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Figure 1: TactStyle allows creators to stylize 3D models with image input while incorporating the tactile properties of the
texture in addition to its color. Here, we show four different textures applied to the same 3D model, an Airpods cover, with the
image stylization prompt shown on the bottom right. The different textures used are: a) round stone roof, b) layered brown

rock, c) herringbone wood, and d) colorful hexagonal tiles.

Abstract

Recent work in Generative Al enables the stylization of 3D models
based on image prompts. However, these methods do not incorpo-
rate tactile information, leading to designs that lack the expected
tactile properties. We present TactStyle, a system that allows cre-
ators to stylize 3D models with images while incorporating the
expected tactile properties. TactStyle accomplishes this using a
modified image-generation model fine-tuned to generate height-
fields for given surface textures. By optimizing 3D model surfaces
to embody a generated texture, TactStyle creates models that match
the desired style and replicate the tactile experience. We utilize a
large-scale dataset of textures to train our texture generation model.
In a psychophysical experiment, we evaluate the tactile qualities
of a set of 3D-printed original textures and TactStyle’s generated
textures. Our results show that TactStyle successfully generates a
wide range of tactile features from a single image input, enabling a
novel approach to haptic design.
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1 Introduction

With the growing popularity of 3D printing research within
HCI [35], there is also increasing interest in developing tools that
enable users to customize 3D models. Open-source repositories,
such as Thingiverse [4], are a useful resource for ready-to-print
3D models. However, their customization is limited to changing
predefined parameters [1]. Recent advances in Generative Al allow
users to more freely customize their 3D models using text prompts
or images as user-provided style descriptions [11, 34]. However,
these existing frameworks for stylizing 3D models primarily focus
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on modifying the model to match a desired visual appearance as
described via the provided text or image prompt [43].

One underexplored area of model customization is tex-
ture—specifically, the ‘tactile feedback’ of printed structures, such
as whether a surface feels smooth, rough, or potentially reminiscent
of materials like wood grain or stone. Our ability to sense these tex-
tures through touch plays a crucial role in our interactions with the
physical world, shaping not only how we perceive and manipulate
objects but also influencing our emotional and cognitive responses
to them [16]. Therefore, augmenting printed structures with ap-
propriate tactile properties can enrich interaction with physical
objects, especially when mimicking materials that differ from the
3D printing material.

Recent advances in computer vision have proposed methods
for capturing high-fidelity visual properties from images, enabling
digital replication of textures from real-world surfaces [21, 56].
However, these techniques are limited to digital replication, as
highlighted in TextureDreamer [56], where they do not optimize
normal maps to avoid details that are inconsistent with the target
mesh. In the field of digital fabrication, researchers have proposed
techniques to capture surface microgeometry [7] as a heightfield
and use this data to replicate the texture using fabrication methods
such as 3D printing. However, they currently require sophisticated
equipment such as photometric sensing techniques [25] to capture
the surface microgeometry of each texture, limiting their usability.
Thus, image-based replication is currently limited to replicating
visual elements of textures, and creators are currently limited to
replicating textures through associated digital surface microgeome-
try data. We hypothesize that by learning a correlation between a
texture’s visual image, and its heightfield (surface microgeometry),
we can replicate the tactile properties of textures, directly from an
input image.

We present TactStyle, a system that allows creators to stylize 3D
models with texture images while incorporating the expected tactile
properties. TactStyle accomplishes this by separating the visual and
the geometry stylization, and augmenting the process with a novel
geometry stylization module that replicates the tactile properties
of textures based on user input. The novel geometry stylization
module uses a fine-tuned variational autoencoder (VAE) [27], that
translates the user provided visual image of a texture into a surface
microgeometry or heightfield. The model then uses this heightfield
to manipulate the geometry to create the tactile properties on the
3D model surface. Separately, the visual appearance of the 3D model
is optimized with a method [11] that has been shown to accurately
replicate visual qualities. Thus, by optimizing 3D model surfaces
to embody both the color and tactile properties of a given input
image, TactStyle allows creators to generate stylized models that
not only visually match the desired style but also replicate the
tactile experience.

2 Related Work

To situate our question and findings, we draw upon previous re-
search in personalizing open-source designs, 3D printed haptics,
and tactile surface reconstruction to develop our proposed system.
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2.1 Personalizing Open-Source Designs

As 3D printing has become the preferred digital fabrication tool
for both expert and amateur makers alike [10, 29], makers have
increasingly shared their 3D models and designs through online
open repositories, such as Thingiverse. Alcock et al. [1] propose
that such repositories serve as ideal training platforms for novice
makers. However, several challenges remain in allowing creators to
personalized open-source designs. Numerous studies have investi-
gated novice makers [22, 37] in the process of modifying shared 3D
models. These studies consistently find that users face significant
challenges when attempting to modify existing designs. Editing 3D
printable meshes requires advanced expertise of computer-aided
design workflows [46] which are often incompatible with the skill
levels of novice users. Moreover, as highlighted by Oehlberg et
al. [38], even when designs are customizable, they often fall short of
the scope of modifications makers desire. For instance, customizing
3D models to support varying tactile properties is rarely supported.

2.2 3D Printed Haptics & Tactile Surfaces

3D printing haptics has been an increasing area of interest in HCL
Design tools have been developed that provide users with the abil-
ity to customize their designs for a variety of haptic properties,
ranging from desired heat dissipation (Thermal Comfort [58]), to
customizable stiffness (X-Bridges [48]) and softness (OmniSoft [26]),
and personalized force feedback (Shape-Haptics [59]).

To 3D print surfaces with desired tactile properties, researchers
developed a range of new 3D printing techniques. For instance, 3D
printed Hair [31] creates hair-like structures and bristles through
FDM 3D-printing by exploiting the stringing phenomena inherent
to the 3D-printing process. Cillia [40] creates high-resolution tac-
tile surfaces by modifying the input to the SLA printing process.
Such hair-like structures have been shown to influence texture per-
ception, especially when combined with visual augmentation [8].
On-the-Fly Fine Texture 3D Printing [55], Thickness Control [49]
and ExtruderTurtle [42] modify the G-code underlying FDM 3D
printers to create varying types of tactile surface textures. Another
approach to create 3D printed tactile surfaces is to print mechanical
structures that can transform into various surface structures. For
instance, Metamaterial Textures [24] demonstrated how varying
tactile surface can be created within a single 3D print, and such
structural approaches have been shown to directly influence percep-
tion during tactile fingertip exploration [13]. Most closely aligned
with our approach is HapticPrint [50], which modifies the “feel” of
3D-printed objects by providing a tool to automatically generate
heightfields by grayscaling raster images to create tactile textures
on arbitrary 3D geometries. This approach gives an approximate
texture from the image, which can then be applied to the 3D model.
However, a grayscale image and a heightfield differ since grayscale
only encodes luminance, not the local height of the surface. Since
not all color changes in an image are related to changes in depth
or height [56], taking a grayscale version would fail to distinguish
between color patterns caused by surface detail and those caused
by lighting. In this work, we modify an image-generation model to
generate heightfield data, by fine-tuning a diffusion-based model
on pairs of texture-heightfield data.
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2.3 Reconstructing Tactile Surfaces

Researchers have also explored augmenting a 3D model’s geometry
to enable accurate tactile perceptions. Haptography [28] introduces
an approach that uses sensors to capture the haptic properties
of real objects and recreate them in virtual environments, while
Metareality [13] designed adaptable metamaterial structures that
can alter their hardness and roughness upon compression. Degraen
et al [7] showed how a real-world texture’s tactile properties can be
replicated by using its microgeometry processed with a photomet-
ric sensing technique [25]. Existing Generative Al-based stylization
methods such as Style2Fab [11] and Text2Mesh [34] allow users to
stylize their 3D models based on text and image prompts. These
methods perform iterative refinement of the mesh, making small
changes on vertex and color channels of the 3D model and estimat-
ing its similarity to the goal text or image prompt provided by the
user. However, since these methods are based on image-based losses,
replicating the surface microgeometry becomes a challenge [12].

TactStyle extends this line of work by proposing a system that
allows creators to stylize 3D models using images as input, optimiz-
ing not only the texture’s appearance but also its expected tactile
properties.

3 Formative Study

We hypothesize that current stylization frameworks that leverage
latent representations [11] such as CLIP [44] are efficient at replicat-
ing the visual appearance of a texture but ineffective at replicating
its tactile properties. We first test this hypothesis by performing
a formative study. Although stylization frameworks allow both
text and image-based stylization, we consider only image-based
stylization for our experiments. This is because text-based styliza-
tion methods require a captioning technique to generate textual
descriptions of textures, which may not express all its details. This
limitation was also highlighted by TextureDreamer [56]. Thus, in
this formative study, we focus on testing the stylization of a 3D
model based on image prompts.

3.1 Dataset and Stylization Baseline

To investigate the accuracy of texture replication, we use a large-
scale dataset of PBR (Physically Based Rendering) textures from
CGAxis [3]. This dataset contains both visual and heightfield in-
formation about textures. We collect a total of 500 textures which
contain textures for ‘Parquets’, ‘“Wood’, ‘Rocks’, ‘Walls’, and ‘Roofs’.
For each of these 500 textures, we take the visual texture and its
associated heightfield as ground-truth pairs.

For the stylization framework, we use Style2Fab [11], which
allows users to personalize 3D models based on text prompts. We
modified Style2Fab’s system to take image prompts instead of text
by changing the hyperparameters in the stylization module.

3.2 Procedure

For consistency, we perform stylization of a single tile of size 5x5x1
em3. To create the ground truth set of textures, we apply the height-
field from our dataset on the tile surface following the technique
from Degraen et al. [7]. We take 50 random textures from our
dataset (10% of the dataset size) and stylize the tile with the texture
image as the prompt. We subdivide the tile surface to 25k resolution
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for accurate texture generation and run the stylization process for
1500 iterations, as specified in Style2Fab [11]. We apply stylization
to only one face of the tile, the same as that of the ground truth
textures, and freeze the geometry on the remaining faces, retaining
a flat surface. This allows for a consistent comparison. Stylization it-
eratively modifies the geometry and color channel of the 3D model,
and using the CLIP loss to assess the stylization quality. At the end
of the study, we have 50 modified 3D tiles created using 50 random
textures from our dataset.

3.3 Results:

To quantitatively assess the fidelity of the stylized textures in repli-
cating the ground-truth textures, we compare the Root Mean Square
(RMS) values of the textures’ heightfields as it has been shown to
correlate to surface roughness [7]. We take the 50 heightfields asso-
ciated with the texture images used to stylize the 3D tiles. To extract
the heightfield from the stylized tile, we take the boolean difference
of original unstylized tile, and then map the displacement of the
modified vertices onto the grayscale range(0 - 255). The RMS values
capture the overall surface variation, allowing us to evaluate the
differences between the original textures and the stylized outputs.

Comparison of Surface Roughness (RMS)
between Original and Stylized Textures
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Figure 2: The boxplot shows the distribution of Root Mean
Square (RMS) values for original and stylized textures, rep-
resenting surface roughness. The original textures exhibit
a wider range of RMS values, indicating higher variability
in surface roughness. In contrast, the stylized textures have
consistently higher RMS values with less variability, indi-
cating rougher and more uniform surfaces as a result of the
stylization process.

Figure 2 presents a boxplot comparing the RMS distributions for
the original textures and their stylized counterparts. We observe
that the stylized textures generally exhibit higher RMS values com-
pared to the original textures. RMS values can be interpreted as
a metric for surface roughness [7] suggesting that the stylization
process results in rougher surfaces. Moreover, the RMS values for



CHI ’25, April 26-May 01, 2025, Yokohama, Japan

the original surface textures have a wider range of values, show-
ing higher variability, whereas the stylized surfaces have lesser
variability indicating more uniformity.

To determine the statistical significance of the observed differ-
ences, we perform a Welch’s t-test between the RMS values of the
original and stylized textures. The test reveals a statistically signif-
icant difference between the two groups (f = 11.89, p < 0.0001),
indicating that the stylized textures have significantly different
RMS values compared to the original heightfields.

This result suggests that Style2Fab and similar stylization strate-
gies do not accurately modify the surface geometry to replicate a
specific texture’s heightfield. Further refinement in the stylization
process could enhance the replication of texture variation for more
accurate texture replication in 3D models. In the next sections, we
present TactStyle, a system that allows creators to accurately repli-
cate the tactile properties via a new geometry stylization approach.

4 System Overview

Prior work [11, 32, 34] has shown that Generative-Al based styliza-
tion methods closely approximate the user’s style visually. However,
our formative study found that such geometry modifications do not
accurately replicate the desired texture represented by its surface
microgeometry. We designed TactStyle to enable the replication of
a surface’s microgeometry, and by extension, its tactile properties.

TactStyle augments existing stylization methods with a new ap-
proach to modifying the geometry of 3D models that replicates
the tactile properties of the texture described by the user. It accom-
plishes this by co-optimizing the geometry and the color channels
separately. We call these two modules: (1) the color stylization mod-
ule and (2) the geometry stylization module. The focus of this paper
is on the geometry stylization module.

Our main challenge was to design a geometry stylization mod-
ule that modifies a 3D model’s geometry to replicate the tactile
properties of a texture. We leverage the fact that heightfields can be
represented as images, and thus TactStyle accomplishes this goal
by fine-tuning an image generation model to generate heightfields
based on visual images of a texture. This heightfield is then used
to modify the 3D model’s geometry using an approach based on
UV mapping. Thus, the color and geometry stylization modules
work in tandem, stylizing the color and geometry of the 3D model
to replicate both the visual appearance and tactile properties of a
given texture (Figure 3a).

5 Heightfield Generation Technique

In this section, we describe our novel heightfield generation model.
This model takes a texture image as a prompt and generates the
associated heightfield. For this purpose, we fine-tune a trained
diffusion-based Image-to-Image model and integrate it into the
TactStyle system. In the following subsections, we describe the
modified architecture of the diffusion model and the dataset used
to train and test the system.

5.1 Diffusion Model

We approach this problem as an image generation task and use
a modified version of the Stable Diffusion model [45], a popular
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open-source image generation model. Specifically, we use an image-
to-image generation model proposed in SDEdit [33]. This deep-
learning model uses a diffusion model to synthesize new realistic
images. Given an input image along with a user prompt in the
form of text or image, SDEdit first adds noise to the input, then
subsequently denoises the resulting image to generate a modified
image based on the user prompt. At the core of this diffusion-based
generative model is a variational autoencoder [27] (VAE), which
encodes images into a latent representation, and decodes that latent
representation into an image.

The VAE is trained to encode an image into a latent represen-
tation, a compact high-dimensional representation that can then
be ‘decoded’ using another network called a ‘Decoder’ to gener-
ate another image. More details on the architecture and training
approach are available in Meng et al. [33] and Kingma et al. [27].
Our goal with this model was to generate a heightfield given an
image of a texture. Since heightfields are traditionally represented
as grayscale images, we (1) modify the VAE architecture to generate
representative grayscale images, i.e., heightfields, (2) and fine-tune
the trained model on our texture image-heightfield pairs.

5.2 Modified Model Architecture

We use a trained open-source Image-to-Image Generation model
available through the Diffusers library [52]. As described above,
this model’s essential component is the VAE, which encodes an
image into a latent representation and then decodes it into another
image. This VAE is structured to generate images in 3 (RGB) chan-
nels. We modify the architecture’s decoder module by adding 4
additional layers to learn heightfield features and modify the final
layer to output single-channel grayscale images. This approach was
motivated by the fact that the pre-trained model was trained to
generate colored images, and there are additional features that the
model would need to learn to generate heightfield-specific features.

In fine-tuning our modified image generation model, our goal
was both to maximize the similarity in intensity between the target
and generated heightfield and minimize their perceptual difference.
For comparing overall intensities, we use the Mean Squared Error
Loss (MSE), a standard in regression and image generation tasks.
For the perceptual similarity metric, we use the Structural Similar-
ity Index Measure (SSIM) [53]. These two loss functions serve two
different purposes. MSE calculates an average of per-pixel similarity
that provides a guide towards a similar intensity in generated im-
ages. However, independent training with MSE does not generate
high-quality heightfields because it assumes pixel-wise indepen-
dence. For instance, blurred images can have a large perceptual
difference but a small MSE loss. SSIM on the other hand, takes into
account the luminance, contrast, and structure of the two images
being compared, highlighting local structural differences. Thus,
a combination of these two loss functions allows us to generate
heightfields that are similar in both overall intensity (MSE) and
local structural features (SSIM). In training our model, we use these
both loss measures.

5.3 Training Methodology

The Variational Auto Encoder (VAE) is fine-tuned for generating
accurate heightfields using the PBR Dataset consisting of texture
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Figure 3: TactStyle augments traditional 3D model stylization techniques by introducing a novel geometry stylization module
that replicates the tactile properties of textures based on user input. (a) The system takes an input model and a stylization
prompt (e.g., an image of a texture) and applies two separate stylization processes: (1) Color Stylization and (2) Geometry
Stylization. The color stylization modifies the model’s visual appearance, while the geometry stylization alters its surface to
reflect tactile properties. The two modules operate in tandem, creating a stylized 3D model that replicates both the visual and
tactile aspects of the texture. (b) The geometry stylization module uses a variational autoencoder (VAE) to generate heightfields
from texture images, which are then applied to modify the model’s surface geometry, enabling co-optimization of geometry

and color for a unified tactile and visual experience.

image-heightfield pairs. The associated heightfields serve as ground
truth representations of the tactile features, and our model learns
the correlation between visual appearance and tactile properties.
We fine-tune the model updating the decoder parameters over 60
epochs, using a batch size of 10 images with an RMSprop optimizer.
We use a lower learning rate (1e~>) for fine-tuning existing layers
in the VAE model, and a higher learning rate (1e~3) for the newer
layers. This was done because the original layers are already trained
and need small adjustments, whereas the newer layers are randomly
initialized and require larger changes. Since our goal was to modify
the ‘Decoder’ module of the VAE, we froze the weights for the
encoder module, training the weights for only the decoder module.

5.4 Dataset

To train our model on realistic textures, we utilize the CGAxis
repository [3], which contains a wide range of textures designed to
provide accurate real-world simulations of materials in 3D environ-
ments. We collected 500 pairs of texture images and corresponding
heightfields in 4k resolution. The dataset contains 5 different mate-
rial types: ‘Parquets’, “Wood’, ‘Rocks’, ‘Walls’, and ‘Roofs’, containing
100 textures each. This allows for a diverse set of textures to train
our model. For each of these 500 textures, we collect the visual
texture and its associated heightfield as ground-truth pairs. These
heightfields represent the tactile features of the textures and are
critical for learning the correlation between visual appearance and
haptic properties.

We split our dataset into a train and test set, using a 90% - 10%
split, resulting in 450 textures to train our model and 50 textures
to test it. We also augment the train set by rotating each image-
heightfield pair by 90 degrees three times, effectively generating
four variations for each texture and resulting in a total of 1,800
textures in our train set. This augmentation allows us to increase
the diversity of the data, providing a more comprehensive set of
examples for training our model without introducing synthetic

artifacts. This enables the model to learn more robust and invariant
representations of visual and tactile features, improving its ability
to generalize across different orientations of textures.

5.5 Texture Application

To apply our textures to 3D models, we apply the heightmap by
displacing vertices along their normals based on the corresponding
height values from a UV map normalized to fit the texture map,
producing a texturized object ready for 3D printing. This process
creates a final texturized object that is ready to be 3D printed, as
shown in geometry stylization step of Figure 3a.

6 User Interface and Workflow

TactStyle has been implemented as a plugin for the open-source
3D design software tool Blender [5] to allow easy integration with
makers’ existing workflows. Figure 4 shows a view of the interface.
To stylize a model with TactStyle, the user (1) loads their model,
(2) uploads the image prompt of the desired texture, and (3) clicks
the stylize button. TactStyle then processes the model and stylizes
it using the integrated color and geometry simulation modules. The
stylized model is rendered next to the original model, which the
user can export for fabrication.

6.0.1 Preprocessing. Once the user has loaded an OB] file of their
3D mesh into the plugin, the model is automatically pre-processed
for stylization. The model is first standardized to a unit-sized cube
for stylization. Next, we use Pymeshlab [36] to increase the model’s
resolution by subdivision to 25k faces following the standardization
protocol from Style2Fab [11]. This enables accurate stylization of
the model by increasing the number of vertices on the model, which
are then modified both in color and geometry to approximate the
style desired by the user.
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Figure 4: TactStyle’s user interface, implemented as a Blender
plugin, allows users to load (a) original 3D model and (b) styl-
ize with image prompts. In order to use TactStyle, the user
(c) loads the model, (d) uploads an image of their desired tex-
ture, (e) optionally adjust the Texture Magnification Factor
to control the level of height displacement applied on the
3D model. (f) Finally, the user clicks the “Stylize” button,
which starts the stylization process using TactStyle’s inte-
grated color and geometry stylization modules.

6.0.2 Stylization. TactStyle used two modules — the color styliza-
tion module and the geometry stylization module to optimize both
visual and tactile properties. As shown in Figure 3, TactStyle uses
Style2Fab [11] for iterative color optimization. Here the model’s
geometry is frozen, and the generative Al model modifies the color
channels of the vertices to approximate the style in the image. Next,
the geometry stylization module uses the modified image genera-
tion model to generate a heightfield using the texture image prompt
provided by the user. This heighfield is applied on the model using
the technique described in section 5.5. The completed model is
rendered alongside the original model for review. Furthermore, the
segmentation tool from Style2Fab [11] has been integrated into
TactStyle. This allows the user to have multiple textures on the
same model. For this, the user can segment the model through
Style2Fab’s segmentation, and then apply TactStyle on individual
segments.

6.0.3 Fine-Tuning and Export. Users can iterate on this process and
apply new styles using new image prompts as needed. Users can also
optionally increase the amount of height displacement to magnify
their texture by changing the “Texture Magnification Factor’ slider
shown in Figure 4e which can exaggerate or diminish the texture
applied. This factor is by default at 1.0, which corresponds to the
value used in our study following the height displacement values
from Degraen et al. [7].
Finally, the user can export the stylized model and fabricate it.

7 Technical Evaluation

To validate the effectiveness of our system, we conducted a quanti-
tative evaluation. We evaluate TactStyle’s performance on its ability
to replicate the surface micro-geometry, represented by the ground
truth heightfield. We evaluate TactStyle’s results using two met-
rics: (1) the RMS Error, which represents the difference in surface

Farugqi et al.

roughness, (2) the Mean Squared Error (MSE) which calculates the
average error in per-pixel intensity between the textures. In the
following subsections, we discuss the results of the quantitative
evaluation.

7.0.1  Analyzing Root Mean Square Error: We evaluate the Root
Mean Square (RMS) values of the generated heightfields, which
allow us to compare the overall surface roughness of the generated
textures [7]. Figure 5a shows the comparison between the Original,
Stylized, and TactStyle textures. The original textures exhibit a wide
range of RMS values, reflecting the inherent variability in surface
roughness across different textures.

To evaluate the differences in RMS values between the Original,
Stylized, and TactStyle textures, we performed a Welch’s ANOVA
test which indicated a statistically significant difference (F = 47.58,
p < 0.0001). Next we conducted a Games-Howell post-hoc analysis.
We found a significant difference between Stylized and Original
textures (T = 6.79, p < 0.0001) and TactStyle and Stylized (T =
14.34, p < 0.0001) textures. However, we found no significant
difference between the TactStyle and Original textures (p > 0.05).
These results suggest that stylization process results in textures with
significantly higher surface roughness compared to the original
and TactStyle’s generated textures.

7.0.2  Analyzing Mean Squared Error: MSE measures per-pixel in-
tensity differences, where 0 indicates identical per-pixel intensities,
and 1 indicates completely different intensities. As shown in Fig-
ure 5b, TactStyle exhibits lower MSE (M = 0.03, std-dev = 0.03)
compared to the stylized method (M = 0.10,std-dev = 0.05), indi-
cating more accurate texture replication. To evaluate statistical
significance, we conducted a Welch’s t-test, and found that the MSE
Loss for TactStyle’s results was significantly lower than that of
Stylized results (F = 6.79, p < 0.0001).

8 Perception Study

In order to evaluate TactStyle’s accuracy at replicating the tactile
feedback of textures, we performed a psycho-physical experiment
used to evaluate texture replication techniques [7, 41]. The goal
of our study was to understand if the reconstructed heightfield
from TactStyle creates similar tactile perceptions to the original
heightfield. In addition, our second goal was to evaluate if the tactile
perception of TactStyle’s heightfields are similar to the expected
tactile perception from just looking at a visual image of the tex-
ture. To compare tactile properties, we take a representative set of
descriptors from Degraen et al. [7].

8.1 Conditions

We created four distinct conditions to evaluate the tactile and visual
characteristics of textures. These conditions were designed to iso-
late specific aspects of perception, allowing us to better understand
how each modality contributes to the overall experience of texture
replication. The conditions were:

(1) Visual (No Heightfield): The texture image was printed
with no heightfield on glossy paper and pasted on flat tiles.

(2) Original Heightfield: The texture was printed with
the heightfield originally provided with the texture
(groundtruth).
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Figure 6: 3D-Printed samples of 15 textures from our test set used in perception study: We created four different sets for our
perception study: the ‘visual set’, ‘original set’, “TactStyle set’, and the ‘stylization set’. The original set was created with the
heightfield associated with the texture and served as the groundtruth. The reconstructed set was created using TactStyle, with
the texture image as input. The visual set was created using printed texture images. Finally, the stylization (baseline) set was

created using Style2Fab, using the texture image as input.

(3) TactStyle: The texture was printed with the heightfield cre-
ated from TactStyle with the texture image as input.

(4) Stylization: The texture was printed with the heightfield
generated from Style2Fab [11] using the texture image as
input.

This separation of conditions was motivated by the literature on
visuo-haptic stimuli integration by humans. When humans explore
objects with their hands, vision and touch both provide information
for estimating the properties of the object [9]. Vision frequently
dominates the integrated visual-haptic percept [14, 15]. To address
this, we kept the visual and tactile conditions separate to mitigate

cross-modality influence and isolate modality-specific effects to as-
sess tactile perception. Here, condition 4 (stylization) is our baseline
to be compared with TactStyle’s results.

In this experiment, we investigate the following research ques-
tions:

(1) RQ1: How accurately does TactStyle replicate the tactile
properties of a texture, as represented by its original height-
field?

(2) RQ2: To what extent do TactStyle-generated textures align
with user expectations based on their visual appearance?
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(3) RQ3: How do the tactile expectations derived from a tex-
ture’s visual appearance differ from its actual tactile proper-
ties, as represented by the heightfield?

8.2 Dataset

We collected 15 random samples from our test set, matching the
size of the sample set used by Degraen et al. [7] in their study on the
perceptual similarity between real textures and their digital replicas.
As these textures were not used to train the model, they can be used
to evaluate TactStyle’s ability to replicate unseen textures. Figure 6
shows the models used in our study. This gave us a total set of 60
models (4 conditions for each of the 15 textures). All the conditions
were presented to the user on tiles of the same size - 5cm x 5cm x
1cm. Our models were printed using an SLA printer, namely, Elegoo
Saturn 3 Ultra. In order to keep our printed objects comparable to
the previous studies, we used the Elegoo Resin Standard 2.0 — Grey,
which has a Shore Hardness of 80-86 (Scale D). For comparison,
Degraen et al. [7] used a material with Shore Hardness of 83-86
(Scale D). We printed all the samples at a layer resolution of 30 ym.

8.3 Study Design

We used a within-subjects experimental design. To control for
carry-over effects, we counter-balanced conditions using round-
robin ordering between participants. Our study was structured as a
self-assessment test in which participants compared and recorded
perceptual attributes of the 3D-printed texture samples from the
different conditions.

During the study, each participant recorded their ratings of the
sample in terms of hardness, roughness, bumpiness, stickiness,
scratchiness, uniformity, and how isotropic the surface is, each on a
1-to-9 Likert scale, 1 indicating a low assessment and 9 indicating a
high assessment of the respective variable. To rate these dimensions,
participants were asked the following questions:

Q1: How hard does this surface feel? (1 meaning extremely soft,
9 meaning extremely hard)

Q2: How rough does this surface feel? (1 meaning extremely
smooth, 9 meaning extremely rough)

Q3: How bumpy does this surface feel? (1 meaning extremely
flat, 9 meaning extremely bumpy)

Q4: How sticky does this surface feel? (1 meaning extremely
slippery, 9 meaning extremely sticky)

Q5: How scratchy does this surface feel? (1 meaning extremely
dull, 9 meaning extremely scratchy)

Q6: How uniform does this surface feel? (1 meaning extremely
irregular, 9 meaning extremely uniform)

Q7: How isotropic does this surface feel? (1 meaning extremely
anisotropic, 9 meaning extremely isotropic)

Hardness, Roughness and Stickiness are motivated by related
work indicating these are the base dimensions of tactile discrimina-
tion [19, 20, 39, 51, 57]. Bumpiness and Scratchiness are informed
by the notion that roughness can be divided into respectively
macro and micro dimensions [39]. The inclusion of Uniformity
and Isotropy stems from the fact that our textures embed some
directionality and localized variations, which affect perception dur-
ing tactile exploration [7]. While other works have considered the
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additional dimension of Hairiness [7, 8], we excluded this descriptor
since none of our textures in our dataset were representative of it.

8.4 Apparatus

Our apparatus was built to limit visual cues and ensure accurate
recording of purely tactile perceptual attributes of the textures.
Participants were positioned in front of a screen that separated
them from the experimenter, as shown in Figure 7. A small opening
in the screen, covered by a piece of cloth, allowed participants to
reach through and access the samples, placed by the experimenter.
On the other side, the experimenter arranged the samples for the
participants to explore. The samples were held in place with a
laser-cut wooden frame.

Figure 7: Experimental Setup for perception study: a) Experi-
menter side, b) Participant side

8.5 Participants

A total of 15 participants (6 female, 9 male, 22 - 38 years, M =
27.3 years, SD = 5.4) were recruited for our study. When asked
about their hand dominance, 14 participants indicated to be right-
handed with 1 participant indicating ambidexterity. All participants
chose to use their right-hand index finger for the study. They were
informed that they could only use this finger throughout the study
for consistency in perception. All participants indicated that they
do not suffer from any impairment to haptic perception to best of
their knowledge. Participants were compensated with $20 an hour
for the 90-minutes long study.

8.6 Study Procedure

The total study duration was set to be 90 minutes. At the start,
participants were asked to fill in a consent form, and a short survey
about their demographic data. Next, to ensure that participants
clearly understood the perceptual descriptors used in the study,
we conducted a short training session where participants were
allowed to explore exemplar textures separate from the set being
investigated. Once they were confident in their understanding of
the descriptors, we proceeded to the evaluation stage.

During this stage, the experimenter placed one sample at a time
at a fixed location behind a screen. The participant could insert
their hand into the screen and feel the texture but were not allowed
to see the texture itself. The participant was then asked to explore
the texture and rate its tactile properties based on the 7 descriptors.
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During the visual perception stage, the samples were placed on
a board next to the screen where the participants could see the
texture but were not allowed to touch them. This allowed us to
isolate visual and tactile perception for textures evaluated in the
study, and mitigate cross-modal influence [14, 15]. Prior work has
shown that human fingers are particularly sensitive in perceiving
and distinguishing textures [47]. Since all the participants chose
their right hand for the study, all participants were requested to use
only their right index finger throughout their study for consistency.
The interaction window was limited to 5 seconds per sample so
that the participants’ first impressions could be communicated. All
participants answered the descriptor questions for all 60 textures.

Ethical approval for this study was obtained from the Ethical
Review Board of the author’s institute.

9 Results

In the following section, we describe the analysis and the obtained
results from our texture perception study.

9.1 Comparing Visual and Tactile Ratings

In this section, we present the results from the perception study. To
analyze the individual tactile assessments, we conducted Friedman
tests with post-hoc analysis using Wilcoxon signed-ranks tests and
Bonferroni-Holm correction. Figure 8 shows box plots for each
assessment. The assessment data for each descriptor is provided in
Appendix A.1.

9.1.1 Hardness. Users perceived significant differences in Hard-
ness between Original vs. Visual, Original vs. Stylization, Visual
vs. TactStyle, Visual vs. Stylization, and TactStyle vs. Stylization.
However, users did not perceive significant differences in Original
vs. TactStyle.

9.1.2  Roughness. Users perceived significant differences in Rough-
ness in all comparisons except between the Visual and the TactStyle
conditions.

9.1.3 Bumpiness. Users perceived no significant differences in
bumpiness between Original vs. Visual, or Visual vs. TactStyle.
However, they perceived significant differences between Original
vs. TactStyle, Original vs. Stylization, Visual vs. Stylization, and
TactStyle vs. Stylization.

9.1.4 Scratchiness. Users perceived significant differences in
Scratchiness between Original vs. Visual, Original vs. Stylization,
Visual vs. TactStyle, Visual vs. Stylization, and TactStyle vs. Styl-
ization. However, they did not perceive any significant difference
between Original vs. TactStyle.

9.1.5 Stickiness. Users perceived no significant difference in Stick-
iness between Original vs. Visual, Visual vs. TactStyle, or TactStyle
vs. Stylization conditions. However, significant differences were
found between Original vs. TactStyle, Original vs. Stylization, and
Visual vs. Stylization.

9.1.6  Uniformity. Users perceived no significant differences in
uniformity between Original vs. Visual, Original vs. Stylization,
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Original vs. TactStyle, or TactStyle vs. Stylization. However, sig-
nificant differences were found between Visual vs. TactStyle and
Visual vs. Stylization.

9.1.7 Isotropy. Users perceived no significant difference in
isotropy between Original vs. Visual, Original vs. TactStyle, or
Visual vs. TactStyle samples. However, they perceived significant
differences between Original vs. Stylization, Visual vs. Stylization,
and TactStyle vs. Stylization.

9.2 Perceptual Correlations

To uncover relationships between different tactile perceptions in our
samples, we performed Spearman’s rank-order correlation analysis.
For each descriptor, we evaluate the relationship between differ-
ent texture descriptors across the Original, TactStyle, Visual, and
Stylization samples. This analysis helped determine whether the
tactile ratings of the textures were correlated across different con-
ditions. Figure 8 shows correlation plots for each assessment. The
assessment data for each descriptor is provided in Appendix A.2.

9.2.1 Hardness. There were significant correlations in perception
of hardness between all pairs of textures. This can be explained
by the fact that the samples were printed with the same material.
However, as described in Section 9.1.1, users perceived significant
differences between all pairs except Original vs TactStyle samples.
This suggests that TactStyle effectively replicates the tactile proper-
ties of hardness from the Original textures, while stylization does
not.

9.2.2  Roughness. There were significant correlations in perception
of roughness between Original vs Visual, Original v TactStyle, and
Visual vs TactStyle. We found in Section 9.1.2 that users perceived
significant differences in roughness perception in all comparisons
except Visual vs TactStyle condition. Thus, TactStyle effectively
replicates tactile perception of roughness from visual expectations
of a texture.

9.2.3 Bumpiness. There were significant correlations in perception
of bumpiness between Original vs Visual, Original vs TactStyle and
Visual vs TactStyle. However, we found significant differences in
comparing Original vs TactStyle (Section 9.1.3), but not in Visual
vs TactStyle, and Original vs Visual. Thus, TactStyle effectively
replicates bumpiness of textures from their visual expectations.

9.2.4 Scratchiness. There were significant correlations in percep-
tion of scratchiness between Original and Visual, and Original and
TactStyle. We found that users did not perceive significant differ-
ences between Original and TactStyle samples (Section 9.1.4). Thus,
TactStyle effectively replicates Scratchiness of Original textures.

9.2.5 Stickiness. There were significant correlations in perceived
stickiness of textures between Original and Visual, Original and
TactStyle, Visual and TactStyle, Visual and Stylization. Since users
did not perceive any significant differences in perceived stickiness
(Section 9.1.5) for Visual and TactStyle, this shows that TactStyle
effectively replicates perceived stickiness of textures from their
visual expectations.

9.2.6  Uniformity. There were significant correlations in perceived
uniformity, between Original and Visual, Original and TactStyle,
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Figure 8: Box Plots showing the individual assessments on Hardness, Roughness, Bumpiness, Stickiness, Scratchiness, Unifor-
mity, and Isotropy. Tactile Correlations are shown as heatmaps showing the correlations between the 4 conditions for each

descriptor. (*p < 0.05, **p < 0.01, ***p < 0.001)

and Visual and TactStyle conditions. Since we found that users did
not perceive any significant differences in perceived uniformity
between Original and TactStyle (Section 9.1.6), TactStyle effectively

replicates perceived uniformity of textures from their Original tex-

tures.
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9.2.7 Isotropy. There were significant correlations in perceived
isotropy between Original and TactStyle, Original and Visual, and
Visual and TactStyle samples. Since users did not perceive any
significant differences between Original vs TactStyle, Original vs
Visual, and Visual vs TactStyle (Section 9.1.7), this shows us that
TactStyle is able to effectively replicate perceived isotropy from
both Visual expectations and Original textures.

9.3 Discussion

We conducted a comparative analysis of the 4 texture sets - Visual,
Original, TactStyle, and Stylization, identifying which textures are
significantly different on various tactile descriptors, and which of
them are correlated. We found that TactStyle effectively replicates
visual and Original textures for several key descriptors, and out-
performs the baseline stylization method. Based on our analysis,
we were able to answer all our research questions stipulated in
Section 8.1.

9.3.1 RQI: TactStyle accurately replicates several Original Texture
Descriptors: TactStyle effectively replicated the tactile experiences
expected from visual cues for several descriptors. Hardness, Scratch-
iness, Uniformity, and Isotropy are correlated between Original and
TactStyle samples without exhibiting significant perceptual differ-
ences. This suggests that TactStyle is capable of closely replicating
the tactile sensations associated with these descriptors from the
original textures.

The analysis also showed that Stylization does not perform well
in replicating the tactile features of Original textures. In between
Stylization and Original samples, significant differences across most
descriptors such as Hardness, Roughness, Bumpiness, Stickiness,
and Scratchiness, indicate poor alignment between the tactile expe-
riences replicated by Stylization compared to the Original textures.

9.3.2  RQ2: TactStyle accurately replicates several Visual Texture
Descriptors: TactStyle effectively replicates several tactile features
based on the visual textures, as demonstrated by significant correla-
tions and the absence of perceptual differences in descriptors such
as Roughness, Bumpiness, Stickiness, and Isotropy. This indicates
that TactStyle can reproduce the tactile experiences expected from
visual cues based on these descriptors.

In contrast, stylization does not reliably replicate tactile expecta-
tions derived from visual samples. Stylization does not effectively
replicate the tactile expectations from Visual samples, with most
descriptors showing significant differences.

9.3.3  RQ3: Differences Between Tactile Expectations from Visual Tex-
tures and Actual Tactile Perceptions: We also compared the expected
tactile perceptions of visual textures, and the tactile perceptions of
the original textures. We found that most descriptors such as Bumpi-
ness, Stickiness, Uniformity, and Isotropy align closely between
visual perceptions and actual original surface tactile experiences.
In contrast, descriptors like Hardness, Roughness, and Scratchi-
ness show significant perceptual differences between Visual and
Original samples, although moderate correlations indicate some
level of consistency. These results suggest that while certain tactile
experiences can be anticipated based on visual cues alone, others
may require direct tactile interaction for accurate perception.
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10 Applications

In this section, we showcase how TactStyle’s stylization technique
allows users to stylize 3D models with accurate tactile properties
for fabrication. We demonstrate five application scenarios across
four categories: home decor, personal accessories, tactile learning
tools, and personalized health applications. All 3D models shown
in Figure 9 were stylized with TactStyle using textures not present
in the training dataset and printed on a Stratasys J55 printer.

10.1 Home Decor

TactStyle can be used to apply textures to objects downloaded from
platforms like Thingiverse, enabling users to enhance the tactile
experience of 3D-printed items at home. This allows individuals to
create customized, textured versions of everyday objects, adding
both aesthetics and functionality. We illustrate two applications of
TactStyle in applying textures to functional home objects. Figure 9a
we shows a wood-parquet textured phone stand, demonstrating
how organic textures can be applied to enhance the visual ap-
peal and usability of frequently handled items. Figure 9b, shows
a granite-textured vase. By combining TactStyle and digital fab-
rication techniques, users can now personalize their objects, or
prototype specific tactile properties in addition to the aesthetics of
their home decor objects.

10.2 Personalizing Accessories

Personal accessories are a popular domain for personalized fabrica-
tion. TactStyle enables creators to replicate both the ‘look’ and the
‘feel’ of textures based on image input, allowing creators to create
customized versions of their accessories with specific textures and
fabricate them with digital fabrication. In Figure 9c we showcase
an AirPods case, stylized with two different textures: a round stone
roof texture taken from an image of a ‘round stone roof” (top), and
another stylized with an image of a ‘layered brown rock’. These
textures not only provide visual distinction but also have different
surface microgeometry, associated with the texture.

10.3 Tactile Learning Tools

TactStyle has the potential to create educational tools that enhance
learning in subjects such as geometry, topography (e.g., the texture
of different terrains), and biology (e.g., the texture of animal skins).
To exemplify this concept, we present two examples in Figure 9d:
the top surface features a ‘volcanic rock texture’, and the bottom
surface replicates the texture of stone from ‘the Grand Canyon’.
Both textures are not present in the dataset, however are samples
of a class that TactStyle is trained on. Thus, TactStyle is able to
effectively generalize over different texture classes provided they
were represented in the training data. Tangible learning materials
are well-known to improve educational outcomes, particularly by
engaging multiple senses [18]. TactStyle offers a new way to create
such materials, allowing educators to bring textures and surfaces
to life in the classroom. By giving students the ability to physically
interact with these textures, TactStyle could potentially help them
better understand the tactile properties of objects, making abstract
concepts more concrete and accessible.
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Figure 9: Application Examples for TactStyle: a) a phone stand stylized with a wood-parquet texture, b) a granite-textured vase,
¢) an airpods case stylized with a texture of ‘round stone roof’ and ‘layered brown rock’, d) two tiles, one styled with a volcanic
rock texture and the other styled with stone from the Grand Canyon, e) walking stick handle stylized with a rough rock texture.

10.4 Customizable Assistive Devices

In the field of “Medical Making” [30] and “DIY Assistive Technol-
ogy” [2] personalized fabrication by nontechnical experts is becom-
ing an emerging and critical domain. TactStyle can be employed
to customize assistive devices with specific textures, enhancing
grip, comfort, or usability tailored to the unique needs of the user.
Figure 9e illustrates this by applying a ‘rough rock’ texture to the
handle of a walking stick. This texture generates a rough height-
field, which post-fabrication, significantly increases surface friction,
thereby improving grip and stability for the user. Such tactile en-
hancements are particularly valuable for assistive devices, where
safety and ease of use are critical, offering a practical solution that
can be tailored to the specific requirements of individuals with
mobility challenges.

11 Discussion and Future Work

TactStyle demonstrates an ability to replicate both visual and tactile
features from an image input, allowing creators to stylize their
3D models for both accurate color replication, and expected tactile
properties. In this section, we discuss TactStyle’s current limitations,
and its possible extensions in the future.

11.1 Opportunities for Richer Datasets

TactStyle’s performance and robustness to a diversity of textures is
dependent the quality and diversity of its training dataset. Currently,
the model utilizes the CGAxis repository [3], which provides 500
texture-heightfield pairs across five material categories: Parquets,
Wood, Rocks, Walls, and Roofs. The high quality of the available
images, and their corresponding heightfields allowed us to train the
image-generation model with a high accuracy. While this dataset
offers a diverse selection of real-world textures, this does not cover
all types of textures encountered by humans. Additional material
categories such as fabrics, metals, and organic surfaces could en-
hance the model’s generalizability, and allow personalization of
tactile surfaces in fashion, automotive design, etc. Moreover, ex-
panding the dataset to include dynamic material properties, such

as elasticity, thermal responsiveness, or friction, could enable Tact-
Style to model textures with more complex interactions, further
improving the reproducibility of their tactile properties.

11.2 Cross-Modal Texture Design

TactStyle is able to replicate specific tactile descriptors from both
expected tactile features extracted from the visual texture, and the
perceived tactile properties correlated to the original heightfield.
This combined replication of expected and perceived tactile proper-
ties allows for a cross-model design of textures. Recent work in VR
and Haptics [6] have explored novel ways to design and map user-
defined tactile properties in virtual reality, such as voice. TactStyle
approaches a similar problem, but in the fabrication domain, allow-
ing users to apply textures that have ‘expected’ tactile properties. In
the future, this approach can be extended to text prompts, allowing
users to describe their expected tactile response, and fabricate a 3D
model with such tactile properties.

11.3 Incorporating Material Properties of
Textures

The material properties of textures play a critical role in defining
their tactile experience. Hardness and Scratchiness, for instance, are
closely related to the rigidity and resistance of a material, directly
affecting how a surface feels when touched. Currently, TactStyle
operates by taking images as input to generate tactile features.
While this method effectively aligns visual and tactile experiences,
there is potential to enhance its accuracy by incorporating material
descriptors as input. In this study, we standardized the material
used for all texture samples for consistency, to evaluate the accuracy
of generated heightfields in replicating tactile perception. However,
tactile perception is also influenced by material-specific properties
such as compliance, thermal conductivity, and surface friction [7].
Future work could explore how these properties can be replicated by
predicting material types that approximate their tactile properties.
Additionally, integrating novel approaches like metamaterials [23]
could provide new avenues for tailoring and enhancing texture
replication across diverse applications.
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11.4 Analyzing Visuo-Haptic Properties
Together

TactStyle currently evaluates visual and tactile perceptions sepa-
rately, identifying key differences between expected tactile prop-
erties based on visual cues and the actual tactile perceptions of
textures. These findings highlight an interplay between visual and
haptic modalities in shaping texture perception [47]. Future work
could explore this property of tactile perception, and leverage visuo-
haptic mismatches to create novel experiences, such as “impossi-
ble materials” that visually appear soft but feel rigid, defying con-
ventional expectations. Additionally, photochromic materials have
been used in prior work to create re-programmable multi-color
surfaces. Such materials offer opportunities to dynamically link
visual and tactile feedback to create novel dynamic textures.

11.5 3D Model Generation with accurate texture
information

Recent Generative Al methods have enabled users to generate novel
3D models from scratch based on image and text prompts [17, 54].
However, while current systems excel in generating visual repre-
sentations of textures, they often lack the capacity to accurately
generate the tactile properties on these materials. Since TactStyle
works with image modality as well, an extension of TactStyle could
allow creators to provide an image of description of a novel ob-
ject and its expected tactile properties, allowing creators to not
only create novel digital artifacts but also fabricatable designs with
accurate texture information. By extending generative tools to en-
code material properties, these models could also propose materials
to fabricate the object such that the tactile experience is closely
approximated.

12 Conclusion

In this paper, we present TactStyle, a system that allows users to
stylize 3D models using image prompts, replicating both visual
appearance and tactile properties. By extending generative Al tech-
niques, TactStyle generates tactile features as a heightfield and
applies them to 3D models. A quantitative study demonstrates sig-
nificant improvements over traditional stylization methods. In a
psychophysical experiment with 15 participants, we evaluate Tact-
Style’s ability to create textures perceived as similar to both visually
expected tactile properties and the original texture’s tactile features.

Our findings show that TactStyle successfully aligns visual and
tactile properties, enabling more realistic 3D model personaliza-
tion. This work opens up new possibilities in cross-modal design,
and future work can expand TactStyle by incorporating material
descriptors to further enhance its tactile accuracy.
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A Perception Study Assessment Readings

A.1 Comparing Visual and Tactile Readings

A.1.1  Hardness. The ratings of hardness significantly differed de-
pending on the presented texture (y?(3) = 29.398, p < 0.001).
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TactStyle

For the Original samples, significant differences were found when
compared to the Visual (W = 2476.5, p < 0.001) and Stylization
samples (W = 1161.5, p < 0.01), but no significant difference was
observed with the TactStyle samples (W = 927.5, p > 0.05). For
the Visual samples, significant differences were found with Tact-
Style (W = 2978.5, p < 0.001) and Stylization samples (W = 4319.5,
p < 0.001). Additionally, the TactStyle samples differed significantly
from Stylization samples (W = 1080.5, p < 0.01).

A.1.2 Roughness. The ratings of roughness differed significantly
depending on the presented texture (y?(3) = 46.48, p < 0.001). For
the Original samples, significant differences were found with Visual
(W = 5768.0, p < 0.001), TactStyle (W = 4511.0, p < 0.001) and
Stylization samples (W = 4347.5, p < 0.001). For the Visual samples,
significant differences were also found with Stylization samples
(W = 6526.0, p < 0.01), but no significant difference with the
TactStyle samples (W = 8503.0, p > 0.05). The TactStyle samples
differed significantly from the Stylization samples (W = 7110.0,
p < 0.01).

A.1.3  Bumpiness. The ratings of bumpiness significantly differed
depending on the presented texture (y?(3) = 95.72, p < 0.001). For
the Original samples, no significant difference was observed with
the Visual samples (W = 7070.0, p > 0.05), but significant differ-
ences were found with both the TactStyle (W = 6257.5, p < 0.01)
and Stylization (W = 2296.0, p < 0.001). For the Visual samples, no
significant difference was observed with the TactStyle (W = 8242.5,
p > 0.05), but a significant difference was found with the Styliza-
tion (W = 3901.5, p < 0.001). Additionally, the TactStyle samples
significantly differed from the Stylization samples (W = 3326.0,
p < 0.001).

A.1.4  Scratchiness. The ratings of scratchiness significantly dif-
fered depending on the presented texture (y2(3) = 45.20, p < 0.001).
For the Original samples, significant differences were found when
compared to both the Visual (W = 6383.5, p < 0.001) and Styliza-
tion samples (W = 4940.5, p < 0.001), but no significant difference
was observed with the TactStyle samples (W = 6907.0, p > 0.05).
For the Visual samples, significant differences were found with
both the TactStyle (W = 6379.0, p < 0.01) and Stylization sam-
ples (W = 8198.0, p < 0.05). Additionally, the TactStyle samples
significantly differed from the Stylization samples (W = 4379.0,
p < 0.001).

A.1.5  Stickiness. The ratings of stickiness significantly differed
depending on the presented texture (y?(3) = 24.53, p < 0.001).
For the Original samples, significant differences were observed
with both the TactStyle (W = 3726.0, p < 0.01) and Stylization
samples (W = 3685.5, p < 0.001), but no significant difference was
found compared to the Visual samples (W = 5656.5, p > 0.05).
For the Visual samples, no significant difference was found with
the TactStyle samples (W = 6985.0, p > 0.05), but a significant
difference was found with the Stylization samples (W = 5679.0,
p < 0.01). Additionally, no significant difference was found between
TactStyle and Stylization samples (W = 5316.0, p > 0.05).

A.1.6  Uniformity. The ratings of uniformity significantly differed
depending on the presented texture (y?(3) = 25.02, p < 0.001).
For the Original samples, no significant difference was observed
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compared to the Visual (W = 7504.0, p > 0.05), TactStyle (W =
6783.0, p > 0.05), or Stylization samples (W = 7393.5, p > 0.05).
For the Visual samples, significant differences were found with
both the TactStyle (W = 5534.0, p < 0.001) and Stylization samples
(W = 7579.0, p < 0.05). Additionally, no significant difference
was observed between the TactStyle and Stylization samples (W =
8565.5, p > 0.05).

A.1.7 Isotropy. The ratings of isotropy significantly differed de-
pending on the presented texture (y2(3) = 27.13, p < 0.001). For
the Original samples, no significant difference was observed com-
pared to the Visual (W = 7527.5, p > 0.05) or TactStyle samples
(W =7359.5, p > 0.05), but a significant difference was found with
the Stylization samples (W = 6651.5, p < 0.01). For the Visual
samples, no significant difference was found with the TactStyle
samples (W = 7825.0, p > 0.05), but a significant difference was
observed with the Stylization samples (W = 5726.0, p < 0.001).
For TactStyle samples, a significant difference was found with the
Stylization samples (W = 5085.5, p < 0.001).

A.2 Perceptual Correlations

A.2.1 Hardness. The ratings of hardness were found to signifi-
cantly correlate depending on the presented texture. For the Origi-
nal samples, significant correlations were found with Visual samples
(r =0.28, p < 0.001), the TactStyle samples (r = 0.64, p < 0.001),
and the Stylization samples (r = 0.47, p < 0.001). For the Visual
samples, significant correlations were found with the TactStyle
samples (r = 0.28, p < 0.001) and the Stylization samples (r = 0.25,
p < 0.001). Finally, for the TactStyle samples, significant correla-
tions were found with the Stylization samples (r = 0.61, p < 0.001).

A.2.2  Roughness. The ratings of roughness were found to signifi-
cantly correlate depending on the presented texture. For the Orig-
inal samples, significant correlations were found with the Visual
samples (r = 0.22, p < 0.01) and the TactStyle samples (r = 0.28,
p < 0.001), but no significant correlation was observed with the
Stylization samples (r = 0.08, p > 0.05). For the Visual samples,
a significant correlation was found with the TactStyle samples
(r = 0.33, p < 0.001), but no significant correlation was observed
with the Stylization samples (r = —0.023757, p > 0.05). Finally, for
the TactStyle samples, no significant correlation was observed with
the Stylization samples (r = 0.055, p > 0.05).

A.2.3  Bumpiness. The ratings of bumpiness were found to signifi-
cantly correlate depending on the presented texture. For the Orig-
inal samples, significant correlations were found with the Visual
samples (r = 0.31, p < 0.001) and the TactStyle samples (r = 0.23,
p < 0.01), but no significant correlation was observed with the
Stylization samples (r = 0.16, p > 0.05). For the Visual samples, a
significant correlation was found with TactStyle samples (r = 0.17,
p < 0.05), but not with Stylization samples (r = —0.021, p > 0.05).
Finally, for the TactStyle samples, no significant correlation was
observed with the Stylization samples (r = 0.14, p > 0.05).

A.2.4  Scratchiness. The ratings of scratchiness were found to sig-
nificantly correlate depending on the presented texture. For the
Original samples, a significant correlation was found with the Visual
samples (r = 0.20, p < 0.05) and the TactStyle samples (r = 0.29,
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p < 0.001), but no significant correlation was observed with the
Stylization samples (r = 0.03, p > 0.05). For the Visual samples,
no significant correlation was observed with the TactStyle samples
(r =0.10, p > 0.05) or the Stylization samples (r = —0.18, p > 0.05).
Finally, for the TactStyle samples, no significant correlation was
found with the Stylization samples (r = 0.17, p > 0.05).

A.2.5 Stickiness. The ratings of stickiness were found to signifi-
cantly correlate depending on the presented texture. For the Orig-
inal samples, significant correlations were found with the Visual
samples (r = 0.23, p < 0.01) and the TactStyle samples (r = 0.31,
p < 0.001), but no significant correlation was observed with the
Stylization samples (r = 0.11, p > 0.05). For the Visual samples,
significant correlations were found with both the TactStyle sam-
ples (r = 0.26, p < 0.001) and the Stylization samples (r = 0.21,
p < 0.01). Finally, for the TactStyle samples, a significant correlation
was found with the Stylization samples (r = 0.29, p < 0.001).

A.2.6  Uniformity. For the Original samples, a significant correla-
tion was observed with the Visual samples (r = 0.20, p < 0.05), and
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with TactStyle samples (r = 0.074, p < 0.05), but not the Stylization
samples (r = 0.072, p > 0.05). For the Visual samples, a signifi-
cant correlation was found with the TactStyle samples (r = 0.20,
p < 0.05), but no significant correlation was observed with the
Stylization samples (r = —0.10, p > 0.05). Finally, for the TactStyle
samples, no significant correlation was found with the Stylization
samples (r = 0.04, p > 0.05).

A.2.7 Isotropy. The ratings of isotropy were found to significantly
correlate depending on the presented texture. For the Original
samples, a significant correlation was observed with the TactStyle
samples (r = 0.29, p < 0.001), and with the Visual samples (r = 0.15,
p < 0.05), but not with the Stylization samples (r = 0.13, p > 0.05).
For the Visual samples, a significant correlation was found with the
TactStyle samples (r = 0.19, p < 0.05), but not with the Stylization
samples (r = 0.04, p > 0.05). Finally, for the TactStyle samples,
no significant correlation was found with the Stylization samples
(r =0.16, p > 0.05).
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