https://doi.org/10.1109/IROS.2017.8206234
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/CDC.2014.7039527
https://doi.org/10.1016/0004-3702(95)00045-3
https://doi.org/10.1109/IROS.2015.7354078
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Compositional RL Agents That Follow Language Commands in Temporal Logic
	1 Introduction
	2 Related Work
	3 Model
	3.1 Composing LTL Formulas as Networks
	3.2 Reward Structure
	3.3 Training RL Agents
	3.3.1 A2C-Based Agent for Discrete Space
	3.3.2 SAC-Based Agent for Continuous Space

	4 Experiments
	4.1 Training and Testing Setups
	4.2 Experiment Domains
	4.2.1 Symbol Domain
	4.2.2 Craft Domain
	4.2.3 Fetch Domain

	4.3 Generated Formulas
	4.4 Hyper-Parameters
	4.4.1 Symbol and Craft Domains
	4.4.2 Fetch Domain

	4.5 Baselines
	4.6 Results

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

