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a b s t r a c t 

We demonstrate how to construct a new class of visual assistive technologies that, rather than extract 

symbolic information, learn to transform the visual environment to make it more accessible. We do so 

without engineering which transformations are useful allowing for arbitrary modifications of the visual 

input. As an instantiation of this idea we tackle a problem that affects and hurts millions worldwide: pho- 

tosensitivity. Any time an affected person opens a website, video, or some other medium that contains an 

adverse visual stimulus, either intended or unintended, they might experience a seizure with potentially 

significant consequences. We show how a deep network can learn a video-to-video transformation ren- 

dering such stimuli harmless while otherwise preserving the video. This approach uses a specification of 

the adverse phenomena, the forward transformation, to learn the inverse transformation. We show how 

such a network generalizes to real-world videos that have triggered numerous seizures, both by mistake 

and in politically-motivated attacks. A number of complimentary approaches are demonstrated including 

using a hand-crafted generator and a GAN using a differentiable perceptual metric. Such technology can 

be deployed offline to protect videos before they are shown or online with assistive glasses or real-time 

post processing. Other applications of this general technique include helping those with limited vision, 

attention deficit hyperactivity disorder, and autism. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

The visual world is not equally accessible to everyone. Even

ith perfect eyesight you may be limited in your ability to perceive

he environment around you. For example, those with autism spec-

rum disorder often have difficulty perceiving facial expressions

hile those with photosensitive seizure disorders can have adverse

eactions to certain kinds of flashes and patterns. The effects of this

an range from causing feelings of isolation, losing access to impor-

ant information about the physical and social environment, loss of

uality of life, all the way to life-threatening seizures. Much prior

ork has been symbolic, focusing on communicating the state of

he world to a listener by extracting needed information and pre-

enting it to them. Instead, we demonstrate how, with little super-

ision, one can automatically learn to manipulate the visual envi-

onment in order to make it safer and more accessible by learning

ideo-to-video transformations. While we primarily focus on pho-

osensitive seizure disorders due to their high impact on viewers,
∗ Corresponding author. 

E-mail addresses: abarbu@mit.edu , andrei@0xab.com (A. Barbu). 
1 Barbu developed the idea and drafted the manuscript. Banda implemented the 

ethods. The authors jointly edited the submission. 
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he techniques presented can be adapted for other applications 2 .

reliminary work on enhancing face perception is presented in the

iscussion. 

Photosensitive seizure disorders are often, but not always, a

orm of epilepsy where certain kinds of visual stimuli, primarily re-

eating patterns and flashes, can trigger seizures [1] . They impact

illions worldwide, roughly 1 in every 40 0 0 people, with many

aving abnormal EEGs without necessarily experiencing seizures

ut sometimes showing other symptoms such as migraines [2] .

hildren are more likely to be affected than adults, for reasons that

re unclear at present. Such stimuli have been used in attacks, such

s defacing the American epilepsy foundation website with videos

rafted to trigger seizures. Recently, politically-motivated attacks

ave attempted to target reporters [3,4] using Tweets which re-

ulted in seizures. Put simply, if there was a visual filter that would

noculate stimuli, these disorders would be significantly mitigated. 

This is no easy task as the range of harmful stimuli is broad.

his problem follows the general pattern seen in computer vision

here the forward instance of the task – creating adverse stimuli –

s easy, while the inverse instance – fixing adverse stimuli – is far
2 Source code for this submission is available online at http://github.com/abarbu/ 

hotosensitivity- video- to- video . 
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Fig. 1. Two general ways to learn transformations that create more accessible vi- 

sual worlds. (a) A hand-crafted oracle or a GAN can learn to insert harmful stimuli 

in videos. The accessibility transformation can then be automatically learned to in- 

vert this operation. Enough untransformed data ensures that innocuous stimuli are 

not affected. This is the approach taken here for photosensitive seizure disorder. (b) 

An automated means to evaluate the output of a transformation, for example us- 

ing humans on Mechanical Turk or using neural networks as models of the visual 

system, can directly supervise the transformation. This is the approach taken in the 

preliminary results on enhancing face recognition. Potentially, neuroimaging could 

provide this feedback directly, although we do not explore that alternative here. 
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more difficult and even ill-posed. In addition, corrections must be

applied with a light touch to not degrade the experience for others

who may not have photosensitive seizure disorders. This is partic-

ularly important since many do not know that they are sensitive

to flashes or patterns, and may want to be preemptively protected.

Upon exposure, one can become more sensitive to such stimuli un-

derscoring the importance of being proactive. Wide-spread pho-

tosensitivity testing is not conducted for this reason, along with

the fact that most of the time most content providers avoid such

flashes as they are generally annoying to users. We demonstrate

neural networks which learn transformations of videos that miti-

gate flashes and patterns while preserving the structure and qual-

ity of videos, without feature engineering, to make the visual en-

vironment safer for all. 

Guidelines to mitigate photosensitivity have existed since the

1990s, in part, due to an incident in Japan. Children watching an

episode of Pokemon were exposed to around four seconds of full-

screen bright red-blue flashes at 12 Hz. This caused 685 hospi-

tal visits with around 200 hospital admissions, primarily children,

most of whom had never experienced a seizure before [5] . The

guidelines consist of hand-crafted rules, such as disallowing large

high-luminance red-blue flashes between 3 Hz and 49 Hz. Such

guidelines are imperfect, must be followed by each content pro-

ducer (periodically major movies accidentally include such flicker),

and do not meet the needs of every user. They are far less effective

with new online media where even errors like incorrectly encoded

videos can create flashes. We envision that in the future users will

run full-screen accessibility transformations to improve and safe-

guard their media. 

Hand-crafted filters that attenuate flashes have existed for sev-

eral decades. Most significantly, Nomura et al. [6] created an adap-

tive temporal filter which reduces flicker at 10–30 Hz. These de-

vices are imperfect; it is difficult to capture notions such as the fact

that red-blue and white-black flickers have different rages, that

flicker may occur in many different ways, and that patterns can

be just as disruptive as flicker. 

We propose a method to automatically learn filters that are ro-

bust with respect to different kinds of patterns, frequencies, and

sizes in the field of view; see Fig. 1 . We show three methods to

train such video-to-video transformations without specifying what

the transformation should be. First, using an oracle which can take

videos and insert harmful stimuli. Second, using a GAN that learns

to insert harmful stimuli. And third, using a model for the hu-

man visual system which can predict which stimuli are harmful.

A fourth method is in principle possible, but we do not implement

or discuss it in detail: using neuroimaging one could gather addi-

tional training data for the transformation and even perhaps train

without any user responses at all. 

In each case, a neural network takes as input a short video and

learns to transform it into an innocuous video. For the first two
ases, the network is trained on videos taken from YouTube, likely

ot to be particularly problematic, and asked to recover those orig-

nal videos after they have been augmented to contain problem-

tic stimuli. For the third case, we take as input problematic stim-

li and learn to transform them into stimuli that the visual sys-

em will consider acceptable. Regardless of the overall structure,

 network and objective function are specified (rather than the

recise transformation) allowing one to discover new features and

atterns. With more explainable networks this might contribute

o understanding how an adverse stimulus causes problematic re-

ponses. Additionally, the methods are adaptable to other accessi-

ility issues. 

This paper makes several contributions: 1) a neural network

hat takes as input videos and produces versions that miti-

ate flashes rendering them safer for those with photosensitive

pilepsy, 2) a means to train such a network without specifying

he precise transformation the network should learn, 3) two ap-

roaches which augment videos either using a hand-coded oracle

r a GAN that learns such transformations and allows the auto-

ated use of unlimited amounts of video data from the web with-

ut any annotations, 4) an approach that uses differentiable ap-

roximations of the human visual system to recover this transfor-

ation, 5) a novel architecture that builds on U-Net using stacked

onvolutional LSTMs to transform videos, 6) the general approach

f transforming videos to enhance or suppress features in videos

hat are detrimental or difficult to recognize. This approach is ap-

licable to other domains such as improving emotion recognition

or those with autism or learning to suppress distractors for those

ith ADHD. 

. Related work 

Sequence-to-sequence models have been employed to caption

ideos [11–13] , and to recognize actions in videos [14,15] , although

his is a video-to-text transformation. Increasing the resolution of

ideos by fusing together multiple video sources has also benefited

rom such approaches [16] . Optical flow transforms videos into

ow fields, a transformation that can be automatically learned [17] .

etworks can be used to predict future frames [18] and predict

ow physics will affect objects [19] . Text-to-audio transformations

ave enabled speech synthesis [20] . Video-to-video transforma-

ions can increase spatial and temporal resolution [16] . 

Since single-image transformations have seen significant pop-

larity, we discuss only a few related publications. Style transfer

etworks learn to apply a visual style provided one or more ref-

rence images [21] . Image segmentation transforms images into

ensely labeled counterparts [22,23] . Similar ideas have been ap-

lied in robotics to enhance the realism of simulated scenes and

nable transfer to real-world settings [24,25] . More generally, tech-

iques such as CycleGANs have enabled arbitrary image-to-image

ransformations [26] for many domains. 

Leo et al. [27] provide a thorough and recent review of com-

uter vision for accessibility. A few hand-crafted video-to-video

ransformations have been considered in the past, see Table 1 for

n overview. Farringdon and Oni [28] record which objects were

een in prior interactions and cue a user that they have already

een those objects thereby enhancing their memory. Damen et al.

7] highlight important objects allowing users to discover on their

wn which objects are useful for which tasks. Betancourt et al.

29] review a rich first person view literature with a focus on wear-

ble devices. 

Tools have been created to detect segments of a video which

an be problematic for those with photosensitivity [1,30,31] . Signal

rocessing has been used to create filters that can eliminate some

orms of flashing [32] . Such filters are difficult to create as making

roblematic stimuli is much easier than detecting and fixing them.
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Table 1 

Related work on creating visual transformations for accessibility. These take as input images 

or videos, are carefully hand-crafted to help certain populations overcome particular disabil- 

ities, or perform particular tasks. We present a generalization of these methods where the 

transformation is automatically learned rather than hand-crafted for a specific disability or 

individual. 

Task/Disability Publication Approach 

Photosensitivity Nomura et al. [6] Filter attenuates 10–30 Hz flashes 

Memory loss Damen et al. [7] Object detector and reminders 

Navigation Stoll et al. [8] Render depth maps as audio 

Dyslexia Rello and Baeza-Yates [9] New font shapes and sizes 

Color blindness Simon-Liedtke and Farup [10] Many daltonization transformations 
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lue-tinted lenses in many cases increase the threshold at which a

timulus is problematic [33] . 

As Leo et al. [27] point out, computer vision has so far been

sed to replace particular human abilities by developing algo-

ithms that perform those tasks and provide users with symbolic

nformation about the environment. For example, commercial sys-

ems such as OrCam primarily extract text features, object proper-

ies, and face identities from videos and present them in an inter-

ctive manner to a user. A few notable exceptions exist. We pro-

ide a short summary of these in Table 1 . For example, approaches

hich convert depth maps into auditory cues to aid navigation

8,34] . While not explicitly a video-to-video transformation, Rello

nd Baeza-Yates [9] present fonts that help those with dyslexia.

altonization [10] is an image-to-image transformation that makes

mages easier to understand for those with limited color vision.

uch hand-crafted transformations show the value of the general

pproach of transforming the visual world. To our knowledge, ours

s the first work that builds on these successes to learn arbitrary

ransformations that make videos accessible thereby opening up

his line of work to helping many more people with varied acces-

ibility issues. 

. Method 

We separate our approach into two parts: a forward/synthesis

ass which automatically creates a dataset consisting of pairs of

ideos – original videos and videos that are transformed to hide

r highlight some feature – and an inverse pass which learns a

ideo-to-video mapping. In the discussion section, we will describe

everal other potential methods, including preliminary results of

 method which can dispense with the forward pass, replacing

t with a differentiable computational model for part of the hu-

an visual system. We explore two complimentary ways to cre-

te the forward pass: specifying the transformations to be applied

anually and training a GAN [35] that learns to apply the trans-

ormation. We employ three types of networks which can learn

ideo-to-video transformations: a bidirectional convolutional LSTM 

hat learns embeddings of the video and then decodes a modified

ideo [15] , a novel architecture that combines a U-Net with a bidi-

ectional stacked LSTM [23] , and an adapted spatio-temporal au-

oencoder [36] . Our main contribution is not the specifics of any

ne network, although each of the networks is well-adapted for

ash mitigation; rather the approach of learning video-to-video

ransformations for accessibility. 

Next, we will describe each of the approaches and how they

ave been adapted to safeguarding videos. In each case, we take

xed-size snippets of a video as input, 6 4x6 4 pixel volumes that

onsist of 101 frames, transform them, then learn the inverse

ransformation. These snippets are extracted from random videos

ownloaded from YouTube. While it is unlikely that any one video

rom YouTube will have an adverse stimulus, it is still possible, and
e rely on the robustness of the neural networks to learn despite

his minor source of error in the training data. 

.1. Forward pass 

This operation is the equivalent of video synthesis or render-

ng in computer vision – creating videos which contain adverse

timuli or, in the more general case, which hide useful informa-

ion. Since the forward pass is easier to specify and construct, we

rovide both a manual and automatic method of doing so. Note

hat if enough data could be collected naturally, this dataset cre-

tion pass might be unnecessary, or might be augmented with

eal-world data. Being able to generate data automatically means

hat we merely specify the desired behavior which then provides

nlimited data for a network to learn to replicate that behavior. 

The purpose of the forward pass is only to enable the acqui-

ition of the inverse transformation. It is not an end in and of

tself meaning that it can be noisy and approximate as long as

t provides enough constraints and data to eliminate undesirable

ransformations. This is unlike prior work in many other areas of

ssistive computer vision where a noisy or approximate approach

ould lead to misreporting events to a user. 

.1.1. Manual transformations 

Much research has explored the precise conditions under which

hotosensitive disorders are triggered [6,37–39] . The likelihood

hat a flash will be problematic is a function of its frequency,

avelength, intensity, and size in the field of view. Flashes above

 Hz are widely problematic although 4–5% of those who are af-

ected can be triggered by flashes as low as 1–2 Hz [38] . Wave-

ength and intensity interact in a way that is not yet well char-

cterized although it is known that flashes of equivalent intensity

re more problematic if they are red/blue flashes, wavelengths of

60–720 nm. While the size of an event is important, flashes of

nly 1–2 ◦ in the visual field can trigger an adverse reaction; more-

ver such flashes can do so from the periphery even if subjects

o not fixate on them. Flashes need not be unitary; they can ag-

regate from small flashes distributed throughout the visual field.

oreover, while usually only flashes are discussed, patterns such

s moving gratings can be equally problematic. Here we use flashes

s a shorthand but also include moving gratings and other pat-

erns. 

We used this body of knowledge to create a generator that

akes as input video clips and modifies them to include flashing

nd problematic patterns. It encodes the above guidelines and ran-

omly inserts such features separately in the RGB channels, inten-

ity channel, the HSV color space, and by modifying the distribu-

ion of wavelengths in a video. Crucially, we insert stimuli both

bove the threshold at which they are problematic and below that

hreshold. A combination of above- and below-threshold examples

nables learning a transformation that preserves the detail in in-

ocuous videos and corrects problematic videos. This step could in
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Fig. 2. An overview of the stacked LSTM U-Net architecture. Each convolutional 

layer uses 3 × 3 convolutions while each LSTM layer has 64 units. Convolutional 

LSTMs have 3 × 3 filters. We perform 2 × 2 pooling and 2 × 2 upsampling while for- 

warding the feature map from the contracting path into the expanding path. The 

contracting path retains the information necessary to analyze a scene, the LSTMs 

process and remember that information over time, while the expanding path along 

with the forward connections reconstruct the image. 
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principle be tuned to a specific user, a critical need given the large

population that is significantly more sensitive to such flashes. 

3.1.2. Generative adverserial networks 

Separately from creating a generator encoding our prior knowl-

edge about how problematic stimuli are created, we can measure

how problematic a stimulus is regardless of how it was created.

We take advantage of this to create a GAN that generates new

problematic stimuli in ways that a generator constructed by a hu-

man would not, thus adding robustness to our approach. To build

this network, we adopt the approach of Wu et al. [40] and John-

son et al. [41] who introduce a perceptual loss. This is a network

which measures the quality of an image or video whose output can

be added to the loss function of a GAN to ensure that the resulting

images are more visually appealing. In our case, we construct a de-

tector, much like those of Harding and Jeavons [1] , Vanderheiden

[31] and Park et al. [30] , which takes as input a video and pro-

duces a score—the likelihood that the video is problematic. Unlike

that previous work, we construct this detector from differentiable

operations. In essence, this is a CNN operating over videos which

provides a perceptual loss for photosensitivity. 

This allows us to employ a GAN to produce videos. A GAN con-

sists of a generator and a discriminator. The generator and dis-

criminator are convolutional networks that take as input video vol-

umes. The generator transforms its input video while the discrimi-

nator attempts to determine if the result has some desirable prop-

erty, for example being hard to distinguish from some collection

of videos. As described above, we create a linear combination be-

tween the loss of the discriminator and a perceptual loss for pho-

tosensitivity. Crucially, our loss is differentiable (we will discuss

potential differentiable losses for other applications in Section 5 ),

and it allows for selecting for videos that are both above and below

the threshold at which flashing becomes problematic. This means

that the generated videos are a mixture of videos that should be

preserved as they are, and videos that should be transformed and

made safe by the inverse pass. 

3.2. Inverse pass 

The inverse pass is the focus of our effort s. It transf orms unsafe

videos into safe videos with minimal loss in quality and without

compromising videos when no unsafe stimuli are present. We first

create a large corpus of videos which is repeatedly transformed

by the forward pass as described above. These triples of origi-

nal videos, modified videos, and metrics about how determinetal

the applied modifications were, are used to acquire the inverse

transformation. We present three methods for learning this trans-

formation: a bidirectional LSTM in Section 3.2.1 , a novel stacked

LSTM U-Net in Section 3.2.2 , and a spatio-temporal autoencoder in

Section 3.2.3 . The range of possible sequence-to-sequence transfor-

mations that could be employed is vast. 

3.2.1. Residual bidirectional LSTMs 

This first network is by design shallow and relatively sim-

ple, serving to demonstrate how well such methods work even

with few parameters. The following two networks are signifi-

cantly larger and more complex. Long short term memory, LSTM,

[42] networks are recurrent neural networks that integrate reason-

ing across time with a gated memory unit. Input videos are pro-

cessed frame-by-frame by a CNN with 4 × 4 convolutions having

just 4 filters followed by batch normalization and RELU activation.

A bidirectional convolutional LSTM [43] takes as input this embed-

ding for each frame of a video, updates its internal state, and pre-

dicts a new frame feature vector. Bidirectional LSTMs have the abil-

ity to integrate information from both the future and the past po-

tentially allowing them to more accurately detect stimuli such as
ashes and changing patterns. A final layer consists of a 3 × 3 con-

olution with 3 filters, one for each color channel, that produces

 residual added to the original input. Residuals have been shown

o be far easier to learn, requiring the network to learn and repre-

ent only the difference between the input and the desired output

ather than needing to embed the entire high-dimensional input.

ecause of its small size, this network learns quickly from few ex-

mples but then has difficulty adapting to the more complex forms

f flashing and patterns produced by the GAN. 

.2.2. Stacked LSTM U-Net 

Next we adapt the U-Net architecture [23] to video-to-video

ransformations; see Fig. 2 . U-Net is a popular approach to im-

ge segmentation which finds low-dimensional embeddings for an

nput image and then decodes those embeddings into a segmen-

ation of the image. It consists of two paths, a contracting path

hat lowers the dimensionality of the input and an expanding path

hat raises it. The outputs of the contracting path are forwarded to

he expanding path at each step, much like the residual was used

n the network described in the previous section but doing so be-

ween internal layers not just at the input and output layers. The

ontracting path and expanding path contain the same number of

onvolutional layers, in this case two 3 × 3 convolutions, followed

y downsampling in the contracting path and upsampling in the

xpanding path. Rather than predicting a segmentation map, we

redict an RGB image per frame, and add a 3 × 3 convolutional

ayer after the contracting path to predict this image. This would

e a 1 × 1 convolution if segmenting the image. 

Between the contracting and the expanding path, at the point

here each frame has been reduced to a low-dimensional embed-

ing, we use four stacked convolutional LSTMs [43] to process that

mbedding. These used 3 × 3 convolutions with 64 units to pro-

ide long-term memory. Intuitively, the contracting path discovers

mportant features, the LSTMs combine these with features from

arlier frames, and then the expanding path creates a new frame.

his network is shallower than the original U-Net network, in part

ecause the convolutional LSTMs can replace some of the opera-

ions of the original network, and because the input is smaller. 

This network is significantly larger than the one described in

ection 3.2.1 and is better designed to progressively eliminate un-

esired portions of the input or enhance the input through mul-

iple processing stages. As will be shown in the experimental re-

ults section, having access to the temporal structure of the video
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Table 2 

To determine how well the forward pass—which inserts flashes—operates, 

we modified each video in two ways: using the manual method, in red, 

and using the GAN, in blue. Humans compared each of the modified 

videos against the original and decided which of the two had more flash- 

ing, shown in the chose modified column. Overwhelmingly they identi- 

fied the modified videos as having more flashing. The degree to which 

subjects believed that the modified videos contain more flashing was es- 

tablished using a slider: where −1 represents the original containing far 

more flashing and 1 represents the modified containing far more flashing. 

Note that the optimal values are not −1 and 1, as the flashing inserted is 

by design subtle to probe the boundary between below-threshold flash- 

ing which is innocuous and above-threshold flashing which is problem- 

atic. Subjects determined that on average the added flashes were of mod- 

erate intensity for both cases. 

Modification Chose Degree of flashing Degree of flashing 

method modified in original in modified 

Manual 91% −0.68 + 0.34 

GAN 83% −0.16 + 0.34 
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s crucial as a per-frame U-Net does not learn to perform the re-

uired transformations. The significant amount of information be-

ng stored between frames provides the capacity to learn structures

t different temporal scales, important for recognizing non-flashing

ut problematic patterns such as rotating gratings. This is the first

pplication combining stacked LSTMs and a U-Net architecture to

ideo-to-video transformations. 

.2.3. Spatio-temporal autoencoder 

The third architecture is repurposed from an existing video-to-

ideo transformation: computing the optical flow in videos. Spatio-

emporal autoencoders [36] , referred to in results as STA, take each

rame as input and predict an output frame based on the sequence

f frames observed up to that point. Unlike the previous networks

hey are neither bidirectional nor predict a residual. They embed

he input into a low-dimensional space, in our case using a 4-

ayer 32-filter 3 × 3 convolutional network with RELU activation.

his embedding is used by two stacked convolutional LSTMs with

2 filters to predict the optical flow. The network then reconstructs

ts beliefs about the next frame of the video by combining the em-

edding of the current frame with its predicted optical flow and

ecoding that prediction using the inverse of the embedding net-

ork. We use this approach for flash mitigation. Intuitively, since

o compute optical flow we rely on the ability to predict the next

rame based on previous frames, we can use this ability to predict

he behavior of a flashing stimulus or pattern to determine if we

hould suppress it. 

. Experiments 

We demonstrate the efficacy of our approach in several

ays including qualitative evaluations of the corrected videos

 Section 4.1 ), quantitative evaluations of the forward video

eneration pass ( Section 4.2.1 ), of the inverse video correc-

ion pass ( Section 4.2.2 ), demonstrating baselines and ablations

 Section 4.2.3 ), as well as performance on held out real-world

ideos that have caused seizures ( Section 4.2.4 ). We show both ob-

ective metrics and subjective human judgments rating the pres-

nce of adverse stimuli in the resulting videos as well as their

verall quality and fidelity to the original. 

We collected a training set consisting of 20,0 0 0 random pop-

lar videos, without manual filtering, from YouTube. From each

ideo, we cropped 10 clips consisting of 100 frames in a 64 × 64

indow—resulting in 20 0,0 0 0 training clips. An additional 20 0 0

ideos were collected and similarly post-processed to be used as

 test set. The training and test sets were disjoint, not only in the

lips used but in the original source videos as well, ensuring that

o information can leak between the two. 

.1. Qualitative 

In Fig. 3 we show original and transformed frames from sev-

ral videos. Note that flashing is suppressed while the quality of

he videos is largely preserved both for the frames which have

ashing and those that do not. The networks attempt to infer

hat the frames with the adverse stimuli should contain to replace

ashes and problematic patterns. Fig. 3 (c) and (d) show frames

rom videos which are known to have caused hundreds of pre-

entable hospital visits. 

.2. Quantitative 

We collect quantitative metrics using human subject experi-

ents to determine if the video transformations have successfully

emoved flashing and maintained video quality. Human subjects
xperiments are necessary since no accurate metrics for determin-

ng the quality of the videos exist at present [44] . In all cases,

ubjects are shown two repeating 64 × 64 video clips side-by-side,

aking up no more than 10% of the screen, and complying with

orld Wide Web Consortium, W3C, criteria for preventing seizures

ue to photosensitivity [37] . After viewing the videos for at least

 s, subjects are prompted to answer one of two questions: which

lip contains more flashing or which clip has higher visual quality.

hey answer these questions using a slider to note the magnitude

f their preferences. The same video was shown in three differ-

nt ways: in its unmodified original form, with the forward pass

odification that inserts the adverse stimulus (flashing), and the

ransformed version where that adverse stimulus is suppressed by

 trained model. 

Two kinds of values are reported from the human responses:

hresholded and averaged results. Thresholded results determine

he likelihood that a user would prefer one type of video over an-

ther, however slight that preference might be. Averaged results

etermine the preference for a particular condition and comple-

ent the thresholded results to show the magnitude of the effect.

esults are reported on a scale of −1 to 1, −1 is an unequivocal

reference for one stimulus while 1 is an unequivocal preference

or the other stimulus. Presentation order was randomized at each

rail. Note that it is unusual for subjects to completely prefer one

ondition over another; even a video without any flashing com-

ared to one which has substantial and annoying flashing often

oes not get selected in its entirety. 

For an application of the approach described here to be useful

t must meet a few criteria. First, when the forward pass inserts

ashes they must be clearly detectable to human subjects. Second,

hen the inverse pass removes flashes humans should agree that

hey have been removed and the quality should be high. Third, the

ransformation should transfer to real videos, not just videos which

e have artificially added flashes to. Next, we discuss these three

ey issues along with several ablations. 

.2.1. How good is the forward, video generation, pass? 

We first compare the videos before and after our generators

as inserted problematic flashes and patterns. As shown in Table 2 ,

ubjects decided that the modified videos contain far more flash-

ng with significant magnitude regardless of the method, 80–90%

f the time. In the common case, where the modified video was

hosen as having more flashing, the preference was the same for

he hand-crafted generator and the learned GAN generator (+0.34).

n the rare case, where the original was chosen as having more

ashing, GANs produced videos which were selected against less

trongly than the original videos ( −0.16 vs −0.68). Videos can have

ignificant amounts of flashing to begin with, and the hand-crafted
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Fig. 3. Five frames from 4 videos with their corresponding transformed versions. Note that frames which are not involved in flashing are preserved while flashes are 

suppressed in such a way as to not significantly disturb the underlying contents. Videos (c) and (d) are not synthetic examples created by our generator, (c) having triggered 

hundreds of attacks in children [2] and (d) having been used to cause seizures in a politically-motivated attack. 
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Table 3 

Comparing the networks on three types of inputs; conditions denoted by X. 

The first condition, O, compares against original unmodified inputs where 

the priority is to keep the stimulus intact meaning we do not desire a pref- 

erence either way. Similarly, for the next condition, − , where videos were 

modified to add flashing but with properties that put it below the threshold 

at which it is likely to cause harm. Finally, + where we see the networks un- 

doing the transformation applied while producing higher quality output and 

where users prefer their output over the modified videos. Quality is mea- 

sured as the likelihood of preferring the network output to the output of the 

condition that is being compared against. Subjects generally judge the qual- 

ity of the two to be the same, meaning our networks preserve the structure 

of the videos. 

Network X Chose σ 2 Pref. for Pref. for Quality 

video X transformed 

LSTM O 47.8% 7.38 −0.06 + 0.01 44.4% 

– 35.0% 16.08 −0.14 + 0.01 53.1% 

+ 81.8% 17.50 −0.30 + 0.56 56.6% 

U- 

Net 

O 51.3% 3.68 −0.13 + 0.16 27.3% 

– 56.2% 18.85 −0.09 + 0.35 37.0% 

+ 76.8% 6.15 −0.27 + 0.51 55.1% 

STA O 49.2% 6.51 −0.04 + 0.06 50.1% 

– 46.5% 18.91 −0.10 + 0.09 50.5% 

+ 74.2% 12.48 −0.32 + 0.58 55.7% 
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enerator may be reducing the total amount of flashing in such

ases. The GAN seems to insert subtler flashing but without hiding

ny flashes or problematic patterns in the original videos. The pref-

rence against the original video was smaller when using GANs,

ndicating that they are inserting more subtle flashes. 

While we do want subjects to choose the generated videos

hat have more flashing, we do not expect, or desire, that sub-

ects mark the modified videos as entirely consisting of flashes. In

ther words, the optimal results are not −1 and 1 for the pref-

rence values, because very often the flashes that are problematic

re brief and have fairly low intensity. Note that, qualitatively the

AN-generated videos look very different from the ones produced

y the hand-crafted generator making these two methods compli-

entary. In the results that follow we equally mixed videos gener-

ted by both. 

.2.2. How good are the video-to-video transformations? 

Next we compare how the networks perform at applying the

nverse transformation, i.e., removing the problematic stimuli. We

ested each network against a collection of videos. Videos were

odified to contain flashing by an equal mixture of the hand gen-

rator and the GAN. Subjects judged how effective networks were

t mitigating flashes and preserving video quality. 

Results are summarized in Table 3 . The unmodified video was

ransformed in the O condition to test how networks affect non-

ashing video. Each of the three methods (LSTM, U-Net, STA) had

ittle impact on the original video with chance-level performance

47%, 51%, 49.2%) when deciding which video has less flashing.

STM and STA were judged to have left the quality of the original

ideos intact with users preferring them over the modified ones

4.4% and 50% of the time. On the other hand, U-Net, displayed

 weak but marked decrease in quality of the original video with

nly 27% choosing the modified video as having equal or higher

uality compared to the original. Since the U-Net used contains

any more parameters than the other models, it might be over-

tting and inserting minor but noticeable artifacts. Such cases can

ften be resolved by additional training with far more data. 

To further test non-flashing behavior, we explored adding

elow-threshold flashes in the - condition. LSTM and STA pre-

erved the original content in this case, with quality ratings be-

ng around 44% and 50%. U-Net seems to have slightly degraded

uality, with subjects having a weak preference ( −0.09) against the

ransformed videos with a significant drop in quality, 37%. While
he LSTMs were conservative and less frequently removed flashes,

ith 35% of videos being selected as having less flashing, the U-

et and STA are more aggressive with 56% and 46% of the videos

ontaining fewer flashes. This is consistent with the above results

n the O condition. 

When significant flashes were added, the + case, we explore

ow well problematic changes are undone. In each case, the net-

orks undo significant portions of the transformations applied

hile maintaining the quality of the original (56%, 55%, 57%) All

ethods were effective in removing or reducing flashes (81.8%,

6.8%, and 74.2% at the time). Overall the variance of the U-Net

s much smaller than that of other networks while still maintain-

ng their positive attributes. A modified U-Net trained on several

rders of magnitude more data is likely to be the best approach.

ith the current amount of data, STA appears to be the best ap-

roach, showing balanced results with respect to reducing flash-

ng and keeping the quality of the video high when no flashes are

resent. 

.2.3. Baselines and ablations 

We want to ensure that these results are not due to some ar-

ificial correlations in the input videos, despite our effort s to ran-

omize every aspect of the corpus and video transformation cre-

tion. We chose one well-performing network, STA, and ablated it.

e provided the network with a single frame rather than an en-

ire video, with shuffled frames, 10 video frames, 50 video frames,

nd 50 frames but only 50 past frames with no future lookahead.

hese conditions, as expected, significantly degraded performance.

hen comparing the full model against the ablated models in each

ase users preferred the full model: 94.4% of the time in the single

rame case, 90% of the time in the shuffled frame case, 86.6% of the

ime in the 10 frame case, 88.5% of the time in the 50 frame case,

nd 75% of the time in the 50 frame lookahead-only case. When

etworks receive less data, shuffled videos or single frames in the

xtreme, they become ineffective. As they gain access to more and

ore of the video, their performance increases significantly. 

.2.4. Real videos 

In Fig. 3 (c) and (d) we show frames from videos which are

nown to have caused seizures. Note that the transformed frames

re significantly clearer and easier to understand. We refer users to

ur website to see the results more clearly as videos, in addition to

aving a range of results on other videos which have caused sim-

lar problems. Additionally, we evaluated these transformed videos

ith existing tools [30] which attempt to detect flashing in videos.

hese tools report that while the originals are extremely likely to

ause harm, our transformed videos are very unlikely to do so. We

o not report precise numbers as these tools are not calibrated

ith human psychophysics, their numbers are not probabilities,

nd they are not validated with large-scale studies and thus are

nly useful qualitatively. 

. Discussion 

We have introduced the notion that one should think about

ccessibility in a sub-symbolic way and learn to transform a vi-

ual scene into a form that is safer and clearer for a particular

ser. We connected this notion to long-standing ideas in vision and

eneral perception about forward and inverse transformations. In

eneral, this is a more flexible view of accessibility than the task-

eplacement paradigm which dominates prior effort s, as described

y Leo et al. [27] . Next, we describe a preliminary effort to apply-

ng these principles to another problem: unlocking the content of

aces for those who cannot easily perceive emotions. In doing so,

e intend to demonstrate that these notions are more flexible than

 particular instantiation for photosensitive seizure disorders. 
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Fig. 4. Preliminary results showing four (a) input faces, (b) faces where important 

features are retained while the rest of the image is blurred, and (c) masks which 

show the location of the retained unblurred areas. We use an emotion recogni- 

tion network as a proxy for the human visual system and optimize its performance 

while selectively blurring an image of a face. Some face features, like the mouth, 

are not necessary for all emotions, while features around the eyes are almost al- 

ways critical. 
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5.1. Applications to face processing 

Deficiencies in face processing are associated with a number of

disorders such as autism. Often the underlying issue is not visual

impairment but instead the neural mechanisms behind face per-

ception. The Stanford Autism Glass Project [45] builds on this fact

and demonstrates that highlighting facial expressions can be ex-

tremely useful. It can even lead to learning to better recognize fa-

cial expressions in the wild. 

In addition to manually annotating faces and their emotional

valence, one could learn to highlight the features which are im-

portant for most faces. Since those features change with each face,

each emotion, and as each emotion is being enacted, this is a dy-

namic process. This is very similar to the photosensitivty applica-

tion discussed early, except that rather than removing flashes to

enable one to see the rest of a video, we highlight features to en-

courage a user to pay attention to them. This approach and the one

being employed by the Stanford Autism Glass project are compli-

mentary: theirs provides guidance and training to focus on certain

facial features and associate them with mental states while the one

presented here actively transforms all faces to always guide some-

one to the most important facial features for a particular emotion. 

Crucially, in this application we use a proxy for the visual sys-

tem rather than generating a dataset directly. That proxy is a con-

volutional network that recognizes emotions. We motivate this by

the fact that convolutional networks seem to approximate part of

the human visual system with some fidelity [46] , so one might ex-

pect that the results of transforming an image to make it easier for

a network to understand will similarly make it easier for humans

to understand. 

We pick random images of human faces from the Japanese fe-

male facial expression [47] dataset, and post-process them to cre-

ate a distribution over the emotional content of each face using a

convolutional network [48] . This network is pretrained on the CA-

SIA WebFace [49] dataset and fined-tuned on the Emotion Recog-

nition in the Wild Challenge [50] . Then an image-to-image net-
ork, analogous to the video ones described earlier, is trained

o transform such faces. The network is a U-Net, as described in

ection 3.2.2 , which takes as input an image and learns to pre-

ict a sparse mask which selectively blurs that image. Its objective

unction is to produce a peaked unimodal response in the distribu-

ion of the output of the emotion recognition network. In Fig. 4 we

how four input faces, transformed faces, and the masks showing

hich areas were not blurred. Significant work remains to refine

uch transformations, apply them to real-time videos, and test the

fficacy of this approach. 

.2. Conclusions 

Learning to transform the visual environment is a new tool for

ccessibility building on prior experience with hand-crafted trans-

ormations like daltonization. Just like hand-crafted features have

ielded to automatically learned features for tasks like object de-

ection, here we repurpose those techniques to automatically learn

ew visual transformations with the goal of increasing accessibil-

ty. The space of possible transformations for different populations

s immense; for example, one could learn to transform text to help

hose with dyslexia or to subtly manage visual attention for some-

ne with ADHD. Such technology may benefit everyone by slightly

ltering the visual environment making it more pleasant, more

eadily accessible, and less distracting – an effect known as the

urb-cut effect where accessibility technologies can end up helping

veryone. In future work, we intend to explore a wide range of ap-

lications for this general idea as well as clinically validating the

ork presented here on photosensitivity and deploy it in real-time

o screens everywhere. 

Transformations could be customized to different individuals,

ot just to disabilities or populations. This is particularly important

ecause disabilities and impairments are heterogeneous: they are

ften not total, they differ in how they affect each individual, and

re sometimes associated with other disorders. Rather than pro-

iding a small number of preprogrammed customization options,

e could rely on human in the loop learning. An individual might

e given an automatically generated test to fine-tune the transfor-

ation to their particular needs and preferences. The fact that ob-

ect detectors are easily fine-tuned to new datasets with few ex-

mples indicates that such a test would likely be short; moreover

ne need not go through an entire test to improve the transforma-

ion or even stop at any predetermined point. Looking further into

he future, one might record the neural activity of users, for exam-

le by using EEG, and subtly adjust the transformation to enable

hem to read more quickly, be less confused, or have fewer EEG

rtifacts even when no overt reaction is apparent. Since this does

ot necessarily require user feedback, transformations trained in

his way may be of use to those who cannot easily communicate

heir needs and preferences. In principle, such networks can con-

inue to be trained through a lifetime and adapt to users as they

hange. We are excited to see the development of new kinds of

ransformations, not just visual but perhaps involving other modal-

ties, which can create a safer and more accessible world for all. 
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