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Figure 1: MuscleRehab is an electrical impedance tomography and optical motion tracking enhanced rehabilitation system for
visualizing muscle engagement and motion data during unsupervised physical rehabilitation.

ABSTRACT
Unsupervised physical rehabilitation traditionally has used motion
tracking to determine correct exercise execution. However, mo-
tion tracking is not representative of the assessment of physical
therapists, which focus on muscle engagement. In this paper, we in-
vestigate if monitoring and visualizing muscle engagement during
unsupervised physical rehabilitation improves the execution accu-
racy of therapeutic exercises by showing users whether they target
the right muscle groups. To accomplish this, we use wearable elec-
trical impedance tomography (EIT) to monitor muscle engagement
and visualize the current state on a virtual muscle-skeleton avatar.
We use additional optical motion tracking to also monitor the user’s
movement. We conducted a user study with 10 participants that
compares exercise execution while seeing muscle + motion data vs.
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motion data only, and also presented the recorded data to a group
of physical therapists for post-rehabilitation analysis. The results
indicate that monitoring and visualizing muscle engagement can
improve both the therapeutic exercise accuracy during rehabilita-
tion, and post-rehabilitation evaluation for physical therapists.
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1 INTRODUCTION

Physical rehabilitation assists a person in recovering from muscu-
loskeletal injuries. It can help people get back, keep, or improve
abilities needed for daily life. Around three quarters of years (74%)
lived with disability (YLDs) in the world are the result of health
conditions for which rehabilitation can be beneficial [29]. However,
there are not enough physical therapists to serve the needs of all
people [55] due to population aging and higher rates of severe
health conditions even within the same age group [45].

Several efforts have been made to remove burden from the ther-
apists to allow them to focus on more essential tasks and treat
more people. Two examples of this are user reported outcomes
to determine the current state of the patient’s condition [31] and
unsupervised rehabilitation sessions (e.g., home-based rehabilita-
tion) rather than entirely in-clinic therapy sessions [34]. However,
both of these rely on user’s subjective assessment of their exercise
execution and progress [2].

More recently, HCI researchers developed sensor-based techniques,
such as motion sensors attached to a user’s body [37], as well as op-
tical sensors [33] and flex sensors [40] to collect movement data for
quantitative assessment of the patient during unsupervised rehabili-
tation. While these measures provide additional data about the user,
they are designed around capturing motion data, and therefore are
not representative of the assessment a therapist does. Therapists
gain important information from muscle engagement and tension,
in addition to movement. The analysis of muscle engagement is
key for successful rehabilitation since the same movement can be
achieved in multiple ways using different muscles [44].

Monitoring muscle engagement has been a topic of interest for HCI
researchers. One technology used frequently is Electromyography
(EMG). However, EMG can only measure the action potentials of
contracted muscles resulting from nervous system activity, not
stretched muscles. In addition, EMG generates one-dimensional
on-surface measurements for each muscle, which does not provide
a holistic picture over a larger area or multiple layered muscle
groups [36]. Finally, signals captured with EMG are in the same
order of magnitude as mechanical noises and thus cannot be differ-
entiated from motion artifacts [56]. Especially noises on the skin-
electrode interface can result in significant signal disturbances [49].

Recently, researchers developed wearable devices based on electri-
cal impedance tomography (EIT) [64]. EIT is an imaging technique
that measures conductivity, permittivity, and impedance of a sub-
ject [21]. It works by attaching electrodes to the surface of the
subject (i.e. skin), using the electrodes to either inject current or
measure the resulting voltages, and then reconstructing an image
of the body’s internal conductivity. EIT can be used for monitoring
both contracted and stretched muscles, and compared to EMG is
less sensitive to mechanical noises. In addition, EIT data can be used
to reconstruct 3D volumetric muscle engagement data. However,
so far, no research has been done to investigate if EIT technology
can be used to improve unsupervised physical rehabilitation.

In this paper, we investigate whether monitoring and visualizing
muscle engagement via EIT can improve unsupervised physical

rehabilitation. To answer this question, we build MuscleRehab, a
rehabilitation system that tracks user’s motion via optical motion
tracking and user’s muscle engagement via electrical impedance to-
mography (EIT) and visualizes the data on a virtual muscle-skeleton
avatar (Figure 1). To visualize muscle engagement on the virtual
avatar, MuscleRehab reconstructs 3D volumetric muscle engage-
ment from the EIT data. Using the MuscleRehab system, we con-
ducted a user study with 10 participants, performing a sequence
of lower extremity therapeutic exercises designed around the total
knee arthroplasty (TKA) rehabilitation protocol, with and without
muscle engagement visualization, and measured the muscle en-
gagement accuracy during each condition. For the user study, we
chose to visualize the motion and muscle engagement in a virtual
reality environment instead of other display modalities to have bet-
ter control over the study environment. We further evaluated the
effectiveness of the recorded muscle engagement data for therapists
during post-rehabilitation analysis by conducting a second study
with 6 physical therapists. The results indicate that with the muscle
engagement visualization, users’ accuracy of therapeutic exercise
execution increased by 15%, and physical therapists were able to
improve their post-rehabilitation evaluation.

In summary, we contribute:
• a formative study with 7 physical therapists to understand
the challenges of unsupervised physical rehabilitation and
how to improve it with sensor-based techniques;

• an electrical impedance tomography and optical motion
tracking enhanced rehabilitation system, MuscleRehab, for
visualizing muscle engagement and motion data on a muscle-
skeleton avatar for unsupervised physical rehabilitation;

• a study with 10 participants to determine the muscle en-
gagement accuracy of lower extremity therapeutic exercises
during unsupervised physical rehabilitation, with and with-
out muscle engagement visualization;

• a study of 6 physical therapists evaluating the effectiveness
of muscle engagement data for post-rehabilitation analysis;

• a technical evaluation of the data fidelity, 3D image recon-
struction and system performance of MuscleRehab.

2 RELATEDWORK
Our work is related to the use of visualization in health sensing,
sensing techniques for physical rehabilitation, as well as previous
works on muscle engagement monitoring and visualization.

2.1 Visualization in Health Sensing

Visualization technologies and devices have been widely deployed
for health sensing related applications, for both medical profession-
als to interpret data analytics results [52], and patients / users during
remote and unsupervised health monitoring for data display and
feedback [46]. Apart from the usage of conventional 2D displays,
such as monitors [5, 9, 27] and wearables [19, 58], more recently
Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality
(MR) became emerging technologies in physical rehabilitation and
for healthcare at large [24]. They have shown improvements in
healthcare related applications, such as pain management [17],
surgical telementoring [3, 15], emergency procedure guide [30],
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post-traumatic stress disorder [14], stroke rehabilitation [33], skill
training and embodiment [4], exposure therapy [61], and treatment
of cerebral palsy [59].

In most applications, VR, AR and MR have been used as a moti-
vational technique to encourage patients to complete the repeat-
ing, sometimes boring activities or as a distraction from pain and
discomfort, for instance, by integrating exercises into game envi-
ronments [26]. For our work, the measured muscle engagement
and motion data can be visualized via various display modalities
(e.g. tablets, laptop screens, AR/VR). We chose to visualize the mus-
cle engagement data in a VR environment during the user study
since VR provides us with more control over the study environment.
In addition, since the user study required an onsite physical ther-
apist for collecting baseline data, the use of the VR environment
allowed us to shield participants from the therapist, which more
closely simulated an unsupervised rehabilitation environment.

2.2 Sensing Techniques for Physical
Rehabilitation

With the development of low-cost electronics and rapid prototyping
techniques, users have various portable sensing and monitoring
techniques available to assist them in the execution of therapeutic
exercises in physical rehabilitation [48]. The most common sensing
techniques for monitoring users during exercise are video-based,
force-based, and inertial sensors [43]. For video-based approaches,
researchers have explored commercial cameras (Khademi et al. [32]),
depth cameras, such as Microsoft Kinect (Kinerehab [25]) and Leap
Motion (Michalikova et al. [42]), for body angle and gesture moni-
toring. Force-based sensors have been mainly used in the recovery
of motor function impairments during stroke rehabilitation by in-
tegrating them with interactive bimanual devices to measure grip
(Kyto et al. [37]) and with footwear to measure gait (Krishnan et
al. [35]). Inertial sensors, on the other hand, are commonly inte-
grated with wearable devices, and used for recording general activ-
ity levels (CueS [20]), physical activity repetitions (SoniBand [38]),
as well as tracking motion safety, for instance for fall detection [47].
More recently, HCI researchers also investigated multi-modal sens-
ing by combining multiple sensing techniques to monitor physical
rehabilitation, such as using an optical sensor (Microsoft Kinect,
camera) together with accelerometers [22, 41].

For ourMuscleRehab system, we also implemented multiple sensing
techniques to more accurately assess the user’s execution of the
rehabilitation exercises. In particular, we use a video-based tracking
system (OptiTrack) for motion capturing, inertial sensors (IMU) for
tracing the user’s field of view in VR, as well as EIT to measure
muscle engagement.We next discuss in more detail how researchers
measure muscle engagement.

2.3 Muscle Engagement Monitoring and
Visualization

Measuring muscle activity has been a topic of interest for HCI
and health sensing researchers. The most frequently used sensing
techniques for muscle activity are Electromyography (EMG) and
Mechanomyogram (MMG). EMG determines muscle activity by

measuring the action potentials of contracted muscles resulting
from nervous system activity [39, 57]. Differently, MMG measures
the mechanical signal observable from the surface of muscles when
contracted, which can be detected via a capacitive plane array [51]
and force-sensitive resistors (FSR) [13]. However, both EMG and
MMG can only measure contracted muscles but not stretched ones.
In addition, the one-dimensional on-surface noninvasively mea-
sured data for each muscle does not provide a holistic picture over
a larger area or multiple layered muscle groups (i.e., muscle groups
layered on top of each other without exposure to skin, or deep mus-
cles) [36]. Moreover, considering that many physical rehabilitation
patients have implants (e.g. from knee replacement), signals cap-
tured with EMG are in the same order of magnitude as mechanical
noises caused by motion and thus cannot be differentiated from
motion artifacts [56]. In addition to EMG and MMG, researchers
have also investigated indirect measurement approaches, such as
force based muscle contraction (MC) sensors [12], which perform
skeletal muscle tension measurements during muscle contraction,
proximity basedwearable IR sensor arrays [23] thatmeasure the gap
between the wearable sensor and the skin surface, which changes
when muscles contract, as well as stretch sensors [53], force gauges
and flexible capacitive sensors [10].

Recently, researchers have explored using electrical impedance to-
mography (EIT) for detecting hand gesture motions [62, 63] as well
as muscle activity (EIT-kit [64]). Compared to EMG and MMG, EIT
can be used for monitoring both contracted and stretched muscles
with regional information, as well as layered muscles not directly
exposed to skin with cross-sectional information by injecting sig-
nals and reconstructing inner conductivity maps. In addition, EIT
is a technique based on bio-impedance measurements rather than
neural activity measurements (the basis for EMG), which are more
reliable when motion artifacts exist since they are less sensitive
to mechanical noises due to high operating frequency (10 kHz - 1
MHz [16]). We therefore chose EIT to study if visualizing muscle
engagement helps in physical rehabilitation and integrate EIT mea-
surements from a wearable EIT device in the MuscleRehab system.

3 FORMATIVE STUDY

To further increase our understanding of the challenges involved
in unsupervised physical rehabilitation, we conducted a formative
study with 7 professional physical therapists (PTs). The participants
included 4 males and 3 females, aged 27-35 (M=30.8, SD = 2.99).

We conducted semi-structured interviews (30 minutes per partici-
pant) and focused our questions on the following two parts: (1) what
are the challenges therapists encounter around unsupervised phys-
ical rehabilitation, and (2) what additional information would ther-
apists like to collect during unsupervised physical rehabilitation to
help them determine the current state of the patient’s condition.
We describe our findings below and discuss how to address some
of those needs with sensor-based techniques.

Absence of User Exercise Compliance & Quality Data: All PTs men-
tioned that they struggled with improving the exercise compliance
and execution quality during unsupervised rehabilitation sessions.
PT3 explained that “[...] the level of success of a Home Exercise
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Program varies largely across different patients, [it depends on]
their motivation and exercise posture”. PT3 added that “[...] it would
be very helpful if there is a system to keep track of [exercise qual-
ity] and provide posture guidance during home exercise programs.”
PT5 further stressed that “[...] we can check the muscle engage-
ment status with the hand and correct the patient in clinic, this
[information] is missing for home programs.”

Difficulty of Accurate Evaluation without In-clinic Diagnosis: Mul-
tiple PTs stated that it can be challenging to accurately evalu-
ate and keep track of the recovery progress during remote post-
rehabilitation analysis, unless the patients come in for an in-clinic
diagnosis. PT5 stated that “[...] although there exists self-report
evaluation metrics, like KOOS (Knee Injury and Osteoarthritis Out-
come Score [50]) and LEFS (Lower Extremity Functional Scale [6]),
a lot of patients don’t fill them out at all or not correctly.” There-
fore, they indicated that objectively measured posture and muscle
engagement data can be much more effective than self-reported
metrics when it comes to post-rehabilitation evaluation.

New & Higher Level Exercises: Three PTs mentioned that new and
higher level exercises are muchmore difficult for patients to execute
correctly on their own. PTs mentioned that because of the increased
difficulty these exercises particularly benefit from the assistance
sensor-based techniques can provide. PT3 stated that “[...] it often
takes them a few clinic visits before they can execute new or higher
level exercises under an unsupervised environment, and that time
can be potentially be saved with sensing and real-time feedback
systems.” PT4 also added that “some [higher level] exercises require
multiple muscle groups to execute, as stabilizer and actuator, and
sometimes patientsmix those up, so [although] it might look correct,
it is using the wrong muscle [...] this can be resolved by muscle
data instead of just posture [data].”

Data Capturing & Feedback: Several PTs expressed that they wished
more data would be captured during unsupervised rehabilitation
sessions, especially muscle and motion data, and more feedback
would be provided to the patient. PT6 highlighted that “our clinic
started to deploy a recording App for patients’ home exercise pro-
grams during the pandemic, so that they can record themselves
during the exercise for us to better evaluate [their progress]. I find
that really helpful for [post-rehabilitation] evaluation, and would
love to have more key data captured, like muscle and joints activity.”

Based on these insights from our formative study, we focused on
muscle engagement data and motion data and designed Muscle-
Rehab, a real-time muscle engagement visualization and motion
tracking enhanced rehabilitation system for unsupervised physical
rehabilitation to better guide users during exercise sessions and
assist PTs for post-rehabilitation evaluation. In addition, our for-
mative study interviews indicate that there are other challenges
that need to be addressed with future research, such as improving
tracking of the training routine & completion as well as designing
home programs with a focus on increasing motivation.

4 MUSCLEREHAB SYSTEM SETUP

MuscleRehab is an electrical impedance tomography and optical
motion tracking enhanced rehabilitation system for visualizing

muscle engagement and motion data during unsupervised physical
rehabilitation. We use the MuscleRehab system as the study proto-
type for investigating whether monitoring and visualizing muscle
engagement via EIT can improve unsupervised physical rehabili-
tation. MuscleRehab consist of a customized wearable EIT sensing
device for measuring muscle engagement, a high precision optical
motion capture system, as well as a rehabilitation user interface in
a VR environment that serves as a therapeutic exercises guide and
displays muscle engagement and motion data.

4.1 Wearable EIT Sensing Device

Our customized wearable EIT sensing device is based on the open-
source board EIT-kit [64] and thus allows for EIT signal calibration
and measurement for various electrode configurations. It consists
of a main sensing board that can be flexibly extended with a stack
of modular multiplexer boards. The mux boards can support up to
64 channels when connected to the main sensing board for high
resolution EIT image reconstruction. Rather than using the original
EIT board design, we changed the microcontroller and bluetooth
communication module to enable more consistent long-time mea-
surements and improved signal integrity during data transmission
(see section 5 ’Implementation’).

For our user study, in which we focus on total knee arthroplasty
(TKA) rehabilitation, we use two electrode arrays, each containing
16 standard ECGmedical electrodes to create a 3D volumetric image
of the thigh. This provides more comprehensive data on the muscle
engagement, and reduces measurement errors due to the EIT device
shifting slightly during movement. We attach the electrodes evenly
onto the user’s upper and lower thigh, and connect them to the
EIT sensing board via standard snap electrode cables. We apply an
adjustable fabric leg strap on top of each electrode array to keep
them in position and ensure consistent skin-to-electrode contact,
as shown in Figure 2.

Figure 2: Electrical Impedance Tomography sensing board
and measuring setup.

4.2 Optical Motion Capture System

The optical motion capture of MuscleRehab is built on top of Opti-
Track [28] (Figure 3). It is equipped with 29 motion capture cameras
(Prime-13) streaming at ∼250 frames per second. A tracking suit
with 39 tracking markers results in a 3D precision as fine as 0.5mm
at long ranges and 0.2mm in close proximity. We use the OptiTrack
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system for both recording and streaming of live motion data. We
use the recording functionality to capture the baseline motion for
the user study from a physical therapist, which is later displayed
to the user study participants. We use the live streaming function-
ality to capture user study participants’ motions and show them
side-by-side with the pre-recorded motion data of the therapist.

In order to display the motion data on our custom muscle skeleton
avatar, we first export the motion data, then map it onto an ani-
mation rig, and finally render it onto our custom designed muscle
skeleton avatar to stream (or store) the motion in real time.

Figure 3: Optical Motion Tracking System.

4.3 Rehabilitation User Interface

The rehabilitation user interface is integrated into a VR environ-
ment, whichwe developed using the cross-platform 3D game engine
Unity and display with an HTC VIVE Pro 2 VR headset [11]. As
shown in Figure 4, our user interface has a floating control panel on
the left for selecting 10 different lower extremity therapeutic exer-
cises (8 for single leg, and 2 requiring both legs). In addition, there
are two muscle skeleton avatars: the therapist avatar on the left
side, which displays the correct motion and targeted muscle groups,
and the patient avatar in full size in the middle and as a close up
view on the right side, which displays the patient’s live motion and
muscle engagement data. When the system’s muscle visualization
is turned on in the user study, the muscle engagement data of the
participant is mapped onto the corresponding muscle groups of the
patient avatar using color mapping: red for quadriceps, green for
sartorius, blue for hamstrings, yellow for adductors, with darker
tones indicating more engagement of the muscle groups (i.e., more
contracted or stretched). To ensure that the muscles of the avatar
3D model contract and stretch in the 3D environment with the
corresponding movement, each muscle group is rendered as an
individual 3D model and each muscle 3D model is linked to the
corresponding joints. Moreover, the patient avatar has a zoomed
in window displayed next to it, which shows a detailed view of
the avatar’s muscles where the EIT-device is located. We imple-
mented the user interface in third person perspective to create a
“mirror” setup, which is common for exercise training. This allows

users to monitor their entire body which is not possible in first
person perspective. Instead of the conventional hand-hold VR con-
trollers, we use the eye tracking and head movement of the user,
captured via inertial sensors on the VR headset, to interact with
the rehabilitation user interface.

Figure 4:MuscleRehab User Interface.

4.4 Displaying Muscle Engagement Feedback

MuscleRehab extracts the muscle engagement data that is overlaid
over the patient’s avatar (Figure 4) from a 3D reconstructed EIT im-
age. For more accurate representation of the EIT data, the boundary
of the 3D reconstructed image is based on a custom build forward
model, i.e. a standard mid thigh model. The custom forward model
contains four major muscle groups: quadriceps, hamstrings, adduc-
tors, and sartorius. As shown in the Figure 5, upon receiving the EIT
measurements from the wearable EIT sensing device (4.1), the sys-
tem processes the voltage measurements from the electrode pairs
and calculates the conductivity distribution, i.e. the conductivity at
each voxel within the boundary. The system then samples the raw
conductivity data within each of the muscle group regions, calcu-
lates the regional conductivity of each muscle group, and compares
it to the regional conductivity of the starting position of the motion
(baseline) to compute the differential changes in muscle engage-
ment. Finally, the differential regional conductivity changes are
mapped onto standard red, green, blue, and yellow color spectrums,
and visualized on the corresponding muscle groups (red for quadri-
ceps, green for sartorius, blue for hamstrings, yellow for adductors)
of the patient avatar, with darker tones corresponding to a more
engaged muscle (i.e., more deviation from the baseline ranging from
-1.0 (maximum contracted) to 1.0 (maximum stretched)).

5 IMPLEMENTATION

In this section, we provide additional details on how each compo-
nent ofMuscleRehab is implemented, including the VR environment
and motion tracking system, the EIT sensing board and measuring
configuration, as well as the 3D image reconstruction algorithm.
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Figure 5: Displaying muscle engagement on a muscle skeleton avatar from EIT measurement.

5.1 VR Environment & Motion Tracking

We used Rhino 3D, a computer-aided design software, to build the
VR environment model. We then imported the VR environment
model into the VR engine Unity and rendered it with the High
Definition Render Pipeline (HDRP).We also used Rhino 3D to create
a high-precision average adult model consisting of 304 muscle
pieces based on the BioDigital libraries [7]. After finishing the
modeling, we imported the muscle model into the 3D editor Blender
for rigging. In Blender, we used Autorig, a Blender add-on, and
followed the information in the BioDigital libraries to match the
muscle model to the rig, bind the armature, retarget the animations,
and finally export it to Unity in .fbx format.

In our VR interface in Unity, there are two muscle skeleton avatars.
The therapist avatar displays animations of the pre-recorded thera-
pist’s motion sequence, which we store in the system. The patient
avatar, in contrast, receives live-streamed data. To receive the live-
streamed motion data, the patient avatar is connected to a software
called Motive, which is used to live stream the 3D position, marker
ID, rotational data, and skeletal tracking from OptiTrack [28]. In
addition, the patient avatar is also connected to Matlab, which
transmits the data that corresponds to the engagement of the dif-
ferent muscle groups. The data contains an array of 8 EIT values
ranging from -1.0 to 1.0 (with -1.0 referring to 100% stretched and
1.0 referring to 100% contracted), corresponding to the degree of
engagement of the 8 muscle groups on both of the thighs. Upon
both inputs, Unity visualizes both real-time motion and muscle
engagement information on the patient’s avatar model.

5.2 EIT Sensing Board & Measuring
Configuration

The custom EIT sensing board ofMuscleRehab is designed based on
the open source EIT-kit design [64]. Our board design consists of
one main sensing board for injecting the AC signal and measuring
the resulting voltage output, and up to two stack-up multiplexer
boards, each containing four 32-to-1 analog multiplexers, which can
direct the signal freely for up to 64 individual electrodes. The EIT
sensing board is capable of auto-calibrating sampling time, inject-
ing AC current amplitude and measuring voltage gain to achieve
optimized impedance results based on the measurement target.

This is implemented via adjustable instrumentation amplifiers and
modulated by digital rheostats that control both differential current
source and differential voltage measurement. While the board can
provide differential injecting AC current up to 500kHz, we used
a 50kHz signal for our user study since it is the optimized signal
frequency for human skin [60].

Compared to the original open source design, we redesigned the
circuit around a Teensy 4.0 microcontroller (as shown in Figure 6a)
to achieve a faster clock rate and more computational power, which
results in faster processing time and amore consistent sampling rate
over a long period of operation. We also implemented a standalone
HM-10 BLE module instead of the previous integrated wireless
communication device, and placed it far away from the 20MHz ADC
(ADS901E) to ensure the input analog signal fidelity. In addition,
we redesigned the control circuit so that the new board uses one
less SPI channel, which improves the overall signal synchronization
over a long time period of EIT measurements.

For the 3D volumetric EIT measurement of the thigh muscle groups,
we implemented two 16-electrode designs with four-terminal con-
figurations. Instead of a conventional “layered” electrode layout
and "adjacent" stimulate & measure pattern, we implemented a
"square" electrode layout, with “skip 4” stimulate & measure pat-
terns, as shown in Figure 6b. As a result, our system is capable
of capturing more information from the inner and cross-sectional
space between the two electrode arrays (rather than more informa-
tion around the skin surface area as the conventional layout and
pattern provides) [18].

5.3 3D Image Reconstruction Algorithm

MuscleRehab solves the inverse problem of inferring the internal
conductivity 𝜎 over a 3D domain Ω from voltage responses 𝜙 to
current sources 𝐼 . This is mathematically formalized by the contin-
uum Ohm’s law 𝐽 = 𝜎∇𝜙 , where 𝐽 is the current density, and the
continuum Ampere’s law ∇ · 𝐽 = 𝐼 . Under the assumption of no
interior current sources, we can combine these equations, which
provides us with the continuum Kirchoff’s law:

∇ · 𝜎∇𝜙 = 0. (1)
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Figure 6: (a) EIT sensing board and (b) signal stimulate &
measure pattern.

The boundary current sources are encoded by 𝑗 = −𝐽 · �̂�, where �̂� is
the surface normal of Ω. We can solve the linear PDE (1) for voltages
𝜙 over Ω for a fixed 𝜎 and boundary conditions. Conventionally,
one would set the internal conductivity to be constant conductance
(e.g 𝜎0 initialized to be of constant conductance 1) and choose a
unit cylinder model for simplicity. For our system, since we are
interested specifically in the conductivity changes in thigh muscle
groups during the motion rather than the absolute values, we con-
structed a custom 3D forward model, based on an average thigh
model from a biology text book. We set the muscle regions in the
model to be a higher conductance than surrounding tissue (fat, bone
etc., which have lower conductance compare to muscle), as shown
in Figure 7. The model is constructed via Netgen [54] in MATLAB.
Please note that in the figure, we set the four muscle groups to
different conductances so that they are more distinguishable, in
practice we set them to be the same conductance. This solves the
forward problem of determining 𝜙 from known 𝜎, 𝑗 , with 𝑓 (Ω, 𝜎)
be the restriction of voltages 𝜙 to the boundary 𝜕Ω.

Figure 7: Side (left) and top (right) view of the customized
thigh forward model.

For the ‘inverse’ problem, we experimentally choose current sources
𝑗 , and measure the boundary voltages 𝜙 . The 𝜎 can then be inferred
by solving the nonlinear optimization:

𝜎∗ = argmin
𝜎

∥ 𝑓 (Ω, 𝜎) − 𝜙 ∥22 (2)

With assumptions that 𝜎 does not change quickly in time, we can
solve the 𝜎𝑘 based on 𝜎𝑘−1 to achieve a faster and more stable

solution, where 𝜎𝑘−1 be the solution to (2) for the previous timestep.
We use the differential one-step Gauss-Newton solver, with prior
Laplace filter. The functions are implemented via EIDORS [1] in
MATLAB.

Once reconstructed the 3D image, we extract the conductance val-
ues for each muscle group based on the conductance values of the
cube voxels within the corresponding regions assigned in the for-
ward model. We then interpolate the values onto the range of -1
to 1, with -1 be full stretched and 1 be fully contracted, based on
user-specific calibrated baseline values, for each muscle group. The
user-specific baseline for each muscle group are measured when
users fully contract and stretch the corresponding muscle group.

6 USER STUDY #1: TRAININGWITH AND
WITHOUT MUSCLE ENGAGEMENT
VISUALIZATION

In our first user study, we investigated if real-time visualization of
muscle engagement via EIT in addition to motion can improve un-
supervised physical rehabilitation when compared to motion visual-
ization only. For the study, we investigate potential improvements
for total knee arthroplasty (TKA) rehabilitation, which focuses on
the training of muscles in the thigh.

6.1 Study Design

Hypothesis: Our hypothesis was that performing unsupervised
physical rehabilitation with real-time muscle engagement visualiza-
tion in addition to motion will result in a higher muscle engagement
accuracy compared to motion tracking only.

Participants: We recruited 10 participants (4 female, 6 male) aged
20-26 years (M=23.4, SD=1.96). The mean height of the participants
was 170.4 cm (SD=10.62). 8 participants were right-handed and 2 left
handed. 4 participants had experience with lower extremity ther-
apeutic exercises through professional physical therapists before,
and 3 of them were doing regular lower limb training sessions. All
participants had little to none physical disability around their lower
limbs. Each participant was compensated with $30 U.S. dollars for
their participation.

Conditions: The study had two conditions and followed a within-
subjects design. We used randomized order to avoid order effects
for the participants. The two conditions were: motion data only vs.
muscle and motion data. In both conditions, the therapist avatar
showed the same type of information, i.e. displayed the correct
motion and muscle engagement. Depending on the condition, the
patient avatar showed either only the live motion or the live motion
and muscle engagement. In addition, a zoom-in window next to
patient avatar showed a detailed view of the thigh muscle groups.
In both conditions, participants wore the EIT device, which allowed
us to record the muscle engagement data in both conditions for
later comparison of the quality of the exercise execution.

Study Setup: Participants were asked to wear a tracking suit with
39 trackers, the EIT sensing device with 32 3M medical electrodes
attached to their non-dominant upper thigh, and an HTC VIVE Pro
2 VR headset for the entire study. The VR user interface showed
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Figure 8: The ten lower extremity therapeutic exercises in user study #1.

the therapist avatar, which displayed the current lower extremity
therapeutic exercise movement, and the patient avatar with the real-
time motion or motion+muscle data depending on the condition.

Recording Baseline Therapist Data: To record the baseline mo-
tion that is shown on the therapist avatar, we recruited a licensed
physical therapist who professionalizes in lower limb rehabilitation.
We worked with the therapist to record ten lower extremity thera-
peutic exercises. Seven of the exercises were directly taken from
the total knee arthroplasty (TKA) rehabilitation protocol, and three
were designed by the therapist to be more advanced versions of the
TKA exercises. To create the recordings, the therapist wore only
the motion tracking suit to ensure the highest possible tracking ac-
curacy during exercise execution, and performed ten repetitions of
the same type of exercise motion for each of the ten exercises. The
therapist did not wear additional hardware (i.e., no VR headset and
wearable sensing device) during the recording. We then mapped the
whole sequence of ten repetitions onto the therapist avatar, which
is shown when participants execute their exercises. For displaying
muscle engagement, we asked the therapist to identify which mus-
cles should be engaged for each of the ten exercise types. We then
used this information to highlight the corresponding muscles in
the muscle skeleton avatar. The baseline recording session took 2
hours and the therapist was compensated with $200 U.S. dollars.

Figure 9: User study #1 procedure.

Capturing Participant Data: At the beginning of the study, each
participant filled out a form to record their past experience with

physical rehabilitation. As shown in the Figure 9, we then calibrated
the avatar and EIT device to each participant during the “Prep” stage,
and participants got to interact and become familiar with the avatar
and muscle visualization during the “Intro & Training” phase. After
this, each participant performed two groups of lower extremity
therapeutic exercises, each containing a sequence of five different
exercises with ten repetitions each. Thus, across the two exercise
groups, participants performed ten different exercises in total, all
of which are shown in Figure 8. Each participant performed one
group of exercises in each condition, with the order of conditions
randomized. The combinations of the five exercises in each group
were balanced based on their postures (3 standing, 1 sit down,
1 laying down), target muscle engagement and levels of difficulty,
as recommended by the physical therapist. Participants took a
2 minutes break between each exercise, and a 10 minutes break
between each group of exercises. After the study, each participant
filled out a questionnaire to provide post-study feedback for the
system. In total, the study took 90 minutes, including the device
setup and questionnaires.

Measuring Muscle Engagement Accuracy: We measured the
muscle engagement accuracy by first calculating the time during
which the engaged muscles matched the correct muscle groups,
based on calibrated EIT muscle engagement thresholds during the
study “Prep” stage. We then divided the result by the overall exer-
cise session time for each of the designed therapeutic exercise to
compute the muscle engagement accuracy percentage.

6.2 Study Results

The results for muscle engagement accuracy for each of the ten exer-
cises are shown in Table 1. Across the ten therapeutic exercises, par-
ticipants engaged muscles more accurately in the muscle+motion
(65.02%, SD=16.16%) condition thanmotion only (50.03%, SD=10.51%).
We found the difference to be statistically significant (p-value=0.024).
For exercises with higher difficulty levels (e.g. Single Leg Deadlift,
Standing Fire Hydrant), and non-conventional postures (i.e. laying
down exercises such as Straight Leg Raise Side, Single Leg Bridge),
participants’ muscle engagement accuracy improved even more,
with muscle + motion 74.31%, SD=20.26%, and motion only 42.57%,
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SD=26.49% (p-value = 0.0016). One outlier in our results was the
exercise Sit to Stand, which participants performed more accurately
in the motion only condition. One reason for this may be that this
exercise is very common in daily life, i.e. highly practiced, and the
additional muscle engagement visualization might have ended up
being distracting for this simple motion.

In our post study questionnaire, we asked participants to rate the
accuracy and responsiveness of the motion tracking and muscle
visualization inMuscleRehab on a scale of 1-5. The results show that
participants perceived both motion and muscle visualization to be
similarly accurate and responsive, i.e. they rated motion tracking
with an average 3.89 (SD=1.27) and muscle visualization with an
average of 3.67 (SD=0.87).

Table 1: Muscle engagement accuracy of different exercises
in motion tracking only and motion tracking + muscle visu-
alization conditions.

Exercise Type Motion Motion+Muscle Vis. p-value
Front Lunge 59.13% 72.02% 0.099

Standing Knee Bend 44.92% 61.58% 0.064
Seated Knee 47.51% 59.52% 0.278

Single Leg Deadlift 41.16% 72.42% 0.010
Straight Leg Raise Side 48.00% 67.89% 0.041
Terminal Knee Extension 54.82% 54.84% 0.998

Single Leg Squat 55.58% 53.31% 0.779
Sit to Stand 66.31% 36.01% 0.015

Standing Fire Hydrant 54.29% 76.07% 0.069
Single Leg Bridge 28.61% 96.55% 0.002

Average Accuracy 50.03% 65.02% 0.024

6.3 Qualitative Feedback

All 10 participants stated a preference for the motion + muscle
visualization condition over the motion only condition. Below, we
summarize additional observations and qualitative feedback.

More Guidance on Rectification: In addition to the muscle engage-
ment visualization, which allowed participants to identify exercise
mistakes, several participants expressed that they would like to
also see guidance on how to rectify the exercise motion. P9 stated
that “I become much more aware if and when I am performing the
exercise wrong because of that (muscle visualization), and it would
be even better if the system can guide me to correct it.”

Customized Avatar:Multiple participants expressed that they would
like to use a customized avatar during rehabilitation that better fits
their body proportions and gender. For instance, P3 commented that
“[I] would like to see a female body [avatar]”. For the user study,
we did not customize the avatar to prevent introducing another
variable. For future work, we plan to implement customized avatars
that better fit a user’s physiology.

Alternative Environments: In addition to displaying muscle engage-
ment data in VR, some participants expressed that they would also
like to explore other display modalities, such as the use of AR or
2D displays. While the immersiveness of the VR environment was

highly appreciated by participants as indicated on our post-study
questionnaire (rated 4.13 out of 5), some participants expressed
worry about potential motion sickness when the VR headset is used
over longer periods of time.

7 USER STUDY #2: EVALUATINGWITH AND
WITHOUT MUSCLE ENGAGEMENT
VISUALIZATION

For our second user study, we investigated if muscle engagement
data can also be helpful for physical therapists when conducting
remote post-rehabilitation analysis. In remote post-rehabilitation
analysis, the data is sent to therapist’s office after the patient trained
at home for evaluation and further exercise recommendation.

7.1 Study Design

Hypothesis: Our hypothesis was that displaying muscle engage-
ment data in addition to motion assists physical therapists in per-
forming remote post-rehabilitation analysis closer to on-site analy-
sis, when compared to motion data only.

Participants:We recruited 6 licensed physical therapists (2 female,
4 male) who professionalize in lower limb physical rehabilitation.
Therapists ages ranged from 27-32 years (M=29.8, SD=2.17), and on
average worked for more than 5 years in the field. The participating
physical therapists were compensated with $80 U.S. dollars per
hour for 3 hours ($240 U.S. dollars per therapist, $1440 U.S. dollars
for all six therapists together).

Conditions: The study had two conditions and similar to the previ-
ous study followed a within-subjects design. We used randomized
order to avoid order effects for the participants. The two conditions
were: motion data only vs. muscle and motion data, i.e. we pro-
vided therapists with a corresponding screen recording of the VR
environment for each of the participants from user study #1, which
all had participated in both conditions. In addition, we provided
therapists with an on-site video recording of each participant’s
exercise session from user study #1 to mimic a video-based remote
therapy session.

Baseline On-Site Evaluation: To be able to compare the accuracy
of remote post-rehabilitation analysis to on-site post-rehabilitation
analysis, we recruited one additional physical therapist who was
present as a silent observer during user study #1. For each exercise,
the on-site therapist assessed if the correct muscle was engaged or
not based on observation. In addition, they notedwhatmuscles were
wrongly engaged in case the exercise was not executed correctly.
While in on-site therapy physical therapists sometimes touch the
patient’s body to further validate muscle engagement, this was not
feasible in our study due to interferencewith themotion capture and
added noise in the EIT data collection. However, we confirmed with
the therapist that assessing muscle based on observation is feasible
and often done in rehabilitation sessions. The on-site therapist did
not know under which condition (motion only vs. motion + muscle)
participants executed the current exercise to remove potential bias.
The overall accuracy ratings for the ten exercises by the on-site
therapist’s evaluation were for motion only 8.31 (SD=0.70) and for
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motion+muscle 8.75 (SD=0.52). The on-site physical therapist was
compensated with $100 U.S. dollars per hour for 12 hours, totaling
$1200 U.S. dollars.

Remote Evaluation: Each of the 6 remote therapists evaluated
all 10 participants’ recordings of all 10 lower extremity therapeutic
exercises based on their execution quality, on a scale of 1 - 10.
Each participant’s recording contained 5 video clips of the motion-
only recording and 5 video clips of the motion + muscle recording,
in the same order the corresponding participant performed it in
user study #1. Each video clip contained both the screencast of the
VR environment view with participant & avatar motion, as well
as a front view camera recording. Similar to the on-site therapist
evaluation, remote therapists evaluated if the exercise was executed
correctly, i.e. used the right muscles, and if not, which wrongmuscle
groups were used. In total, each therapist spent around 2.5-3 hours
to evaluate the recordings. At the end of the study, we asked each
remote therapist to fill out a post-study questionnaire.

7.2 Study Results

To evaluate how closely aligned the remote post-rehabilitation anal-
ysis was to the on-site analysis, we calculated the square deviations
between each remote PT’s rating and the on-site PT’s baseline,
for all ten exercises recorded in user study #1, and for the motion
only and motion + muscle visualization conditions separately. The
deviation results are shown in Table 2. We found that the average
deviation between the remote PT and the on-site PT was smaller for
the motion+muscle condition (0.83, SD=0.58) than for the motion
only condition (1.62, SD=1.27). We found that the difference was
statistically significant (90% confidence level, p-value=0.097).

Table 2: Rating deviation of on-site vs. remote PTs for dif-
ferent exercises in the motion tracking only and motion
tracking + muscle visualization condition.

Exercise Type Motion Only Motion + Muscle Vis.
Front Lunge 1.36 0.44

Standing Knee Bend 0.82 0.33
Seated Knee 0.13 0.69

Single Leg Deadlift 1.34 1.61
Straight Leg Raise Side 2.69 1.98
Terminal Knee Extension 2.45 0.16

Single Leg Squat 4.25 0.56
Sit to Stand 0.74 1.11

Standing Fire Hydrant 2.06 0.89
Single Leg Bridge 0.35 0.55
Average Deviation 1.62 0.83

We also asked the PTs to rate the accuracy and responsiveness of
the motion tracking and muscle visualization of the MuscleRehab
based on the video recording & VR screencast, on a scale of 1-
5. The PTs on average rated the accuracy and responsiveness of
motion tracking andmuscle visualization to be 4.4 (SD=0.55) and 3.8
(SD=0.45). All PTs preferred the motion + muscle visualization for
post-rehabilitation analysis, and agreed that the additional muscle
engagement data helped them with the quality of evaluation.

7.3 Qualitative Feedback

We summarize additional qualitative feedback from the remote PTs
and list below.

Facilitating Communication with the Patient: Remote therapists men-
tioned that having the muscle engagement data available would
facilitate communication with their patients by allowing them to
show data to patients on what was wrong and using the muscle
avatar to explain how to correct it. PT3 commented that “[it] makes
it so much easier to explain to patients when there is visual data
supporting it”.

Integrating Exercise Motivators into VR: Multiple PTs suggested to
integrate additional motivators into the VR exercise environment,
for instance, by gamifying the exercises. PT5 explained that “[it]
will motivate the patients to exercise more frequently and keep
them on track of their remote program.”

Additional View Points: In our study, PTs relied on a screen recording
of the VR environment to assess exercise accuracy. Several PTs
mentioned that having additional view points could further help to
observe the patients’ posture andmuscle engagement from different
angles. Since the MuscleRehab system captures and stores all the
streamed motion and muscle engagement data, it can reconstruct
the VR environment as the user experienced it, and show it to the
remote physical therapist wearing a VR headset.

8 TECHNICAL EVALUATION

We evaluate how accurately our captured EIT data corresponds to
each muscle group, differences between users of different BMIs, as
well as the system performance of MuscleRehab, i.e. its capability
to provide users with live feedback.

8.1 Correspondence of EIT Data to Muscle
Group

To investigate if we can correctly identify the location of the muscle
groups, we created a Phantom setup with 3D printed muscle geome-
tries. We 3D printed a forward leg model geometry that included
the four different muscle groups that we measured in the user study.
We immersed the leg model in the Phantom tank filled with saline
water, and mounted two electrode arrays, with 16 electrodes, each
on the outside of the Phantom tank in a similar location as they
were mounted on the legs of the participants.

We first evaluated the static state of the muscle. For this, we placed
all 3D printed muscles inside the Phantom and created the recon-
structed 3D image cross-sectional slices shown in Figure 10.

We next evaluated the dynamic state of the muscle during engage-
ment. For this, we evaluated both volume and conductivity changes
in the 3D printed muscle geometries. To do this, we changed the
size of the 3D printed muscles to simulate muscle contraction and
stretching and also spray painted 3D printed muscles with different
conductive materials to simulate different levels of blood flow.
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Figure 10: EIT reconstructed images for simulated muscle groups of different cross-sectional areas and conductivity.

Figure 10 shows the results. The reconstructed images indeed indi-
cate that our setup is capable of regional information of the mus-
cle groups and can also differentiate between the muscle being
stretched and contracted. The more contracted the muscle is, the
larger and more conductive (due to more blood flows in) the cross-
sectional area becomes.

We initially considered running this evaluation on users and asking
them to contract/stretch one of the four muscles at a time. However,
it is not possible to collect ground truth data without invasive
measurement in this case.

8.2 Consistency Between Users

To investigate if our muscle detection works across different users’
bodies, we sampledmuscle reconstruction results fromuser study #1.
Figure 11 shows the reconstructed 3D conductivity distribution,
separated by muscle region, for users grouped by their BMI (cal-
culated based on body weight and height). We chose BMI because
higher BMI indicates more adipose tissue, which has been shown to
lead to a worse signal-to-noise ratio because it is less conductive [8].
While this can be overcome with additional current, we limited our
MuscleRehab system to AC signal amplitudes of peak to peak 5V to
be safe for the user.

Participants in our user study had BMIs ranging from 18.9 to 25,
falling within the Healthy Weight range of 18.5 to 24.9, except for
user 8 (BMI: 25). As can be seen in Figure 11, selected users with
similar BMI have visually similar 3D conductivity distributions
and small variations between the quadriceps and hamstring. The
quadriceps and hamstring were of particular interest because they
are antagonist pairs. When one is extended, the other is flexed and
vice versa. The variance is small, especially for user 5 who exhibited
average BMI and received a perfect score from the on-site physical
therapist. Users 4 and 6 received comments describing their lack of
full knee extension. This is reflected in the larger activation variance
even though the BMI is nearly the same. For users 7-9, tending
larger BMIs, the variance considerably increased with the BMI,
showing less consistency across the 3D conductivity distributions.

User 8 was scored the highest by the physical therapist, but had the
largest variance in activation variance. Therefore, a larger variance
combined with an average BMI can indicate poor exercise form
and a large variance combined with a BMI out of range does not
necessarily indicate poor form. The conductivity distribution shows
the clearest results at average BMIs and decreases in fidelity at
increasing BMI values.

Figure 11: EIT muscle engagement data across different BMI
groups for the seated knee exercise.

8.3 MuscleRehab System Performance

To evaluate the overallMuscleRehab system performance, we tested
each part of the system individually, as well as the overall per-
formance. The desktop computer we used is equipped with one
NVIDIA GeForce RTX 2080 Ti graphics card. We let the system run
for 1.5 hours, which is the time the system had to continuously
function during the user study. Displaying the live motion data in
both the motion and motion+muscle conditions runs at ∼90 fps, i.e.
the OptiTrack system that captures the motion consistently streams
at ∼250 fps and the HTC Vive Pro 2 VR headset that displays the
motion to the user performs at ∼87 fps. Updating the muscle in-
formation on top of the moving virtual avatar runs at ∼5 fps, i.e.
the EIT sensing board captures data at ∼26.94 fps, Matlab then
reconstructs the 3D image and calculates the muscle engagement
data which runs at ∼7 fps without Unity running in parallel. For
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our user study, we kept the muscle engagement data streaming at
∼3.3 fps in order to leave some system buffer.

9 DISCUSSION & FUTUREWORK

DisplayModalities:Themuscle engagement andmotion datamea-
sured by our system can be visualized via various display modalities,
such as on 2D phones, tablets, laptop displays, or via Augmented
Reality. For the user study, we chose VR over other display modali-
ties because of the need to control the training environment for our
studies (i.e., to reduce distraction from the outside environment,
such as visual noise). In VR, participants were also shielded from
the on-site PT who rated their exercise quality, which simulated
unsupervised rehabilitation. Although users might have different
proprioception in VR, it was used in both study conditions and
thus proprioception in both conditions was affected in the same
way. We hypothesize that the display modality will not impact the
results, i.e., having muscle information available will lead to more
correct execution, however, future work needs to conduct a compar-
ative study between VR, AR and 2D display modalities to identify
benefits & drawbacks of each and to confirm this hypothesis.

Study Condition Design: In our study, we compare muscle visual-
ization +motion vs. motion only. Thus, in one condition participants
receive more information than in the other condition. While we
initially considered comparing muscle only to motion only, we
did not pursue this experiment design because muscle data alone
does not provide information about correct exercise execution since
muscles can also be engaged when the user is standing still and is
not moving any part of the body. Moreover, the therapist avatar
was recorded with no additional hardware other than Optitrack to
ensure the highest possible accuracy of the tracking system and
the therapist’s exercise execution. It is also visualized differently
compared to the patient avatar (i.e. yellow vs. different color-coded
muscle groups) to avoid potential confusion from the user.

OptiTrack vs. Commercial Tracking System: The state-of-the-
art approach for monitoring unsupervised exercises is based on
motion tracking. To study if monitoring muscle engagement im-
proves exercise accuracy when compared to motion tracking only,
we needed to ensure that the study results are not affected by in-
accuracies of the motion tracking system. We therefore chose the
most accurate motion tracking system we had access to (i.e., Opti-
Track). This also means that the motion tracking only condition in
user study #1 benefits from this choice since at-home therapy will
use lower-accuracy consumer grade motion tracking system. With
less accurate motion tracking, the benefits of monitoring muscle
engagement will likely be even more significant.

More Integrated Measuring Form Factor: Although the custom
EIT sensing boards are portable and compact, we used standard
disposable medical ECG electrodes during the user study for more
consistent and guaranteed results. We will continue developing
more integrated measuring form factors with “click-on” electrode
designs that can be used multiple times for real world developments.

Multiple EIT devices: In our user study, we use one EIT device and
measure one leg at a time. In the future, we plan to explore setups
with multiple devices for a more holistic assessment of body muscle

engagement. Using multiple EIT boards for different body parts
will require us to reconstruct one combined 3D image. Merging
multiple 3D images may lead to possible synchronization issues,
which need further research to address them.

Additional Feedback: Our system currently provides visual &
audio feedback. For future work, it is desirable to also add haptic
feedback to simulate the touch that physical therapists use to in-
dicate which muscles should be engaged. Such additional haptic
feedback can be implemented by our systemwithout extra hardware
since haptic “touch” feedback can be simulated by the wearable
EIT device by injecting small AC currents at a different frequency
and amplitude through the electrodes into the muscle group that
is not correctly engaged (similar to ‘Electrical Muscle Stimulation’
(EMS)). We will explore this additional feedback modality as part
of our future work.

TKAexercises:Because participants in our user studywere healthy
individuals, we included advanced TKA exercises recommended by
our physical therapist that are more difficult than regular TKA ex-
ercises. In addition, we had participants perform the exercises with
their non-dominant leg to increase difficulty. Since TKA exercises
are typically performed as a group and evaluated together (e.g.,
some exercises are for warm-up / relaxation rather than treatment),
we reported all quantitative user study results in exercise groups
rather than split by individual exercise. For future work, we plan
to repeat our study with TKA patients in a clinical setting.

10 CONCLUSION

In this paper, we showed that monitoring and visualizing muscle
engagement during unsupervised physical rehabilitation can indeed
improve the execution accuracy of therapeutic exercises. We built
a study prototype, MuscleRehab, which uses electrical impedance
tomography and optical motion tracking to analyze a user’s motion
and muscle engagement data for the purpose of the study. We
further investigated the effectiveness of muscle engagement data
for improving post-rehabilitation analysis by physical therapists.
For future research, we plan to integrate MuscleRehab with more
accessible sensor setups (e.g., affordable commercial trackers rather
than expensive industrial motion track systems), and improve the
device form factor for more personalized at-home exercise.
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